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Light shaping for illumination

Abstract: The ever-increasing use of LED as a solid-state 
light source in general and specialized lighting has pushed 
the field of optics further for illumination towards sophis-
tication and high precision. In this paper, we provide 
an overview of this domain, starting with a formulation 
of the underlying, fundamental mathematical problem, 
which in itself is not easily and directly solvable. We then 
describe various algorithms that have been developed 
as approximations for specialized cases, providing refer-
ences to the relevant publications. Finally, two examples 
show the new possibilities in light shaping that have been 
made possible through the use of nonimaging freeform 
optics.
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1  �Introduction: optics as an  
innovation driver in lighting

With the advent of electrical lighting, the light flux emitted 
by a single light source became bright enough that at times 
it might not be desirable to have that light source illumi-
nate its surroundings directly. Instead, various items were 
placed around that light bulb, from simple shields that 
reduced direct glare to reflectors that could partly redirect 
the light.

Fast-forward over 100 years, and the transition to 
LED lighting and advances in ultra-precision machin-
ing have created another novelty: freeform optics mass 
produced from plastics can be positioned close to the 

compact LED chips due to their low surface temperature. 
Whereas traditional reflector designs were often limited 
in their shape to (faceted) parabolic or spherical shapes, 
the newly available degrees of freedom have led to a 
revival of a sub-field of optical sciences, optics for illumi-
nation, which is now characterized by sophistication and 
high precision.

Typical conventional optical surfaces are spheres, 
cylinders, conics or derivatives thereof, whose surface 
profile can be described by a few parameters. With the 
evolution of high-precision machining, the number of 
parameters has increased substantially: for ultra-high 
resolution applications use of more than 105 parameters 
has been reported. New design paradigms need to be 
developed that can manage this vast number of param-
eters. To this end, several algorithms were published, 
and the aim of this paper is to provide a brief overview of 
these results. 

The aim of Section 2 is to develop categories for the 
optical design algorithms that have been published so 
far. Most algorithms published to date need a zero-éten-
due point source as the light source, and an overview of 
these is provided in Section 3. Going further towards real-
life illumination scenarios, the assumption of a perfectly 
small source needs to be abandoned in favor of extended 
sources, which are the topic of Section 4. In Section 5, 
we present two examples that demonstrate the abilities 
of freeform optics with regard to complex illumination 
tasks. Finally, in Section 6 a short summary is given as 
well as a short discussion concerning problems in the 
field of nonimaging optical design that need further 
investigation.

2  �Light shaping for illumination 
follows different approaches

2.1  Imaging versus nonimaging

When optical design is mentioned, this often relates to 
an imaging setup. Imaging optics aims at bringing all 
rays emanating from a point on the object as exactly as www.degruyter.com/aot
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possible to the corresponding point on the image plane. 
The applications of imaging optics cover a wide range, 
examples include eye glasses, microscopy, astronomy, 
lithography and photography. The quality of an optical 
design in imaging optics is often measured by a spot size 
on the image plane, cf. Figure 1.

Nonimaging optics, by contrast, treat the incoming 
light as a power source and the main target for the optical 
designer is to ensure that a prescribed power density 
is met on a target area. Contrary to the case of imaging 
optics, no specific importance is placed on the origin of 
the light ray. The target distribution could be a homogene-
ous irradiance on a wall in an architectural application, or 
a complex pattern in the far field, such as for automotive 
headlamps. Miñano and Benítez [1] provide a definition of 
imaging and nonimaging optics, respectively, in terms of 
phase space.

Imaging as well as nonimaging optics are mostly 
treated within the frame of geometric optics, that is, 
wave-like effects such as diffraction and interference 
are neglected. Although a significant number of setups 
can be correctly modeled geometrically, there are tasks 
that need correct wave optics treatment. For example, 
the concept of an image point no longer holds in wave 
optics. The smallest possible spot size on the image 
plane is limited by diffraction and given by the Airy disk 
diameter [2]. Interference fringes can occur depending 
on the degree of coherence of the radiation at hand. In 
most applications of imaging and nonimaging optics, 

incoherent light sources are used, but light sources are 
never totally incoherent. The important characteristic 
to quantify these effects is the coherence length, which 
should be significantly smaller than the expected differ-
ence in optical path length between rays.

