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Abstract: The density of optical coatings is one of the 
most crucial material-related parameters in interference 
coating science and technology. It has an impact on the 
refractive index, the transparency range, and the mechan-
ical stress of a coating material. This tutorial provides a 
background on the classical theory relating the coating 
density to the mentioned parameters. Simple models are 
presented that highlight the correlations between optical 
constants, stress, and shifting behavior of different oxide 
coatings. Comparison with the experiment is performed 
on the basis of numerous experimental data, which stem 
from hafnium oxide, zirconium oxide, tantalum pentox-
ide, and silicon dioxide.
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1  Introduction
Any optical phenomenon is in some way connected to 
the interaction of electromagnetic radiation with matter. 
This interaction may be theoretically treated at different 
conceptual levels. For example, there are many cases 
where a purely classical description may find an applica-
tion. It is, on the other hand, possible to build a strong 
quantum mechanical theory. A purely classical descrip-
tion makes use of Maxwell’s equations for the descrip-
tion of the electrical and magnetic fields and classical 
models (for example, Newton’s equations of motion) 
for the dynamics of the charge carriers present in any 
terrestrial matter. On the contrary, a quantum mechani-
cal treatment is performed within the framework of the 

quantization of the electromagnetic field (so-called 
second quantization) and a quantum theoretical treat-
ment of matter. This description is necessary, when spon-
taneous optical effects have to be described (spontaneous 
emission, spontaneous Raman scattering, or spontane-
ous paramagnetic interactions in nonlinear optics). In 
applied spectroscopy, the accurate quantum mechanical 
description is often omitted due to the rather complicated 
mathematics and replaced by the so-called semiclassical 
treatment. Here, the properties of matter are described in 
terms of quantum mechanical models, while the electro-
magnetic fields are treated within the framework of Max-
well’s theory.

In practice, a large number of practically important 
problems may be solved working with classical models 
only. It is the purpose of this tutorial to give an introduc-
tion into the physics behind major practically relevant 
correlations between optical and mechanical film proper-
ties, mainly in the language of classical physics.

The focus of this tutorial is on optical material para
meters like refractive index n, extinction coefficient k, 
absorption edge (optical gap = photon energy correspond-
ing to the absorption onset) Egap, thermal or vacuum 
shift, and mechanical stress σ of dielectric coating 
materials. All these parameters are highly relevant in 
any feasible design and practical application of optical 
coatings. Here, at least the optical parameters definitely 
describe certain facets of the earlier mentioned rather 
general problem of interaction of light with matter, and 
it is intuitively clear that this interaction will be more 
efficient and pronounced when the amount of matter in 
the considered volume element in increased. Therefore, 
at any of the mentioned levels for describing the light-
with-matter interaction of macroscopic systems, param-
eters like concentration, particle density, or mass density 
play a crucial role.

This turns us, in a rather natural manner, to the main 
topic of this tutorial. Here we will discuss handable clas-
sical models for estimating the effects of density and 
porosity on the mentioned material parameters, primarily 
with respect to oxide coatings. For the outset we should 
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say that the discussion of effects of crystallinity, stoichi-
ometry, and contaminations is outside of the scope of this 
tutorial.

2  Dispersion of optical constants
The optical constants n and k of an optically homogeneous 
and isotropic nonmagnetic optical material are directly 
related to its complex dielectric function ε(ω) through the 
relationship:

	 ˆ( ) ( ) ( ) ( )n ik n ik nε ω ω ω ω+ = = + = � (1)

In Eq. (1), ω is the angular frequency of the incident light 
wave, and ˆ( )n ω  is called the complex index of refraction. 
Hereby, the ω-dependence of the dielectric function and 
the optical constants is called dispersion. The concrete 
type of frequency dependence is expressed in terms of the 
relevant dispersion model.

