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       Tutorial   
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  The importance of induced aberrations in the 
correction of secondary color    
  Abstract:   Much publicity has been given to the art and 

science of choosing glass types for the reduction of sec-

ondary color, particularly for systems (such as achromats) 

in which all the elements are in contact. Although it has 

long been recognized that airspaces between elements 

can influence chromatic aberration and can even be used 

to reduce or correct secondary color, comparatively, lit-

tle emphasis has been placed on this in the published 

literature. This tutorial is intended to call attention to 

the induced component of secondary color and suggests 

methods for improving color correction.  
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1        Introduction 
 Over the years, a great deal has been published concerning 

the selection of optical glasses for the purpose of correct-

ing chromatic aberration, with emphasis on the correc-

tion of secondary and higher-order color in thin elements 

[ 1  –  14 ]. Although glass selection is important for the direct 

control of chromatic aberration, it is equally important 

to recognize the role of induced (also known as extrin-

sic) aberration in the correction of chromatic aberration. 

Although this point was clearly understood by the authors 

referenced, the strong emphasis on glass selection in the 

publications focuses the attention on the properties of the 

glasses, themselves, and diverts attention away from the 

effect that large airspaces have on the state of color cor-

rection. This paper is intended as a tutorial to encourage 

consideration of the induced color aberrations. 

 Before going further, it is useful to point out that regard-

less of the formalism used to select glasses, one finds that 

from the standpoint of color correction, the most desirable 

glasses are those of the FK, KZFS, and LASF series from 

Schott and equivalent glasses from other manufacturers. 

If more than two glasses can be used for achromatization, 

then the high-index SF glasses are also useful. Unfortu-

nately, these glass types have many disadvantages. For the 

sake of simplicity, all glass types mentioned in this tutorial 

are from Schott [15]; similar glass types are available from 

other manufacturers. The FK glasses are expensive and 

have a sufficiently high coefficient of thermal expansion 

(CTE) that they break when exposed to a thermal shock. 

This property makes the glass not only expensive to pur-

chase but also expensive to work. (Many fabrication shops 

simply refuse to work with such glasses.) Furthermore, the 

FK glasses, in many cases, cannot be used in cemented 

doublets because the CTE mismatch between the crown 

and flint elements would cause delamination of the 

cement layer over a reasonable storage temperature range. 

The KZFS glasses have relatively low CTE values and, as 

singlets, are not susceptible to thermal shock breakage; 

however, cementing them to high-expansion FK glasses 

can be problematic even over modest temperature ranges. 

The KZFS glasses are expensive. (Of the glasses for which 

Schott lists prices, KZFSN11 is the most expensive, being 30 

times more expensive than BK7.) The LASF glasses are also 

expensive and suffer more bulk absorption than the FK 

and KZFS types. The SF glasses (particularly the lead-free 

NSF types) tend to have poor transmission in the blue. In 

almost all real designs, the use of these glasses is restricted 

in some way by these undesirable properties of these oth-

erwise advantageous glasses. For all of these reasons, it is 

important to understand the origin of the induced chro-

matic aberration terms (and how to manipulate them) 

without resorting to more exotic glass types.  

2     The Schuppmann one-glass 
achromat 

 We begin by exploring the properties of an all-diffrac-

tive version of the well-known Schuppmann one-glass 
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achromat [ 16 ]. The diffractive version of this system, 

comprising elements that are separated but individually 

infinitely thin, is a perfect system to study because the 

so-called  ‘ thin lens equations ’  may be applied without 

concern that they are inaccurate because of the finite 

thickness of the parts or because (in lens elements) there 

are two surfaces to consider rather than one. (In the fol-

lowing, we will consider the holograms to be thin Fresnel 

zone plates so that the substrates can be ignored.) 

 Since its original description, the Schuppmann 

system has been discovered by several authors [ 17  –  19 ] for 

diffractive applications, and it is important in this context 

to understand the analogy of diffractive systems to refrac-

tive systems. For a glass element, and for the d, F, and C 

spectral lines commonly used in the visible spectrum, the 

Abbe value is defined as: 
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 The physical significance of the Abbe value is that it is 

proportional to   φ  / Δ   
FC

  (  φ  ) where   φ   is the power (at the  d  wave-

length) of an element made of this glass, and  Δ   
FC

  (  φ  ) repre-

sents the difference, between the  F  and  C  wavelengths, of 

the power. Most optical glasses have Abbe values between 

25 and 70. As is well known, the power of a diffractive 

element is proportional to the wavelength, and therefore, 

the equivalent quantity for a diffractive element is: 
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 Note that there is no choice of Abbe number for a dif-

fractive element: its value is chosen once the wavelengths 

of the design are chosen. Furthermore, regardless of the 

spectral band, all diffractives in a given optical system 

have exactly the same Abbe value. Thus, the problem of 

color correction for an all-diffractive system is the same 

as that of designing a one-glass achromat, except that the 

individual elements are more dispersive by about a factor 

of 10. (The difference in the sign of the Abbe number is 

of little importance for this discussion.) Therefore, the 

solution to the one-glass achromat problem may also be 

applied to the all-diffractive problem. 

