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1     Introduction 
 The aberration contributed by a surface, or a system, 

can be divided as intrinsic and extrinsic (also known as 

induced [ 1 ]). The intrinsic aberration is the aberration that 

the surface or system contributes when an incoming beam 

has no aberration. The extrinsic part results from beam 

aberration from a previous surface or system. 

 Let us consider two optical systems  A  and  B  with aber-

ration functions to the sixth order given by 

   
( ) ( ) ( ) ( )2 4 6, , , ,A A A AW H W H W H W Hρ ρ ρ ρ= + +
� � � �� � � �

 

 and 

   
( ) ( ) ( ) ( )2 4 6, , , , ,B B B BW H W H W H W Hρ ρ ρ ρ= + +
� � � �� � � �

 

 where   H
�

 and   ρ
�

 are the normalized field and aperture 

vectors. Both aberration functions are described with the 

aperture vector at the exit pupil of each system. That is, a 

given ray through a system requires two points to be defined 

(see Figure 1); one point is given by the tip of the field vector 

at the object plane and the other point by the tip of the 

aperture vector at the exit pupil plane. However, the exit 

pupil of system  A  connects with the entrance pupil of system 

 B . In the presence of aberration in system  B , the point   ρ
�

 in 

the exit pupil of system  B  corresponds to the point   Bρ ρ+Δ� �
 

in the exit pupil of system  A . The term   BρΔ�  is the normalized 

transverse ray error at the entrance pupil of system  B , 

    ( )1
- , ,жB H BW Hρ ρΔ = ∇

�� �

 

 where   ( ),BW H ρ
� �

 is the pupil aberration function of system 

 B , Ж is the Lagrange invariant, and  ∇   H   stands for the gra-

dient with respect to the field vector. 

 Figure 2 shows how the entrance pupil of system  B  

(solid line) can be distorted   [ 2 ,  3 ] in relation to the exit 

pupil of system  A  (broken line) according to   .BρΔ�   

 By substitution of   Bρ ρ+Δ� �
 in the aberration function 

of system  A , we obtain 

   

( ) ( ) ( ) ( )
( ) ( )

, , - , ,

, ,

A B A B A A

A B A

W H W H W H W H

W H W H

ρ ρ ρ ρ ρ ρ

ρ ρ ρ

+Δ = +Δ +

≅∇ ⋅Δ +

� � � �� � � � � �

� �� � �
 

 where the term   ( ),A BW H ρ ρ∇ ⋅Δ
� � �

 represents the extrinsic 

aberration in the combination of systems  A  and  B . 

 The extrinsic aberrations can be written in terms of 

the gradient of the aberration function and the gradient of 

the pupil aberration function as 

   
( ) ( ) ( )1

, - , , .жE A H BW H W H W Hρρ ρ ρ= ∇ ⋅∇
� �� � �� � �

 

 This relationship has been presented previously in 

reference [ 4 ]. 

 We can now consider the extrinsic aberrations that 

result from errors in the field vector for system  B . In the 

aberration theory, the wavefront deformation is measured 

with respect to a reference sphere centered at the ideal 

image point. Therefore, changing the field point of inter-

est from   H
�

 to   AH H+Δ
� �

 for system  B  changes the image 

point and the corresponding reference sphere. Thus, it is 

not correct to calculate additional extrinsic aberrations by 

the substitution of   AH H+Δ
� �

 in   ( ),BW H ρ
� �

 where 

   
( )1

- ,
жA AH W Hρ ρΔ = ∇
�� � �

 

 is the transverse ray error at the image plane of system  A . 
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 It can be shown that third-order transverse ray errors 

in the position of a ray in the object plane result in eighth-

order aberration terms. These eighth-order terms are not 

treated in this paper. However, second-order errors in 

the position of the object for system  B  result in second-, 

fourth-, and higher-order wavefront errors for the system 

combination. 

 In this paper, we find the extrinsic aberrations of 

other optical system cases not considered in reference 

[ 4 ]. Specifically, we treat, here, the extrinsic chromatic 

aberrations and extrinsic aberrations in plane symmetric 

systems. The analysis presented here is novel and is, in 

part, made possible by using R. Shack ’ s formulation of the 

wave aberration function that uses the field and aperture 

vectors, rather than using scalar parameters. The wave 

aberration approach was pioneered by H. H. Hopkins and 

has been further developed by researchers at the College 

of Optical Sciences at the University of Arizona.  