The simplest classical model to describe the optical 
properties of an insulator is the so-called single oscilla-
tor model. It is relevant for describing the optical behavior 
of the bound charge carriers in a solid. Let us assume the 
solid to be built up from rather microscopic units (atoms, 
molecules) with a concentration N. Under the action of 
Coulombs force as caused by the local electric field of the 
light wave Emicr, each of the microscopic charge carriers 
performs forced oscillations, which result in an oscillat-
ing microscopic dipole moment p. Let us introduce the 
microscopic polarizability β according to the definition (SI 
units):

	 p≡ε0βEmicr� (2)

In terms of a mass-on-a-spring model, the interaction 
of visible or UV light with the atoms of matter appears to 
mainly result in oscillations of the light electrons (with 
mass m and charge q) relative to the heavy (and, there-
fore, rather immobile) atomic cores (Figure 1, left). This 
idea leads us to the following expression for the complex 
microscopic polarizability [1]:
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In Eq. (3), ω0 is the resonance angular frequency of 
a selected microscopic oscillator. Eq. (3) gives rise to the 
dispersion behavior of optical constants specific to what 
is called the Lorentzian oscillator model.

The relation between the microscopic polarizability 
and the macroscopic optical constants is obtained when 
explicitly distinguishing between microscopic (local) and 
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Figure 1 Left: classical idea of an oscillating dipole moment formed 
by the motion of an electron relative to the heavy atomic core, and 
oscillating mass on a spring as the mechanical analogue; right: cor-
responding dispersion of optical constants as described by Eq. (6) 
in the vicinity of the resonance. The wavelength scale is reciprocally 
stretched to preserve symmetry.

macroscopic (average) electric fields of the light wave. 
The, perhaps, most accessible approach to this complex of 
problems is given in [2]. It turns out that the complex index 
of refraction is a complicated function of the polarizability 
and density of the assumed microscopic units, as well as 
on their shape. The latter may be quantified in terms of a 
depolarization factor L [3, 4]. In the most compact terms, 
this dependence can be expressed in terms of Eq. (4):
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In optically isotropic materials, spherical symme-
try of the microscopic units building the solid is usually 
assumed, corresponding to L = 1/3. Then, from Eq. (4), the 
typical writing of the Lorentz-Lorenz formula is obtained:
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The good news is that equations like Eqs. (4) and 
(5) give direct access to the classical dependence of the 
optical constants on film density ρ. Indeed, as soon as 
the concentration of microscopic dipoles is assumed to 
be proportional to the mass density, from Eq. (4), we find 
immediately:
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(6)

Let us analyze this equation in more detail. Obviously, 
Eq. (6) describes resonance behavior when the angular fre-
quency of the light comes close to a resonance frequency 
given in brackets in Eq. (6) (see Figure 1, right).

For electronic polarization, in many materials, this 
frequency corresponds to the UV spectral region. This 
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allows us distinguishing between three main spectral 
regions. Their specifics are explained in Table 1.

3  �Optical constants and mass 
density

3.1  Refractive index

In interference coating science and technology, in the 
majority of cases, we work in the first of the spectral 
regions introduced in Table 1, and we will further focus on 
it. So we assume that the light frequency is small enough 
in order to avoid absorption due to resonant excitation of 
valence electrons in the material, while the onset of the 
latter is defining the fundamental absorption edge. In this 
first spectral region, materials are almost transparent, 
while according to Eq. (6), an increase in density should 
be clearly accompanied by an increase in the refractive 
index. This is visualized in Figure 2, top left.

Left on top in Figure 2, we recognize the expected trend 
of increasing refractive index with increasing density. In 
the other fields of the figure, corresponding experimental 
data are collected, which stem from various oxide mate-
rials (HfO2 [5, 6], Ta2O5 [7], ZrO2 [6]), which are obviously 
consistent with the theoretical prediction. The differences 
in mass density of these coatings have been achieved 
by varying certain corresponding process parameters in 

the course of either electron beam evaporation (EBE) or 
plasma ion-assisted deposition (PIAD). A description of 
the PIAD method is given in [8].