 Next, we consider why a two-element, one-glass 

Schuppmann system has any secondary color at all. After 

all, if the system uses only a single glass type and meets 

the condition for zero primary color at one wavelength, 

should it not be a solution at all wavelengths? More spe-

cifically, following Kingslake [ 20 ], one may derive the fol-

lowing expression for the longitudinal color of a system 

of thin lenses: 
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 where   ( )FCΔ ′�  is the  F-C  variation in the image distance, 

 u  ′  is the marginal ray angle in image space, the   φ  
i
   are the 

powers, the  y 
i
   
 
 are the marginal ray heights, and the   ν  

i
   are 

the Abbe values of the various elements. If the elements 

are all made from the same glass, or if they are all diffrac-

tive, then, the   ν  
i
   all 

 
 have the same value and may be fac-

tored out of the sum, and the longitudinal color vanishes 

if the remaining sum vanishes, i.e., if: 
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 Similarly, the expression for the secondary axial color 

is: 
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 where the  P 
i
   are the  ‘ partial dispersion ’  values of the indi-

vidual glasses, defined as: 
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 Here, we pause for a moment to point out that for 

most available optical glasses, the value of P is corre-

lated to the value of   ν   such that a plot of P vs.   ν   shows an 

approximately linear relationship between P and   ν  . This 

relationship is known as the  ‘ normal glass line ’ , and it is 

easily shown that any achromat made from glasses along 

the normal glass line will have a secondary color equal to 

about 1/2200 of its focal length. 

 For a diffractive element operating in the visible, we 

can define an equivalent P number as: 

   

( )
( )

-
0.421.

-

d C

diff

F C

P
λ λ

λ λ
= =

 

(7)

 

 In Eq. (5), the  P 
i
   are all the same for a system com-

prising only one glass type or comprising only diffractive 

elements and may be factored out of the sum, along with 

the   ν  
i
  . In that case, the sum that remains is identical to 

Eq. (4), and it appears that if Eq. (4) is met, then, not only 

is the primary color zero, but the secondary color must be 

identically zero as well. This is not the case, as a simple 

ray trace shows.  Figure 1  shows an example of an all- 

diffractive Schuppmann system, comprising two diffrac-

tive elements of focal lengths 100 and -25 mm, separated 

by 150 mm.  
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 The focal length of the combination is 33.333 mm, and 

the back focal distance is   ′�  = -16.667 mm for the  d  wave-

length. In the ray trace, both diffractive elements were 

modeled as the holograms formed by the interference of 

waves propagating from two point sources. 

  Figure 2  compares the spectral variation in the focus 

distance of the Schuppmann system with that of a 33.333-

mm focal length holographic singlet.  

 As expected, the Schuppmann system has far less 

chromatic aberration than the holographic singlet and is 

corrected for  ‘ primary ’  color in that the focus error has zero 

derivative at the  d  wavelength. However, it is evident that 

the system suffers a large amount of secondary color, in 

spite of the fact that Eq. (4) is exactly satisfied, and there-

fore Eqs. (3) and (5) predict that both primary and second-

ary color must be exactly zero. The question on why Eq. (5) 

is inaccurate is central to the source of induced aberrations. 

 The answer to the puzzle is the fact that both Eqs. 

(4) and (5) rely on the value of  y , the marginal ray height, 

without regard to the wavelength. In other words, the 

equations assume that the y values are the same for all 

3 wavelengths, when, in fact, the blue, green, and red 

rays begin to diverge from one another starting at the 

first element. Because of the long propagation distance 

to the second element, the three colors are significantly 

separated from each other at the second element; this is 

something not taken into account by the equations. (We 

obtained good achromatization in a narrow spectral band 

surrounding the  d  wavelength because we used the ray 

heights at the  d  line to solve the equations.) 

 From the above, three important conclusions can be 

reached. The first is that some correction to the equations 

25.00 mm

 Figure 1      A diffractive Schuppmann system.    
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 Figure 2      Spectral variation in focus for a singlet diffractive element 

and a Schuppmann system.    

is required if they are to be applied to systems contain-

ing large airspaces in which the chromatic aberration is 

uncorrected. 

 The second conclusion is that the secondary color of 

this system can be eliminated if the rays for the different 

colors can be somehow made coincident at the second dif-

fractive element. (We will demonstrate this in the follow-

ing paragraphs.) 