2.2  Point source versus extended source

The topic of algorithmically designed optics for illumina-
tion has seen a major increase in public interest through 
the increased use of LED technology. Because of their 
compact size and comparatively low temperature while 
in operation, LEDs allow for low-cost polymer optics to 
be placed immediately in front of the light source, often 
partly enclosing it. In general, the light rays hitting the 
optical surface at a given point cover a finite range of ray 
directions s∆

�  (cf. Figure 2). In the limit of vanishing s∆
�

 
the light source can be treated as a point source. The value 
of s∆
� depends on the LED’s extend the optics encapsu-

lating the LED and on the distance between source and 
surface point. In the case of a large divergence angle of 
the light emanating from the LED, a large distance implies 
a large size of the optical element. In this case, the ‘five 
times’ rule of thumb applies, which means that in the case 
that the optical surface is five times larger than the source, 
the point source assumption is approximately valid.

A point source has the advantage that the resulting 
light distribution has a vanishing phase space volume 

Figure 1 Imaging optics and nonimaging optics setup.
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(also called a zero-étendue source) and the angle of inci-
dence of light rays for a given point on the optical surface 
is thus unique. This property allows for the optical design 
problem to be mathematically well defined, in the sense 
that under certain restrictive conditions the number of 
possible solutions can be limited to two [3]. These two 
solutions differ by the number of caustic points between 
the optics and the target surface [4]. To the best of the 
authors’ knowledge, no further-reaching formal proof has 
yet been published that covers the question of existence 
and uniqueness of a solution [5].

2.3  Number and shape of surfaces

Plane surfaces, that is, surfaces with constant normal 
vectors, are occasionally used in optics but more inter-
esting surfaces have varying normal vectors. Historically, 
spherical surfaces dominated optics for several reasons, 
the main one being the relative simplicity of manufac-
turing. Cylindrical surfaces are also easy to produce. The 
corresponding theory of rotationally invariant imaging 
systems is well developed, which is mainly due to sym-
metry and the fact that in the so-called paraxial approxi-
mation (sinφ≈φ), spherical surfaces allow for simplified 
calculations.

With the current availability of powerful comput-
ers, such approximations are no longer necessary and 
a typical design procedure uses ray tracing software to 
optimize surface parameters by setting up a merit func-
tion. Therefore, extensions of spherical surfaces, such 
as conics and aspheres of varying degrees, are used 
extensively. In the area of nonimaging optics, so-called 
freeform surfaces have recently found widespread use, 
fueled by newly developed manufacturing techniques [6]. 

Figure 2 Schema of the setup of light source and optical surface. 

These surfaces are parametrized by a comparatively high 
number of parameters, typically 102–106. Besides regular 
point clouds, NURBS surfaces on rectangular domains 
[7] and triangulated surfaces [8] have been used to math-
ematically describe such surfaces.

An additional criterion to categorize optical design 
algorithms is by the number of surfaces that are designed. 
The considerations of existence and uniqueness laid out 
in the previous section aim at a single optical surface 
(reflecting or refracting). In many applications, it is desir-
able to use more than one surface. For example, a lens 
always has two surfaces, and a choice about the shape 
of the other surface has to be made in any case. In many 
cases, it is possible to make a simplifying assumption for 
the source-facing surface of a lens. For collimated light, a 
plane surface has no net optical function, and similarly for 
a point source, a spherical surface shape with its center of 
curvature at the point source does not refract rays either.

Still, in many cases it is desirable to leverage the addi-
tional degrees of freedom obtained through the additional 
optical surface. For example, the so-called Fresnel reflec-
tions at optical interfaces scale in a highly nonlinear way 
with the angle of incidence [2] (cf. Figure 3B). Figure 3A 
shows this effect for the interface between glass (n = 1.5) 
and air (n = 1.0). If a particularly high angle of deflection 
is desired, it can be significantly more efficient if two 
deflections by approximately half the original angle are 
performed.

Because of the significantly increased number of 
parameters in comparison with imaging optics, new 
computational methods are needed to determine the 
exact shape of freeform optics. These are the subject of 
Section 3.

2.4  �Integrability condition for  
smooth surfaces

In most practical cases, it is desirable that optical surfaces 
are smooth or at least smooth within a small number of 
distinct regions (segments). In general, optical freeform 
surfaces that generate a prescribed irradiance pattern 
form a family of surfaces from which a single one has to 
be picked, for example, by prescribing a spatial position.