2    Chromatic extrinsic aberrations 
 In standard aberration theory, the reference sphere is cen-

tered at the ideal Gaussian image point. Therefore, there are 

no second-order terms in the aberration function of a mono-

chromatic system. In this case, the aberration function is 

   

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

1

22

040 131 222

220 311

,

,

W H W W H W H

W H H W H H H
λ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

= ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅

� � �� � � � � � �

� � � � �� � �
 

 where we have neglected the piston terms. 

 For a second wavelength, the reference sphere is no 

longer centered at the ideal image point, and the aberra-

tion function has additional second-order terms. These 

are chromatic change of magnification and chromatic 

change of focus: 

   

( ) ( ) ( ) ( )

( )( ) ( )
( ) ( ) ( )( )

2

2

111 020 040

2

131 222

220 311

,

.

W H W H W W

W H W H

W H H W H H H

λ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

= ⋅ + ⋅ + ⋅

+ ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅

� �� � � � � �

� �� � � �

� � � � �� � �
 

 The pupil aberration function for the second wave-

length likewise has second-order terms: 

   

( ) ( ) ( ) ( )
( )( ) ( )
( ) ( ) ( )( )

2

2

111 020 040

2

131 222

220 311

,

.

W H W H W H H W H H

W H H H W H

W H H W H

λ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

= ⋅ + ⋅ + ⋅

+ ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅

� � � � � �� �

� � � �� �

� � �� � � � �
 

 If we combine two systems  A  and  B , then, the extrin-

sic aberrations are given by 

   
( ) ( ) ( )1

, - , , .
жE A H BW H W H W Hρρ ρ ρ= ∇ ⋅∇
� �� � �� � �

 

 For the gradient of the aberration function of system 

 A , we have 

   

( )
( )

( ) ( )( ) ( )
( ) ( )

020 111 040

131 222

220 311

,

2 4

2 2 .

2

A

A A

A A

A A

W H

W W H W

W H H W H H

W H H W H H H

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ

∇

⎧ ⎫+ + ⋅
⎪ ⎪
⎪ ⎪= + ⋅ + ⋅ + ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪+ ⋅ ⋅ + ⋅⎩ ⎭

� �

�� � � �

� � � �� � � � �

� � � � ��
 

 For the gradient of the pupil aberration function of 

system  B , we have 

   

( )
( )

( ) ( )( ) ( )
( ) ( )

020 111 040

131 222

220 311

,

2 4

2 2 .

2

BH

B B B

B B

B B

W H

W H W W H H H

W H H H H W H

W H W

ρ

ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

∇

⎧ ⎫+ + ⋅
⎪ ⎪
⎪ ⎪= + ⋅ + ⋅ + ⋅⎨ ⎬
⎪ ⎪

+ ⋅ ⋅ + ⋅⎪ ⎪⎩ ⎭

� �

� � � ��

� � � � �� � � �

�� � � � �
 

yO·H

yE·(ρ+Δρ)

yI·(H+ΔH)→ → →

yE·ρ→ →

Object
plane

Entrance
pupil

Exit
pupil

Image
plane

′

′

→ →

→ → →

 Figure 1      Representation of an optical system showing the optical 

axis, the object and image planes, the entrance and exit pupil 

planes, an ideal ray as a broken line, a real ray as a solid line, the 

field vector   ,H
�

 the aperture vector   ,ρ
�

 the transverse ray error 

vector   ,ρΔ�  and the transverse ray error vector   .HΔ
�

    

W131 (H·H) (H·ρ)

W311 (H·ρ) (ρ·ρ)

– → → →→→ →W040 (H·H)2–

W222 (H·ρ)2– – → → → →W220 (H·H) (ρ·ρ)
– → → →→→ →

 Figure 2      Pupil distortion due to different pupil aberrations.    
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  Table 1  provides the extrinsic aberration coefficients 

up to the fourth order for the combination of system  A  and 

system  B . The subscript  E  indicates that the coefficient is 

extrinsic.  

 In  Table 1 , the lower index  A  or  B  indicates that the 

coefficient refers to system  A  or system  B . For a system of 

three surfaces, the aberration coefficients are obtained 

by treating the system formed by the first two surfaces 

as system  A  and combining it with the third surface as 

system  B . This process is repeated to obtain the aberration 

coefficients for a system of several surfaces or of a system. 

 Thus, the presence of the second-order terms in the 

image and pupil aberration functions in the combination 

of the two systems gives place to the extrinsic second-, 

fourth-, and higher-order aberrations. The second-order 

terms in  Table 1  represent the extrinsic chromatic change 

of focus and magnification. The extrinsic chromatic 

change of focus, 

   020 020 111

2
- ,жE A BW W W=

 

 depends on the chromatic change of focus of system  A  and 

on the pupil chromatic change of magnification of system 

 B . This extrinsic term can be used to control the secondary 

spectrum. 