3.2  Absorption onset

Let us now turn to the absorption behavior. The classical 
Eq. (6) cannot, of course, describe a phenomenon like 
the formation of an absorption edge in a solid material 
in a quantitatively correct manner. Rather the resonance 
in Eq. (6) describes the central frequency of an absorp-
tion band, while the onset frequency of the absorption 
structure (fundamental absorption edge or simply optical 
gap) is connected to the flank of that absorption feature. 
Hence, the absorption behavior at the high-frequency 
edge of spectral region 1 will qualitatively look similar to 
what is shown in Figure 3. It is, nevertheless, reasonable 
to assume, that a red shift in the central frequency of the 
absorption feature is accompanied with a red shift of the 
absorption onset frequency. As it results from the second 
column in Table 1, an increase in the film density tends to 
narrow the spectral region 1, a phenomenon that we can 
qualitatively assign with the shift of the absorption onset 
frequency. Hence, as long as we speak about interference 
coatings working in the first spectral region from Table 
1, an increase in density is expected to result in a higher 
refractive index but, at the same time, in a shift of the 
absorption onset to lower frequencies.

Table 1 Classification of spectral regions with respect to the resonance frequency.
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1 ω ω
ε

 
<< 

  

2
2 2

0
0

- NqL
m

2

2 0
2

2 2
0

0

1 1
- -

Nq
m

n
NqL

m

ε

ω ω
ε

≈ + >
 
 
  

(Normal dispersion) 
k <  < n

IR/VIS/UV interference coating

2 2
2 2

0
0

- NqL
m

ω ω
ε

 
≈ 

  

According to Eq. (6); strong anomalous 
dispersion

k∼n

(UV) absorber

3 2
2 2

0
0

- NqL
m

ω ω
ε

 
>> 

  

2
2

2
0

1- 1Nqn
mε ω

≈ <

(Normal dispersion) 

2(1- )k n nγ
ω

≈ <<

EUV/X-ray interference coating



44      O. Stenzel: The impact of mass density on oxide coating properties

Figure 2 Left on top: relation between refractive index and mass density as predicted by Eq. (6); right on top: experimental data for 
hafnium oxide films; left on bottom: experimental data for tantalum pentoxide; right on bottom: experimental data for zirconium oxide.
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Figure 3 Absorption coefficient in the region of the absorption 
edge and illustration of different optical gap definitions. c, speed of 
light in vacuum. 

When comparing this prediction with experimental 
data, the question on how to determine the optical gap in 
practice is naturally raised. There are two basic groups of 
methods for quantifying the optical gap in practice. One 
method is entirely based on the evaluation of so-called 
Tauc plots or Cody plots [9]. Practically, that means that 
a certain model behavior of the absorption coefficient, 
which has proven to fit the experimental data in a certain 
spectral range, is to be extrapolated to zero absorption. 
The corresponding photon energy marks the value of the 
optical (Tauc or Cody) gap (see Figure 3).

The second method is more pragmatic. Once the 
absorption coefficient has been determined and found to 

be similar in shape to that shown in Figure 3, the gap is 
determined as the photon energy where the absorption 
coefficient reaches a certain threshold value. Thus, the 
so-called E04 gap ([10]) corresponds to the photon energy, 
where the absorption coefficient is equal to 104 cm-1. As 
seen in Figure 3, the E04 gap is expected to be different 
from the Tauc gap. However, in the case where the absorp-
tion edge is very steep, both values may be rather close to 
each other. In this tutorial, for the sake of simplicity, we 
will characterize the absorption onset in terms of the E04 
gap (Figure 4).

In Figure 4, we again recognize a principal similar-
ity between the theoretical prediction from Eq. (6) and 
the general trend following from the experimental data. 
The degree of accordance is clearly not as good as in 
Figure 2 for at least two reasons. First, Eq. (6) predicts the 
behavior of a single resonance frequency only, while the 
experimental observable (E04 gap) is only a very rough 
analog to that frequency. Second, we should take into 
account, here, that the sensitivity of the E04 gap to possi-
ble contaminations and stoichiometry effects, which are 
not taken into account in our simple calculations, will 
be considerably higher than that of the refractive index.

