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      Review of computational lithography modeling: 
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design-technology co-optimization  
       Abstract:   Advances in computational lithography over 

the last 10 years have been instrumental to the con-

tinued scaling of semiconductor devices. Competitive 

scaling requires two types of complementary models: fast 

 predictive empirical models that can be used for pattern 

correction and verification; rigorous physical models that 

can be used to identify key physical effects that must be 

considered to ensure pattern fidelity, but are too resource 

intensive to use for full chip applications. Today, all com-

putational lithography efforts such as the optical prox-

imity correction (OPC) and the optical rules check (ORC) 

depend on the ability to predictively model the lithog-

raphy and metrology processes. We discuss some of the 

current modeling practices in optics, mask, resist and 

etching, leading to the  “ Holy Grail ”  of predictively mod-

eling entire patterning process which we call  “ virtual fab ” . 

Extreme ultraviolet (EUV) modeling is discussed due to its 

potential to extend optical lithography scaling for future 

nodes. Modeling of novel technologies such as Diblock 

Copolymer patterning is also discussed to demonstrate 

new opportunities for continued scaling. Complexity of 

the  “ virtual fab ”  approach is extremely high as there are 

multiple dimensions in this approach. The need to over-

come this complexity, by reducing the number of dimen-

sions of the problem, is evident. Lastly, the ability to lever-

age lithography modeling in design co-optimization is an 

important element of semiconductor device scaling.  
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1    Introduction 
 Computational lithography is informally defined as using 

extensive computational methods to enable patterning 

of semiconductor devices with dimensional scaling that 

fulfills Moore ’ s law  [1] . Extensive computation techniques 

have been developed over the years to enable further 

scaling when physical scaling is impossible. To under-

stand this, we need to look at the most important equation 

in lithography, namely, the lithography first principle, 

as shown in eqn. (1). Resolution R (usually expressed as 

half-pitch) is proportional to the exposure wavelength but 

inversely proportionally to the numerical aperture (NA) 

of the projection optics. The proportionality constant, k 
1
  

factor, is a lumped parameter that represents the com-

plexity and manufacturability of the lithography process, 

with a practical limit of 0.4 a manufacturable process. 

   
1R k

NA

λ=
 

(1)
 

 For many generations, scaling of physical dimen-

sions in semiconductor devices was enabled by reduc-

ing the exposure wavelength ( λ ) from UV broadband to 

h-line, g-line, deep UV (248 nm), 193 nm, and ultimately 

to 193 nm immersion. Extreme ultraviolet (EUV) theo-

retically has the wavelength that can fuel scaling over 

several technology nodes, but there are several tech-

nical factors that could delay the deployment of EUV 

technology into high-volume manufacturing. For this 

reason, scaling may need to continue relying on compu-

tational techniques such as multiple mask decomposi-

tion, together with the use of advanced optical  proximity 

correction (OPC) and source mask optimization (SMO) in 

order to reduce the k1 factor. This effectively increases 

pattern resolution as well as pattern fidelity using dif-

fraction-limited imaging. Both computational and phy-

sical advances are needed to enable continued device 

scaling. 
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1.1    Scaling scenarios 

 The contribution of both physical and computational 

factors in scaling is best illustrated in Figure  1  . Before 

the 32-nm node, lithography scaling was enabled by sig-

nificant increases in the exposure tool numerical aper-

ture (NA) and the introduction of immersion lithography. 

However, for the 32-nm node, the increase in NA was only 

about 8 % , and for 22-nm, no increase in NA was achieved. 

Computational techniques, including advanced resolu-

tion enhancement techniques, such as off-axis illumina-

tion (OAI) and OPC, become the dominant driving force 

in scaling for 32- and 22-nm nodes. SMO is an advanced 

form of OPC that was first adopted in the 22-nm node. 

EUV lithography will regain the resolution not from NA 

but from a much smaller wavelength. However, due to 

various technical issues, EUV is too late to intercept the 

22-nm, and even the 14-nm, node. So the use of multiple 

patterning to achieve subresolution feature sizes becomes 

essential for 14 nm and beyond. This scaling scenario is 

illustrated in Figure 1. Moreover, EUV has its own mod-

eling challenges to consider. 

 Model-based computational patterning is a key 

enabler for device scaling. Our modeling approach has 

two components. The first component is based on rigor-

ous scientific process models, which are accurate but 

resource intensive and limited to small areas. These 

models are used to understand physical effects and to cal-

ibrate approximate models. The second component is the 

resource-efficient empirical models, which are predictive 

and fast enough for full chip applications like OPC and 

ORC. The first component is computationally intensive 

and requires large Linux clusters and even Blue Gene clus-

ters to run over small areas and volumes. The second com-

ponent is no less challenging due to large area processing 

requirements, but requires large clusters and hundreds or 

thousands of CPUs. 

 Predictive modeling is becoming a vital part in semi-

conductor technology because it enables us to develop 

mask and debug wafer issues with minimum wafer 

costs. We witness this recent trend by the spin off of the 

 modeling-intensive OPC and resolution enhancement tech-

niques (RET) work from the traditional process-intensive 

lithography group into separate organizations in many 

leading edge semiconductor companies. In addition, the 

size of the modeling/OPC business in major electronic 

design automation (EDA) vendors and the number of corre-

sponding startup companies is rising at a steady rate. There 

is a tremendous investment in this new business area and is 

becoming an indispensable component for the lithography 

industry. This pathway also brings in new business require-

ments such as complex design and dataprep solution, uti-

lization of massive computing platforms, as well as a much 

tighter interaction to the circuit design community in order 

to extend the technology to the next generation node. 

