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  Abstract:   The development of optical systems today is 

strongly supported by computer simulations. Computer 

ray tracing tools are well established in the field of geomet-

rical optics for designing objectives, light channels, etc. 

Ray tracing is conceptually quite simple, which makes the 

implementation as well as the interpretation of ray trac-

ing results easy, although the design of high-quality lens 

systems remains a challenging task. In the field of wave 

optics, there are software tools as well, but they are still 

not as mature as the ray tracing tools. The main reason for 

this is that numerically solving partial differential equa-

tions is numerically more complex and not as intuitive as 

ray tracing. Besides simple wave propagation, the main 

field of use of the wave optics methods today is the devel-

opment of lasers and laser resonator and nonlinear optics. 

The optical properties of the media, in general, depend on 

the temperature and mechanical stresses. The interaction 

of the electromagnetic fields with matter, thus, has to self-

consistently include thermomechanical computations.  
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1    Modeling optical systems 

1.1    Levels of modeling 

 Depending on the experimental situation, light shows 

wave-like or particle-like behavior. Many properties of light 

cannot be interpreted within the frame of classical elec-

trodynamics. The theory that describes all experimental 

observations not only qualitatively but also quantitatively 

with surprising precision is quantum electrodynamics [ 1 , 

 2 ]. Nevertheless, classical electrodynamics is very suc-

cessful in dealing with light intensities that are well above 

the single-photon level. 

 Classical optics can be carried out on different levels 

of detail and physical rigor. Totally incoherent light can 

often satisfactorily be described by geometrical optics, 

and the propagation of laser light is quite well treated 

employing the classical Maxwell equations. But even 

when neglecting the quantum effects, the mathematical 

complexity of Maxwell equations in their general form is 

considerable. Further simplifications lead from the  “ fully 

vectorial ”  to the  “ semiclassical ”  and finally to the  “ scalar ”  

theory of wave optics [ 3 ].   

2    Electrodynamics 

2.1    Maxwell ’ s equations 

 Electrodynamics is governed by the Maxwell ’ s equations [ 4 ]: 
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  E  is the electric field, and  D  is the electric displacement 

field. The nomenclature of  B  and  H  is not consistent in 

literature. According to [ 5 ],  B  is called the magnetic flux 

density or magnetic induction, and  H  is the magnetic 

field strength or magnetic field intensity. Current density 

  j
�

 and space charges   ρ   will be neglected in the following. 

The fields  B  and  H  and  E  and  D , respectively are connected 

by the material relations: 

   0B H Mμ= +
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   D  =   ε   
0
  E  +  P  (6) 
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   μ   
0
  is the vacuum permeability, and   ε   

0
  is the vacuum die-

lectric constant or vacuum electric permittivity. In optics, 

almost always, the magnetization   M
���

 can be neglected. In 

the linear case, the polarization  P  is given by: 

   0 .P Eε χ=
 

(7)
 

 The electric susceptibility   ,χ  in general, is a second-rank 

tensor that mathematically describes the anisotropic elec-

trical properties of matter. In isotropic media,   χ  reduces 

to a scalar. Inserting into Equation (6) yields in the linear 

isotropic case: 

   D  =   ε   
0
   ε E  (8) 

    ε  =  1 +   χ   (9) 

   ε   is the relative dielectric constant.  

2.2    Complex quantities 

 Although the fields are real quantities, it is often conveni-

ent to use complex quantities in the computations. Time 

harmonic fields can be expressed as: 

   E ( x,y,z,t ) =  A ( x,y,z )exp[- i ω t ] +  A  * ( x,y,z )exp[ i ω t ] (10) 

  A ( x,y,z ) is a complex field amplitude. Because the Maxwell 

equations are linear in the field quantities (when consid-

ering nonlinear interactions, special caution has to be 

taken), the Maxwell equations separate into a set of equa-

tions for the complex amplitudes and the conjugates of 

the complex amplitudes, respectively. It suffices to solve 

only the equations for the complex field amplitudes. 