But all in all, both the simple classical oscilla-
tor model as well as the presented experimental data 
confirm to us the important trend of an increasing 
refractive index with increasing film density. At the 
same time, the absorption edge shows a trend to shift 
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toward a longer wavelength (or lower photon energies). 
These are simple facts that we have to accept. It is worth 
mentioning that the same trends are observed in terms 
of strong quantum mechanical calculations. Thus, in 
the reference [11], quantum mechanical calculations 
of the dielectric function of amorphous and crystalline 
titanium dioxide materials also lead to a decrease in the 
optical gap (in that study, the Tauc gap) and an increase 
in refractive index when the assumed film density is 
increased. This trend is observed for amorphous as well 
as crystalline phases. So that, although oxide coatings 
are often amorphous when being deposited by plasma- 
or ion-assisted techniques, a certain crystalline frac-
tion does not necessarily violate the predicted trends. 
However, the coatings prepared by electron beam 
evaporation without assistance are usually polycrys-
talline. They show essentially the same behavior when 
the (average) density is changed, but the corresponding 
data may appear to be aligned in a somewhat different 
manner as the assisted samples, as seen, for example, 
in Figure 4, top right.

The mentioned trends observed in all the examples 
highlight the role of the film density as a key parameter 
responsible for the actual values of the optical constants. 
But the effect of the density is, in fact, relevant even for a 
broader spectrum of film properties.

4  �Mass density and mechanical 
stress: a naïve model

The key role of the mass density for a broad complex of 
coating properties becomes especially clear when looking 
in more detail at the atomic structure of the discussed thin 
film material. At low temperatures, the atomic cores in a 
solid may be imagined to be practically at rest at a position 
localized in the minimum of some potential curve, which 
describes the interatomic potential. In order to highlight 
the main effects, let us restrict on a very simplified model 
case, where the interaction between all the atoms with 
their neighbors is described by the same potential curve. 
Hence, in this ‘naïve model’, we focus on our discussion 
to a pair of atoms only. The corresponding interatomic 
potential U will look similar to what is shown in Figure 5.

At the abscissa in Figure 5, we see the interatomic 
distance, which we will identify with the symbol r. The 
potential has a local minimum at some equilibrium dis-
tance r0, which corresponds to some equilibrium distance 
between the atoms. Any deviation from this distance gives 
rise to a higher potential energy and, therefore, to a restor-
ing force, which drives the atoms back to their equilibrium 
position. The restoring force is given by:

	 F = -∇U� (7)

Figure 4 Top left: relation between the absorption edge position (‘gap’) and mass density as predicted by Eq. (6); top right: experimental 
data for hafnium oxide films [5, 6]; bottom left: experimental data for tantalum pentoxide [7]; bottom right: experimental data for zirconium 
oxide [6].
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Figure 5 Assumed shape of the interatomic potential as a function 
of the interatomic spacing.

the stress will relax and converge to zero when the density 
approaches zero (infinitely large interatomic distance). 
This is understandable because, in this case, we no longer 
have any solid material, but only isolated atoms, which do 
no more than interact with each other.

This simplest model discussion leads us to a very 
important result: when affecting the film refractive index 
through changes in the film density, we will necessarily 
affect the film stress as well. Practically, that means that 
the refractive index and stress are expected to show some 
correlation. This is an extremely important conclusion 
because it follows that it does not make sense to specify 
optical and mechanical properties of a coating material 
independently from each other. Let us look at how far 
such correlations are really observed.

In Figure 6, experimental refractive index data of 
selected oxide materials are opposed to the measured 
mechanical stress. In accordance with our previous dis-
cussion, positive stress values correspond here to com-
pressive stress, while negative values correspond to 
tensile stress. Please note that in other sources, the oppo-
site convention may be used. The interesting point is that 
the experimental data points are indeed not statistically 
distributed, but are arranged more or less closely to some 
knee-like dependence, which seems to look similar for 
all these different materials. This is all the more interest-
ing, as the data collected in Figure 6 stem from even more 
diverse coating deposition techniques, including the now 
ion-assisted deposition (IAD) ion plating (IP), magnetron 
sputtering (MS), plasma-enhanced reactive magnetron 
sputtering (PARMS), and ion beam sputtering (IBS). The 
data are collected from the following sources [5–7, 12–15].

From Figure 6, we recognize another typical trend. 
From the arrangement of data, we learn that unassisted 
electron beam-evaporated samples tend to have lowest den-
sities, lowest refractive indices and low or moderate tensile 
mechanical stress. Highest refractive indices (and densi-
ties) as well as the strongest compressive stress is typical 
for IP-deposited samples. (P)IAD and sputtering techniques 
tend to fall in between the extreme cases mentioned.