A family of smooth surfaces can be described by the 
level sets of a scalar function ( ).rψ

�
 The function value is 

by definition constant along any tangent to the surface so 
that the gradient is perpendicular to the surfaces and thus 
is colinear to the surface normals:

	 ( ) | ( ) | .r r Nψ ψ∇ = ∇
� � �� �

� (1)
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With
 

( ( )) 0rψ∇× ∇ =
� � �

 
this becomes

	 (| ( ) | ) (| ( ) |) | ( ) | 0.r N r N r Nψ ψ ψ∇× ∇ =∇ ∇ × + ∇ ∇× =
� � �� � � � � �� � �

� (2)

Scalar multiplication with N
�

 yields

	 ( (| ( ) |) ) | ( ) | 0,r N N r N Nψ ψ∇ ∇ × ⋅ + ∇ ⋅∇× =
� � � �� � � �� �

� (3)

and finally

	 0.N N⋅∇× =
� ��

� (4)

This is the integrability condition that the field of 
normal vectors has to comply with in order to yield a smooth 
optical surface. This is a generalization of the integrability 
condition given in [9]. In coordinates (X, Y, Z), this reads:

	
3 2

1 - =0.
N N

N
Y Z

 ∂ ∂
 ∂ ∂  �

(5)
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2 - =0.
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Z X

 ∂∂
 ∂ ∂  �

(6)
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3 - =0.
N N

N
X Y

 ∂ ∂
  ∂ ∂  �

(7)

Transforming the coordinate system such that at a 
given point, the surface normal is given by (0, 0, 1) yields 
at that point:

	
2 1- .

N N
X Y

∂ ∂
∂ ∂ � (8)

The surface can be described locally by a height func-
tion h(X, Y). The normal vector is then given by:

	

3 3 3

- , - , 1
= - , - , .

- , - , 1

h h
X Y h hN N N N

X Yh h
X Y

 ∂ ∂
 ∂ ∂  ∂ ∂ =  ∂ ∂ ∂ ∂  
 ∂ ∂ 

�

�

(9)

Inserting into Eqn (7) and keeping in mind that at the 
given point ∂h/∂X = 0 and ∂h/∂Y = 0 this yields the Schwarz 
integrability condition:

	

2 2

- 0.h h
Y X X Y
∂ ∂ =

∂ ∂ ∂ ∂ � (10)

3  �Irradiance tailoring for point 
sources

Most optical freeform surface design algorithms rely on 
the point source assumption. An exception is the simul-
taneous multiple surface (SMS) method, an extension 
of the method of Cartesian ovals, developed by Miñano 
and others [10–12] that allows to construct a two-surface 
system that exactly maps two input congruences to two 
output congruences (a congruence is a zero-étendue 
light field). By construction, it is two-dimensional (one 
transverse dimension). This method has been applied to 
imaging as well as nonimaging optical problems and has 
been extended to handle three-dimensional systems at 
least approximately [12].

Figure 3 (A) Losses of a PMMA lens for a street lighting application due to Fresnel reflections at both surfaces. The discs designate the 
case that both surfaces are designed to participate in the ray deflection, whereas the stars designate the case in which the first surface is 
a sphere with origin at the point source, which means the rays are not deflected by this surface. For an explanation of the collecting angle, 
see Figure 2. (B) Reflectivity at an interface with refractive indices n1 and n2, respectively, as a function of angle of incidence for perpendicu-
lar, parallel and mixed polarization.
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3.1  �Irradiance tailoring as the  
Monge-Kantorovich transport problem

Mathematically, the problem of finding a ray path from 
the source plane to points on the target plane can be 
described as coordinate mappings:

	 xt = xt(xs, ys)� (11)

	 yt = yt(xs, ys).� (12)

The index t designates target coordinates and the 
index s source coordinates, respectively. The requirement 
of total radiation power conservation leads to:

	
( , ) = ( , ) .s s s s s t t t t t

s T

E x y dx dy E x y dx dy∫ ∫
� (13)

Transforming the integral on the right-hand side to 
source coordinates yields:

	

( , ) ( ( , ), ( , ))

det( ( , )) ,

s s s s s t t s s t s s
s s

s s s s

E x y dx dy E x x y y x y

J x y dx dy

=∫ ∫
� (14)

with the Jacobian matrix of the mapping:

	

.

t t

s s

t t

s s

x x
x yJ
y y
x y

 ∂ ∂
 

∂ ∂ = ∂ ∂
  ∂ ∂  �

(15)

We require the mapping to be smooth and one-to-one 
so that the point-wise relation results as follows:

	 Es(xs, ys) = Et(xt(xs, ys), yt(xs, ys))|det(J(xs, ys))|.� (16)

There is no unique mapping that complies with  
Eqn (16). Further requirements have to be set up, one 
important one is that the mapping can be realized by a 
smooth optical surface. Eqn (16) together with further 
conditions leads to a Monge-Ampère type equation.