When expressions containing products of field quantities 

are involved, like the Poynting vector [ 4 ]: 

   S  =  E   ×   H  (11) 

 the real expression Equation (10) has to be taken. If  E  and 

 H  are perpendicular to each other, the Poynting vector 

norm is given by: 
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 with the vacuum impedance 
  0
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=  and the index 

of refraction   = .n ε  Using Equation (10) and integrating 

over a period of time  T  yields the intensity: 
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 The second and third integrals vanish, thus: 
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 In the literature, the field E is sometimes defined as: 
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 The intensity, then, is given by: 
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2.3     Time-dependent nonlinear wave 
equation 

 The following time-dependent wave equation can be 

deduced from Maxwell ’ s equations [ 6 ]: 
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 The dielectric displacement field is determined by the 

electric field and, if not in the vacuum, by the response of 

the matter to the electric field. The response, in general, is 

not linear. Usually,   D
��

 is expressed by a series of powers 

of   .E
��

 Including the linear and second-order terms, the dis-

placement vector,   ,D
��

 is given by: 
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 with the linear response: 
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 and the lowest-order nonlinear or second-order response 

[ 6 ]: 
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   χ   (2)  is a rank-three tensor. The colon in the above equation 

denotes a tensor product. Using components, this reads: 

   
( )(2) (2): ijk j ki

j k

EE E Eχ χ=∑∑
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 With this, the wave equation can be written as: 
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 This is the  ‘ full-vectorial ’  wave equation governing the 

propagation of electromagnetic fields up to the second 

order in the polarization. In general, the second term 

on the left-hand side couples all the electric field com-

ponents. Neglecting those parts of this term that couple 

the electric field components yields the  ‘ semivectorial ’  

theory, and neglecting this term entirely yields the  ‘ scalar ’  

theory. Neglecting the coupling term and the nonlinear 

 polarization on the right-hand side of Equation (22) and 

assuming the harmonic time dependence exp(- i ω t ) leads 

to the much simpler time-independent scalar Helmholtz 

equation: 

   
2 2
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 with the index of refraction   = ,n ε  the vacuum wave 

number   0

0

k
c

ω=  and the vacuum velocity of light 

  
0 0 01/ .c μ ε=   

2.4     Solutions of the Helmholtz wave 
equation 

 Solutions of the Helmholtz wave equation, Equation (23), 

can be expressed by the angular spectrum representa-

tion [ 7 ]: 
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  E ( x  ′ , y  ′ ;  z  = 0) is the field at the plane at  z  = 0, and  E ( x,y,z ) 

is the field at the plane at  z   >  0.  k 
x
   and  k 

y
   are the spatial 

frequency components. The function values of   ̂ ( , )x yE k k  

with   2 2 2

0x yk k k+ <  are the amplitudes of propagating modes, 

whereas the amplitudes with   2 2 2

0x yk k k+ ≥  correspond to 

the evanescent waves. The field propagation expressed 

by Equation (24) is exact within the frame of scalar wave 

theory. The angular spectrum representation is equivalent 

to the Rayleigh-Sommerfeld diffraction formulae [ 8 ]. The 

paraxial approximation  k 
x
   =  k  

0
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 yields the Fresnel diffraction integral [ 9 ]: 
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 Equation (26) is equivalent to a convolution in position 

space, the way the Fresnel diffraction integral usually is 

expressed.  

2.5     One-way wave equation and slowly 
varying envelope approximation 

 In many cases of interest, Maxwell ’ s equations, or thereof 

reduced wave equations, cannot be solved analytically, 

but numerical methods have to be employed. In homo-

geneous media, solutions to the Helmholtz equation 

are given by the angular spectrum representation, and 

the propagation of fields can easily be computed using 

Fourier transformations. In the case of inhomogeneous 

media like wave guides or fiber, different approaches can 

be employed: 

 –     Discretize Maxwell ’ s equations in time and space 

resolving the wavelength and time period (finite 

difference time domain method), which results in an 

initial-boundary-value problem.  

 –    Separating out fast-oscillating factors yielding 

one-way wave equations that can be integrated 

along the propagation direction with suitable initial 

conditions.   

 The first approach is more exact but is computationally 

very demanding and is not suitable for domains much 

larger than the wavelength. The second one reduces in 

the simplest case to the slowly varying envelope (SVE) 

approximation. With the Helmholtz equation: 
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 and separating out the fast-oscillating part: 
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 yields the so-called one-way wave equation [ 10 ]: 
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 Neglecting   z

∂
∂  compared to 2 in  

0
  k  

0
  on the right-hand side 

yields the SVE approximation. The SVE approximation is 

limited to field components with the wave vectors close to 

parallel to the main propagation direction. Higher-order 

or wide-angle approximations can be constructed by the 

recursion: 
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 which yields higher Padé approximants of the propagation 

operator [ 10 ,  11 ].  Figure 1  shows the intensity profile of an 

initially Super-Gaussian after propagating a distance,  L .   

