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  Lens design: optimization with Global Explorer    
  Abstract:   The optimization method damped least squares 

method (DLS) was almost completed late in the 1960s. DLS 

has been overwhelming in the local optimization tech-

nology. After that, various efforts were made to seek the 

global optimization. They came into the world after 1990 

and the Global Explorer (GE) was one of them invented by 

the author to find plural solutions, each of which has the 

local minimum of the merit function. The robustness of 

the designed lens is also an important factor as well as the 

performance of the lens; both of these requirements are 

balanced in the process of optimization with GE2 (the sec-

ond version of GE). An idea is also proposed to modify GE2 

for aspherical lens systems. A design example is shown.  
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1     Introduction 
 Designing a lens is somewhat like prospecting for a mineral 

vein in the crust of the earth, as depicted in  Figure   1 . Even if 

one finds a good vein, there is no way of knowing if a better 

one might exist nearby or far away. The situation is similar 

in lens design. If a designer finds a lens design using some 

optimization technique, the design thus found is only a 

local solution located near the starting design. The solution 

may be non-optimal if the starting point is inappropriate. 

  While the crust of the earth extends only in three spatial 

dimensions, the space over which the lens design solutions 

are distributed is a multidimensional parameter space. 

 The performance of an optical system can be evalu-

ated by a single value called the  ‘ merit function ’ , which the 

designer seeks to minimize. In a conventional optimiza-

tion, one aims to find a lens system with the smallest merit 

function near a staring design. Thus, the performance of 

the optimized lens depends heavily on the choice of start-

ing point, which can be problematic. This problem was not 

solved until 1990, after which several methods of global 

optimization appeared [ 1  –  6 ]. One such global optimization 

method, called the Global Explorer [ 7  –  9 ] or GE can automat-

ically find multiple local solutions from any starting design. 

 The major advantages of the GE method are:

1.       It is fully automatic in searching for multiple solutions.

2.       It is computationally efficient. 

3.      The designer ’ s intentions can be easily implemented. 

4.      All the standard techniques of the damped least 

squares (DLS) method can be fully utilized.   

 The newest version of GE, GE2, optimizes both of the 

lens performance and the robustness in the optimization 

process. It is based on  ‘   θ   segmentation ’  and dramatically 

shortens the search time compared to GE. 

 Guidance in the design of lenses with aspheric sur-

faces is provided in order to cope with the special feature 

of such lenses.   

2   Local optimization in lens design 

2.1    Starting design 

 In designing a lens, one must first set up starting design 

specifications, such as the number of lens elements, their 

arrangement, the materials used, and so on. The choice 

of the starting design is critical to the performance of the 

solution reached. From a good starting point, the computer 

can easily find a solution automatically by the conventional 

optimization technique. However, there is no standard or 

systematic way to find a good starting design. Furthermore, 

the automatic optimization process cannot (1) divide one 

lens element into two or combine multiple elements into 

one; (2) separate cemented lens elements or cement together 

two or more elements; (3) change a spherical surface to an 

aspheric one or vice versa; (4) change a refractive element 

to diffractive one or vice versa; (5) select lens materials so 

as to take advantage of abnormal dispersion characteristics.   
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2.2   Error functions 

 Error functions, designated as 

   f i  ( i  = 1, 2, … , m ),  (1) 

 characterize the deviation of an optical system from the 

ideal, for example, the deviation of the point at which an 

image-forming ray passes through the image plane from 

its ideal position. Design parameters are denoted by 

   x j   ( j  = 1, 2, … , n ).  (2) 

 These include surface curvatures, axial separations 

between surfaces, refractive indices of glasses, etc. Image 

errors are functions of  x j     as indicated by 

   f i  ( x j  ) ( i  = 1, 2, … , m ).  (3) 

 Ray tracing is indispensable in arriving at error functions. 

Several approaches have been proposed to save time in 

image evaluation. One of these is described in the refer-

ence [ 13 ].   