3.2  Solution methods

A direct solution of Monge-Ampère type equations is 
fairly demanding mathematically. Schruben [13] derived 
an equation that describes the mapping of a reflector 
problem but did not provide a solution. Solution methods 
have been developed for special setups but are still not 
applicable to real-world optics design problems.

3.2.1  High-resolution tailoring using surface curvatures

Ries and Muschaweck [14] describe a method that com-
putes a Monge-Ampère type equation indirectly. A given 
optical surface generates an irradiance distribution 

( )gE t
�

 on the target as a function of the target coordinates 
.t
�  If the desired irradiance distribution is given by ( )pE t

�
 

the difference:

	 ( ) ( )- ( )g pE t E t E t∆ =
� � �

� (17)

has to vanish. The irradiance generated by the optical 
surface on the target plane is computed using the cur-
vature tensors of the optical surface and the input ray 
bundle, respectively, and Snell’s law of refraction. The 
surface is parametrized smoothly so that the solution 
complies with the integrability condition. The parameters 
describing the surface are determined such that Eqn (17) 
vanishes everywhere on the target. Although Eqn (17) is 
not a Monge-Ampère type equation, the solution complies 
with Eqn (16).

3.2.2  High-resolution tailoring using flux prisms

Bruneton et  al. [15] describe a variant of this approach. 
Instead of using the irradiance, which can diverge if there 
are caustics, they use radiant power differences and mini-
mize the difference between generated and prescribed 
radiant powers. If the number of independent param-
eters equals the number of equations, least-squares mini-
mization and root finding as in [14] are mathematically 
equivalent. The radiant powers are calculated using area 
elements of the ray bundles on a surface near the source 
and the target surface, respectively.

Monge-Ampère type equations as well as the equa-
tions resulting from the Ries or Bruneton treatment of the 
problem are highly nonlinear, and thus solutions can in 
general only be found by iterative methods with initial 
values sufficiently close to the final solution. Good initial 
values can be found either by some other method or by a 
multi-grid method that starts with a coarse grid and itera-
tively refines the resolution.

3.2.3  Method of ellipsoids and paraboloids

In a series of papers, Oliker and coauthors [16–19] pub-
lished the method of ellipsoids and paraboloids, respec-
tively. The key idea is to place the point source at the 
location of one of the paraboloid/ellipsoid foci and the 
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other on the target plane. There are a prescribed number 
of overlapping paraboloids/ellipsoids. The radiant power 
on the target caused by a given paraboloid/ellipsoid is 
given by the radiant power from the source that hits the 
active surface area of the paraboloid/ellipsoid. A major 
problem with this method is the calculation of the active 
surfaces of the paraboloids/ellipsoids. Besides this, the 
resulting surfaces are patches of paraboloids/ellipsoids 
that in general do not exhibit smooth transitions.

3.3  Two step methods

As pointed out above, a ray mapping has to generate the 
desired irradiance distribution and simultaneously has to 
comply with the integrability condition Eqn (4). The com-
bination of both requirements leads to highly nonlinear 
equations that are difficult to solve. From a numerical 
point of view, it would be much easier to separate the pro-
cedure into two steps:
1.	 Find a ray mapping that creates the desired irradiance.
2.	 Reconstruct the surface from the normal vector field 

that can be derived from the ray mapping.

The problem with this approach is not how to find a ray 
mapping that creates the desired irradiance but to meet 
the integrability condition at least approximately.

3.3.1  Finding a suitable ray mapping

The simplest ray mapping can be found by two consecu-
tive 1-d mappings [20] but the results are rather poor in 
terms of integrability of the resulting surface. In litera-
ture, ray mappings are described that are improvements 
compared to this simplistic approach. Parkyn [9] found a 
ray mapping by ‘a one-to-one correspondence between 
constant-flux source-grid cells on the sphere of direc-
tions from the source and the uniformly sized rectangu-
lar cells of a target grid’. Wang et al. [21] perform a light 
energy mapping between the light source and target. 
Bäuerle et  al. [22] solved a Monge-Ampère equation 
subject to minimizing a generalized Monge-Kantorovich 
functional.

