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Abstract: To improve the resolution in point source digital 
in-line holography, we present two deconvolutions, one 
for the illumination system (coherent or partially cohe-
rent light source such as a laser or diode and pinhole) and 
one for the finite numerical aperture of the hologram. We 
show that for a system with moderate numerical aperture, 
optimal resolution of λ/2 laterally and λ in depth can be 
achieved.
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1  Introduction
The precision reached in any physical experiment is ulti-
mately limited by the resolution of the instrument used in 
the measurement. Thus, the experimental data obtained, 
IE(r), is the result of a convolution of the optimal data, I(r), 
with the instrument function, f(r),

 IE(r) = ∫dr′ f(r-r′)I(r′). (1)

Under ideal conditions, when the instrument function 
is known, one extracts the perfect data using the deconvo-
lution theorem of the Fourier transformation
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In spectroscopy, this technique has led to the amazing 
quality of optical spectra as early as the 19th century and 

has evolved together with other techniques to advance 
digital signal processing both for optical and acoustic 
data.

In this paper, we will show that deconvolution leads 
to significant improvements of three-dimensional (3D) 
images obtained in holography, in particular, with the 
point source digital in-line holographic microscope 
(PSDIHM) schematically depicted in Figure 1, with the 
relevant notation illustrated in Figure 2 [1, 2]. We will 
show that a twofold deconvolution is needed to achieve 
maximum improvement of the image quality, i.e., its 
optimal lateral and depth resolution of λ/2 and λ, respec-
tively, where λ is the wavelength of the laser. But before 
we proceed with this objective, we want to point out 
what is not the intention of this paper, namely, to use the 
deconvolution theorem as a mathematical and numerical 
trick simply to solve a convolution integral, such as the 
Kirchhoff-Helmholtz integral, as discussed frequently in 
the optical literature [3, 4]. Indeed, for the reconstruction 
of the holograms, we use a much faster and more flexible, 
patented algorithm as alluded to below [5]. The focus here 
is on the application of deconvolution methods as they 
apply to the instrument functions involved.

We recall that in optics, the propagation of a wave field 
from one plane to another along the optical path is invari-
ably given in terms of a convolution of the wave amplitude 
and a propagator, or a Green’s function. This (exact) math-
ematical property always arises when the formal solution 
of a differential equation is given in terms of an integral 
equation in which the appropriate boun dary conditions 
are accounted for. In quantum mechanics, this is the Lipp-
mann-Schwinger equation equivalent for particle scatter-
ing to the Schrödinger equation. In optics, these are the 
expressions in scalar theory for solutions of the Helmholtz 
equation for different approximations or boundary condi-
tions associated, in particular, with the names of Fresnel, 
Kirchhoff, Helmholtz, Rayleigh, and Sommerfeld [3].

The use of deconvolution to account for instrumental 
limitations as discussed at the beginning of this paper has 
been suggested repeatedly to improve the reconstructed 
images in digital holography, see, e.g., [2]. Also, the 
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The first term is the intensity of the unscattered part 
of the reference wave; the second term is the intensity of 
the scattered wave; it is the subject of classical diffraction 
theory in wave optics. The two terms in the square brac-
kets represent the interference between the reference and 
the scattered waves. This is called holographic diffraction 
and is the basis of holography [1, 2, 7].

Holography is a two-step process: first, a hologram 
is recorded and stored digitally. Second, a reconstruction 
is performed to obtain the 3D structure of the object from 
the 2-D hologram on the screen or, in technical terms, to 
reconstruct the wave front at the object. In DIHM, this 
is done numerically based on the theory of wave prop-
agation in optics, i.e., by backward diffraction of the 
digitally stored pattern on the 2-D hologram via the ref-
erence wave. This diffraction process is given in scalar 
diffraction theory by the Fresnel formula, the Kirchhoff-
Fresnel transform, or the Rayleigh-Sommerfeld integral, 
all of which are approximate solutions to the Helmholtz 
equation for different boundary conditions. As already 
discussed by Born and Wolf, these solutions do not differ 
significantly in the optically important regions, except 
very close behind a lens. In holographic microscopy, 
this has also been tested and found that there are no 