2.6    Nonlinear three-wave mixing 

 Nonlinear three-wave mixing is an established means for 

producing monochromatic coherent light at wavelengths 

not or not easily creatable by other means. Efficient green 

coherent light sources can be realized by frequency dou-

bling of solid state laser beams at, e.g., 1060 nm (Nd:YAG). 

In the lowest-order nonlinear processes, in general, three 

different wavelengths are involved. The modeling, thus, 

needs to solve three-wave equations with nonlinear cou-

pling terms. The wave equations can be deduced from the 

general wave equation [Equation (7)] and the nonlinear 

polarization PNL. In the SVE approximation, the wave 

equations for three-wave mixing read [ 6 ]: 

 Figure 1      The intensity profile of an initially super Gaussian with 

beam radius,  w  
0
 , after a propagation distance of   .

λ
≈ wL
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 The indices  s,i,p  designate the signal, idler, and pump 

waves, respectively. The   α  
j
   are the absorption coefficients 

that depend on the wavelengths of the wave. In general, 

the absorption increases with decreasing wavelength. 

 d 
eff

   is the effective coupling coefficient that not only 

depends on the nonlinear material but also on the field 

polarization. 

 The phase mismatch ( Δ  kz ) depends on the refractive 

indices of the three waves. The refractive indices depend 

on the wavelength and the field polarization. For efficient 

energy transfer, the phase mismatch at the end of the crystal 

( Δ  kL ) has to be smaller than   π  , with the crystal length,  L . In 

the case of frequency doubling, the wavelengths and refrac-

tive indices of the signal and idler waves, respectively, are 

equal, i.e.,  k  
0
   
s
   =  k  

0
   
i
   and  n 

s
   =  n 

i
  , so that the phase mismatch is 

given by  Δ  kL  =  k  
0
   
s
  (2 n  

s
 -2 n 

p
 )L . The refractive index difference 

 n  
s
 - n 

p
  , thus, has to be smaller than   λ  /4 L . With the typical 

values   λ  =  1  μ m and  L  = 20 mm, this means  Δ  n   <  10 -5 . When 

considering only a single polarization direction, the refrac-

tive index difference at the two wavelengths   λ  
s
   and   λ  

p
   =   λ  

s
  /2 

is much larger than this value. But choosing the different 

polarizations for the pump and signal waves, respectively, 

makes phase matching possible. The refractive indices also 

depend on the temperature and thermal-induced stresses. 

The phase-matching temperature  acceptance depends on 

the material at hand. The typical values range from a few 

Kcm up to tens of Kcm , so depending on the crystal used, 

thermal management is crucial. 

 In the case of very short pulses, the three waves do 

not have single frequencies any more but a continuous 

spectrum given by the Fourier transform of the temporal 
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pulse shape [ 12 ]. In that case, the dispersion effects such 

as group velocity differences and group velocity disper-

sion have to be accounted for in the modeling.  Figure 2  

shows, as an example, the intensity change of the funda-

mental and the second harmonic wave during frequency 

doubling within the nonlinear crystal. The asymmetry of 

the intensity of the converted wave with respect to the 

optical axis is due to the walk-off, which is caused by 

birefringence.    

3    Optical elements 
 Free space propagation of light fields is a special case of the 

more general case of propagation in a dispersive, inhomo-

geneous, anisotropic, absorbing, or amplifying medium. 

The numerical methods for solving this general problem 

in the case of optical wavelengths and macroscopic optical 

systems very often employ some kind of approximation. 

Operator splitting is, in many cases, used to separate dif-

fraction and interactions between the light field and the 

medium, as e.g., refraction at index interfaces, amplifi-

cation, birefringence, and nonlinear wave mixing. That 

means diffraction is computed along the propagation 

length,  L , neglecting the other processes, and subse-

quently, the same step is repeated, neglecting diffraction 

but taking into account one of the other relevant processes. 

3.1    Paraxial beams and optical elements 

 Laser light is distinguished by its high beam quality, 

which makes possible the laser beams with small diver-

gence angles. If the paraxial approximation can be used, 

the nondiffracting processes can often be modeled by thin 

sheets; e.g., thin lenses and mirrors can be modeled by 

multiplications of the field by a phase factor: 

   E 
out

  ( x,y,z ) = exp(- ik φ  ( x,y))E 
in

  ( x,y,z ) (37) 

 with: 

   

2 2
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2

x y
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 for lenses and: 
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x y
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φ
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 in case of mirrors with  f  the focal length of the lens and 

 R  the radius of curvature of the mirror. As the above 

equations indicate, the field  E 
out

   at the point ( x,y,z ) only 

depends on the input field  E 
in

   at the same point. In the 

case of the paraxial beams and thin optical elements, the 

ABCD matrix formalism can be used to model the propaga-

tion through the optical system including the diffraction 

using Collins from of the Fresnel diffraction integral [ 13 ].  