3.3.1.1  �Ray mapping as a solution of a  
Monge-Kantorovich problem

A unique mapping that complies with Eqn (16) can be 
found by requiring that the generalized Monge-Kan-
torovich functional is minimized by the map:

	
( ) ( , , ( , ), ( , )) ( , ) .s s t s s t s s s s s s sM u F x y x x y y x y E x y dx dy=∫ �

(18)

For the L2 cost function F(xs, ys, xt, yt) = (xs-xt)2+(ys-yt)2, it 
has been shown that the coordinate mapping is irrotational 
and is given by the gradient of a convex function u [23]:

	

( , )
,s s

t
s

u x y
x

x
∂

=
∂ �

(19)

	

( , )
.s s

t
s

u x y
y

y
∂

=
∂ �

(20)

With this, we get a Monge-Ampère type equation:

	

2 2 2 2

2 2

( , ) ( , )
( , ) ,

- .

s s s s
s s s t

s s

s s s ss s

u x y u x y
E x y E

x x

u u u u
x y y xx y

 ∂ ∂
=   ∂ ∂ 

 ∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂∂ ∂  �

(21)

Although this is a solution of the formal mapping 
problem Eqn (14), this mapping is unlikely to comply with 
the integrability condition Eqn (4) because the above deri-
vation does not include any information about the optical 
setup or the optical surface. No direct link could yet be 
established between Eqn (4) and the rotationlessness of 
the solution of Eqn (21); nevertheless, it seems reasonable 
that the deviation of the left-hand side of Eqn (4) at least 
becomes smaller if the mapping is rotation-free. In [15] the 
improvement is demonstrated.

3.3.1.2  �Computing ray mapping by the  
method of paraboloids

Fournier et  al. [24–26] computed the mapping using the 
Oliker method with a small number of paraboloids and 
the resulting function is fitted to a finer grid. With this 
mapping given, a surface is reconstructed. This approach 
avoids the paraboloid method problem of nondifferenti-
able surfaces.

3.3.2  Reconstructing the optical surface from a mapping

With the mapping information, the optical surfaces can 
be computed so that the source rays are deflected to hit 
the target at the desired positions. Surface reconstruction 
from normal vectors is a known problem, for example, in 
the field of reverse engineering. Many different methods 
have been developed for this task. Nam and Rubinstein 
[27] and Rubinstein and Wolansky [28] discuss the issue 
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in detail. Because the ray mappings discussed in the pre-
vious section in general do not exactly comply with the 
integrability condition, a reconstruction method based on 
a least-squares optimization method seems most suitable.

We suppose the surface to be parametrized by:

	 0( ) ( ) ( ) ( ),r i r i i s iλ= +
� � �

� (22)

with 0 ( )r i�  the origin of ray i. This can be the position 
of a point source or the position of the ray after passing 
through another optical surface. ( )s i�  is the unit direction 
vector of the ray and λ(i) is a scalar parameter defining the 
surface point i. The point ( )r i�  can be a surface point of a 
regular Cartesian grid, a node of a triangulated surface or 
a control point of a NURBS surface. ( )s i�  and the surface 
normal vector ( )N i

�
 give the direction vector ( )os i�  of 

the ray after refraction (or reflection) at the surface. 
Given ( )os i�  and the ray’s position on the optical surface 

( ),r i�  the point ( )T i
�

 where the ray intersects the target 
surface can be computed. Assuming that the target posi-
tions ( ) ( )i

xt λ  and ( ) ( )i
yt λ  of the rays as computed by the 

mapping can be realized by a smooth, integrable surface 
the objective function to minimize is given by:

	 ( ) ( )2 2( ) ( ) ( ) ( )( ) ( )- ( ) ( )- ( )i i i i
x x y y

i
F T t T tλ λ λ λ λ = +  ∑ � (23)

where ( ) ( )i
xT λ  and ( ) ( )i

yT λ  are the actual local target 
coordinates of the ray for a given vector of parameters 
λ. Because the normal vector field deduced from the ray 
mapping need not be integrable, the mapping realized 
by the surface in general deviates from the computed ray 
mapping and as a consequence the irradiance distribu-
tion deviates from the prescribed distribution too. The 
amount of irradiance distribution deviation is hardly 
known in advance so that the quality of the result has to 
be examined for every setup. Although currently there is 
no hard mathematical proof, it is plausible to assume that 
the smaller the violation of the normal field integrability 
condition, the smaller will be the irradiance distribution 
deviation. The relationship between the rotation of the 
mapping and the value of Eqn (4) has been examined in 
[29].