L P O S

Figure 1 Schematic of DIHM: a coherent or partially coherent light 
source such as a laser or diode L is focused onto a pinhole P. The 
emerging spherical wave illuminates the objects O, and the interfer-
ence pattern or hologram is recorded on the screen S. The solid and 
dashed lines are the reference and scattered wave, respectively.
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Figure 2 Three-dimensional illustration of the notation for DIHM. 
Point source P located at (0, 0, 0), scatterers O located at ri =  < xi, yi, 
zi > , reconstruction plane R located at r =  < x, y, z > , which is chosen by 
the user and the recording screen S located at ξ =  < X, Y, L > .

usefulness of deconvolution in DIHM to improve resolu-
tion has been convincingly presented by Latychevskaia 
et al. [6], although for only ‘half’ the problem as we will 
discuss in this paper.

This paper is structured as follows. In the next 
section, we introduce point source DIHM and formulate 
the problem of deconvolution. Next, we present results, 
discuss some numerical issues, and finally draw some 
conclusions.

2   Point source digital in-line holo-
graphic microscopy

In PSDIHM, the light emanating from the point source 
propagates to the screen with some of it being scattered by 
the object in front of the source. Thus, the complex wave 
amplitude at the screen is given by

 U(r) = Uref(r)+Uscat(r) (3)

where Uref(r) and Uscat(r) are the unscattered reference 
wave and the scattered wave, respectively. The intensity 
recorded on the screen becomes

 

( ) ( ) ( )
= ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )].
ref ref scat scat

ref scat scat ref

I U U
U U U U

U U U U

∗

∗ ∗

∗ ∗

=
+

+ +

r r r
r r r r
r r r r

 

(4)

© 2013 THOSS Media & 



B.S. Nickerson and H.J. Kreuzer: Deconvolution for digital holographic microscopy      339

significant differences in situations of high magnifica-
tion, i.e., when the object is placed close to the pinhole. 
We limit the following discussion to the Kirchhoff- 
Helmholtz transform
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Here,
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is the contrast intensity, r and ξ are the vectors from the 
point source to the object and screen, respectively, and 
k = 2π/λ is the wave number. For a point source, the ref-
erence wave is spherical, i.e., Uref(ξ) = ξ-1exp[-ikξ]. Thus, 
Fresnel’s approximation to the inclination factor becomes 
(for the geometry in which the screen is perpendicular to 
the optical axis)
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where χ is the angle between the optical axis from the 
point source to the center of the screen a distance L away, 
and the vector ξ is in the plane of the screen [2].

Taking the contrast intensity by subtracting the laser 
intensity at the screen in the absence of the object, one 
eliminates this dominant term and also, more impor-
tantly, any flaws in the laser illumination or camera. This 
subtraction can be done as just outlined or, if the removal 
of the object is not practical, one applies a high-pass filter 
to the hologram [8].

K(r) is a complex wave amplitude that can be calcu-
lated according to (5) anywhere in space, in particular, 
in the volume of the object/sample, thus, rendering its 
3-D structure if sufficiently transparent. The absolute 
square |K(r)|2 yields the intensity at the object, and its 
phase gives information about its index of refraction 
[9]. The numerical evaluation of the diffraction integral 
is time-consuming even for a ‘small’ hologram of only 
103 × 103 pixels. Observing that the Kirchhoff-Fresnel 
integral is a convolution, one is tempted to use fast-
Fourier transforms for its deconvolution. To do this, one 
needs to digitize (5) as the hologram, itself, is of course 
given in digitized form, ξ→(νa, μa, L), where ν and μ 
enumerate the pixels on the CCD chip, and a is the pixel 
size. Likewise, one needs to digitize the space coordi-
nates r→(nb, mb, z), where b is the size of one pixel 
in the reconstructed image. Unfortunately, to keep the 
digitized form of (5), a convolution one needs to make 

