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1        Introduction 
 Production limitations are constantly being tackled to 

advance the many applications of precision optics. These 

applications vary from commercial high-volume prod-

ucts such as miniature mobile phone cameras to scien-

tific instruments such as giant monolithic or segmented 

telescopes and industrial tools such as ultra-high per-

formance lithographic projection systems. Aspheric and 

freeform optics have come to play an increasingly central 

role across this domain. Although symmetry typically 

allows sections of spheres to be fabricated and tested 

more simply, the successful exploitation of non-spherical 

optics of growing complexity offers no end of difficul-

ties. Unique challenges are faced by at least four differ-

ent industries: those that provide optical design software 

as well as the hardware systems for generating (grinding, 

diamond turning, etc.), polishing/finishing, and measur-

ing [coordinate measuring machines (CMMs), interferom-

eters, etc.] optical surfaces. Sitting at the foundation of all 

this is the shared requirement for effective conventions 

to characterize surface shapes. Among the criteria for the 

effectiveness of any process for characterizing shape are 

 ‘ generality ’ ,  ‘ efficiency ’ , and  ‘ robustness ’ . We are primar-

ily concerned here with particular aspects of efficiency. 

 Regarding  ‘ generality ’ , it is sufficient for many pur-

poses to allow the exclusion of hyper-hemispheres and 

the like so that surfaces can then be specified by a single-

valued sag function. In cylindrical polar coordinates, for 

example, such a surface can be expressed explicitly as 

 z   =   f  (    ρ , θ  ). One of the traditional specifications for rotation-

ally symmetric surfaces of this type involves a well-known 

set of coefficients: 
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 where  c  and  κ  are the axial curvature and conic constant 

and  A  
4
 ,  A  

6
 ,  A  

8
 , …  are monomial degrees of freedom. Only 

the starting values for the ranges of summation are shown 

explicitly in this work; options for the upper limits are dis-

cussed separately. 

  ‘ Efficiency ’  is significant in several ways. Given that a 

primary task is the communication of shape, it is more effi-

cient if comparable accuracy can be achieved while using 

fewer degrees of freedom, and also if the associated coeffi-

cients require fewer decimal digits. In the context of design, a 

reduced number of degrees of freedom also makes for faster 

optimization, but other efficiency-related aspects enter in 

that context. In particular, ray tracing benefits if the evalu-

ation of the sag function and its derivatives are fast. What is 

more, it is a decisive advantage across the entire production 

chain if the representation directly facilitates estimates of 

manufacturability. The ultimate test in that regard is whether 

a surface shape is intelligible at a glance, that is, whether it 

is either  ‘ humanly readable ’  or requires machine decryption. 

  ‘ Robustness ’  is an important numerical consideration 

in this context, and it is largely tied to cancellation and 
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round off. This relates in part to being  ‘ future proof ’ . That 

is, for a designer using say a 64-bit floating-point code, 

is it possible to simply keep including more coefficients 

in order to cope with surfaces of increasing complexity? 

If not, at what point can nothing be gained by additional 

terms regardless of the application? 

 For surfaces that are not rotationally symmetric, Eq. 

(1) can be generalized by using Cartesian coordinates and 

writing the sag as: 
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 where there are now separate curvatures and conic con-

stants in the  x  and  y  directions and a double-indexed set 

of monomial coefficients. We consider variations on Eqs. 

(1) and (2) and focus on applications where the peak-

to-valley of the sag for each surface is smaller than the 

semi-diameter of its aperture. Although it is straightfor-

ward to avoid this assumption, it means that the associ-

ated best-fit sphere is itself not a hyper-hemisphere and 

that this spherical reference can then be used to boost 

effectiveness. 

 Degeneracy causes an infamous lack of robustness 

when working with the monomial sums in Eqs. (1) and 

(2). Their troubles arise from the fact that if we subtract 

two values that differ by less than one part in a million, 

the result is found to at least six fewer significant digits 

than is held by the less accurately known of the two origi-

nal numbers. So, for example, unless there are more than 

six digits in our floating-point system, such an operation 

yields no accuracy at all. This sort of cancellation within 

monomial sums not only limits the number of terms that 

can effectively be used but also means that a surpris-

ingly large number of digits must often be retained in the 

associated coefficient values. These weaknesses can be 

addressed by orthogonalizing the additive poly nomials 

and using recurrence relations for their evaluation  [1]. 