Let us now use our simple model to get a mathe-
matical expression that describes the major trend in the 
arrangement of experimental points from Figure 6. First, 
we have to postulate a mathematical expression for the 
potential curve given in Figure 5. A Lennard Jones poten-
tial or the Morse potential are good candidates. We will 
use the Morse potential [16]:
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=  
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(8)

At r0, the gradient in Eq. (7) is zero, and therefore, the 
atoms do not experience any elastic force, which would 
drive them to another position. Therefore, that distance 
r0 marks some interatomic distance where the solid is 
mechanically relaxed. Moreover, this interatomic dis-
tance corresponds to a certain mass density ρ0. Keeping in 
mind our previous discussion, this mechanically relaxed 
state must also correspond to a certain refractive index 
n0 = n(ρ0). Let us take this relaxed state as the starting point 
for our further discussion.

As previously discussed, the refractive index may be 
enhanced by increasing the film density. But this must be 
accompanied by a decrease in the interatomic distance. 
According to Eq. (7) and Figure 5, a decrease in r will 
result in a force acting on every atom, which drives the 
solid to re-expand its volume (F > 0), so that the solid with 
the higher density is no more mechanically relaxed, but 
suffers some internal stress, which we call a compressive 
stess. Obviously, that stress will become stronger when the 
density is further increased, or the interatomic distance is 
decreased. Therefore, the enhancement of the refractive 
index through densification of the material should result 
in the appearance of compressive stress.

Let us now consider the opposite case. A decrease in 
density is accompanied by an increase in r. Again, that 
will give rise to an elastic force, which is now directed in 
the opposite direction (F < 0): it now tends to re-tighten 
the solid. This is what we call a tensile stress. It behaves 
differently from the compressive stress in the sense that a 
further decrease in density will first result in an increase 
of the absolute value of the tensile stress, but after having 
passed a turning point in the potential curve in Figure 5, 
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with a as some further constant. From here, we imme-
diately find an expression for the elastic force F acting 
between the atoms:
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which is zero for r = r0. Hence, it makes sense to model the 
stress σ via the expression:
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Here, const. > 0 holds according to Eq. (9). This kind of 
dependence is visualized in Figure 7.

The stress is zero for r = r0, which corresponds to a 
certain film density ρ0. Here, we have:

	
3 30
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1 1;  r r
ρ ρ

∝ ∝
�

(11)

The relations (10) and (11) are sufficient to predict a 
dependence of the mechanical stress on the interatomic 
distance as well as on the density in terms of the Morse 
potential. This is visualized in Figure 7.

The striking feature in Figure 7 on the bottom is that 
the tensile stress does not exceed a certain extremal value 
-σtensile, max. Let us express this value through the parameters 

Figure 6 Relation between refractive index and mechanical stress; top left: experimental data for silicon dioxide films [7, 12–14]; top right: 
experimental data for hafnium oxide films [5–7, 12, 15]; bottom left: experimental data for tantalum pentoxide [7, 12–14]; bottom right: 
experimental data for zirconium oxide [6, 15].
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Figure 7 Dependence of the stress on interatomic distance and 
mass density following Eqs. (10) and (11).

entering into Eq. (10). Differentiating Eq. (10) with respect 
to r results in:
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This derivative must be zero when the stress equals  
σtensile, max. As it follows from Eq. (12), this is observed at:

	 r = r0+aln2� (13)

Then, from Eq. (12), we obtain:
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or
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The parameter σtensile,max is easily estimated from exper-
imental data like those shown in Figure 6. It substitutes 
the less accessible parameter U0.

According to Eq. (4), we can further write:
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This allows us to substitute the values r and r0 from 
Eq. (15) by the corresponding refractive indices. We obtain 
the final result:
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Here, a dependence between stress and refractive index 
following from an assumed Morse potential is explicitly 
formulated. There is one remaining free parameter b, 
which combines information about the Morse parameter 
a and the proportionality constants in Eq. (16). It may be 
tackled as a fitting parameter.