 In our vision for the future of semiconductor system 

R&D, it is not only essential to have an advanced fab with 

state-of-the-art fabrication tools, which can support new 
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 Figure 1    Scaling from the 65- to 14-nm nodes showing both physical and computational scaling scenarios, illustrated in a similar way from  [2] .    
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generation integrated processes, but also a  “ virtual ”  fab 

that can provide 100s of Tera-flops of computing power 

that enable the modeling of complex processes. Many 

companies or research institutes have established com-

putation centers as a  “ virtual ”  facility that has installed 

high-performance computer clusters. Combining the 

 “ real ”  and  “ virtual ”  fab allows us to have the bandwidth 

to advance computational technology and especially pre-

dictive modeling. 

 It is undisputable that today ’ s chips could not be 

built without modeling, simulation, and corrections. 

Statistics will give us some good idea about the scale of 

the problem. For example, in some layers, about 400  m  

lithography simulations are required per chip level, about 

150 billion fragments are being corrected per chip, and 

clusters of hundreds of CPUs are used. One supporting 

result for the usefulness of predictive modeling in correc-

tion is that good models enable first time right production. 

Figure 2 shows that a first time 32- and 22-nm OPC model, 

if done carefully, can make accurate predictions to experi-

ments in the first OPC iteration, which significantly short-

ens development cycles.  

1.2    History of simulation software 

 The high level of sophistication in lithographic simulation 

is much in debt to the landmark work of several research-

ers, which was pioneered by Dill with his ABC model 

 [3]  to describe the basic resist exposure and develop a 

mechanism, which is the foundation of all lithography 

simulations. Later, the Neureuther Group at U.C. Berkeley 

developed a full simulation package that included image 

formation simulation and is termed SAMPLE  [4] . The first 

commercial simulation software called PROLITH  [5]  was 

offered by Mack (now marked by KLA-Tencor Inc.) and 

followed shortly by SPLAT  [6]  from the Berkeley ’ s group. 

All these software are upgraded to vector imaging as 

time progress. An early mask electromagnetic field (EMF) 

simulation software called TEMPEST  [7]  was written by 

the Berkeley group who treated the mask topography 

rigorously to enable a feature size similar or lower than 

the wavelength to be accurately modeled. All of these 

earlier models are based on physical optical formulations 

and lumped parameter resist approaches. These models 

paved the way to the computational efficient models for 

full chip applications. Resource-efficient optical model 

approaches rely heavily upon coherent kernels generated 

by the so-called sum of coherent sources (SOCS) method 

 [8] . SOCS reduces most image calculations into a set of 

fast Fourier transforms (FFT), which can be accelerated 

either by advanced algorithms or special purpose hard-

ware. This kernel-based method is well suited for the OPC 

and replaces the slower Abbe-based formulations. Fast 

empirical methods for modeling resist such as the variable 

threshold model (VTM)  [9]  or the kernel-based compact 

model such as CM1  [10]  were developed to approximate 

resist threshold variation. These empirical models require 

extensive model calibration to provide predictive power. 

A similar effort in predictive modeling of etching  [11]  and 

patterning density effects have also developed to optimize 

mask shapes for the overall pattern transfer to wafer. All 

of these advancements enable computational lithography 

to maintain aggressive scaling requirements mandated by 

mainstream technology.  

1.3    Value of predictive modeling 

 A major application of intensive predictive modeling is 

the optical model generation for OPC. Early forms of cor-

rection were just basic precompensation of mask shapes, 

introduced in the 1980s, using systematic biasing, serifs 

 [12]  and in the early 1990s, the subresolution assist fea-

tures  [13] . In the mid-1990s, simulators were used for rule 

generation and also used in hand tweaking of DRAM and 

SRAM cells (for the 240 to 180 nm). Because of the full field 

requirement and non-optimized hardware platforms, the 

early forms of OPC were rule-based (180 – 130 nm)  [14, 15] . 

As k1 shrunk and 2D imaging became increasingly more 

complicated, the need for model-based OPCs became 

critical. With significant improvements in both algo-

rithms and high-performance computing (HPC) systems 

(cluster of hundreds of CPU and hardware acceleration), 

the current OPC is using almost a rigorous optical model. 

A hybrid approach is still used in the resist model, as a 

physical resist model is still challenged in the computa-

tion speed   .   

2    Current modeling practices 
 In the early days, lithography was operating in the geo-

metrical optics regime, and most work done was mainly 

empirically. This was very successful for the early process 

nodes like the half-micron node or before. Only the first-

order effect of the imaging components were important 

and could be well understood through simple theoreti-

cal framework and basic characterization methods. All 

the higher-order effects were small enough to not impact 

the imaging process and process accuracy. Modeling and 
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simulation was then treated only as a sidekick of the 

experimental-intensive development process. In those 

days, most predictive modeling approaches were used 

in predicting overlay error as well as focus/dose budget. 

Undoubtedly, these are still the dominant forms of 

process detractors in current lithography. However, as 

we are pushing the limit of technology, a wider examina-

tion of the whole lithographic system is needed. A holis-

tic approach of modeling, including the image formation 

process, the metrology process for patterning prediction, 

the model-based pattern correction, the design for manu-

facturing as well as variation-based yield prediction, are 

needed. 

 As photolithography is pushing its limit, most of the 

previously neglected second-order effects in various com-

ponents in lithography have now become non- negligible. 

One reason is the increase of NA of the scanners and the 

use of lower k1 design through scaling, which requires the 

rigorous treatment of full vectorial effect of the optical 

train (light source, illuminator, mask pattern shape, mask 

topography, pellicle, projection lens, and resist stack), 

as shown in Figure 3  [18] . In EUV lithography, specific 

effects such as flare mask shadowing and telecentricity 

error need to be also included. Nowadays, most lithogra-

phy simulation software is equipped to handle some part 

or all of these secondary effects. However in most cases, 

after the image in the resist is obtained, the subsequent 

processes such as resist development and etch are still 

modeled in a semi empirical way due to the complexity of 

the first principle models. 