Impressively, such a step also effectively decouples these 

degrees of freedom so that terms can be dropped or added 

as judged to be appropriate at a glance. As we discuss 

in Section 2, by tailoring the orthogonalization to this 

context, various aspects of efficiency can be improved 

signi ficantly at the same time. 

 Our main objective in what follows, however, is to dem-

onstrate the varying success of standard local optimiza-

tion routines when designing systems where the aspheric 

and freeform surface shapes are characterized in different 

representations. We are interested not only in the optical 

performance of the end results but also the convergence 

of the optimization process. The gains to be won by apply-

ing simple manufacturability-related design constraints 

have been impressively demonstrated elsewhere (e.g., 

[2, 3]). All these considerations are higher level measures 

of efficiency for the surface characterization. The design 

examples that we consider, which include tilted and even 

freeform elements, are presented in Section 3.  

2     Orthogonal bases for optical 
surface shape 

 Rather than tailor a surface description to be well suited to 

particular shapes that have value in special circumstances 

(e.g., conic sections and more general Cartesian ovals for 

systems with small fields of view), it is more effective in 

general to anticipate the predominance of manufactur-

ability as a driving consideration. Accordingly, the depar-

ture of a surface from a best-fit sphere immediately takes 

center stage. More specifically, manufacturability is typi-

cally related to variations in, and differences between, the 

local principal curvatures across the surface. In turn, these 

are driven directly by the rates of change of the displace-

ment to the surface measured along the normal to the best-

fit sphere. It is natural then to seek a characterization of 

shape in which the weighted mean square gradient of this 

normal departure from best-fit sphere is just a sum of the 

squares of the associated coefficients. In fact, this require-

ment is found to fully determine the characterization [4, 5]. 

2.1    Rotationally symmetric case 

 For a rotationally symmetric surface of semi-diameter 

  ρ   
max

 , an alternative to Eq. (1) takes the form: 
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 where the pre-factor on  N  
bfs

  is just division by the cosine 

that effectively converts a displacement measured in the  z  

direction to departure along the local normal vector of the 

sphere. Note that the argument of  N  
bfs

  varies from zero to 

unity, and that the sphere in Eq. (3) can be designated as 

a best-fit sphere if this departure vanishes at both limits. 

Accordingly, in terms of  u  =   ρ  /  ρ   
max

 , the normal departure 

from best-fit sphere is expressed as: 
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 where   0

nQ  is a polynomial of order  n . (In keeping with the 

next subsection, the superscripted zero signifies rotational 

symmetry.) Given a weighting to be used in the average 

over the aperture, these polynomials are uniquely deter-

mined by requiring that the mean square slope of  N  
bfs

 ( u ), 

that is, the mean square of   
bfs ,d Ndu  is just the sum over 

 n  of   0 2( ) .na  For one well-suited weighting, the resulting 

polynomials are discussed in [4], and a sample of them is 

plotted in  Figure 1 .  
 A glimpse of some of the strengths of this orthogonal 

characterization can be had upon taking representative 

aspheres from the patent literature and expressing their 

shape by using Eqs. (1) and (4). Such a result is presented 

in  Figure 2  where these two characterizations match down 

to the nanometer level. The shape of this surface is not 

at all apparent from the traditional characterization. By 

contrast, as the zeroth basis element in  Figure 1  attains a 

peak value of 0.25, the new coefficients in  Figure 2  make 

it immediately clear that this asphere has approximately 

2300/4  ≈  600 microns of departure from a best-fit sphere. 

This orthogonal characterization also reveals at a glance 

that there are no significant high-order components in the 

shape. What is more, only approximately one-third of the 

digits is now required because the cancellation between 

the different monomial components is avoided. It was also 

seen at a glance that the last two terms could be dropped 

while leaving the others unchanged and retaining a 

nanometer level of agreement. These are all indications of 

significant efficiency gains. 

2.2      Freeform optics 

 In many applications of freeforms, it is sufficient to choose 

the domain for orthogonalization to be a circular cylinder 

that tightly encloses the aperture. In this case,   ρ   
max

  is taken 

to be the radius of the enclosing cylinder and  N  
bfs

  becomes 

a function of the polar angle mentioned leading into Eq. 

(1). It turns out that all the monomial terms of Eq. (2) are 

accounted for if we now express the normal departure of 

Eq. (3) in polar coordinates as: 
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 Again, only the lower limits of the indices of sum-

mation are shown; much as for the sums in Eq. (2), their 

upper limits can be chosen in a number of ways. The first 

line of Eq. (5) contains the  m  = 0 terms that are precisely 

those of Eq. (4). 