2.3   Damped least squared method 

 Designing a lens consists of finding a set of  x j   that mini-

mizes the error functions. The computer tries to minimize 

the value of the merit function   φ   defined by 
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 where  f i   is an error function to be controlled,  f i  T   is its target 

value (zero in most cases), and  w i   is the weight for  f i  . 
Hereafter, we assume that the weight and target value are 

included in each error function, so that the merit function 

can simply be written as 
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 Figure   1    Vein searching in the mining industry.    
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 The condition for the minimized   φ   is given by 
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 The design problem is to find those values for  x j   that satisfy 

the above equations. This is not an easy task because   φ   is 

composed of error functions,  f i   that are complex nonlin-

ear functions of parameter  x j   that can only be calculated 

numerically by ray tracing. 

 In order to solve this problem,  f i   are linearly appro-

ximated in the vicinity of the starting point  x j0   as 
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 Using these, we have an approximated merit function 
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 which is a second-order polynomial in  x j  . The values for 

 x j   that minimize this approximated merit function can be 

obtained by solving the simultaneous linear equations 
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 The solution thus obtained is an approximation that 

can be regarded as the new starting point for the next itera-

tion of the above process. It is expected that such iteration 

will lead the design to converge to a real local minimum. 

 In order to ensure the convergence, a damping factor 

 D  is introduced, and the term 
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 is added to the merit function 
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 In minimizing this altered merit function, the design-

shift distance 
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∑  remains within a reason-

able range in which the approximation error is small. If 

the value of the damping factor  D  is small, convergence 

to a solution is not always guaranteed; if it is too large, 
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 where  x jL   is the position of the local minimum from which 

the design is to escape, and   μ  j   is the weight for the design 

parameters,  H  and  W  are the height and the width of the 

escape function, respectively, as illustrated in  Figure   4 .  

 The shape of the merit function   φ   around its local 

minimum changes when the escape function is added. It 

is raised by an amount of   2 ,Ef  and this enables the design 

to get out of the local solution and find a new solution 

if the values of  H  and  W  are effectively chosen. Repeat-

ing this process, one can automatically find a number of 

local minima. The contribution of the escape function is 

depicted in  Figure   4  for two design parameter dimensions. 

(The real design-parameter space is, of course, multidi-

mensional and, hence, impossible to depict graphically.) 

 In actual cases, where the number of design param-

eters is large, the problem of choosing appropriate values 

of  H  and  W  is not too delicate. Instead, even crude choices 

the step size becomes too small, and it will take much 

iteration time to reach a solution. Therefore, the value 

of  D  should be chosen to fit the geographical features of 

the merit function for each iterative calculation. As the 

automatic control of  D  had been successfully found, this 

method called DLS has become the standard optimization 

method. The optimization path in the parameter space is 

depicted in  Figure   2 .  

 The design follows the path from Start to the Local 

solution via steps 1, 2, 3, …  . 

 The solution thus obtained is a local minimum of the 

merit function at a location in parameter space near the 

starting design. Once the solution reaches the minimum, 

the control method on the damping factor  D  forces it to 

become very large, trapping the solution in that minimum. 

For that reason, the design cannot jump out of the trap 

and find a better solution. This is the most serious defect 

of the DLS method.   

2.4   Boundary condition 

 Generally, each design parameter should have a lower and 

an upper limit: 

  x jmin
   <  x j   <  x jmax   

.

 If the value of  x j   falls outside this range, the amount of 

the violation   Δ x j   should be reduced to as small a value as 

possible.   Δ x j   is then regarded as an additional aberration, 

and its squared value is added to the merit function. The 

weight of this additional aberration must be larger than 

those for ordinary error functions. 

 In addition to design parameters, items such as 

peripheral thickness of lenses and airspaces should have 

some lower limit, otherwise the designed lens cannot be 

realized physically. Such boundary conditions can also be 

handled within the framework of the DLS method.    

3   Global explorer 
 The feature of the GE that enables it to find multiple 

designs is the  ‘ escape function ’  [ 7  –  9 ].  

3.1   Escape function 

  Figure    3  depicts the merit function   φ   as a function of a 

design parameter  x . 

  When the design falls into a local minimum at  x L  , an 

escape function  f E   is set up there as an additional error 

function defined by 

 Figure   2   Contour of the merit function in parameter space.    
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 Figure   3    Illustration of local minima and an escape function.    
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generally work well. If escape from the local minimum 

does not occur, the GE program automatically changes the 

values of  H  and  W  according to a predetermined rule. This 

process is then repeated until the design escapes from its 

local minimum.   

3.2   Flow chart of GE 

  Figure   5  depicts a flow chart of the GE program. 