 In an optical projection lithography system, all the 

pattern information is contained in the mask. The optical 

trains act as an information low-pass filter. The computed 

images, after optical propagation and nonlinear reaction 

of resist, based on resource efficient models, must have 

high fidelity to the actual physical images formed. Tra-

ditionally lithographic imaging is based on the compu-

tation of the diffraction orders as a simple set of Fourier 

series orders from the Manhattan only shapes on an ideal 

screen. All the other 2D effects (shape roundedness or line 

end pullback on mask) or 3D effects (mask topography) 

are ignored. We will address the advanced modeling of 

these secondary effects in the next session. 

 In a real mask, patterns are not identical to the design 

data because a mask writer introduces systematic devia-

tions from an ideal Manhattan layout. These deviations 

come from an e-beam writer as well as a laser writer, as 

shown in Figure  4  . Empirical models are calibrated and 

used today to predict the exact mask shape after the manu-

facturing process. The systematic mask manufacturing 

corner rounding and the line-width errors can be pre-

dicted to reduce its impact on model accuracy. 

 Another critical mask effect is the EMF scattering due 

to mask topography, which produces diffraction patterns, 

which are quite different from that of an ideal thin mask 

that was assumed in earlier technology nodes. The EMF 

effect impacts the diffraction order amplitude and phase, 

hence, introducing feature-dependent CD and focus 

deviation  [20], as shown in Figure 5A . An EMF bias was 

attempted as a zeroth-order correction to the thin-mask 

assumption (TMA) approach to model the EMF effect in 

the 45- and 32-nm nodes but may not be capable to provide 

required image accuracy in the 22-nm and beyond nodes. 

Rigorous Maxwell solver is needed and was addressed 

with a fully parallel internal FDTD code on Blue Gene TM  

 [20]  with a good scaling behavior as shown in Figure  5  B. 

 Figure 2    First time right OPC model shows the good match between the extrapolated model  [16]  and the first wafer SRAM result for both 

the 32-nm cell (sub-0.200  μ m 2 ) and the 22-nm node (sub-0.160- μ m 2 )  [17] . The two pictures are not of the same scale.    
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There are also other rigorous algorithms that can be used 

such as the waveguide method, rigorous coupled wave 

analysis (RCWA), and the Finite Element Method (FEM) 

 [22] . Nevertheless, we still need simplified models that 

accurately models the EMF effect with speed comparable 

to the TTMA for a full chip correction scenario. Several 

approximate models were proposed to take into account 

the primary behavior of the EMF effect by adding correc-

tions to the TMA. These methods include the boundary 

layer method  [23] , the domain decomposition method 

 [24] , and the frequency domain correction method  [25] . 

 In Table  1  , a spectrum of resist modeling approaches 

that has been introduced is shown. From top to bottom, 

the models become faster but less predictive. 

 Each model has its own preferred application area 

in lithography. Lumped parameter models provide 3D 

capability that enable through-process prediction of assist 

printing at the top of resist, and the speed advantage of 

the diffusion aerial image model enables a full chip detec-

tion of litho hot spots. The rigorous resist model, however, 

is tough to use for full chip applications as it has to model 

complex simultaneously occurring physical and chemical 

phenomena that are not thoroughly understood and dif-

ficult to model. These models need to consider polymer 

dynamics, evaporation, deposition, reaction, diffusion, 

photochemistry, electrodynamics, etc. One example of the 

use of rigorous model is the prediction of resist pattern 

collapse. 

 Etch modeling approaches are important because a 

real resist profile will affect the pattern transfer to the final 

etch profile. The final pattern CD might not be correlated 

to resist CD if the resist profile is not considered ideal. 
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However, resist modeling is similar to resist modeling in 

its complexity. A resource-efficient empirical plane-view 

model has successfully modeled through-pitch etch bias 

in wafer plane and was used in etch-aware OPC schemes. 

The etch model spectrum is shown in Table  2  . 

 Both Tables 1 and 2 suggest that a spectrum of models 

are available, and the selection is based on the user ’ s 

tradeoff between accuracy and run time. Fast empirical 

models, in general, describe less first principle physics or 

chemistry compared to more rigorous models but require 

more data to calibrate the models. 

2.1    Integrating all elements 

 Our ultimate goal in modeling is to leverage critical mod-

eling elements for processing steps into an integrated 

tool that we called  “ virtual fab ” . Virtual Fab flows require 

separable models from mask to post-etch wafer profiles. 

These flows should be capable of producing plane-view 

and cross-sectional profiles and contours in 2D and 3D. 

The final profile can then be passed to the device simula-

tor for device prediction. This approach is desirable as the 

pattern variability can impact the device performance and 

hence circuit yield. To find a better overall performance 

merit, it is necessary to go beyond pattern fidelity. Figure  6   

shows an example that the best electrical matching might 

not be corresponding to the best pattern matching. This 

brings up the question of why not use electrical para-

meters for our pattern correction ?  A few objectives such 

as Vt variation, device stress, spacer thickness, satura-

tion current, leakage current, cell delay, etc. may be used. 

However, in these cases, we need accurate and yet efficient 

Si-contour-based device models and shape-based para-

sitic extraction for timing delay models. Figure  7   shows 

an example of different CD retargeting optimized for each 

device in a SRAM cell could result in shifted lithographic 

process variation bands (PV-bands) that are beneficial to 

the device yield   . 

 The direct optimization of device metrics from pattern 

correction allows us to achieve a higher-level optimiza-

tion that is more relevant to circuit performance. However, 

there is another component, which is the device model 

accuracy that is equally critical compared to device 

dimensions. The extensive use of computational pat-

terning provides an accurate structural information to 

a device model for more accurate voltage-current (VI) 

 prediction. Because the accuracy of a device model is 

important for the final yield calculations to model device 

characteristics, it is desirable to briefly mention the trend 

of device simulation to understand the key requirements. 