 The fourth-order terms in  Table 1  represent the extrin-

sic chromatic aberrations. For example, the coefficient 

   ( )040 020 311 040 111

1
- 2 4жE A B A BW W W W W= +

 

 is extrinsic spherochromatism.  

3    Sixth-order extrinsic aberrations 
 The absence of second-order terms in the aberration 

function of two axially symmetric systems results in no 

second- or fourth-order extrinsic terms. Specifically, when 

the aberration function of system  A  is 

   

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

22

040 131 222

2

220 311 400

,

,

A A A A

A A A

W H W W H W H

W H H W H H H W H H

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

= ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅

� � �� � � � � � �

� � � � � � �� � �
 

 and the pupil aberration function of system  B  is 

   

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

2 2

040 131 222

2

220 311 400

,

,

B B B B

B B B

W H W H H W H H H W H

W H H W H W

ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

= ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅

� � � � � � �� � �

� � �� � � � � � �
 

 the extrinsic aberration coefficients that result are of the 

sixth order as shown [ 4 ] in  Table 2 .  

 An equivalent table for the transverse third-order 

aberrations is provided by Buchdahl [ 5 ]. Researchers 

interested in higher-order aberration theory and toleranc-

ing have been aware and calculated extrinsic aberrations 

[ 6  –  12 ].  

4     Extrinsic aberrations in plane 
symmetric systems 

 The aberration function for a plane symmetric system [ 13 ] 

can be written as 

   

( ) ( ) ( ) ( ) ( ) ( )2 ,
2 ,, , , ,

, ,

, , ,
p qk nm

k n p
m n qk m n p q

n p q

W i H W H H H i H iρ ρ ρ ρ ρ
∞

+ +
+ +

= ⋅ ⋅ ⋅ ⋅ ⋅∑
� � �� � � � �� � � � �

 

 where  W  
2
   k    + 

   n    + 
   p   ,2   m   

 + 
   n    + 

   q   ,   n   ,   p   ,   q   is the coefficient of a particular 

aberration form defined by the integers  k, m, n, p , and  q . 

The lower indices in the coefficient indicate the algebraic 

powers of  H,  ρ  , cos(  φ  ), cos(  χ  ), and cos (  χ   +   φ  ) in a given 

aberration term. The angle   χ   is between the vectors   
�
i  and 

  ,H
�

 and the angle   χ   +   φ   is between the vectors   i
�

 and   .ρ
�

 

 Table 1      Extrinsic coefficients from the combination of system  A  and 

system  B.   

 Second order 

    ж=020 020 111

2
-E A BW W W

 

    
( )ж= +111 020 020 111 111

1
- 4E A B A BW W W W W

 

    ж=200 111 020

2
-E A BW W W

 

 Fourth order 

    
( )ж= +040 020 311 040 111

1
- 2 4E A B A BW W W W W

 

    

ж

⎛ ⎞+
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟
+⎝ ⎠

020 222 020 220

131 111 311 040 020

131 111

4 4
1

- 8

3

A B A B

E A B A B

A B

W W W W
W W W W W

W W
 

    
ж

⎛ ⎞+
= ⎜ ⎟

+ +⎝ ⎠

020 131 111 222

222

131 020 222 111

4 21
-

4 2

A B A B
E

A B A B

W W W W
W

W W W W
 

    

ж

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
+⎝ ⎠

111 220

220 131 020

220 111

2
1

- 2

2

A B

E A B

A B

W W
W W W

W W
 

    

ж

⎛ ⎞+ +
⎜ ⎟

= + + +⎜ ⎟
⎜ ⎟
+⎝ ⎠

020 040 020 131 222 020

311 111 131 111 131 220 020

311 111

8 2 4
1

- 2 4

A B A B A B

E A B A B A B

A B

W W W W W W
W W W W W W W

W W
 

    
( )ж= +400 111 040 311 020

1
- 4 2E A B A BW W W W W
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By setting the sum of the integers to 0, 1, 2 … , groups of 

aberrations are defined as shown in  Table 3 . The vector   
�
i  

defines the direction of plane symmetry.  