 The third conclusion, important but often overlooked, 

is that large, chromatically uncorrected airspaces can be 

used to  ‘ induce ’  secondary color and, if done judiciously, 

can be used to correct the intrinsic secondary color of the 

system. This idea was described in detail by McCarthy [ 21 ] 

and later by Wynne [ 22 ,  23 ]. The idea has been used and 

reviewed by several other authors [ 24  –  28 ]. 

 Returning to the Schuppmann system (and as Schupp-

mann did in some of his designs), we now place a third 

(in our case, diffractive) element at the internal focus and 

adjust its power so that the red and blue rays that begin 

to diverge from each other at the first element are brought 

together again at the last element. (This is can loosely be 

thought of as  ‘ imaging the front element onto the rear 

element ’ ; however, the two rays that must be brought 

together are of different wavelengths, so in this instance, 

the power of the required diffractive element was adjusted 

slightly so that the red and blue wavelengths are coinci-

dent at the last element, with the green wavelength being 

separated slightly.) Importantly, the diffractive element 

at the internal image does not introduce axial color of its 

own, and bringing the red and blue wavelengths together 

again at the last element restores the accuracy of Eq. (5), 

so the secondary color is indeed corrected.  Figure 3  com-

pares the longitudinal focus shifts for the Schuppmann 

with and without the field lens. (Note that the vertical 

scale of the plot has been reduced by a factor of 5 from 

that of  Figure 2 .)  

 Adding the field lens to the Schuppmann system dra-

matically reduces the residual color by (nearly) recombin-

ing the three colors at the last diffractive element, thereby, 
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 Figure 3      Spectral variation in focus for a two-element Schuppmann 

system and a Schuppmann with a field element.    
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restoring the accuracy of Eq. (5). It can be seen that the 

quadratic dependence of the focal position with the 

wavelength has been eliminated, with a very small third-

order dependence remaining. Offner [ 29 ] showed that if 

the field lens is perfectly achromatic, then all orders of 

longitudinal color are eliminated. Historically, it is inter-

esting to note that the idea of using a field lens for this 

purpose originated with Schuppmann, himself, in 1899. 

The idea of placing a refractive (and achromatic) field lens 

at the internal image pair of diffractive elements forming a 

Schuppmann configuration was patented by Hufnagel in 

1985 [ 30 ]. Direct ray tracing of the all-diffractive Schupp-

mann shows that, although the secondary axial color is 

corrected, the secondary lateral color remains. Buralli and 

Rogers [ 31 ] show this to be fundamental to an all-diffrac-

tive triplet system. Not surprisingly, the secondary lateral 

color vanishes if the field lens is perfectly achromatic. 

 The important thing to be learned from the Schupp-

mann example is that it is possible to  ‘ induce ’  the sec-

ondary color in an optical system by allowing the colors 

to drift from each other during propagation through the 

system.  

3    Axial color of separated elements 
 As a means of exploring the importance of induced chro-

matic aberrations in refractive designs, we next consider 

the strength of the induced color aberrations for a pair of 

separated elements. For this purpose, it is mathematically 

convenient to depart from the traditional definitions and 

define  ‘ primary color ’  as being the first derivative with 

respect to wavelength and  ‘ secondary color ’  as being the 

second derivative with respect to wavelength. Although 

these are not numerically the same as the traditional defi-

nitions, they are not much different in overall meaning, 

and they enable color aberrations to be examined with 

simple differentiation. 

 The power,  Φ , of an air-spaced pair of thin elements 

is: 
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 where   φ   
1
  and   φ   

2
  are the powers of the two elements, and  t  

is their separation. The back focal distance of the system 

is given by: 
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 For the  ‘ primary color ’ , we consider the first derivative 

of the back focal distance, which is: 
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 It is easily shown that if all the elements are indi-

vidually achromatic (have zero first derivatives of their 

powers), then, the primary color as expressed in Eq. 

(10) is zero. We are interested in the secondary color, 

so we differentiate Eq. (10) to yield, after considerable 

manipulation: 
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 In this expression, the first two terms are independ-

ent of  t  and represent the secondary color intrinsic to the 

elements themselves. The next three terms represent the 

secondary color induced by the airspace if the individual 

elements suffer primary color, i.e., are not achromatized. 

The last term represents the secondary color induced if the 

second element suffers an intrinsic secondary color. Thus, 

we see that if there is a nonzero separation, a secondary 

color will be induced if the two elements suffer either a 

primary or secondary color. 

 We next simplify the problem and ask how much 

secondary color would be present if every element was 

made an achromat. In this case, the first derivatives of the 

powers are zero, and Eq. (11) simplifies to: 

   

( )2 2 22
1 11 2 2

2 2 2 2 2 2

2--1
.