The current device models use continuum models to solve 

the drift-diffusion equation or hybrid drift equations with 

full band structure and quantum effect included. In the 

next 5 years, increasing granularity in doping profile 

and device structure require us to include full 3D field 

Model type Focus application Examples

Molecular models Simulation of molecular-scale effects Willson, de Pablo, Gogolides

Continuum physical models Physical description of exposure, bakes, and development Dill, SAMPLE, PROLITH, solid-C, STORM

Lumped parameter models Compact diffusion and development models PROLITH, Brunner-Ferguson

Diffused aerial image model Aerial image parameters and physics Fukuda, CM1

Aerial image models Fit threshold behavior to image parameters Constant threshold, variable threshold

 Table 1      A spectrum of resist models showing the slow but more predictive models from the top to the fast but less predictive models 

at the bottom.  

Type of model Comments

Empirical-full chip model Captures microloading effects, takes into account influence of density 

loading through visibility kernels

Chemical/physical predictive model-reactor scale to full 

chip and below

Goal is to model RIE process through chemistry and distributions of 

energetic species at idealized plane for contacts

Level set front propagation modeling of etch processes Can take into account etch chemistry, re-deposition, and re-emission 

processes

Multiple level set/fast marching methods Describe plasma, chemical kinetics, absorption, re-emission, 

sputtering, etc.

 Table 2      A spectrum of the etch model showing the fast but empirical model from the top to the slow but more physical model at the 

bottom.  
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fluctuations. As the device is shrunk further, the material 

is strictly granular, and better material models with trans-

port properties for granular structure are necessary. This, 

of course, increases the complexity of the model by a large 

extent. Table  3   shows the evolution of the device models 

as predicted.  

2.2    Model calibration 

 Model calibration is a key component for a quality 

model, especially an OPC model. A model can only be as 

good as its calibration data. We need to make sure that 

the expected output value of the model prediction is the 

same as the true mean of the population. An optimum 

sampling scheme is desired. There are three main aspects 

of optimum sampling that can improve model accuracy. 

First, we need optimum spatial sampling that capture all 

error types such as Wafer to wafer, Die to Die, and within 

die and across features error. Second, we need to have 

an optimum spectrum of samples types, such as 1D, 2D 

features, and maybe special calibration structures. More 

recently, contour-based calibration  [28]  is gaining accept-

ance as an alternative to CD-based calibration. Third, an 

optimum sampling size choice is required to boost the 

confidential level of the sample prediction under a speci-

fied error budget to avoid oversampling or undersampling. 

A parameter such as the maximum effective sample size 
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(n 
eff

 ) was proposed  [29]  as a function of sample confidence 

level, total variation, and the error budget. One might 

want to select a sampling plan that has the highest overall 

n 
eff

 , as illustrated in Figure 8. This approach ensures us to 

have same confidence levels on the sufficiency of the sam-

pling on various calibration features based on the sensi-

tivity of individual feature to process variations. 
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 where  σ   =  confidence parameter, t 
 σ /2

  is the Student- t  param-

eter for the corresponding confidence level,  σ   =  total vari-

ance, and EB  =  error budget   .  

2.3    Modeling in metrology 

 Modeling practice is not only limited to pattern formation 

in lithography but also includes the physical modeling of 

many physical metrology processes such as scatterometry 

or CDSEM. Among these metrology processes, scatterome-

try has been enabled by the fast rigorous EMF modeling of 

the resist gratings using algorithms such as RCWA. Scat-

terometry enables massive data collection for process/

Tooling analysis and maybe in OPC calibration as well. 

The pattern profile parameters such as pitch, CD, sidewall 

angle (SWA) etc can be extracted using multiple beams 

with different incidence orientations and polarizations, 

and this open an opportunity for complex profile geom-

etry to be characterized after the etching of the patterns 

 [30]  as shown in Figure  9  B. Moreover, it is also possible to 

predictively model the stochastic focus and the dose vari-

ation by scatterometry on lithography data  [31] . Figure 9A 

shows the CD measured by scatterometry against groups 

of focus values. 

 Rigorous and predictive models for metrology are not 

currently explicitly used in imaging and patterning calcu-

lation, but they are becoming more important as they can 

improve the model calibration data quality and maybe in 

the future, it can be incorporated in the computational 

patterning flow with some new applications.  

2.4    Modeling of EUV 

 EUV light propagation is governed by the Maxwell equa-

tions and also subjects to diffraction limitations. Many 

optical modeling techniques can be applied to EUV except 

some unique imaging features that are worth mentioning. 

First, EUV optics require the use of an all-mirror design, 

which make the imaging field an arc field, and inherently, 

the chief ray becomes  θ  ( ~ 6 ° ) tilted from the optical axis. 

The chief ray angle tilt causes the system to be maskside 

nontelecentric  [32]  so the source pupil is shifted inside the 

system pupil (Figure  10)  . 
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Model types Device Process Timing

Continuum models (DDE and HDE, full band MC, Poisson-Schrodinger 

solver) geometry, QM effects

Fick ’ s law, rate equations, structure, 

materials

Now

Doping and structure granularity (3D DDE and HDE), field fluctuation 3D diffusion, oxidation, structure  + 5 years

Granular matter Transport properties for finite structures Material, dopant, interface interaction  + 10 years

 Table 3      A spectrum of the device models starting from the fast continuum model to the slow but accurate granular model.  
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 Another effect of the chief ray tilt is the so-called 

 “ shadowing effect ”   [33]  when light rays are reflected 

through the reflective EUV mask that has absorbers of high 

aspect ratio. Figure  11   shows the shadow casted by the 

absorber, which is different in different orientations. In a 

first order, the CD bias due to shadowing for an absorber 

of height  h  can be expressed as the following using pure 

geometric optics argument. 