Besides computational efficiency a further advantage 
of the two step approach is that the total light deflection 
can easily be split into several parts, each one realized by 
a separate optical surface [22, 30].

NURBS surfaces are widely used in computer graphics 
and CAD systems but using triangulated surfaces has the 
advantage of being very flexible for further processing of 
the resulting surfaces. They can, for example, be refined 
or cut very quickly, thus gaining finer control over the 

resulting lens’s boundary conditions. In combination with 
a multi-surface design, this also allows to include manu-
facturing constraints (e.g., to avoid undercuts for injection 
molding).

4  �The challenge of irradiance 
tailoring for extended sources

Thus far, only point sources have been considered. But 
real light sources are extended. As long as the optical 
element is large compared to the light source, the point 
source assumption is a good approximation. The demands 
of higher light fluxes, realizable by light modules with 
diameters in the range of several 10–100 mm, and small 
lamp sizes make it necessary to consider the source exten-
sion more thoroughly.

With zero-étendue point sources (almost) any irradi-
ance distribution can be realized. This no longer holds for 
extended sources. The limit is given by the étendue of the 
light bundles which cannot take on smaller values at the 
target plane than it had at the source.

Because at present no optical freeform design method 
can manage extended sources directly (the SMS method 
can at best treat two or three normal congruences, e.g., 
point sources), point source algorithms have been modi-
fied or extended to tackle the issue of extended sources.

4.1  Optimization of parameters

Fournier et al. [31] used a point source algorithm wrapped 
by an additional optimization loop in which the location 
of a point source is varied such that the irradiance distri-
bution realized by an extended source located at a fixed 
point is close to the desired distribution.

4.2  �Adaptation of the point source target 
distribution

A different approach was published by Bortz and Shatz 
[32] where the prescribed target distribution that is used 
with a point source algorithm is adapted so that the 
desired distribution is realized by the calculated surface 
when applying an extended source (Figure 4). Bortz and 
Shatz use the following iterative adaptation rule:

	

( )
( 1)

( )

( )
( ) ( )

( )

n
pn

p rn
t

I x
I x c I x

I x
+ =

�
(24)
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(0) ( ) ( )p rI x I x= �

(25)

Ir(x) is the required output distribution, n
tI  the ray-traced 

output distribution at step number n and ( 1)n
pI +  the pre-

scribed distribution that is used in step number n+1. c is a 
normalization factor to ensure total power conservation.

Bruneton et al. [15] modified this approach by employ-
ing solutions of the Monge-Kantorovich problem as 
discussed in Section 3.3.1. Figure 4A shows the target dis-
tribution computed by ray tracing the rays of a point source 
through a lens designed using a point source algorithm.  
Figure 4B shows the target distribution in the case of an 
extended source. The method described in Section 3.3.1 
is used to compute the mapping function that transforms 
the distribution Figure 4B into the distribution Figure 2B. 
This mapping function is then applied to the distribution 
Figure 4A resulting in Figure 4C, which is used as the pre-
scribed distribution in the next iteration. Figure 4D shows 
the distribution of an extended source traced through the 
lens computed with a point source algorithm using the 
prescribed distribution itadapc. Further iterations did not 
improve the result.

5  �Sample applications of  
nonimaging optics

Freeform nonimaging optics have enabled a series of tech-
nological innovations in the domain of light shaping for 
illumination. Examples that have now found widespread 
use are LED street lighting, architectural lighting and auto-
motive lighting. Whereas all these applications only fulfill 
a single optical function and aim to achieve relatively low-
resolution irradiance patterns, the following two sections 
will outline some of the new advances in this field.

5.1  �Integrating extended functionality:  
automotive lighting

Currently, nonimaging automotive lighting units only 
fulfill signaling functions, that is, the light from this 
unit is meant to be received directly by an observer. 
Examples include turn indicators, braking lights or 
daytime running lights. Going further from there, actual 

A B C D

Figure 4 (A) Target distribution produced by a point source, (B) corresponding target distribution due to an extended source, (C) new pre-
scribed distribution, (D) resulting extended source distribution after one iteration step.

Figure 5 Rendering and photo of an automotive fog light lens for use with an LED light source. Dimensions are in mm.