 The equivalence of Eq. (5) and a Cartesian monomial 

sum like that in Eq. (2) can be appreciated by expanding 

the right-hand side and then equating real and imaginary 

parts of the identity: 
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 With this, it can be seen that all terms up to, say, order 

 T  are included if Eq. (2) is summed over positive indices 

satisfying  j  +  k    ≤    T , or Eq. (5) is summed over: 
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 Note that the  T  + 1 degrees of freedom at order  T  are   0

nb  

with  j  = 0,1, …  T  and  k  =  T - j  for the sum in Eq. (2), whereas, for 

Eq. (5), they are   m
na  and   m

nb  where  m  has the same parity 

(even/odd) as  T  with 0   ≤    m    ≤    T  and 
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 Figure 1      Low-order slope-orthogonal elements of Eq. (4). The derivatives plotted (right) reveal their Fourier-like orthogonality.    
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 [When counting to identify the  T  + 1 terms for any  T   >  2, 

note that   0

nb  does not enter Eq. (5), and this drops one of 

the terms when  T  is even.] If the rotationally symmetric 

components of Eq. (5) are supplemented by  u  0  and  u  2  (i.e., 

piston and power), all terms up to order  T  in either Eq. 

(5) or in a Cartesian monomial sum have equal numbers 

of degrees of freedom and are precisely interchangeable 

linear combinations of each other. 

 For any given weighting function, the polynomials in 

Eq. (5) can be determined uniquely by requiring that the 

weighted mean square gradient of  N 
bfs

  ( u , θ ) is just the sum 

of the squares of all the coefficients, see [5]. Although  –  as 

shown in the plots in Appendix 1  –  the results differ sig-

nificantly from Zernike polynomials, these basis elements 

can be labeled in terms that are familiar from the Zernike 

domain. The four basis members that typically dominate 

the spectra are plotted in  Figure 3  and are referred to in 

what follows with familiar labels: astigmatism, coma, 

trefoil, and spherical aberration. Also, note that, although 

the tilt terms associated with   1

0a  and   1

0b  may sometimes 

be significant, they are of minor importance as far as man-

ufacturability is concerned. In fact, they can be taken to 

be zero without loss of generality provided the part has 

tip and tilt freedoms when it is configured in the system 

during optimization. 

  Just as for the rotationally symmetric case, it is instruc-

tive to express freeform surfaces from the patent literature 

in both the representations considered here. One such 

example is shown in  Figure 4  where the listed coefficients 

from the patent include all terms up to order 10 in Eq. (2) 

and are in that upper table. Both conic constants vanish 

for this mirror and the radii in mm are 1/ c x   = -452.62713 and 

1/ c y   = -443.43539. This mirror has a plane of symmetry and 

the coordinates are aligned so that  A jk   = 0 whenever  j  is odd. 

Note that two terms were dropped from the specification, 

 Figure 3      Plots of the lower-order basis elements for  m  = 0, 1, 2, and 3 (spherical, coma, astigmatism, and trefoil, respectively). These are all 

plotted on the same scale and are of 4th, 3rd, 2nd, and 3rd order with peak values of 0.25, 0.41, 0.71, and 0.54, respectively.    

 Figure 2      Alternative prescriptions for L616 of US patent no. 

6,646,718 [6]. The clear aperture (CA) is 143.652 mm. This 

surface has   κ   = 0 and the inverse of the axial curvature for Eq. (1) 

is 101.25424 mm, whereas that of the best-fit sphere for Eq. (3) is 

108.02985 mm.    
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namely ( j,k ) = (0,0) and (0,1), which makes the polynomial 

and its first derivatives vanish at the origin. 

  When using Eq. (5), the plane of symmetry means 

that   m
nb  vanishes for all  m  and  n  when the coordinates 

are related by (x,y) = ( u  sin   θ , u  cos   θ  ). (This choice makes 

changing the sign on   θ   equivalent to changing the sign on 

 x  and, just as for the conventional description, all the odd 

terms then drop out.) With   ρ   
max

  = 174.2 and 1/c = -478.12597, 

the resulting values of   m
na  are given in the lower table of 

 Figure 4 . The illuminated aperture for this part is roughly 

elliptical with an aspect ratio of 93%, and hence is slightly 

smaller than the enclosing circle used here. These two 

characterizations match to better than 1  nm over the 

enclosing circle, but the second of them requires approxi-

mately one-third the number of digits and is plainspoken: 

this shape is evidently dominated by a couple of hundred 

microns of each of coma (  1

1a ) and trefoil (  3

0a ). Keep in 

mind that, as demonstrated in [5], the value of the mean 

tilt (  1

0a ) is largely irrelevant to the shape; it relates more to 

the orientation of the mirror and, much as was done with 

 A  
01

  in the original specification, it can be dropped from the 

spectrum provided tip and tilt freedoms are used during 

optimization. The issue of how easily such an asphere can 

be produced is discussed briefly in the next subsection.  