the identification b = a, thus, eliminating the opportu-
nity to obtain a magnified image of the object or to use 
point source DIHM as a viable microscopic technique. 
To overcome this impasse, several strategies have been 
explored, most recently, the methods by Kanka et  al. 
[10]. An older, faster, and more efficient procedure is to 
simplify the diffraction integral, itself [8]. We observe 
that in DIHM, the distance from the pinhole to the object 
is typically much smaller than to the screen. Thus, we 
can use an expansion
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Keeping only the linear term yields the Kirchhoff-
Helmholtz transform [8]
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Again, the function K(r) is complex and significantly 
structured and different from zero only in the space region 
occupied by the object. An algorithm has been developed 
for its evaluation that is outlined elsewhere, faster by 
many orders of magnitude than the direct evaluation of 
the double integral [2, 5]. Noteworthy is the fact that in 
this algorithm, the pixel size in the reconstructed image 
can be chosen arbitrarily to achieve any magnification 
one wishes. For high-resolution imaging, i.e., when the 
object is very close to the pinhole within less than a mil-
limeter, the other methods give very similar results but are 
not as fast.

Calculating the complex amplitude throughout the 
object, the local phase and intensity can be obtained

 φ(r) = arg(K(r)) (10)

 Irecon(r) = K(r)K*(r). (11)

In PSDIHM, there are two instrumental features that 
limit resolution and image quality. Associated with the 
hologram, itself, is the fact that pinholes are not perfect 
point sources but have a finite size on the order of the 
wavelength. The corresponding instrument function is the 
reference wave with which the hologram should be decon-
voluted. Associated with the reconstruction is the limita-
tion of the numerical aperture given by the finite size of 
the recording chip and its distance from the pinhole. We 
will address both issues in this paper.
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3   Deconvolution for light source 
and pinhole

As mentioned above, an approximate way to account for 
the finite pinhole size is to use the contrast hologram 
obtained by subtracting the background hologram, taken 
in the absence of the object. This also has the advantage 
that it removes possible contamination due to laser imper-
fections and due to the object holder, i.e., a glass slide or 
small tank. It already leads to a significant improvement 
in reconstruction as shown in numerous publications 
[1, 2, 7]. A mathematically more rigorous way is to treat the 
background hologram as the instrument function and use 
the deconvolution (2).

If the instrument function, i.e., the background 
hologram cannot be measured, one can resort to using 
Airy’s function, fA, or its Gaussian approximation, of 
a circular aperture as the instrument function in the 
deconvolution
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where a is the radius of the pinhole, and R is the radial 
distance from the optical axis on a screen at distance L. 
Its numerical aperture, defined via the half angle under 
which the first zero in Airy’s function appears is

NA≈1.22 λ/(2a)

In Figure 3, we show (A) the hologram of 1 μm spheres 
on a glass slide, (B) the Airy function of a pinhole with 
diameter 1 μm, (C) the deconvoluted hologram, and (D) 
the reconstruction, where the red outline refers to the cor-
responding section seen in Figures 6 and 7.

4  Deconvolution for detector size
The numerical aperture due to the finite screen size is

NA = n sin α

where n is the refractive index of the medium between the 
pinhole and the detector, and α is the half angle under 
which the detector is seen, i.e., tan(D/2L), where L is the 
distance from the pinhole to the center of the screen, and 
D is its lateral dimension.

A B

C D

2mm

50 µm

Figure 3 (A) the hologram of 1 μm spheres on a glass slide, (B) the 
Airy function of a pinhole with diameter 1 μm, (C) the deconvoluted 
hologram, and (D) the reconstruction, where the red outline refers 
to the corresponding section seen in Figures 6 and 7.