   

tan cos ,    tan sin

-     -

v h

v h

S h S h

H V Bias HVB S S

θ φ θ φ= =
=

 
(3)

 

 Here,  θ  is the CRA and is about 6 °  from the normal and 

is the angle between the optical axis from the field center 

to the field edge, as shown in Figure 11. 

 As the critical dimension of the absorber on the mask 

become smaller, but with the same absorber height, the 

geometric shadow model will break down, and the rigor-

ous EMF simulation model is needed as in the optical thick 

mask, but the simulation will need to include the reflec-

tion from many layers of the Bragg mirrors underneath 

the absorber patterns, which is computational intensive 
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 Figure 9    (A) Modified Bossung curves calibrated by scatterometry CD data with focus and dose variations. Good prediction for focus and 

dose from scatterometry CD is obtained  [31] . (B) Possible opportunities for complex scatterometry application to determine 3D profiles of 

etched features by using multiple incidence angles and polarizations  [30] .    
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 Figure 8    A plot of n 
eff

  across different pattern types for three differ-

ent sampling plans. It is shown that plan 2 has the highest n 
eff

  across 

all features and is the best sampling plan among the three  [29] .    

unless a certain set of simplifying boundary conditions 

are applied. 

 Another unique feature for EUV modeling is the rela-

tively high flare level in EUV optics because total  integrated 

scattering (TIS) is inversely proportional to wavelength 

squared as shown in Eq. (4). Although the number of 

mirrors in EUV lenses is smaller than the number of lenses 

in a 193-nm immersion system, the flare level as a whole 

is much higher. The point spread function of the EUV flare 

usually implies a power spectrum that resembles a fractal 

power law  [35]  of r, as shown in Eq. (5). 

   

πσ λ πσ
λ

∝ ≈
2( 4 / ) 24
-1 ( )TIS e

 
(4) 

   
γ= ≤ ≤min max( ) ,   

K
PSF r r r r

r  
(5)

 

 where K is a multiplicative factor,  γ  generally referred as a 

fractal exponent that modulates the speed of the decay of 

the point spread function (PSF),  λ  is the wavelength,  σ  is 

the RMS roughness of a reflective surface, r 
min

  is chosen as 

the minimum radius that closely related the optical radius 

for most OPC imaging models where r 
max

  is the practical 

radius limit that the user can define based on the accuracy 

requirement of flare calculation, for example, the 90 %  

energy inclusion zone extent. 

 There is a special case for the PSF that seems very 

interesting which is when  γ    ≤   2, when we calculate the 

total flare contributed to a single point by integrating the 

PSF over a field. When 
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 When   γ     ≤   2, the integral is divergent, which implies 

a very long range of interaction (in the mm range). EUV 

optics PSF usually has a slope very close to 2, and hence, 

EUV flare is important across the whole chip. Practically, 

a large optical kernel is needed to estimate the flare con-

tribution. Fortunately, the flare is mainly impacting the 

image incoherently, and because of its large kernel, the 

flare can be calculated using an averaged pattern density 

instead of an exact geometry on the mask. Most of the OPC 

software nowadays supports this long-range pattern-den-

sity-related flare calculation to provide a better correction 

on the EUV mask. Another type of long range flare, which 

is basically out-of-band (OOB) radiation, comes from the 

nonzero reflection of OOB radiation from reticle blades 

and other surfaces of the scanner and will affect mostly 

the edge of the exposure field  [36] . 

 There are other imaging issues that are relatively 

strong in EUV such as line edge roughness (LER) of fea-

tures, non-uniform CD (Figure 13), and the secondary 

electron blurring of resist from EUV exposure. Line edge 

roughness and CD micro-non-uniformity is more pro-

nounced in EUV because of the requirement of the high 

photo speed resist because of the insufficient EUV power 

available from the current EUV sources. High photo speed 

means less photons are required to expose the resist, but 

stochastic variation, called shot noise, causes a micro-

nonuniformity in the reticle field and, in turn, creates 

roughness on the resist edge (Figure  12  ). One way to 

improve LER is to reduce the photo speed, but again, this 

requires high EUV power. This dilemma can be explained 

by the famous RLS (Resolution-Line edge roughness-Sen-

sitivity) constraint for EUV lithography and theoretical 

treatment has been developed  [38] . 

   

3

3 2 LER   Dose   Constant 

LER
edge PAG size

I T

I Q E R

Blur

σ
ρ α ν

⎛ ⎞≈⎜ ⎟⎝ ⎠∂

⋅ ⋅ ∼  

(7)

 

 where  σ  
LER

  is the roughness (nm), I is the image intensity, 

E 
size

  is the sizing dose ( # photons/nm 2 ), and R is the PEB 

diffusion range (nm), Q is quantum efficiency,  ν  is the 

photon-PAG interaction volume (nm 3 ),  α  is the absorptiv-

ity (nm -1 ), and  ρ  
PAG

  is the PAG loading ( # PAG/nm 3 ). 

 Shot noise also manifests itself as a CD uniformity 

detractor. This can be seen in the stochastic modeling of 
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 Figure 10    One example of a EUV projection optics system showing the arc field and maskside telecentricity  [33] .    

ML Mirror

w

ML Mirror

w′
absorber

ML Mirror

Absorber w

ML Mirror

Effect

Absorber

φ

Field 
centerφ

CRA

φ

Field 
edgeφ

CRA

2.0
Geom. shadow vs. phi

1.5
H shadow
V shadow

0.5S
ha

do
w

 (n
m

)

0.0

-20 -10 10
φ (°)

200

1.0
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the printing of a holes array using high photo speed resist 

as shown in Figure  13  . 

 Modeling of a shot noise effect is time consuming 

because a large-scale Monte Carlo simulation is needed. 