© 2013 THOSS Media & 



R. Wester and A. Bäuerle: Light shaping for illumination      309

illumination applications can be targeted, where the 
information relevant to the viewer does not come from 
looking at the light source itself but from the object that 
is illuminated. One challenge here in automotive appli-
cations is the need to reduce glare for oncoming traffic. 
This is realized through a steep bright-dark cut-off at 
the horizon. Figure 5 shows a rendering and a photo of 
a monolithic lens for an LED lighting module. Looking 
at the light distribution in Figure 6, which is created by 
this lens in combination with a 4 × 1 mm2 automotive LED, 
the bright-dark cut-off becomes immediately apparent. A 
more thorough analysis yields that the resulting distribu-
tion indeed conforms to current industry practices and 
regulations [15].

To achieve this, the two optical surfaces for the fog 
light function are designed using Bruneton’s mapping 
optimization algorithm from Section 3.3.1. To this end, 
a first ray mapping is found by successively integrat-
ing along the Cartesian coordinate axes, and then this 

mapping is optimized to make it rotation-free. Finally, the 
optical surfaces are reconstructed using an optimization 
for a triangulated surface.

5.2  High-resolution tailoring: logo lens

The main technological challenge in the previous example 
of a fog light lens is to achieve a sufficiently strong bright-
to-dark cut-off at the horizon. Apart from this, the desired 
distribution shows rather low variation and feature reso-
lution. This section, by contrast, will demonstrate the 
power of algorithmically designed nonimaging optics 
with another example. Figure 7 shows the rendering of 
a lens together with the rather complicated irradiance 
pattern it generates (a logo) [33]. The resolution of the pre-
scribed target distribution is 193 × 193 pixels, and the con-
trast is approximately 4:1. Even though higher contrasts 
can be realized, the minimum irradiance is limited by the 
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Figure 6 Angular light distribution achieved by a point source (left) and by a 4 × 1 mm2 automotive LED (right) in combination with the lens 
designed using the point source assumption from Figure 5.
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Figure 7 (Left) Rendering and false color representation of surface curvature of a freeform lens that creates a logo distribution. All dimen-
sions are in mm. (Right) Target and actual irradiance pattern as found in ray tracing analyses.
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maximum optical surface curvature of smooth surfaces 
that can be manufactured.

This lens was designed using the flux-prism method 
proposed by Bruneton et al. (cf. Section 3.2.2). Calculation 
times are a few minutes on a standard computer.

6  Conclusion
In this paper, an overview of current light shaping 
methods for illumination is given. To this end, the differ-
ent categories of optical design are explained. Focusing on 
algorithms for the design of nonimaging optics for point 
sources, a review of published design methods is given. 
To conclude, two examples showcasing the possibilities 
of nonimaging optics are given.

Two main problems in light shaping for lighting still 
persist: extended sources and color effects. From a theo-
retical point of view, a phase space description is the 
adequate framework for treating finite étendue sources, 
whereas from a numerical point of view it would be 
advantageous to stay with the spatial description. Further 
investigations are necessary to find a suitable solution 
that accounts for the finiteness of real light sources but 
which stays acceptably efficient.

Light quality not only depends on radiance and its 
distribution but also on color. The relevant keywords here 
are color temperature, color rendering index (CRI) and 
color homogeneity. In the field of lighting, continuous 

spectra that resemble the spectrum of sun light are almost 
always desired. LEDs emit light within relatively small 
wavelength regions of  < 10 nm. To obtain color percep-
tion, at least comparable with that of sun light, the light 
emitted by blue LEDs is typically transformed into white 
light through the use of fluorescent materials. This can 
be combined with LEDs emitting in the blue, green and 
red region of the spectrum, respectively. A major problem 
with white LEDs is that due to their design, the emitted 
light spectrum varies with the direction of emission. This 
effect is called ‘color over angle effect’.

Likewise, dispersion is a common problem in optics. 
In imaging optics, chromatic aberrations can be reduced 
by using combinations of lenses with different glass mate-
rials or by combining refractive and diffractive optical 
elements [34]. This is normally not an option for lighting 
applications due to cost considerations. In the field of 
lighting, reflectors can alternatively be employed which 
do not show dispersion (besides wavelength-dependent 
reflectivity). LED arrays with LEDs emitting at different 
wavelengths need to be equipped with light mixing ele-
ments such as Kohler lens arrays [35].
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