To obtain the corresponding instrument or point 
spread function, fNA, we assume a perfect point source 
emitting a spherical wave Uref(r) = Ar exp[ikr]/r with wave-
number k = 2π/λ. In addition, we have a point object at a 
distance r0 from which scattered spherical waves emerge. 
The total wave field is, thus,
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and the intensity of the contrast hologram becomes
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The first term accounts for classical scattering from 
an isolated object resulting in a smoothly varying back-
ground. The second term is due to interference between 
the source and the object and represent holographic inter-
ference. Under holographic conditions, we must have 
Ar >  > A0. With the contrast hologram given on a screen 
with numerical aperture NA, we can use the Kirchhoff-
Helmholtz transform to calculate the reconstructed inten-
sity around the original point source at r0. This point 
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spread function has been obtained analytically [8] and is 
given exactly by

 fNA(r) = |kNA(r)|2 (16)
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It is easily evaluated numerically but can also be 
approximated by products of Gaussians
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for lateral and longitudinal resolution, respectively. The 
point spread function is shown in Figure 4 in two sections, 
perpendicular and parallel to the optical axis. Thus, the 
3-D reconstruction of a hologram generated for a point 
scatterer somewhere between the pinhole and the screen 
will be seen as an ellipsoidal ‘football’ with its long axis 
along the optical axis. To clarify the deconvolution for the 
detector size, let us assume the object is given by a 3-D 
pixel array of δ-functions. Using PSDIHM, we obtain an 

image for a numerical aperture NA that is given by a set of 
such ‘footballs’, i.e.,

 INA(r) = ∫dr′ fNA(r-r′)I(r′). (19)

Deconvolution will then produce the optimal image 
I(r) = INA = 1(r), which is now an array of minimal ‘footballs’ 
with the long and short axes of lengths λ and λ/2, respec-
tively, as the maximal resolution in our instrument, i.e., 
we cannot, in principle, recover the δ-functions, not even 
with an infinitely large detector.

The deconvolution can be done at two levels, namely, 
with the reconstructed intensity INA(r) or with the recon-
structed amplitude KNA(r). The intensity deconvolution 
follows the procedure outlined above, given in (2). More 
care must be given to the amplitude deconvolution.

4.1  Amplitude deconvolution

Amplitude deconvolution is essential if one wants to con-
struct a detailed phase map of the object. Starting from 
the amplitude (9), we write

 KNA(r) = ∫dr′ kNA(r-r′)K(r′). (20)

and get
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from which we can calculate both the intensity and the 
amplitude. A practical difficulty with amplitude decon-
volution is phase wrapping, i.e., the fact that the phase 

x

PSFNA(x) PSFNA(z)

−10 10

1

0
z

−10 10

1

0

Figure 4 Point spread function, given by (16), in the planes perpendicular (x,y) and along the optical axis (x,z).
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of K(r) is only given modulo π. This is a serious numeri-
cal problem when a 3-D stack of amplitude maps on 
planes perpendicular to the optical axis is assembled as 
the phase must be followed from one plane to the next. 
If that is not done properly, depth resolution is severely 
affected or even lost. It has been resolved with consider-
able success in a 2-D phase map from which changes in 
the index of refraction of the core of an optical fiber has 
been measured with PSDIHM to four digits [9].

4.2  Noise

The numerical implementation of the deconvolution via 
FFTs runs into difficulties because any measured image 
has noise in it, assumed here to be white noise

( ) .NA NA noiseI I I= +r�

Its Fourier transform is

 ˆ ˆ ˆ
NA NA noiseI I I= +�  (22)

 0
ˆ .noiseI I=  (23)

Once deconvolved using (2), the latter contributes a 
term

-1 2 2
0( ) [ exp[ ] ]noiseI I p δ≈r F

in the inverse transform for a Gaussian point spread func-
tion. The largest argument in the exponential is 4π2N2, 
i.e., numbers by far too large for numerical computations 
except for very small and unreasonable N. This difficulty 
does not arise for the first term N̂AI  as it decreases at about 
the same rate as the point spread function.

To circumvent this noise difficulty, several methods 
exist; foremost is the Wiener filter in which one adds 
or subtracts a constant from the noise term, which is 
changed iteratively until numerical overflows disappear, 
and the inverse Fourier transform is stable [6].