  The individual steps of the GE program consist of: 

1.    When the design falls into a local minimum at  x jL  , the 

program automatically sets up an escape function 

with initial values for  H  and  W .  

2.   DLS optimization is performed for the merit 

function including the escape function for a few 

cycles (e.g., 10).  

3.   DLS optimization is performed again after removing 

the escape function; the solution thus obtained 
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 Figure   4    Contribution of the escape function   
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 Figure   5    Flow chart of GE program.    

would hopefully be another local minimum of the 

merit function.  

4.   If the newly found solution is not identical with any 

of those already found, the escape is regarded as a 

success, and the solution is saved in a lens file.  

5.   If the escape is not successful, the two parameters 

 H  and  W  are changed according to a predetermined 

rule (described below), and the processes from (2) to 

(4) is repeated until a new solution is found.  

6.   Steps (1) – (5) are repeated until the number of lens 

solutions filed reaches the requested value.   

 In step (4), judgment must be made whether or not the 

newly found solution is different from the initial design 

as well as from each of the already filed designs. For this 

purpose, the distance between two solutions is defined as 
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 where  x j   and  x j   ′  are the positions of two solutions in the 

parameter space. If the newly found solution is separated 

from any of the previously filed solutions by more than a 

given threshold distance  D t  , i.e., 

  Dp > Dt , (16) 

 these two solutions are regarded as different, and the 

escape was done successfully. Otherwise, the escape is 

judged as unsuccessful. 

 In applying GE to the lens design, the following 

parameters should be assigned: 

(1)        μ  j  : the weighting for the j-th design variable. There 

is no hard and fast rule for determining this value. 

Some common recommendations are: 

 –    1000 for surface curvatures  

 –   1 for axial separations between surfaces  

 –   10 for refractive indices  

 –       1 for  v d   value of the material  

    (2)    H  and  W : As noted previously, these values can be 

chosen rather arbitrarily. Some recommended initial 

values are   

 –   H 0   = 0.1  

 –        W 0   = 0.5.  

 –   If the escape is unsuccessful,  H  and  W  are 

changed according to the rule  

 –    H k   =  H k-1    ×   H 
mult

    

 –        W k   =  W k-1     ×   W 
mult

    
 –       A recommended value for  H 

mult
   is 2.0 and for 

 W 
mult

  , 1.3.    

  (3)      D t  : Threshold distance for identifying two solutions. 

The recommended value is 5.      
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4   Global Explorer2 

4.1      Winding string 

 The experience of many designers during the past 50 

years [ 10 ,  11 ] has shown that solutions that have nearly 

the lowest merit function tend to lie within a narrow string 

winding and stretching through the multidimensional 

parameter space, as depicted in  Figure    6 . This has been 

our experience after making many runs of global optimi-

zation with GE. Needless to say, because we live in a 3-D 

world, it is impossible for us to picture the actual shape of 

such a string in multidimensional space. 

  The merit function has a positive value and some 

lower limit; it can never reach the ideal value of zero. 

This is because there are always some trade offs among 

error functions; reduction in one often causes an increase 

in another. If the lower limit of   φ   is not acceptable, one 

has to abandon finding a solution with that lens type and 

change the lens type by increasing the number of lens 

elements or introducing aspheric surfaces. On the other 

hand, if the value of   φ   is acceptable, we have freedom to 

choose one among many solutions in the winding string. 

In this group, a small change of the merit function can be 

regarded as meaningless because it is only an average of 

many aberrations of the optical system. In that case, it is 

desirable to select the solution that has the lowest sensi-

tivity to manufacturing errors.   

4.2   Sensitivity against manufacturing errors 

 With the  ‘ tolerances ’  of a system given by   δ δ δx x xn1 2, ,..., ,  

the sensitivity to manufacturing errors,  S , is defined as 

Local minimum

 Figure   6    Winding string and local minima.    
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 where   φ   is the merit function. In designing lenses, it is 

important not only to reduce the merit function but also to 

make  S  as small as possible. However, an effort to simul-

taneously reduce   φ   and  S  using DLS or GE would not be 

practical due to the extraordinarily long computation 

time. Instead of using this complicated function  S , we 

employed a root-mean-square value of the incident and 

refracted angles for some sample rays, denoted as   θ   
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 where  i s   and  r s   are the incident and refracted angles of a 

sample ray at a surface  s,  respectively . k  is the total number 

of surfaces to be selected for the calculation. These sample 

rays would typically be the marginal ray to the image center, 

as well as the upper and lower rim rays to the image corner. 