As an example, let us look at Figure 8 on the left. It 
shows the experimental data on the correlation between 

stress and refractive index for the special case of tantala 
layers (data taken from Figure 6). From the experimen-
tal data, one may easily estimate σtensile,max ≈-140 MPa, 
and n0≈2.25. Although our model assumptions are rather 
simple, we recognize a rather good correspondence 
between the calculated, by Eq. (17), theoretical depend-
ence (full line) and the major trend in the arrangement of 
data points even in the region of tensile stress. This has 
been achieved by a proper choice of the dimensionless 
parameter b, which had been set to b = 70 in this calcula-
tion. In fact, it is that additional parameter that allows us 
to obtain ad hoc theoretical graphs for describing the rela-
tion between stress and refractive index in a material that 
is structurally much more complicated than the assumed 
homogeneous assembly of Morse oscillators. A corre-
sponding calculation assuming b = 13 is shown in Figure 8, 
right, for the zirconia coatings.

We notice the small ascent of the n = n(σ) dependence 
at high compressive stress. This offers certain potential for 
compressive stress relaxation without significant impact 
on the refractive index, as achieved by means of thermal 
annealing of highly densified oxide coatings.

5  Closer to reality: effects of pores

5.1  Visualization of pores in a coating

Of course, what we have discussed, so far, is a rather ide-
alized model. In practice, one will never observe such 
homogeneous increase in interatomic spacings when the 
average density of a coating is decreased. On the con-
trary, low-density coatings tend to be porous, i.e., show 
severe fluctuations in local density. These pores may be 
visualized by means of transmission electron microscopy. 
Some examples of porous PIAD coatings are given in 
Figure 9. In the examples shown, elongated pores appear 
as the result of what we call a columnar film growth. The 

2.35
2.2

2.1

2.0

1.9

1.8

1.7

2.30

2.25

2.20

2.15

2.05
-100 100 200

no=2.25
σtensile, max=-140 MPa

no=2.05
σtensile, max=-50 MPa

300 400 0 150 300 6004500

2.10

σ (MPa) σ (MPa)

n@
40

0 
nm

n@
40

0 
nm

Figure 8 Refractive index vs. mechanical stress for tantala coatings (left, symbols as in Figure 6), and zirconia coatings (right). The full line 
shows the theoretical dependence according to Eq. (17).
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Figure 9 Cross-sectional transmission electron microscopy images of porous niobia (left), tantala (center), and hafnia (right) coatings. The 
pores appear as thin, bright, elongated structures.

images in Figure 9 reveal an important secondary effect 
of the columnar growth: When the pores open to the film 
surface, they give rise to a certain so-called small-scale 
surface roughness of the coating.

Once pores tend to decrease the refractive index and 
to induce tensile stress, the appearance of pores princi-
pally leads to a qualitatively similar dependence of the 
refractive index and the stress on the mass density, as 
it has been shown earlier in Figures 2 and 6. Therefore, 
a similar correlation between refractive index and stress 
like those presented in Figures 6 and 8 will be obtained, as 
it has been shown by corresponding model calculations 
[17]. The additional assumption of the existence of a pore 
fraction does, therefore, not seriously violate our calcula-
tions performed so far, but the pores give rise to a further 
phenomenon, which is called the shift of the coating.

5.2  Shift behavior

The point is that porous coatings are likely to show a 
relevant thermal and vacuum shift because water can 
penetrate into the pores when the coating is exposed to 
air at room temperature. Clearly, the refractive index of 
a system, which is composed from a solid fraction and 
pores, will depend on whether the pores are empty or 
filled with water. Here, the thermal shift is defined as the 
relative change in optical thickness of the coating caused 
by a change in temperature. In many cases, the meas-
urement of the thermal shift is performed by heating the 
samples in atmospheric conditions. The vacuum shift 
denotes the corresponding change in optical thickness, 
when the coating is brought from vacuum into air, keeping 

the temperature constant. In the case of porous layers, 
the observed change in optical thickness is usually domi-
nated by changes in the refractive index, which in turn is 
caused by changes in the water content in the pores when 
the sample is evacuated or/and heated. Thus, the shift can 
be defined through:

	
( ) 100% 100% 100%nd n dshift
nd n d

∆ ∆ ∆= × = × + ×
� (18)

It is, therefore, possible to get an impression on the 
porosity of a sample measuring a superposition of the 
thermal and vacuum shift. This should not be done imme-
diately after deposition, but rather at least after several 
days of film exposure to the atmosphere, so that at least, 
the large pores in the films can be expected to be filled with 
water. First, a transmission measurement is performed in 
atmospheric conditions at room temperature. After that, 
the measurement chamber has to be evacuated to high 
vacuum and heated up to a temperature of 100°C before 
making the second transmission measurement. In these 
conditions, the pores are expected to be free of water. That 
leads to a change in optical thickness and, correspond-
ingly, to a wavelength shift of the interference extrema in 
the transmission or reflection spectrum of the film. Then, 
the shift can be determined from the wavelength shift of a 
selected interference extremum λm by:

	
, 100 , 

, 

-
100%m C m room temperature

m room temperature

shift
λ λ

λ
°= ×

�
(19)

All in all, low-density coatings, which usually appear 
to be porous, shall show a much stronger shifting behavior 
than dense (pore-free) coatings. Therefore, the refractive 
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index, stress, and shift shall be strongly correlated within 
the frames of a given coating material.

5.3  �Correlation between shift and  
mechanical stress

We will not present here a full derivation of that correla-
tion explicitly taking porosity into account. The reader 
is kindly referred to [17], where a corresponding calcu-
lation is performed. We will restrict ourselves here to a 
rather qualitative illustration. Let us state here instead, 
that there is numerous empirical material accumu-
lated, which verifies that strongly porous coatings tend 
to exhibit tensile stress. It is well proven that dense, 
pore-free coatings tend to exhibit significant compres-
sive stress. On the other hand, once the porosity comes 
close to 100%, the stress should be zero because there 
is no longer any solid. Assuming at the same time that 
the dependence of the stress on the porosity should be 
a mathematically continuous function, we find that the 
behavior of the stress as a function of porosity cannot be 
a monotonous function. This principal behavior is illus-
trated in Figure 10 (top).

First of all, Figure 10 reflects the mentioned rule that 
remarkable compressive stress is observed whenever the 
porosity is low. An increase in porosity is then accompa-
nied by a decrease in stress, until the latter changes to 
tensile stress. This means that the stress must be zero at 
a certain, rather low, porosity level. A further increase in 
porosity results in tensile stress. Nevertheless, at highest 
porosity, the stress must again converge to zero. From here, 
it follows that the curve must show at least one extremum, 
which corresponds to a local minimum in stress or a local 
maximum in tensile stress, in complete accordance to our 
earlier discussion in Section 4.

Therefore, we have to expect two regions of poro
sity, where the mechanical stress is low by absolute value 
or ideally zero. We expect low stress at highest porosity 
levels, but this regime is not very interesting from the 
practical point of view. There is also a regime of rather low 
porosity where stress is negligible, when a low number 
of possibly very small pores compensate the compres-
sive intrinsic stress of the solid atomic network. This 
regime is of the highest practical interest. The reason is 
that because of the still low porosity, the shift (Figure 10, 
center) is expected to also be very small. On the contrary, 
the shift is expected to be strongest at high porosity levels. 
The behavior of the shift, as defined by Eq. (19) as a func-
tion of porosity, should, therefore, correspond to what is 
sketched in Figure 10 (center).
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Figure 10 Top: expected behavior of the film stress as a function 
of porosity; center: expected behavior of the shift as a function of 
porosity; bottom: expected correlation between the film stress and 
the shift.

It is, of course, difficult to verify these dependen-
cies on porosity experimentally because it is difficult to 
measure the porosity directly in a quantitative manner, 
it is more convenient to establish the thus defined cor-
relation between stress and shift. We will then obtain a 
knee-shaped dependence as qualitatively shown in Figure 
10, bottom. At a certain, rather low, porosity level, this 
dependence predicts both the mechanical stress and the 
shift to be negligible. This coincidence of vanishing shift 
and stress is what we call balanced coating properties.