All Achr

t tφ φφ φ φ
λ λ λ λ−

∂ ∂ ∂∂ ⎡ ⎤ ⎛ ⎞′ = + +⎢ ⎥ ⎜ ⎟⎝ ⎠∂ Φ ∂ ∂ Φ ∂⎣ ⎦
�

 

(12) 

 Here, the first term represents the intrinsic contribu-

tions from the two elements, and the last term (dependent 

on  t ) represents the induced contributions. 

 The induced terms are zero if  t  = 0, as expected. If the 

separation  t  is equal to the focal length of the first element 

(so the second element is located at the focal point of the 

front element), then  t φ   
1
  = 1, and the terms dependent on   φ   

2 

 add to zero, and only the first element contributes. This 

is expected in the case where an element is located at an 

image. 

 The interesting cases are those in which the separa-

tion is a substantial fraction of the focal length, but not 

equal to the focal length, and we now examine two such 

cases, a Petzval design and a telephoto design. 
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 As a first example, suppose the second element has 

the same power of the first element and is located halfway 

to the image formed by the first element; this pair of 

element forms a Petzval system. We will also assume that 

the first and second elements are achromats, with a zero 

primary color and a nonzero secondary color. Starting 

with Eq. (12) and substituting  t φ   
1
  = 0.5, we obtain: 
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 Assuming that the second element is made of the 

same materials as the front element, then, as it has the 

same power of the first, it also has the same secondary 

color, and we can simplify to it: 
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 Returning to Eq. (8) and substituting the known 

values of  t  and   φ   
2
  relative to   φ   

1
 , we can see that, in this 

case, the power of the Petzval system is 1.5 times stronger 

than the front element; in other words, the front element 

must have 2/3 the power of the overall system. Substitut-

ing this into Eq. (14), we obtain: 
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 For comparison purposes, we now return to Eq. (11) 

and set  t  and   φ   
2 
 to zero and also set the first derivative of   φ   

1 

 to zero to obtain the result for a single achromat: 
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 Comparing Eqs. (15) and (16), we see that separating 

the elements into a modest Petzval configuration (without 

resorting to any changes in lens materials) has reduced 

the secondary color to 5/6 (83%) of the value for a single 

achromat. 

 As a second example, consider the case of a telephoto, 

with the second element having -2/3 the power of the first 

element and being located halfway to the image formed by 

the first element. Again, we assume that the two elements 

are achromats. 

 We begin again at Eq. (12), and because the second 

element is halfway to the image, Eq. (13) once again holds. 

Assuming the second element is made of the same materi-

als as the front element, then, as it has -2/3 the power of 

the first, it has -2/3 the secondary color. Substituting this 

into Eq. (13) and simplifying yields: 
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 In this telephoto case, with the parameters chosen, 

the overall system power is 2/3 that of the first element. 

Therefore, the first element needs to have 1.5 times the 

power of the system, and substituting this into Eq. (15) 

gives: 
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 Comparing to Eq. (16), we see that in the telephoto 

case, separating the achromats while leaving their com-

position unchanged has  increased  the secondary color by 

25% relative to a single achromat. However, in the tele-

photo case, the second element is of the opposite sign 

from the first and, therefore, contributes a secondary 

color of the opposite sign. In such a case, the total second-

ary color can be reduced designing the second achromat 

to have an intentionally large amount of secondary color. 

Up until this point, we have used the same materials for 

all achromats, under the assumption that we will select 

the best materials that have acceptable cost, thermal 

expansion, and transmission properties. However, for 

the negative achromat, it is desirable to depart from this 

and design an achromat with a large (negative) amount 

of secondary color. This is easily achieved using two 

glasses whose  ν  and P values are both widely separated. 

For instance, it is easily verified that a doublet made from 

NLAK10 and NSF11 has 60% more secondary color than 

one made of NPSK53A and F2. Therefore, we will assume 

that the second achromat introduces, per unit power, 1.6 

times as much secondary color as the first achromat. This 

increases the second (  φ   
2
 ) term in Eq. (13) by a factor of 1.6 

and after simplification yields: 
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 Thus, in this telephoto example, we were able to 

reduce the secondary color by 10% compared to a single 

achromat made of the same materials as the first achro-

mat of the telephoto. This did not occur naturally and 

required that we intentionally choose materials that 

yield a large amount of secondary color for the second 

achromat. It is generally true that it is harder to reduce 

the secondary color of telephoto (and also reverse tele-

photo) systems than for Petzval systems. However, the 

example has shown that it is sometimes advantageous to 

intentionally increase the amount of color in one or more 

elements.  
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4     Lateral color of separated 
elements 