2.3    Manufacturability 

 Different stages of production have their own limita-

tions, but manufacturability is oftentimes coupled to 

entities such as local differences and/or global varia-

tions in the principal curvatures of the surface. By using 

the methods developed in [8], the accessible domain in 

such cases can be estimated in terms of an ellipsoid cen-

tered at the origin in parameter space of the coefficients 

of Eqs. (4) or (5). A unique strength of those represen-

tations is that manufacturability generally improves as 

their coefficients become smaller. Because the four ele-

ments plotted in  Figure 3  tend to dominate the spectra, 

an idea of the accessible domains can be gleaned by 

determining the extent of the ellipsoid in just these few 

dimensions. 

 The case of stitched interferometric testing is used 

here as an example. It was shown in [8] that, provided 

the CA is not too small, the size of that ellipsoid is inde-

pendent of the part size. It does depend on part speed, 

however, which is defined here as   η   =  c ρ   
max

 . The results for 

a representative test configuration are plotted in  Figure 

5 . It can be seen that, provided a transmission sphere of 

appropriate size is available, a freeform should be able 

to be stitched when these low-order coefficients do not 

exceed a few hundred microns. (Note that the part in 

 Figure 4  falls within this domain.) By contrast, the domain 

for full-aperture testability is a spheroid of approximately 

ten times smaller semi-diameter, as indicated by the 

dotted line in  Figure 5 . Such rules of thumb can be deter-

mined for other production processes, of course. They are 

of enormous value and can be refined as needed for pro-

gressively more sophisticated and accurate estimates of 

manufacturability. 

 Figure 4      Alternative representations of M6 from  ‘ projection optics 37 ’  of US patent no. 2012/0069315 A1 [7]. The Cartesian coefficients 

from the patent are listed along with the new spectrum of coefficients (to  T  = 10) for this shape.    
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3       Design case studies 
 We now present several design case studies and compare 

the optimization behavior of various surface types. All 

designs share a common feature: a large number of 

aspheric coefficients, either on a single surface or on mul-

tiple surfaces. With the exception of the last example, the 

surfaces are rotationally symmetric. In addition to the 

standard aspheric descriptions of Eqs. (1) and (2), with or 

without a normalization radius, we use several orthogo-

nal representations, namely Zernike polynomials, the 

orthogonal polynomials introduced in [9] and called  Q  
con

  

in [4], and the gradient-orthogonal polynomials   m
nQ  of 

Eqs. (3), (4), and (5) (which, for  m  = 0, are precisely  Q  
bfs

  as 

discussed in [5]). 

 The starting systems are simple spherical or low-order 

aspheric systems. Complexity is increased by adding 

more aspheric coefficients and re-optimizing the systems 

without changing the error function. To explore the gen-

erality of our findings, we use two commercial optical 

design codes, namely ZEMAX  ®   [10] and CodeV  ®   [11], as 

well as the Carl Zeiss custom optical design software. 

3.1    Cassegrain telescope 

 A simplistic Cassegrain-type telescope was used in [12] to 

demonstrate some parametrically defined surfaces when 

the standard aspheric description fails. The telescope 

is shown in  Figure 6 . It consists of a concave spherical 

primary mirror and an aspheric convex secondary located 

near the ray caustic.  Table 1  lists the design parameters. 