 Considering aberration terms of the fourth order in   
�

,i  

  ,H
�

 and   ,ρ
�

 we can write the aberration function as 

   

( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

2 2

02002 11011 20020

03001 12101 12010

21001 21110 30010

22

04000 13100 22200

2

, ,W i H W i W i H i W i H

W i W i H W i H

W i H H W i H H W i H H H

W W H W H

W

ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ ρ

= ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅ + ⋅

+

� � � � �� � �� � �

� � �� �� � � � � � �

� � �� � � � � � �� �

� �� � � � � �

( )( ) ( )( ) ( )2

2000 31100 40000 .H H W H H H W H Hρ ρ ρ⋅ ⋅ + ⋅ ⋅ + ⋅
� � � � � � �� � �

 

 The pupil aberration function can also be written as 

   

( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( )( ) ( )

2 2

02002 11011 20020

03001 12101 12010

21001 21110 30010

2 2

04000 13100 22200

2

, ,W i H W i H W i H i W i

W i H H H W i H H W i H H

W i H W i H W i

W H H W H H H W H

W

ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ

= ⋅ + ⋅ ⋅ + ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅ + ⋅

+

� � � � �� � �� � �

� � �� � � � � � �� �

� � �� �� � � � � � �

� � � � � �� �

( )( ) ( )( ) ( )2

2000 31100 40000 .H H W H Wρ ρ ρ ρ ρ ρ ρ⋅ ⋅ + ⋅ ⋅ + ⋅
� � �� � � � � � �

 

 Table 2      Extrinsic coefficients from the combination of system  A  and 

system  B.   

   
( )=060 040 311

1
- 4 A B

EW W Wж  

   

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠

131 311 040 220

151

040 222

3 81
-

8

A B A B

E A B

W W W W
W ж W W

 

   

⎛ ⎞+
= ⎜ ⎟

+ +⎝ ⎠

222 311 131 220

242

131 222 040 131

2 41
-

6 8

A B A B

E A B A B

W W W W
W ж W W W W

 

   
( )ж= +333 131 131 222 222

1
- 4 4A B A B

EW W W W W
 

   

⎛ ⎞+
= ⎜ ⎟

+⎝ ⎠

131 220 220 311

240

040 131

2 21
-

4

A B A B

E A B

W W W W
W ж W W

 

   

⎛ ⎞+
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟
+ +⎝ ⎠

131 131 220 220

331 220 222 222 220

311 311 040 040

5 4
1

- 4 4

16

A B A B

A B A B
E

A B A B

W W W W
W W W W Wж

W W W W
 

   

⎛ ⎞+
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+ +⎝ ⎠

311 222 220 131
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222 131 131 040

2 41
-

6 8
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E A B A B

W W W W
W ж W W W W

 

   

⎛ ⎞+
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+⎝ ⎠

220 131 311 220
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131 040

2 21
-

4

A B A B

E A B

W W W W
W ж W W

 

   

⎛ ⎞+
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+⎝ ⎠

311 131 220 040
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222 040

3 81
-

8

A B A B

E A B

W W W W
W ж W W

 

   
( )=600 311 040

1
- 4 A B

EW W Wж  

 Table 3      Aberration terms of a plane symmetric system.  

 First group 

   W  
00000

   Piston 

 Second group 

    ρ⋅
� �

01001W i  
 Field displacement 

    10010W i H⋅
� �

 
 Linear piston 

    02000W ρ ρ⋅� �  
 Defocus 

    11100W H ρ⋅
� �

 
 Magnification 

    ⋅
� �

20000W H H  
 Quadratic piston 

 Third group 

    
( )2

02002W i ρ⋅
� �

 
 Uniform astigmatism 

    
( )( )11011W i H i ρ⋅ ⋅
� �� �

 
 Anamorphic distortion 

    
( )2

20020W i H⋅
� �

 
 Quadratic piston 

    
( )( )03001W i ρ ρ ρ⋅ ⋅
� � � �

 
 Uniform coma 

    
( )( )12101W i Hρ ρ⋅ ⋅
� �� �

 
 Linear astigmatism 

    
( )( )12010W i H ρ ρ⋅ ⋅
� � � �

 
 Field tilt 

    
( )( )21001W i H Hρ⋅ ⋅
� � ��

 
 Quadratic distortion 

    
( )( )21110W i H H ρ⋅ ⋅
� � � �

 
 Quadratic distortion 

    ( )( )30010W i H H H⋅ ⋅
� � � �

 
 Cubic piston 

    
( )2

04000W ρ ρ⋅� �
 

 Spherical aberration 

    ( )( )13100W H ρ ρ ρ⋅ ⋅
� � � �

 
 Linear coma 

    
( )2

22200W H ρ⋅
� �

 

 Quadratic 

astigmatism 

    ( )( )22000W H H ρ ρ⋅ ⋅
� � � �

 
 Field curvature 

    ( )( )31100W H H H ρ⋅ ⋅
� � � �

 
 Cubic distortion 

    ( )2

40000W H H⋅
� �

 
 Quadratic piston 

 The gradient of the aberration function is 
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ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ

∇ = ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ +

� � � � �� �� �

� � ��� � � � �
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� � �� � � ( )
( )

22000

31100

2

.