OPC modeling with a shot noise effect could be tough, 

but there may be ways to work around this as most Monte 

Carlo simulation is embarrassingly parallel, which means 

lookup tables and certain probability density function 

(pdf) could be used. However, there are studies that cor-

relate image log slope (ILS) with line edge roughness 

(shown in Eq. (7) also) so a simple ILS metrics might be 

used in a phenomenological model to predict the impact 

of LER in a full chip OPC application. 

 The secondary electron blurring of the latent image 

in a chemically amplified EUV resist comes from the 

generation of secondary electrons due to very energetic 

EUV photons impinged on the resist. As the acid gene-

rator is sensitized by the presence of secondary elec-

trons, the blurring in resist requires the calculation of 

accumulated energy of secondary electrons by tracking 

the electron trajectories by calculating the elastic and 

inelastic scattering in the resist material. This method 

requires a full-scale Monte Carlo simulation, which is 

time-consuming. A PSF can instead be used for the cal-

culation of accumulated energy profiles to reduce the 

processing time significantly. Based on Kozawa et al., 

the EUV secondary electron blurring can be modeled 

as a PSF kernel  [39]  as shown in Figure  14   and proba-

bly able to be absorbed in a calibrated empirical resist 

model for OPC purpose.   

3    Modeling of novel technologies 
 Modeling of the mainstream optical lithography pattern-

ing techniques is being widely practiced by the industry. 

However, there are also novel areas that require modeling 

to enable basic research. One example is the use of block-

copolymer (BCP) self-assembly for sublithographic pat-

terning. If not directed, the self-assembly processes are 

not suitable for forming patterns in a large area applica-

tion because of its intrinsic high defect density. Establish-

ing optimal guiding lithographic patterns, either chemical 

or topographical, is critical to guide the assembly process 

in a much favorable way to form highly regular segregated 

phases resulting in a minimal energy state. The concept 

of directed self-assembly (DSA) is illustrated in Figure  15   

showing the effect of guiding patterns in reducing the ran-

domness of the self-assembly process. 

32 nm Dense
lines

Photon
distribution 

Electron
exposure 

Compressed latent
image After PEB

After
development

 Figure 12    Resist model results at L  =  13.5 nm with stochastic exposure. The granularity of the latent image is due to shot noise, and the 

fluctuation is transferred to the photo resist edge roughness  [37] .    

Increasing exposure

 Figure 13    Experiment and simulated 32-nm dense contacts using NA  =  0.25 and  λ   =  13.5 nm  [37] .    
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 Different molecular simulation models are suitable 

for working on different molecular length scales. For BCP, 

it is very impractical to perform molecular level simula-

tion. There are multiple approximations that treat polymer 

as structureless volumes that has a coarse length scale, 

with spatially uniform density often held constant. Table 

 4   below indicates that the different types of mesoscopic 

polymer field calculation existed for BCP simulation as 

well as compact DSA models that are resource-efficient for 

OPC purpose. 

 There are two main categories of DSA applications, 

namely, for pitch reduction and via rectification. Pitch 

reduction for line and space features is achieved by forming 

vertical lamella structures of opposite phase that can be 

selectively etched to form a grating that has a resolution 
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 Figure 14    PSF of chemical amplified resists used for EUV lithogra-

phy. This PSF represents the probability of acid generation at the 

distance r from the EUV absorption point. The open circles repre-

sent the acid generation probability per spherical shell thickness 

induced by a single EUV photon, which were obtained by calculating 

the electron trajectories in a model system of EUV resist by a Monte 

Carlo method  [39] . By convolving this PSF with the EUV photon 

distribution, the extent of the boundary of the resist edge can be 

determined.    

beyond the diffraction limit. Figure  16   shows some of the 

Monte Carlo simulation of line/space formation guided by 

a trench structure by a self-consistent field theory (SCFT) 

and mean-field Monte Carlo simulations. The goal is to 

guide the development of new patterning technology to 

complement traditional lithograph for further scaling 

without further increase in optical resolution. A similar 

frequency multiplication can be achieved for via array 

that decreases the pitch of a hexagonal closed-packed 

(hcp) via array into half. The success of the DSA frequency 

multiplication depends on the precise control of the 

guiding patterns as shown in Figure 16. Lower resolution 

guiding patterns can be printed using immersion lithog-

raphy, hence, extending well-established optical lithogra-

phy methods such as OPC infrastructure, to enable next 

generation scaling. 

 Another application is called via rectification as shown 

in Figure  17  . DSA vias tend to form a vertical cylinder even if 

the guiding pattern has severe distortion or CD error. This 

self-healing effect is useful to print very small vias with a CD 

control unattainable by conventional lithography, which 

is prone to a high mask error enhancement error (MEEF). 

This effect can be represented by the SERF factor, which is 

the ratio of the CD variation of self-assembled features to 

the percent CD variation of the DSA guiding pattern. The 

final error factor is defined by MEEF*SERF  [42] . 

 The benefits of DSA via rectification can be readily 

seen in Figure  18  , which plots the MEEF and exposure lati-

tude for a dense via staggered array across several tech-

nology nodes. This indicates the benefit of DSA to extend 

optical lithography to the 15-nm node and beyond with 

just a single exposure. 

 Defects traditionally have been a problem for the 

self-assembly processes because defect formation is 
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 Figure 15    (A) Illustration of the concept of directed self-assembly  [40] .    
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thermodynamic in nature and subjected to stochastic 

variation of localized free energy and resulting in fluc-

tuation in morphology of the system. By using the Monte 

Carlo method to simulate DSA lamellae formation within 

a guiding pattern, defects formation can be predicted, 

and the free energy barrier for defect formation can be 

calculated to optimize the guiding channel width for 

a minimum defect density possible. This information 

is essential for the determining optimal target bias in 

DSAOPC (Figure  19)  . 