   We used ZEMAX  ®   to compare various aspheric surface 

types: the standard aspheric description called  ‘ Even 

Asphere ’  in ZEMAX  ®   with a polynomial expansion up to 

the 16th order; the  ‘ Extended Asphere ’  which is similar to 

the Even Asphere but can support higher orders and uses 

a normalized radial coordinate; the  ‘ Zernike Standard 

Sag ’  surface which supports the standard Zernike polyno-

mials up to 20th order (using only the rotationally sym-

metric terms for the Cassegrain); and the ZEMAX  ®   imple-

mentations  ‘ Qcon_recurr ’  and  ‘ Qbfs_recurr ’  of the sets of 

orthogonal polynomials [10] that use numerically stable 

recurrence formulas for the associated computations. All 

surface types except the Even Asphere use a normalization 

 Figure 5      The semi-diameters of the principal axes of the  ‘ ellipsoid of stitchability ’  vary with speed of the best-fit sphere. The plotted limits 

are for a 1 K camera at HeNe wavelength at up to a root mean square (RMS) of half Nyquist with subapertures larger on average than the 

black arcs on the cross-sections of best-fit spheres indicated (right).    

 Table 1      Parameters of the Cassegrain-type telescope.  

 Primary mirror radius of curvature  2000 mm 

 Primary mirror diameter of aperture  1400 mm 

 Vertex separation between mirrors  800 mm 

 Distance from secondary mirror to image plane  1500 mm 

Mnk

Cas_ape.zmx
Configuration 1 of 1

Layout

Cassegrain EPD 1400 mm
13.10.2012
Total axial length: 1700.00000 mm

 Figure 6      Cassegrain-type telescope with a spherical primary mirror 

and an aspheric secondary mirror near the caustic.    
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radius. We fixed this radius at 105 mm to ensure that all 

rays intercept the secondary mirror within this domain. 

 For simplicity, only the wavefront of the on-axis field 

point was optimized and we started with a purely spheri-

cal system. The fourth-order aspheric coefficient of the 

secondary mirror was released and the system optimized 

until convergence. This was repeated for the higher-order 

aspheric coefficients, varying one additional coefficient at 

a time while keeping the lower-order coefficients variable 

and each time starting with the last optimized system. 

 The optimization results are shown in  Figure 7 . The 

RMS wavefront error is measured at a wavelength of 

633 nm. The results for the Even Asphere and the Exten-

ded  Asphere surface types were identical, thus only the 

latter are shown. All descriptions yield nearly the same 

wavefront error when up to eight aspheric coefficients are 

used. Releasing additional coefficients slightly improves 

the results for the Extended Asphere. However, the wave-

front errors are significantly larger than those of the Q poly-

nomials when more than eight coefficients are used (and 

of the Zernike surface with nine coefficients). This indi-

cates numerical instabilities during optimization for the 

non-orthogonal surface type. These instabilities are likely 

to be associated with the degeneracy of the monomial 

sums, which was discussed in Section 1. The final Q-based 

systems (14 coefficients = 30th order) can be converted to 

within insignificant errors into the standard asphere rep-

resentation after the fact, but the optimizer seems unable 

to find this solution if the surface is described with a non-

orthogonal monomial sum during design. 

  It is interesting to note that, when all aspheric coef-

ficients are released at once, the orthogonal representa-

tions (Zernike,  Q  
con

 ,  Q  
bfs

 ) yield exactly the same results as 

with the previously described procedure. The wavefront 

error for the Extended Asphere improves slightly (0.17 

waves instead of 0.19), but is still more than a factor of 

5 larger than the wavefront error with the same number 

of coefficients for the orthogonal representations. Again, 

this points out that numerical instabilities can be avoided 

by the use of orthogonal polynomials. 

 Of course, this example is artificial and only intended 

to test the ability of the optimizer to find a certain aspheric 

shape with a specific surface representation. It demon-

strates that orthogonal surface types can have advantages 

when more than eight or so aspheric coefficients are used.  

3.2    Three-mirror anastigmat 

 The second design study is a three-mirror anastigmatic 

objective. We used the CodeV  ®   sample lens  ‘ threemir.len ’  

as a starting system, increased the entrance pupil dia-

meter from 100 mm (f/2.5) to 125 mm (f/2), and reduced the 

full-field angle from 5 °   ×  1 °  to 0.5 °   ×  0.5 ° .  Figure 8  shows the 

layout of the starting system. All mirrors are rotationally 

symmetric aspheres, but they do not share a common axis. 

  In the starting system, three parameters per surface 

are varied: the curvature, the conic constant, and the 

fourth-order aspheric coefficient. Twelve more parameters 

control the distances between the mirrors, the positions of 

the mirror vertices, and of the image surface, adding up to 

a total of 21 variable parameters. 

 The rectangular field was sampled with six equally 

distributed field points. We included constraints in the 

error function to ensure that no mirror blocked the light 

between other mirrors and that the image is accessible. 