 Having examined the case of the secondary axial color, 

some remarks concerning the secondary  lateral  color 

are in order. Assuming the longitudinal color is well-

corrected, the lateral color is equivalent to the chromatic 

difference of magnification or, for an object at infinity, 

the chromatic difference of the focal length. The latter is 

related in a simple way to the chromatic difference of the 

power, and the equations for the first and second deriva-

tives of the power can be derived in a manner entirely 

analogous to the above treatment of the focal shift. The 

derivation is simpler for the lateral color than for the lon-

gitudinal color, and we will simply give the result: 
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 Here again, we recognize two intrinsic terms and two 

induced terms, and the induced terms vanish if  t  = 0. If 

 t φ   
1
  = 1, the contribution from the second element vanishes, 

and we are left with: 
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 Interestingly, the contribution of the second element 

to the secondary lateral color (more precisely, to the sec-

ondary spectral variation of the power) does not vanish 

if the second element is placed at the image formed by 

the first element. This is because of the slight focal shift 

between the green and blue/red components, which 

allows the second element to alter (slightly) the departing 

ray angles of the blue/red rays.  

5     Simultaneous correction of axial 
and lateral color: a graphical 
approach 

 When considering the lateral color, it is important to note 

that no system of two thin elements can be corrected 

simultaneously for both the secondary longitudinal and 

secondary lateral color, unless the individual elements 

are, themselves, corrected for secondary color. The reason 

is that the longitudinal color correction of the system 

requires that the rays of all the colors focus at the same 

point, whereas the secondary color of the front element 

causes the green rays to split from the blue/red rays and, 

P N P

 Figure 4      Conceptual example of a three-element system corrected 

for both longitudinal and lateral color.    

therefore, strike the second element at a different height. 

This implies that the green rays approach the final image 

at a different numerical aperture than the blue/red rays, so 

the chromatic difference of magnification cannot be zero. 

Using this line of logic, it is easy to see that the minimum 

number of separated elements required for the simulta-

neous correction of the secondary lateral and secondary 

longitudinal color (without requiring the individual ele-

ments to be corrected) is three, as  Figure 4  demonstrates 

conceptually.  

 In the figure, the rays of all the colors enter the system 

together and are shown in black. After the first element, 

the green light separates from the red and blue rays, 

which are shown together in magenta. In order to be free 

of both the longitudinal and lateral color, all the rays must 

recombine at the last element and propagate (as shown 

again in black) toward the image at the same numerical 

aperture. To achieve this, the middle element must, there-

fore, refract the green rays more strongly from the blue/

red rays, so that they recombine at the third element. 

 A little thought tells us that the positive-negative-

positive (PNP) configuration shown in  Figure 4  is an 

excellent candidate for a system that might be corrected 

for both the longitudinal and lateral secondary color, 

with minimum use of special glasses. The front element 

refracts the green light more strongly than the blue/red, 

as would be expected for an achromat with a positive 

power. Similarly, if we imagine the rays to be traced back-

ward from the image, through the rear element toward the 

central element, we see that the positive rear element also 

refracts the green light more strongly than the blue/red, 

and this is consistent with what we expect from an achro-

mat. Finally, we note that the middle element is negative, 

and it also refracts the green light more strongly than the 

blue/red pair, as would be expected. Thus, we see that at 

least the signs of the required secondary color contribu-

tions are consistent with the behavior of ordinary glasses. 

One might expect that the negative element might need to 

contribute more secondary color per unit power than the 

outer two elements, as the green light is at a higher angle 

than the blue/red on both sides of the element. As we 
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pointed out earlier, it is generally easier to design achro-

mats with large amounts of secondary color than small 

amounts of secondary color, so this appears to be a good 

candidate system. (We will return to this system later.) 

  Figure 5  shows an example of a configuration of three 

achromats that clearly  cannot  be easily corrected for sec-

ondary color.  

 Tracing the rays from the object and image toward the 

middle element, we see that if the green rays behave as 

expected at the outer two elements, they cannot possibly 

connect at the central element. Evidently, the only way for 

this system to be corrected for both the secondary longi-

tudinal and secondary lateral color is for at least one of 

the outer elements to be overcorrected for the secondary 

color; this is not realistic in most spectral bands. 

 The conceptual drawing of the type shown in  Figures 

4  and  5  is an excellent way of determining whether a 

configuration can likely be corrected for the secondary 

color. With three elements and two possible signs of P 

and N, there are eight possible configurations, seven of 

which contain at least one P element. By sketching these 

seven configurations in the manner shown, one can see 

very quickly that only the PNP and the NPN configura-

tions show any promise for the secondary correction of 

both color aberrations. In both cases, we expect that the 

middle element would need to contribute a larger-than-

usual amount of secondary color.  

6     Design example: a three-doublet 
system 

 We next consider an actual design example, in which the 

elements are optimized to maximize performance. Here, it 

is important to realize that in any real design, chromatic 

aberration correction is not the only consideration. Real-

istically, small amounts of longitudinal color are often left 

in the system to balance the chromatic variation of spheri-

cal aberration (spherochromatism), and the lateral color 

is often left in the system to balance against the chromatic 

P P N

 Figure 5      Conceptual drawing of a system that cannot be corrected 

for both secondary axial and secondary lateral color.    