In Figure 11, corresponding experimental data are 
again collected. Despite the silicon dioxide, which shows 
remarkable compressive stress even in strongly shifting 
samples, the data arrange in a manner that resembles 
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Figure 11 Relation between shift and mechanical stress; top left: experimental data for silicon dioxide films [7, 12–14]; top right: experi-
mental data for hafnium oxide films [5–7, 12, 15]; bottom left: experimental data for tantalum pentoxide [7, 12–14]; bottom right: experimen-
tal data for zirconium oxide [6, 15].

the principal shape of the theoretical curve presented 
in Figure 10 (right). At least, in the cases of tantala and 
hafnia layers, we identify certain PIAD samples, which 
show the mentioned balanced coating properties.

While emphasizing once more that this is a tutorial 
and not a research paper, it is worth mentioning that 
correlations between optical and mechanical properties 
are nothing principally new in thin film optics. Thus, it 
is well-known, that simple relationships between infra-
red transmission and mechanical properties of IR coat-
ings result from the same type of interatomic potential 
as shown in Figure 5. Indeed, the steeper the potential 
curve, the higher is the elastic constant, and the higher 
the IR Reststrahlen absorption frequencies will be [18]. 
This made it so difficult to identify the hard and durable 
coating materials, which are at the same time transparent 
in the wavelength range between 8 and 12 µm [19].

6  �A few remarks on experimental 
techniques

A collection of experimental data like those presented in 
this tutorial requires a tremendous amount of experimen-
tal film deposition, measurement, and data evaluation 
effort. It is therefore worth providing information here 

about the principal experimental techniques, which have 
found application when creating the experimental data-
base, which has been used in this tutorial. The techniques 
will be shortly mentioned, together with references for 
further reading.

When determining the thin-film refractive indices 
and absorption coefficients, spectrophotometric or spec-
troellipsometric measurements represent the most fre-
quently applied techniques today. The optical constants 
and gaps as presented in this study all arise from spectro-
photometric measurements and subsequent curve fitting 
procedures using Kramers-Kronig-consistent dispersion 
models. Details on this kind of procedure can be found 
in [20, 21]. For details on the variable angle spectroscopic 
ellipsometry, the reader is kindly referred to [22].

For shift measurements, we used the in situ transmis-
sion spectrophotometer OptiMon [23]. More details on the 
methodology can be found in [12]. The mechanical stress 
has been determined from strain measurements per-
formed here utilizing Tencor equipment. A comparative 
study of the different stress determination techniques can 
be found in the collaborative study [24].

The reported mass density values have been obtained 
from X-ray-reflection (XRR) measurements at the total 
reflection onset. The corresponding theoretical back-
ground is described in [25]. The visualization of pores by 
means of cross-sectional transmission electron microscopy 
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(TEM) is very impressive and gives rather direct evidence 
on the existence of the pores, but due to the expense and 
complexity of both the cross-sectional sample preparation 
technology and the necessary equipment, it is far from 
being a routine characterization tool in a typical optical 
coating lab or company today. As outlined in Section 5.3, 
a ‘quick and dirty’ judgment on the degree of porosity of 
larger sample numbers is also possible from a combina-
tion of shift and mechanical stress measurements.

7  Summary
Variations in coating density as well as in the degree of 
porosity, depending on the deposition technique and con-
ditions chosen, have a crucial impact on the optical and 
mechanical coating properties. Particularly with respect 
to IAD and PIAD techniques, a change in deposition con-
ditions offers a certain flexibility to achieve tailored values 
of interesting parameters within certain limits.

With that in mind, the present study was focused on 
the correlations between parameters like stress, refrac-
tive index, absorption onset frequency, and layer stress, 
as dictated by the underlying dependence on density and 
porosity. Those correlations are derived theoretically in 
the framework of classical models and verified by numer-
ous experimental material. The highlighted correlations 
appear to be valid for different coating materials.

Knowledge of these correlations is important for the 
consistent choice of coating materials and deposition 

conditions, in order to match the sophisticated design 
specifications including optical and non-optical targets. 
They supply a general frame for reasonable and consist-
ent specifying of optical coatings performance.
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