 Most of the simulation models for DSA are still too 

computational intensive to be suitable for full chip OPC. As 

an early effort to bridge OPC with DSA, we have developed 

a fast compact 2D model that is suitable to predict the 

locations of DSA vias and achieved roughly five orders of 

magnitude speedup. Figure  20   shows a comparison of pre-

diction between the 3D model and the 2D compact model. 

This fast DSA model enables a full chip OPC for creating 

mask shapes that print high-fidelity guiding patterns and 

is possible with the use of a mask optimization algorithm 

that we called DSAOPC. Figure  21   shows the example of 

using DSAOP to print a group of vias that is too close to be 

resolved by conventional immersion lithography. 

 A similar model in theory can be developed for 

forming DSA lines and spaces for the application on layers 

that uses dense gratings.  

Purpose 3D Compact 2D for OPC

Optimization SCFT (Fredrickson) Pseudo-free energy model (IBM)

Optimization Simple force balance

Simulation Cahn-Hilliard-Cook model (Bosse) Pseudo-free energy model (IBM)

Simulation Monte Carlo/molecular dynamics using Hefand-Tagami Hamiltonian 

(dePablo/Detcheverry, J. W. Pitera)

New models to be developed

Simulation Complex Langevin

Simulation Particle simulation (Glotzer)

 Table 4      A Spectrum of 3D but slow models and compact 2D but fast DSA models (Courtesy of Jed Pitera).  

A B C

 Figure 16    (A) The simulation of self-aligned patterns from diblock polymer lines in a narrow prepatterned trench. Note that there are 

certain boundary conditions that favor the formation of parallel lines inside the trench  [41] . Examples of simulated polymer density profiles 

of (B) dislocations and (C) disinclination defects  [41] .    

Better CD uniformity Rectified Via patternsBBBBBBBBBBBBBBBBBeeeeeeeeeeeeeeetttttttttttttttttttttttttttttttttttt eeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrr CDCDCDCCCCDCDCDCDCDCDCDCCDCDCCCD ununununununununnunununununuunununnnnniiiiiiiiiiiiiiiiiiiffffffffffffffffffffoooooooooooooormrmrmrmrmrmrmrmmrmrmrmmrmrmmrmrmmrmrmiiiiiiiiiiiitttttttttttttyyyyyyyyyyyyyyyyyyy RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRReeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeecttcctctctctctctctctctcttctttctctctctctctcttctcttccttttctcctccctc iiiiiiiiiiiiiiiiiiiiiiiiiiiiiifffffffffffffffffffffffffffffiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeddddddddddddddddddddddddddddd VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVViiiiiiiiiiiiiiiiiiiiiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ppppppppppppppppppppppppppppppppppppppppppppppppppppaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsssssssssssssssssssssss

Poor CD uniformity Arbitrary patterns

DSA

Better CD uniformity Rectified via patterns

Top-down

X-section

Increasing prepattern CD

Modeling

50 60 70 80 90

20

30
Experiment

Prepattern CD (nm)

D
S

A
 v

ia
 C

D
 (n

m
)

 Figure 17    (A) Via rectification and (B) the 3D Monte Carlo simulation for DSA vias and its comparison with experiments  [40] .    
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4     Modeling specifics for source 
mask optimization 

 Before we switch to a design-related topic, we would 

like to discuss briefly the issues on applying a resource-

efficient model to full chip patterning optimization tech-

niques, which are design construct specific. Basically in 

OPC, as long as the empirical model provides a good sam-

pling of the parameters and a robust fitting of the param-

eters, there is no special issue. However, for the advanced 

pattern correction technique like SMO, there will be sepa-

rate issues that need to be taken care of. 

 The first issue is the resist modeling for SMO  [44] . In 

the current OPC model, the resist model may not be com-

pletely decoupled to the optical model (see Figure  22  ), 

and actually, it is a function of illumination, optics, film 

stacks, resist chemistry, metrology, etc. During source 

optimization steps, illumination keeps on changing so 

the resist model needs to be 100 %  decoupled from the 

optics, and it should be only a function of resist chem-

istry. Figure  23   shows the difference in imaging for resist 

models of the same resist calibrated differently and 

applied to the same SMO solution. This founding sup-

ports our argument about the resist model requirement 

here. 

 The second issue is model differentiability. This issue 

is important when resist profile calculation is included 

during the optimization loop where the resist model is 

evaluated many times, and the gradients and Hessians 

of the resist profile are being used to guide the internal 

search of the parameter space. If the model is not differen-

tiable, there may be chances that optimization might not 

converge normally. Many sophisticated nonlinear kernel-

based models or simple variable threshold models might 

not be differentiable, while a simple linear convolution 

kernel model will be perfectly differentiable but might 

not be able to have the best model fitting results. Careful 

balance of the SMO requirement on model accuracy and 

optimization stability is required.  
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 Figure 18    Benefit of DSA via rectification in reducing CD errors and improving both MEEF and exposure latitude  [42] .    
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5     Design-technology 
co-optimization 

 Traditional design scaling is lagging in pace to produce 

a system optimum for a certain technology node because 

most designs are agnostic of the lithography implementa-

tions and the corresponding limitation, so the need for new 

computational lithography tools to enable scaling is thus 

imminent. Besides SMO, which is still a lithographic tech-

nology, we need collaboration with the design  community 

for a much more global optimization. Design-technology 

Co-optimization (DTCO) co-optimizes both lithography 

and design scenarios. A methodology has been devel-

oped to score designs using a tool called the lithogra-

phy manufacturing assessor (LMA) so a well-balanced 

ranking of designs can be made. Figure  24   shows such 

an example of the LMA assessment of different designs 

 [46] . A common outcome of this assessment could be a 

set of restricted design rules or a set of acceptable design 

library, which is litho-friendly (i.e., possess adequate 

process latitude). The LMA tool also allows the designer to 

create litho-aware layouts. In the litho-aware layout, the 

+
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 Figure 20    The accuracy of the fast 2D DSA model compared to 3D 

Monte Carlo model in the prediction of DSA via locations for merged 

guiding patterns  [43] .    

designers complement traditional design rules with direct 

litho modeling to achieve physical and parametric yield 

targets for aggressive layouts, which are resolution chal-

lenged. Figure  25   shows an example of applying the layout 

process variability bands, which provide an opportunity 

for layout enhancement for new technology nodes. 