W H H

W H H H

ρ⋅

+ ⋅

� � �
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 The gradient of the pupil aberration function is 

   

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

02002 11011

03001 03001 12101

12101 12010 21001

, , 2

2

2

HW i H W i H i W i i

W H H i W i H H W H i

W i H W i H W i

ρ ρ

ρ

ρ ρ ρ ρ

∇ = ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

� � � � �� �� �

� � �� � � � � �

� � �� �� � � �
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 The extrinsic aberration terms from the combination 

of systems  A  and  B  are given by 

   
( ) ( ) ( )1

, - , , .E A H BW H W H W Hж ρρ ρ ρ= ∇ ⋅∇
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 Retaining the fourth-order terms in   ,i
�

   ,H
�

 and   ,ρ
�

 we 

obtain the extrinsic aberration coefficients as shown in 

 Table 4 .  

  Table 4  shows that in a non-axially symmetric system, 

the aberration terms of a given order give place to the 

aberration terms of the same order. In this case, the order 

is a function of the vectors   ,i
�

   ,H
�

 and   .ρ
�

 

 It is interesting to observe that quadratic dis-

tortion of the pupil   ( )( )21001BW i H ρ ρ⋅ ⋅
� � � �

 and uniform 

coma   ( )( )03001AW i ρ ρ ρ⋅ ⋅
� � � �

 result in spherical aberration 

 Table 4      Extrinsic aberration coefficients from the combination of 

systems  A  and  B  that are plane symmetric.  
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distortion 
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 Linear 

astigmatism 
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distortion 
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 Spherical 
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 Quadratic 

piston 

  ( )2

04000 EW ρ ρ⋅� � . This can be seen by the substitution of 
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5     Application of extrinsic 
aberrations 

 There are several examples of optical systems where 

extrinsic aberrations play a significant role. For example, 

extrinsic chromatic aberration has been used to design 

apochromatic lens systems using normal glasses [ 14  –  16 ]. 

The field lens in the Offner Null corrector [ 17 ,  18 ] effectively 

controls pupil distortion, and this results in the effective 

control of higher-order spherical aberration. The field lens 

in the Schupmann medial telescope   [ 19 ], in addition to con-

trolling chromatic change of magnification, also controls 

spherochromatism. Field lenses, or lenses at a beam con-

striction, can control pupil coma, pupil astigmatism, and 

pupil distortion, and therefore, they provide an effective 

way to control oblique spherical aberration of the image. 

 The Schupmann medial telescope is a single glass 

achromatic system that uses a Mangin mirror to create 

a real image and correct chromatic change of focus. 

The Mangin mirror introduces spherical aberration 

  ( )ρ ρ⋅� � 2

040 .W  Without a field lens, the marginal ray height 

at the Mangin mirror is different for two colors by   .ρΔ�  For 

the second color, the spherical aberration is, 
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 The term   ( )( )0404W ρ ρ ρ ρ⋅ ⋅Δ� � � �
 represents spherochro-

matism. If a field lens is introduced at the focus of the 

objective lens, the difference in marginal ray height differ-

ence   ρΔ�  at the Mangin mirror can be changed according 

with the optical power of the field lens. The aperture stop 

is at the objective lens, and the Mangin mirror is located 

at the image of the objective lens by the field lens; that is, 

at a pupil. Then, the difference in the marginal ray height 

  ρΔ�  is given by the chromatic change of magnification of 

the pupil. That is, 

   
( )( )111 111
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 Therefore, the spherochromatism can be written as, 

   
( ) ( )2 2
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 This result is in agreement with our earlier prediction. 

Thus, the field lens in the Schupmann medial telescope 
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not only controls the chromatic change of magnification 

by making the chief ray zero at the Mangin mirror, but it 

also controls spherochromatism. This theoretical result 

on the behavior of aberration in a Schupmann medial tel-

escope is easy to verify in a lens design program.  

6    Conclusions 
 Extrinsic aberrations are a common phenomenon in 

optical systems. The claim often given in the literature 

[ 20 ,  21 ] that the aberration coefficients add from surface to 

surface in a system is correct only in the absence of extrin-

sic aberrations. This is not often the case, and extrinsic 

terms must be accounted for. 

 One noteworthy case where the aberration coeffi-

cients from surface to surface add is the Seidel sum con-

tribution for a system that has no second-order terms in 

the aberration function of each surface. 

 Understanding the subject of extrinsic aberrations 

has historically permitted us to design some useful optical 

systems. This paper provides a theoretical foundation on 

the subject.   
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