3.2    Gain media 

 The intensity change in a gain medium can be expressed 

by the light transfer equation, which in the one-dimen-

sional case is given by [ 14 ]: 

   

( , )
= ( , ) ( , ).

dI x y
g x y I x y

dz  
(40)

 

 Owing to the saturation, the gain coefficient,  g ( x,y ), in 

general, depends on the field intensity, and thus, Equa-

tion (40) is nonlinear. 

3.2.1   Stationary homogeneously broadened media 

 The steady-state gain coefficient of the homogeneously 

broadened media is given by the expression [ 15 ]: 

Fundamental wave Second harmonic wave

Δx

zz

x

 Figure 2      Simulation of the second-harmonic generation. The displacement  Δ  x  of the center of the intensity distribution of the second 

 harmonic is called the walk-off. The walk-off is a result of the wave vector and the Poynting vector not being parallel in the anisotropic 

 material [ 9 ].    
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  g  
0
  is the small-signal gain coefficient, which depends on 

the pump rate and the active laser system at hand.  I  is the 

radiation intensity, and  I  
s
  is the saturation intensity.  I  

s
  is 

mainly determined by the ratio of the spontaneous emis-

sion rate and transition rates between the upper laser 

level and the other levels that do not contribute to the 

laser activity (e.g., nonradiative transitions). When the 

intensity equals the saturation intensity, the gain coeffi-

cient amounts to half of the small-signal gain value. The 

input and output fields are connected by: 

   

1
( , , )= ( , , ) exp ( , , ( , ))

2
out inE x y z E x y z L g x y I x y L⎛ ⎞+ ⎝ ⎠
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 with a suitable average of  g ( x,y;I ( x,y )) between  z  and  z  +  L . 

3.2.2   Pulsed gain 

 The gain of transiently pumped laser media can be deter-

mined by solving the time-dependent rate equations for 

the relevant laser levels and the radiation field.  

3.3    Thick lenses 

 In the case of the thick lenses, things are more involved. 

The pointwise connection between the input and output 

fields is not valid any more if  Δ  x  in  Figure 3  cannot be 

assumed to be small. The numerical simulation of wave 

propagation through the index interfaces of curved sur-

faces is not easily done. The two most popular methods to 

circumvent this problem are:  

1.     Coherent decomposition of the light field into 

Gaussian beamlets and propagating the Gaussians 

using the methods presented in [ 16 ].  

2.    If the propagation distance through the thick lens 

is sufficiently short so that the geometric optics is 

valid at least approximately, the propagation can be 

implemented by ray tracing. The ray directions in the 

input plane are given by the normals of the surfaces 

of constant phase. Summing the optical path lengths 

while tracing the rays through the lens yields the 

phase in the output plane. The ray coordinates are 

transformed to the output plane. The Jacobian of this 

transformation can be used to compute the intensity 

and the light field in the output plane using the radiant 

power on the area elements in the input plane.     

z1 z2

Δx

 Figure 3      Thick convex-convex lens. A plane wave is transformed 

into a spherical wave. The transversal beam extend changes during 

propagation from the input plane at  z  
1
  to the output plane at  z  

2
  by  Δ  x  .    

4    Thermally induced optical effects 
 The numerical modeling of propagation in the homoge-

neous media, of the paraxial first-order quadratic index 

elements, of the thick lenses via geometric optics, and so 

on are well established techniques in optics simulations. 

Things get more complicated when the optical fields 

change the optical properties by absorption and heating 

of the optical components. The refractive indices of most 

materials depend on the temperature and on the mechani-

cal state, i.e., internal stresses. The internal stresses are 

not only induced by the external forces but also by the 

inhomogeneous temperature distributions. Even the iso-

tropic materials, in general, become birefringent when 

internal stresses are present. The refractive index, thus, 

depends on the position and on the polarization of the 

radiation. The wave equation, Equation (22), describes all 

this phenomena. But a general solution is hard to achieve. 

In many cases of interest, it suffices to split the propaga-

tion through the inhomogeneous medium into small-

enough steps so that the impact of the inhomogeneity and 

anisotropy can be described by thin sheets. Diffraction 

again can be handled by operator splitting. 