Distortion was controlled to be smaller than 0.5%. We 

applied the following optimization strategy: aspheric 

coefficients were always released simultaneously on all 

three mirrors, but only one coefficient per mirror at a time. 

The last optimized system was used as the starting system 
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 Figure 7      Optimization results for the Cassegrain-type telescope 

with increasing number of aspheric coefficients on the secondary 

mirror.    

f/2.0, 0.5x0.5 dg,  3 mirror anastigmat Scale: 0.67 Mnk  05-Nov-12 

37.31   mm

 Figure 8      f/2, 0.5 °    ×   0.5 ° , three-mirror anastigmat.    
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for 100 cycles of optimization before the next aspheric 

coefficients were turned into variables. The resulting RMS 

wavefront errors for four different surface types (standard 

asphere, Fringe Zernike,  Q  
con

 ,  Q  
bfs

 ) are shown in  Figure 9 . 

  In the starting system, the mirrors are described as 

standard aspheres. We used the built-in conversion with 

an automatic choice of the normalization radius to gen-

erate the starting systems for the Fringe Zernike (using 

only the rotationally symmetric terms),  Q  
con

 , and  Q  
bfs

  

surface types. Whereas the conversion to Zernike and  Q  
con

  

is exact, the conversion to  Q  
bfs

  is an approximate fit. The 

 Q  
bfs

  surface type in CodeV  ®   does not yet have a conic term 

as an option. (Such an option has been introduced [8], 

but because it breaks the close coupling to manufactur-

ability in most applications, it is recommended only for 

exceptional cases, e.g., extremely fast parts.) Instead of 

conic plus 4th-order coefficient, we started with the 4th- 

and 6th-order coefficients for the  Q  
bfs

  surfaces to retain 

the same number of variables, and then re-optimized the 

system. The resulting  Q  
bfs

  system showed much worse per-

formance than the other systems: 0.17 waves of composite 

RMS wavefront error compared with 0.03 waves. 

 However, when two more aspheric coefficients are 

added (radius plus four aspheric coefficients per mirror, 

thus 27 variables in total), the performance of the  Q  
bfs

  

system is superior to all other systems: 0.014 waves com-

pared with 0.016 for  Q  
con

  and Zernike and 0.018 for the 

standard asphere. Varying more coefficients does not help 

to improve the Zernike system at all, but gives a slight 

improvement for the other surface types. 

 In this design example, we obtain a 25% reduction 

in RMS wavefront error simply by using an orthogonal 

representation with the same number of parameters. The 

optimizer finds a deeper minimum for the same error 

function. This seems unlikely to be caused by lack of 

numerical robustness because the number of parameters 

per surface is small: only four aspheric coefficients. There 

now appears to be a more complex interaction between 
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 Figure 9      Optimization results for the three-mirror anastigmat with 

increasing number of aspheric coefficients.     Figure 10      Layout of the four-mirror off-axis system.    

the three aspheric mirrors. By changing the surface rep-

resentation, the dependence of the error function on the 

basic parameters changes even though the essential defi-

nition of the error function remains unchanged. Transfor-

mation of the parameter space evidently enables the opti-

mizer to find a deeper minimum in this case. 

 Importantly, changing the surface type does not 

affect the family of surface shapes that is covered by the 

representations: When the final Q-based systems are con-

verted to standard aspheres, the associated wavefront 

error remains the same. That is, the minima also exist in 

the standard asphere representation, but the optimization 

algorithm was unable to find them.  

3.3    Four-mirror off-axis system 

 Our next design example is a four-mirror off-axis system 

based on US patent no. 6,577,443 [13] with an image-side 

numerical aperture of 0.12, a reduction ratio of 0.25, and 

a radial field of 4 mm. The basic layout is shown in  Figure 

10 . All mirrors are rotationally symmetric with respect to 

a common optical axis. The outermost field point is posi-

tioned at 200 mm from the optical axis. The stop is on the 

second mirror from the image side, producing a telecen-

tric image. 

  Once again, we performed this design example with 

ZEMAX  ®  . The error function consisted of operands con-

trolling the wavefront error, distortion, and telecentric-

ity for five equally distributed and weighted field points. 

Operands were added to prevent the blocking of rays by 

the mirrors. The overall length was restricted to be smaller 

than 1600 mm. Starting with a purely spherical system, 

we used the same optimization strategy as for the three-

mirror system: release one aspheric coefficient simultane-

ously on all mirrors and optimize 100 cycles before varying 

the next higher-order aspheric coefficients.  Figure 11  illus-

trates the optimization behavior that strongly depends on 

the chosen surface type. 