744.449/599.388

744.449/626.357
612.607/744.415

 Figure 6      System of three achromats, found by global optimization 

with fictitious glasses.    

variation of coma. This is not to say that a study of chro-

matic aberration correction is worthless. As Shafer has 

pointed out [ 32 ], it is important to understand how to 

correct individual aberrations, even if the target values 

used in the final design problem are not zero. 

 For our design example, we will use a focal length of 

500 mm. An ordinary achromat of this focal length would 

have a longitudinal color of about 500/2200 = 227  μ m. To 

ensure that the chromatic aberrations are not obscured by 

larger,  ‘ monochromatic ’  aberrations, we will design the 

system at a relatively slow F-number of F/10, and we will 

optimize over a relatively modest full field angle of 10 ° . 

The diffraction-limited depth of focus of an F/10 system 

is about 100  μ m, so the 227  μ m of secondary color of an 

ordinary achromat would be significant, even if we ignore 

the fact that an ordinary achromat could not cover a 10 °  

full field. 

 The design configuration we will use as a starting 

point for optimization is the three-doublet PNP configu-

ration that was suggested as promising by  Figure 4 . We 

constrain the focal length to 500 mm, and we, at first, 

constrain the three doublets to be individually achro-

matic to obtain a  ‘ baseline ’  design with minimal induced 

aberrations. 

 We begin by using the global optimization feature 

of CODE V  ®   [ 33 ], allowing the glasses to vary, but requir-

ing them to lie on the normal glass line and requiring the 

primary axial color of each achromat to be zero. We also 

constrain the length of the system to be   <  700 mm. The 

best design resulting from global optimizations is essen-

tially a pair of achromats with (what appears to be) a field 

flattener, as shown in  Figure 6 . In this design, all three 

doublets have positive power; the third doublet is correct-

ing the natural astigmatism introduced by the first two 

doublets.  

 As a second step, we converted to the nearest real glass 

types and use CODE V ’ s Glass Expert feature to search for 

replacement glasses that improve the performance from 

the all-normal-glass starting point. For this step, we still 

required that each doublet be individually achromatic, 

but we allowed the use of glasses that departed modestly 
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from the normal glass line. As we want to demonstrate 

what can be accomplished without resorting to the use of 

special glasses, we selected glasses from a very conserva-

tive set of glasses, excluding from consideration the fol-

lowing glass types: 

 –     all FK and NFK glasses,  

 –    all KZFS and NKZFS glasses,  

 –    all lead-containing glasses.   

 We also imposed a requirement that the coefficients of 

linear expansion of the glasses that are to be cemented 

together match reasonably well; specifically, we required 

the radial shear of the two elements, calculated at the 

edge of the clear aperture without regard to cement prop-

erties, be   <  0.1  μ m per degree Celsius. 

 The solution found is shown in  Figure 7 , and  Figure 8  

shows the longitudinal aberrations of the system.   

 From  Figure 8 , we can see that the primary axial 

color is approximately corrected, i.e., the red and blue 

focal planes coincide, but a substantial amount of sec-

ondary color remains. The secondary color is 231  μ m, as 

the ratio of the focal length is 1:2164, which is about what 

NLAF2/NF2

NLASF44/NSF5
NBAK1/NLASF43

 Figure 7      System of three achromats, after selecting optimal 

glasses from a restricted list.    
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 Figure 8      Longitudinal aberrations of the system in Figure 7.    

we would expect from an ordinary achromat. We can see 

from  Figure 8  that the spherical aberration is small, and 

there is almost no variation of spherical with wavelength. 

Although we are primarily interested in the on-axis aber-

rations for this exercise, we will comment that this system 

has little lateral color and is corrected to have a flat tan-

gential field. The polychromatic RMS wavefront variance 

for this system ranges from 0.0725  λ  on axis to 0.0772  λ  

at the edge of the field. According to Marechal ’ s criterion 

[ 34 ], we can say this system is very close to  ‘ diffraction 

limited ’  over the field. 

 Next, we drop the requirement that the three dou-

blets be individually achromatic and repeat the global 

optimization procedure, beginning with fictitious glasses, 

constrained to lie on the normal glass line. After that, we 

again convert the glass types from fictitious to real glasses 

(selecting from the same glass list as before) and use Glass 

Expert (with the same restriction on CTE mismatch) to 

obtain the best glasses for this new configuration. The 

best configuration found for the case in which the dou-

blets are not required to be individually color corrected is 

the NPN configuration shown in  Figure 9 .  