Angles at cemented surfaces are excluded. Previous studies 

have suggested that the value of   θ   has a good correlation 

with  S , and we can use this value to obtain a robust solu-

tion. The advantage of this criterion is that no extra calcula-

tion is needed to get it, as those angles have already been 

calculated in ordinary ray tracing. Moreover, it is not neces-

sary to set up tolerances   δ x j   for each design parameter. The 

designer can, in effect, simultaneously improve the per-

formance and the manufacturing robustness of an optical 

system by controlling the value of   θ   during the process of 

optimization. This method is included in GE2. 

 In developing a high-performance and robust design, 

the value of   θ   cannot be too small because the incident 

and refracted angles have to play a role in image forma-

tion. Hence, we apply the condition 

    θ<θL (  θ   segmentation),  (19) 

 under which the merit function   φ   should be minimized [ 12 ]. 

The value of   θ  L   is set up by the designer. When GE (without 

  θ   segmentation) finds a good solution with its sensitivity   θ  , 
the designer can set the value of   θ  L   to be a little smaller. If 

the solution of GE2 has an acceptable merit function, the 

designer can further reduce the value of   θ  L  . This process can 

be repeated until the merit function increases unacceptably.   

4.3   An advantage of GE2 

 GE2 has the ability to quickly find robust solutions 

that cannot easily be reached by GE. As an instructive 
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5   Optimization of aspheric systems 
 In designing systems containing aspheric lenses, one 

should limit the number of aspheric polynomial terms. In 

most cases, an aspheric surface can be expressed by 
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 where  z  is the distance from a point on the aspheric surface 

to a plane that is perpendicular to an axis drawn from the 

vertex of the asphere. The distance  z  is thus a function of 

the height  h , as illustrated in  Figure   10 .  

 The first term of the above formula describes a conic 

section, where  c  is the curvature of the surface at the 

vertex, and  k  determines the shape of the conic section. 

The second term is a polynomial using power coefficients 

 a 2i  . Any curve can be expressed by this formula with 

very small error. However, this error generally takes on a 

ripple-like shape, causing unfavorable effect to the image 

quality. Thus, one should make the number of polynomial 

terms as small as possible; we suggest that the number 

be 3, i.e., the terms  a 4 , a 6  , and  a 8  . Reducing the number 

 Figure   7    Starting design.    

example, consider the design of a 35-mm camera lens with 

 f  = 80 mm, F/2, and half angle = 15 ° . The starting design, 

shown in  Figure   7 , is composed of five parallel plates with 

the first and the last surfaces having radii of curvature of 

80.000 mm and -65.398 mm respectively, thereby achiev-

ing  f  = 80.0 mm. All separations of surfaces are 5 mm, and 

all glasses are BK7 (Schott).  

 Naturally, the starting design has very large aber-

rations. GE is used to find 100 solutions, and these are 

plotted in  Figure    8 . Most of the solutions are distrib-

uted between   θ   = 20 and   θ   = 23. We can suppose that 

some forces are acting to prevent the distribution from 

extending outside this range. We use the colorful lan-

guage  ‘ Wind 1 ’  and  ‘ Wind 2 ’  to identify these imaginary 

forces, as depicted in  Figure   8 . Wind 1 may come from the 

need of the image-forming power, and wind 2 probably 

arises to avoid solutions with complicated higher-order 

aberrations.  

 If   φ    <  0.1 is acceptable, the preferred solution among 

the 100 would be the one encircled because it has the 

smallest sensitivity   θ  . 
 GE2 can stop the effect of Wind 1 by setting the value of 

  θ  L   smaller than that of the encircled solution. More favora-

ble solutions can then be found, as shown in  Figure   9 .     
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0.00
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 Figure   8    Plot of 100 solutions as a  φ  vs.  θ  graph.    
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 Figure   9    Solutions by GE2.    
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of terms naturally reduces the range of the design para-

meter space. However, in most cases, good solutions will 

be found in that subspace because a winding string would 

most likely extend into that subspace. 