4.1    Jones matrices 

 Mathematically, the thin sheets coupling the field polari-

zation components can be described by the Jones matrices. 

The electric field and the dielectric displacement are related 

by the dielectric tensor   ε   or the inverse dielectric tensor  B : 

   0=D Eε ε
�� ��

 (43) 

   0

1
= .E BD

ε

�� ��

 
(44)
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 In the linear material response limit, the contributions 

of the temperature and mechanical stresses to  B  can be 

 separated according to: 

   B ( T, ε  
M

  ) =  B 
T
  ( T ) +  B 

M
  (  ε  

M
  ) (45) 

   ε  
M

   in this equation is the mechanical strain tensor and 

must not be confused with the dielectric constant. The 

temperature-dependent part is given in the principal axis 

system by: 
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  n 
i
  ( T ) is the temperature-dependent index of refraction of 

the  i  ’  th  polarization direction. The Taylor series expansion 

yields: 
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 In many cases, the linear factor 
  

idn

dT
 suffices. The tensor 

Equation (46) has to be transformed into the optical axis 

system. 

 The part, depending on the mechanical strain, is a 

linear function of the strain components: 

   

3 3

; ;

=1 =1

( )=M ij ijkl M kl
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  p  
ijkl

  is the photoelastic tensor of rank 4, and   ε  
M

   
;
   
kl
   are the 

components of the second-rank strain tensor.  T  and   ε  
M

   
;
   
kl
   

have to be computed, e.g., using a FEM program with the 

deposited power density calculated from radiation absorp-

tion. Because the propagation of light fields depends on 

the refractive index, this has to be done self-consistently. 

 The tensor,  B , is projected onto the  x - y  plane of the 

optical axis system. The resulting two-dimensional tensor 

 B 
red

   is transformed into its principal axis system. The field 

components in the principal axis system  E  
1
  and  E  

2
  are 

propagated according to: 

   

1 1 1

2 2 2

( ) exp( - ) 0 (0)

( ) 0 exp( - ) (0)

E z in k E

E z in k E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

(49)

 

  n  
1
  and  n  

2
  are the eigenvalues of  B 

red
  . Transforming Equa-

tion (49) back into the laboratory frame yields: 

   

(2) (1)

(2) (1)

( , ) ( , ) ( , ) ( , )
.

( , ) ( , )( , ) ( , )

x xx xy x

xy yyy y

E x y J x y J x y E x y

J x y J x yE x y E x y

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(50)

 

 This is the paraxial Jones matrix model. The field 

 components are coupled and multiplied by spatially 

dependent phase factors. This includes thermal lens 

effects. Besides thermal lensing polarization losses are 

a significant problem in solid state lasers. The polari-

zation losses mean that when starting with a field that 

only has an x-component, after propagating through 

the laser medium, part of the x-component power is 

transferred to the y-component [ 17 ].  Figure 4  shows the 

polarization loss of a homogeneously heated Nd:YAG 

laser rod.    

 Figure 4      Left: intensity of the x-component of a Gaussian before propagating through a homogeneously heated Nd:YAG rod. Right: inten-

sity of the y-component after propagating through the rod showing birefringence (The scales on the left and right sides are different.).    
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5    Summary 
 Physical optics modeling and numerical simulation is of 

great usefulness for better understanding the behavior of 

complex optical systems and for improving performance 

of, e.g., lasers, especially solid state lasers, and nonlin-

ear frequency conversion. The models and numerical 

methods have to be sufficiently accurate but also efficient. 

The vectorial descriptions of light can often be reduced to 

scalar models, which makes, e.g., the treatment of diffrac-

tion much easier. When the vector character cannot be 

neglected, like in birefringent materials, the mathemati-

cal model often can be reduced to two uncoupled propa-

gation equations for two scalar field components that are 

coupled by applying the Jones matrices. Thermal lensing, 

temperature dependence of refractive indices, and 

 temperature-induced mechanical stresses that change the 

optical properties make necessary a self-consistent treat-

ment of optics and thermomechanics. 

 All the models and methods described in the present 

article are implemented in a numerical package [ 18 ] and 

proofed their usefulness in the development of many real-

world optical systems in the field of solid state lasers [ 17 ] 

and nonlinear frequency conversion [ 19  –  25 ]. The develop-

ment of the software package has not been a one-way road, 

but feedback from the experiments helped to improve its 

correctness and reliability.   
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