 It is interesting to note that the two outer doublets 

contain NPSK53A, a glass type well-known to be useful for 

reducing the secondary color in achromats. On the other 

hand, the inner doublet is made of two flints and intro-

duces more than 5 mm of axial color that is corrected by an 

axial color of the opposite sign in the two outer doublets, 

which are, in this case, far from achromatic. As  Figure 10  

shows, the performance of the overall system is far supe-

rior to that of an achromat.  Note that the scale of aberra-

tions in  Figure 10  has been reduced by a factor of 10 from 

that of  Figure 8  .  

 The paraxial secondary color is 22  μ m, down from 

231 for the three-achromat design. (As a fraction of the 

focal length, 22  μ m represents 1 part in 22 700.) At this 

aberration scale, the variation of spherical aberration 

with wavelength is plainly visible in the plot; however, 

the total varia tion of the focal position, considering both 

wavelength and aperture, is 35  μ m, well below the  100- μ m 

depth of focus of this F/10 system. In this design, the 

NSF5/NPSK53A

NSF2/NSF14

NLAF7/NPSK53A

 Figure 9      NPN system with real glass types.    
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combination of the individually uncorrected doublets and 

their separations induces an amount of secondary color 

that offsets 90% of the natural secondary color that one 

would expect from a 500-mm focal length achromat. This 

degree of correction is achieved without the use of any 

special glass types. As an added performance bonus, the 

three-doublet system is able to cover a much wider field 

than an achromat would be able to cover. The RMS wave-

front values for this system range from 0.007  λ  on axis to 

0.026  λ  at the edge of the field.  

7     Aberration balancing and 
tolerance sensitivity 

 One drawback to the use of induced aberrations to correct 

a system is that when separated elements introduce large, 

counterbalancing amounts of aberrations, the system is 

more sensitive to misalignments. From the standpoint 

of sensitivities, it is generally a better idea to correct the 

aberrations in the elements, themselves, than to allow one 

element to balance the aberrations of another. However, 

it is often simply not possible to achieve the desired 

degree of intrinsic color correction within the constraints 

imposed by cost, thermal expansion, and transmission 

considerations. To examine this effect, we carried out a 

tolerance analysis to compare the anticipated RMS wave-

front error values of the three-achromat ( Figure 7 ) system 

and the three-doublet ( Figure 9 ) system in their  ‘ as-built ’  

states. 

Focus (mm)

1.00

0.75

0.50

0.25

-0.050 -0.025 0 0.025 0.050

 Figure 10      Longitudinal aberrations of the system in Figure 9.    

 For any comparison of the as-built performance, the 

choice of tolerance level is an important one. If the tol-

erances are chosen so loosely that the tolerance-induced 

aberrations are several times larger than the nominal per-

formance, then the tolerance-induced effects will clearly 

dominate the performance, and any extra care taken to 

correct or even improve the secondary color is wasted 

(or worse, if the secondary color correction increases the 

sensitivity of the system). Therefore, for this comparative 

study, we first select a set of tolerances and compensa-

tors that allows a modest (approximately 30%) worsen-

ing of the RMS wavefront for the three-achromat baseline 

system, and then, we apply those same tolerances and 

compensators to the system that employs induced color 

aberrations. 

 We begin with the three-achromat system of  Figure 7  

and  –  as an initial guess  –  assign tolerances that can be 

considered to correspond roughly to a set of  ‘ drop-in ’  tol-

erances, using  ‘ unselected ’  glass tolerances. These toler-

ances are: 

 –     radius errors:   ±  0.1% of the radius value,  

 –    surface irregularity: 1 fringe at 632.8 nm,  

 –    thickness errors:   ±  25  μ m,  

 –    air space errors:   ±  25  μ m,  

 –    refractive index errors:   ±  0.001,  

 –    Abbe values   ±  0.8%,  

 –    element wedge: 10  μ m of total indicated runout (TIR),  

 –    doublet wedge: 10  μ m of total indicated runout (TIR),  

 –    doublet tilt: 10  μ m of total indicated runout (TIR),  

 –    doublet decentration: 50  μ m (comprising 25  μ m ID 

error on the tube and 25  μ m OD error on the lens),  

 –    compensation of focus only.   

 For this initial analysis, we assume that the only post-

assembly adjustment to the system will be to adjust the 

spacing to the detector, for optimal focus averaged over 

the image plane. With this set of tolerances, using only 

refocus as a compensator, the RMS wavefront approxi-

mately triples from 0.072  λ  to 0.206  λ  on the axis, and from 

0.077  λ  to 0.2234  λ  at the edge of the field. Thus, we imme-

diately see that this  ‘ drop-in ’  set of tolerances is far from 

what is necessary for a realistic comparison. 

 Not surprisingly for a slow, long-focal-length system, 

the sensitivities are dominated by tolerances on the Abbe 

value and irregularity, with tolerances on the decenter 

and wedge being also important. To improve the perfor-

mance, we, therefore, tighten the index and Abbe toler-

ances and implement a respace between the elements 

that is to be carried out after the indices, Abbe values, and 

radii are known. We also designate the middle doublet to 

have an intentional decentration to compensate for the 
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decentration and wedge tolerances of the other elements. 