4.3   Exact deconvolution or iterative 
methods

To avoid or remove noise in signal processing of optical 
or acoustic wave fields or images, iterative methods 
have been developed, in particular, the Richardson-Lucy 
algorithm. One must be aware that such methods do not 
always converge. One can impose arbitrary criteria that 

E1 D1

E2 D2

E3 D3

E4 D4

Figure 5 Deconvolution of Gaussian sources. E1,2,3,4 are the 
simulated images with two sources clearly resolved, two sources 
unresolved, and multiple sources, respectively. D1,2,3,4 are the 
corresponding deconvolutions. E4, D4 are along the optical axis 
as examples of the improvement of depth resolution. NA = 0.25 for 
λ = 600 nm.

stop the iteration when a certain noise reduction has been 
achieved, and the quality of the signal is judged to be 
acceptable. However, such criteria are impossible to for-
mulate if the details of the object to be revealed are not 
known. As an example, in the recording of a voice, one is 
successful when enough words can be identified. However, 
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for the 3-D structure of an unknown algae recorded with 
DIHM, such criteria are impossible. Proceeding with 
enough iterations, one eventually arrives at a picture 
where only the highest intensity pixels survive, i.e., as an 
example, an image of beads will result in an array of point 
sources of arbitrarily small radii. On the other hand, this 
arbitrariness is not present if the deconvolution issues the 
appropriate instrument functions. Latychevskaia et al. [6] 
have achieved considerable success in this direction.

5  Some examples

We begin with the simple case of two points being well 
separated in a plane perpendicular to the optical axis 
showing images before and after deconvolution (Figure 5). 
The half-width of the points after deconvolution is λ/2 as 
expected for maximum resolution.

Next, we show a similar geometry but with the two 
points so close that at a numerical aperture NA = 0.25, they 
cannot be resolved anymore. Deconvolution solves this 
problem (see Figure 5). Last, we look at a clusters of point 
sources, which at NA = 0.25 show up in reconstruction as 
white blobs, which deconvolution resolves into individual 
structures.

In an earlier paper on immersion holography [11], we 
used clusters of 1 μm beads that were poorly resolved in 
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Figure 6 (A) Corresponding to Figure 3 (D), 1-μm spheres on a glass 
slide in air before deconvolution (dashed cuts) and (B) after decon-
volution (solid cuts). The cuts are indicated in the upper picture. 
NA = 0:39.
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Figure 7 (A) One-micrometer spheres on a glass slide in oil before 
deconvolution (dashed cuts) and (B) after deconvolution (solid 
cuts). The cuts are indicated in the upper picture. NA = 0:55.

air but clearly resolved in oil. We have taken both images 
and deconvoluted them with the respective numerical 
aperture resulting in a further improvement of resolution 
(see Figures 6 and 7).

6  Final comments
Holography is a two-step process consisting of, first, 
taking a hologram and, second, reconstructing the wave-
front at the object creating an image thereof. As a result, 
there are two instrument functions and consequent convo-
lutions to be considered: first, for the illumination system 
(laser and pinhole) and, second, for the finite numerical 
aperture of the recording screen. Both issues have been 
addressed and resolved in this paper for PSDIHM so that 
optimal lateral and depth resolutions of λ/2 and λ, respec-
tively, can be obtained after images are deconvolved. One 
should note, however, in some situations, not enough of 
the initial diffraction pattern is recorded by the screen to 
yield optimal resolution upon deconvolution. This is, of 
course, a function of the parameters of the microscope, 
namely, the numerical aperture and wavelength used in 
the experiment.

A final cautionary note on depth resolution. If optically 
dense, nontransparent regions in the object are larger than 
a few wavelengths the impinging waves cannot diffract 
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sufficiently around the edges and behind the object. In 
this shadow region, no details can be revealed, not even 
with holography. The obvious way out of this dilemma is 
holographic tomography [12] with several point sources 
impinging on the object from different directions. A very 

elegant way to do this is the array illumination developed 
in Jena [13, 14].
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