 The sharpness of an image point can be evaluated by 

a spot diagram, such as those illustrated in  Figure   11 , left, 

which displays the ray intersection points in the image 

plane of the rays that enter the entrance pupil uniformly, 

as illustrated in  Figure    11 , right. The sharpness of the 

image point is defined as the root-mean-square value of  D , 

the distance between each spot and the center of gravity 

of the spot distribution.  

 In designing spherical lenses, it is permissible to trace 

only a limited number of sample rays, such as those illus-

trated in  Figure    12 . By assigning an appropriate weight 

to each ray, the image point sharpness can be calcu-

lated with good accuracy [ 13 ]. The reason such limited 

sampling is permissible for spherical systems is that the 

aberration theory dictates that the aberration curves 

Δy

Δx

D

 Figure   11    Spot diagram of ray intersections at the image plane (left) 

and at the entrance pupil (right).    

 Figure   12    Sampling points in the entrance pupil in the develop-

ment of a system that uses only spherical lens elements.    

 Figure   13    Field points of a lens.    

are rather smooth. In aspheric systems, there is no such 

rule, and hence, one is advised to increase the number of 

rays and to uniformly distribute them over the entrance 

pupil. The situation is similar for selecting the number of 

field points.  Figure   13  is an example of a triplet lens. For 

spherical systems, three field points are sufficient, but 

this number must be increased somewhat in evaluating 

aspheric systems.   

 In aspheric systems, aberration curves are not 

smooth, and the classical aberration theory is not applica-

ble. Some aberrations could be quite harmful even if the 

merit function is relatively small. Therefore, each lateral 

aberration should have some upper limit  L  as shown by 

    | lateral aberration |   <   L . (21) 

 The appropriate value of  L  can be determined by trial 

and error, in much the same way as described in the   θ   seg-

mentation method. At the present time, such an interac-

tive design process is the most efficient. 

 As an illustration of the discussion above, consider 

the design of a lens for a cellular phone camera with  f  = 10 

mm, F/2.8, and a half angle of 31 ° . All the surfaces are 

aspheres, each of which has only three polynomial terms. 

The starting design consists of plane paralell plates of 

glass BK7 (Schott) as shown in  Figure   14 .  

 First, the optimization method with GE2 was applied 

without  L  segmentation; this proved to be extremely ineffi-

cient. After searching among more than 100 solutions, the 

best solution found was that shown in  Figure   15 , Lens A.  

Aperture stop

8.3 mm

 Figure   14    Starting design.    
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 When GE2 with  L  segmentation was applied, the algo-

rithm could easily find a good solution (lens B) shown in 

 Figure   16 . The reason for this high efficiency comes from 

 L  segmentation ’ s ability to avoid wasting time in walking 

around unacceptable solutions.    

6   Summary 
 The optimization program GE employs the well-devel-

oped DLS technique. Extensive experience in designing 

lens systems with GE indicates the existence of  ‘ winding 

strings ’  that extend through the design-parameter space. 

As a result, one can generally select from a group of accept-

able designs, and the most robust one among them can be 

selected using the tactics of   θ   segmentation. A new version 

of GE, GE2, was developed to find a good solution that is 

also robust to fabrication errors. This proved to be highly 

efficient because one avoids wasting time on solutions that 

would be unacceptably sensitive to fabrication errors. 

 The design of aspheric systems is far more complex 

than the design of spherical systems because the shapes of 

aberration curves differ markedly. As a result, we suggest 

the idea of controlling all the lateral aberrations as well as 

increasing the number of sample rays and field angles. An 

example is shown for a photographic lens using heavily 

aspheric surfaces. 

 The experiments on designing aspherical systems 

were made by manually adding operands to the ordina-

rily generated operands ’  group. For that, we had to do 

the laborious handiwork. The experiment was conducted 

only to ascertain the practical advantage of our idea, but 

we hope that this would be included in the structure of the 

optimization routine so that the program would be much 

more friendly to lens designers. 

 GE is available in the commercial software OSLO 

[ 14 ], and GE2 can be accessed using a macro language of 

OSLO. 
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 Figure   15    Lens A and its MTF curves for several image heights. The 

upper curve shows MTF of the aberration free lens.    
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 Figure   16    Lens B and its MTF curves for several image heights. The 

upper curve shows MTF of the aberration-free lens.    
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