  When more than two aspheric terms per surface are 

employed, the system with rotationally symmetric Zernike 
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surfaces exhibits the worst performance. At first glance 

this is surprising, but it may be due to the ring field which 

has the effect that all mirrors except the pupil mirror are 

hit by rays only in a small portion of their full aperture. 

Although the Zernike polynomials are orthogonal over 

the unit circle, they appear to be poorly suited to this case 

because of their strong gradients in the outer annulus. 

 The standard asphere representation leads to better 

results than the Zernike polynomials, but the  Q  
con

  surface 

type is superior to both of them.  Q  
con

  reaches the final RMS 

wavefront error level with a smaller number of variables 

(a total of 29 compared with 33, corresponding to five and 

six aspheric coefficients on each mirror, respectively), 

and additionally the level is approximately 20% lower. 

Nothing is gained by varying higher-order coefficients 

from that point. 

 The system with  Q  
bfs

  surfaces reaches by far the best 

RMS wavefront error: a factor of 10 lower than  Q  
con

   –  the 

second best  –  with 25 variables (four aspheric coefficients 

per mirror). The final level still is approximately 75% lower 

with  Q  
bfs

  than with  Q  
con

   –  a dramatic four times reduction 

in wavefront error with a smaller number of variables. As 

shown in  Figure 12 , the final configurations differ in the 

positions and sizes of the first and second mirror. Once 

again, the  Q  
bfs

  system can be converted into the standard 

asphere representation without loss of performance. 

  It is interesting to speculate why the Q polynomials do 

so much better than the Zernikes in this off-axis system. 

Both sets of polynomials are orthogonal over the unit 

circle. However, in contrast to the Zernike polynomials, 

the slopes of the  Q  
bfs

  polynomials remain modest even 

near the edge of the aperture (see the discussion of the 

figures in Appendix 1). We have no explanation for the 

superior behavior of the  Q  
con

  over the Zernike polynomi-

als in this design example. As an aside, note that both 

the Zernikes and  Q  
bfs

  can be scaled to be orthogonal over 

annular apertures, as discussed in [8], but this option is 

currently unavailable in the design code.  
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 Figure 11      Optimization results for the four-mirror off-axis system.    
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 Figure 12      Layout of the four-mirror off-axis optimized system. 

(A) Standard aspheres. (B)  Q  
bfs

  surfaces.    

3.4    Freeform prism 

 Our last design study is an example with surfaces that are 

not rotationally symmetric. The system is a wedge-shaped 

freeform prism for a head-mounted display based on US 

patent no. 5,959,780 [14]. The prism magnifies the image 

of a microdisplay into the eye pupil of the observer.  Figure 

13  shows the basic layout. The effective focal length of the 

patent system is scaled to 33 mm, the diameter of the pupil 

is 15 mm, and the full field of view is 32 °   ×  24 ° . The system 

is symmetric about the  yz -plane (the paper plane). 

  The original prism consists of two freeform surfaces 

and a planar surface. This surface, next to the pupil, is used 

 Figure 13      Freeform prism for a head-mounted display.    
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twice: first in total internal reflection, then in refraction. 

The condition for total internal reflection at this surface 

is controlled for all rays during optimization. Additional 

structural constraints ensure that the prism remains physi-

cally realizable and we limited the distortion to be   <  8%. 

 To investigate the optimization behavior of the Q poly-

nomials of Eq. (5) for this case, we implemented the new 

representation in the Carl Zeiss custom optical design soft-

ware. The prism surfaces were represented either by stand-

ard XY polynomials, by Fringe Zernike polynomials, or by 

this new set of Q polynomials. The originally planar surface 

was also converted to a freeform surface. For each of the 

surfaces, 34 parameters were varied during the optimiza-

tion leading to a total number of variables > 100. The varia-

bles were chosen so that the Q and the Zernike polynomials 

covered the same function space as the XY polynomials (as 

described in Section 2.2 and displayed in  Figure 4 ). 