The tightened set of tolerances is as follows: 

 –     radius errors:   ±  0.05% of the radius value,  

 –    surface irregularity: 0.3 fringe at 632.8 nm,  

 –    thickness errors:   ±  25  μ m,  

 –    refractive index errors:   ±  0.00003 ( = Schott  ‘ Step 1 ’ ),  

 –    Abbe values   ±  0.2% ( = Schott  ‘ Step 1 ’ ),  

 –    element wedge: 10  μ m of total indicated runout (TIR),  

 –    doublet wedge: 10  μ m of total indicated runout (TIR),  

 –    doublet tilt: 10  μ m of total indicated runout (TIR),  

 –    doublet decentration: 50  μ m (comprising 25  μ m ID 

error on the tube and 25  μ m OD error on the lens),  

 –    airspaces adjusted to compensate for errors in radius, 

index, and Abbe,  

 –    decenter of the second doublet used as an at-assembly 

compensator,  

 –    compensation of focus.   

 With this tightened set of tolerances and using the com-

pensators listed, we carried out a 1000-case Monte Carlo 

based on the wavefront differentials for the individual tol-

erances, for both systems. The results, for both the three-

achromat ( Figure 7 ) system and the three-doublet ( Figure 

9 ) system are summarized with the cumulative probability 

curves shown in  Figure 11 .  

 In the figure, the horizontal axis is the RMS wavefront 

variance with values increasing (worse performance) 

toward the right, and the vertical axis is the cumulative 

probability or attaining a given RMS value or better. For 

instance, the green line shows that the three-achromat 

system, on the axis, is expected to attain an RMS wave-

front variance of 0.08  λ , or better, with a probability of 

about 40% (or in 40% of the cases, if a large number of 

systems is assembled.) For each curve, the low-probability 

extreme (the intercept with the horizontal axis) represents 
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 Figure 11      Cumulative probabilities for the three-achromat and 

three-doublet designs.    

the nominal (pretolerance) performance, and the high-

probability extreme represents the estimate of perfor-

mance that will be reached even approaching the  ‘ worst 

case scenario ’ . The horizontal intercepts of the blue and 

red curves lie to the left (better than) of the green and 

purple curves, reflecting the fact that the nominal perfor-

mance of the three-doublet system is better than that of 

the three-achromat system. 

 The fact that the curves for the three-achromat system 

rise more steeply is an indication that the three-achromat 

system is (as expected) less sensitive than the three-dou-

blet system (i.e., there is a smaller difference than the 

best case and the worst case). In this particular case, the 

nominal performance of the three-doublet system is so 

much better than that of the three-achromat system and 

that the three-doublet curves lie to the left of the three-

achromat curves except at the extreme worst-case limit, 

where the performance values are very similar. It can be 

seen, for instance, that the on-axis RMS value for the three-

doublet case will be better than 0.07  λ  in about 86% of the 

cases, whereas the three-achromat system will achieve an 

on-axis RMS 0.07  λ  in only about 10% of the cases. 

 It is clear that, in this case (with the relatively tight 

set of tolerances chosen), the three-doublet system with 

induced aberrations outperforms the three-achromat 

system. In other cases (different designs or the same 

designs with a different set of tolerances), the reverse 

might be true, so it is important to keep the as-built perfor-

mance in mind when intentionally adding induced aber-

rations to a design.  

8    Conclusions 
 Substantial amounts of secondary color can be induced in 

the spaces between optical elements. This is particularly 

true when the elements, themselves, are not individually 

corrected for primary color, but the effect can be signifi-

cant even in the airspaces between the elements that are 

corrected for primary color. Certain configurations lend 

themselves more readily than others to the reduction of 

the secondary color, and the method depicted in  Figures 

4  and  5  can be used to explore which configurations are 

the most promising. Global optimization is another good 

way to find design configurations with low residual color. 

Global optimization is particularly useful when other 

effects such as the chromatic variation of aberrations are 

significant factors in a design. 

 Although the design example shown above was kept 

slow for the sake of clarity, induced aberrations are no less 
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important when the system is faster or covers a wider field. 

All of the aberrations (including both spherical aberration 

and spherochromatism) have induced components, and 

while the mix of aberrations may be more confusing at 

faster numerical apertures, the importance of the induced 

aberration components is not reduced. 

 Induced secondary color can have a deleterious effect 

on an optical system, or if handled carefully, it can allow 

a better degree of optical correction than would otherwise 

be the case with the allowed set of glasses. As design tools, 

induced aberrations must be used judiciously or else the 

benefit in nominal performance may be overwhelmed by 

the increased sensitivity of the system.   
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