  Figure 14  gives the error function values that are 

reached at the end of each optimization cycle. When 

the prism surfaces are described by XY polynomials, the 

error function falls until the optimization stagnates after 

30 cycles at a value of approximately 33% of the initial 

level. With Q polynomials, however, the error function 

falls much more rapidly and achieves superior perfor-

mance in the first four or five optimization cycles, fol-

lowed by a slower reduction. After 25 cycles, the error 

function did not improve further. The error function is 

then at 17% of the initial level  –  a reduction of the XY 

polynomial result by a factor of two. This reduction in 

error function corresponds to an average 15% improve-

ment in modulation transfer function (MTF) at 30 lp/mm 

over the full field, see  Figure 15 . Except for the first few 

cycles, the result with the Zernike surfaces is falling in 

between the XY and the Q polynomials, but the end result 

offers less than half the improvement seen with Q. 

 It turns out that the surface sag and the gradients are 

at similar levels for the final systems. In this case study, 
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 Figure 14      Comparison of optimization results for the freeform 

prism with surfaces described by XY, Zernike, and Q polynomials.    
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 Figure 15      MTF results for the freeform prism. (A) XY polynomials. 

(B) Q polynomials.    

one observes faster convergence to a deeper minimum 

with the new Q polynomials. This starkly illustrates a 

potential impact of an appropriate surface representation. 

4        Concluding remarks 
 Creating a more convenient standard for communicat-

ing shape was a primary goal of the orthogonal bases 

discussed here. In particular, offering fewer digits and 

human intelligibility as well as a closer link to manufac-

turability were central considerations. Benefits were also 

expected in terms of design for manufacturability, where 

the simple constraints enabled by the new characteriza-

tion could better define regions to be searched for both 

local and global optimizers. Such benefits have already 

been demonstrated impressively in terms of maintaining 

performance while eliminating inflection points and sig-

nificantly reducing tolerance requirements for assembly 

(e.g., [2, 3]). Our results build on this by establishing that, 

as an unexpected bonus, gains in raw optical performance 

and convergence may also be won. 

 Although no single characterization of shape is 

expected to be optimally suited to all surfaces in the 
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 Figure 16      Plots of the lower-order Q basis elements for  m  = 0, 1, 2, … 6 running horizontally and  n  = 0, 1, 2, … 4 running vertically. The peak 

absolute value attained by each of the elements is given as an inset.    

 Figure 17      Plots of the Zernike basis elements for comparison with the elements of Q in Figure 16. The signs have been chosen to match 

the topology of the corresponding elements of Q, and piston and power have been dropped from the first column for maximal consistency 

between these two figures. By convention, they are all scaled to have a peak absolute value of unity.    
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current span of optical systems, our design studies 

demonstrate that orthogonal polynomials sometimes 

offer surprising advantages. It is helpful that orthogonal 

bases benefit from robust and efficient algorithms, but 

such internal mathematics is unimportant from a user ’ s 

perspective; adopting and understanding the degrees 

of freedom  –  just a simple spectrum  –  are all that is 

required. In our opinion, the sooner we all become 

familiar with such spectra, the better for our whole 

industry.   
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  Appendix 1 
 To give a better appreciation of the gradient-orthonormal 

basis elements of Eq. (5), we have created some additional 

graphics. As in  Figure 3 , only the reflection-symmetric ele-

ments (involving cosine) are drawn in  Figure 16 ; the anti-

symmetric elements (involving sine) follow simply upon 

rotating these by   π  /(2 m ) about the  z  axis. Note that the plots 

in the first column (where  m  = 0) are just the curves of  Figure 

1  spun about the  z  axis. This grid of plots is arranged to 

match the layout of coefficients in the lower table of  Figure 

4 . The plotted shapes and the inset amplitudes therefore 

give an intuitive meaning to such spectra of coefficients. 

  For comparison with the Zernike basis elements, an 

analogous set of plots is given in  Figure 17 . Note that, as 

indicated by the green lines of the  x  and  y  axes, the ele-

ments in the first column are now non-zero at center and 

edge. This means that the associated coefficients in this 

case change axial thicknesses as well as the curvature 

of the best-fit sphere. As they are built from zeroth-order 

poly nomials, that is, just constants, the remainder of the 

first row ( n  = 0) is identical in shape to their counterparts 

in  Figure 16 . However, the strong peaks and high gradi-

ents near the aperture edge for all  n   >  0 are significant dis-

tinctions that presumably lead to the different optimiza-

tion results reported in Section 3. For example, the peak 

gradient value divided by the RMS of the function value is 

more than an order of magnitude higher for the Zernikes 

in the last row (i.e.,  n  = 4) than for the corresponding ele-

ments of Q. The general differences are perhaps easiest to 

appreciate initially by a pairwise comparison of the plots 

in the second columns (i.e.,  m  = 1).   
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