 Computational lithography tools such as SMO and 

LMA have to rely on accurate predictive models to enable 

DTCO. In such applications, often many design clips or 

large area designs are needed to be optimized and evalu-

ated in order not to miss  “ hot spots ”  that can only be 

detected with sufficient areas or context around clips. For 

DTCO, not only predictive lithography model is needed 

but many other predictive unit process models (such as 

etch, CMP, and thin film deposition) and device models 

(for electrical characteristic and parasitic) are required to 

produce a designer-intent design solution. In principle, 

all process and device performance can be predicted so 

a better device or process design can be obtained before 

starting any costly experimental work. 

5.1    Ultimate design for scaling 

 Recently, there are reports on the feasibility of using uni-

directional designs for simplifying designs to enhance 

the design migration to future generations and poten-

tially improve circuit yield. One derived advantage is the 

improved process windows due to a simpler RET solu-

tion because of more regular designs. A simpler OPC  [47]  

and a reduced number of hotspots are possible as shown 
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pattern for target design
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 Figure 21    Schematic showing the generation of mask pattern by DSAOPC to print an optimum guiding pattern that predicts to form 

vias as targeted through extreme process conditions and the experimental verification of the results  [43] .    
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in Figure  26  . Much fewer constructs are needed for the 

designers to construct standard cell designs for unidirec-

tional designs  [48, 49] . This actually might be a more effec-

tive form of DTCO that can drive to a true global optimum 

in terms of design and manufacturing cost for the scaling 

≠

A B

 Figure 22    Example of (A) conventional illumination and (B) SMO 

pixelated illumination. The resist model derived from the OPC cali-

bration data might be different from these two cases.    

of device dimensions. Figure  27   shows some preliminary 

study comparing bidirectional M1 designs and unidirec-

tional designs with the constraint that the total cell areas 

are kept more or less the same  [48] .   

6     The curse of dimensionality 
of lithographic optimization 

 A full but efficient variation modeling engine that can 

overcome the curse of dimensionality will be crucial for 

virtual fab implementation due to the huge complexity of 

the lithographic process itself. The term  “ curse of dimen-

sionality ”  is coined by Richard Bellman to describe the 

problem caused by the exponential increase in volume 

associated with adding extra dimensions to a (mathemati-

cal) space  [50] . The number of predictors (dimensions) 

for variances in virtual fab lithography simulation or 

OPC resist model  A   ←  same resist  →  OPC resist model B 

 Figure 23    The difference of imaging resulting from using two OPC models (A and B), which are derived from different illumination 

schemes. The resist material used is the same for both OPC resist model  [45] .    
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 Figure 24    A LMA of two different poly designs, one for high performance (HP) and the other for ASIC. Owing to the design difference, the 

litho performance vs. ground rules yields different litho error distributions. For example, poly-bridging is less severe for HP design, but 

poly-short channel effect behaves in the opposite way.    
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optimization may cause a combinatorial explosion. We 

need to reduce the dimensions of the problem to break the 

curse and is frequently used in optimization problem and 

machine learning. 

 Therefore, the big question here is whether dimen-

sional reduction is possible in lithography modeling. 

Theoretically, it is possible if, first, the problem can be 

divided into subdomains (spatial) to take advantage of 

parallel computing. Of course, the overhead in communi-

cation and stitching back all the domain solutions need 

to be tackled. This technique has been commonly used 

especially in full field application. Second, if the vari-

ances of the predictors are small, and somehow, there are 

correlations between them, then, a decomposition of the 

problem into a few strongest eigenvectors is possible. If 

the variance of each predictor is small, it is possible also to 

decompose into the first few terms of the Taylor expansion 

of the function. An early example of that is the so-called 

variational lithography model (VLIM)  [51] . The defocused 

image at any depth of the resist are expanded into the 

Taylor series with the first term being the best focus image 

and the second term with a coefficient independent of the 

depth. The result is that all the images at different focuses 

can be evaluated at once, and thus, there is no need to 

build an extra OPC model at a different focus. Third, 

another approach is to use perform basis transformation 

through techniques like PCA  [52]  or reduced basis method 

 [53] . This basically involves reducing the rank of the gov-

erning matrix through the transformation and prerunning 

a lot of time-consuming parametric variation calibra-

tion to construct new basis. It is our optimism that many 

more problems, especially when they can be described as 

a set of partial differential equations, can be handled in 

1. RX original and
 PV band

2. PC original
 and PV band

3. CA PV band

4. M1 original and
 PV band

 Figure 25    Litho-aware layout showing process variation bands 

overlaying on top of design layers illustrating the critical design hot 

spots.    
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 Figure 26    (A) Simplification of OPC due to unidirectional designs  [47] . (B) Hot spot count for conventional vs. RDR showing reduction for 

RDR designs. The number stands for hot spot count for conventional designs vs. RDR designs.    
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 Figure 27    Illustration of the benefit of using computational lithography techniques when comparing unidirectional designs to bidirectional 

designs  [48] .    
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reduced dimension and hopefully significantly improving 

simulation run times by orders of magnitude.  

7    Conclusion 
 In conclusion, we recognize the critical role of predictive 

modeling, software, and high-performance computing 

in semiconductor and nanotechnology research, devel-

opment, and production. No matter what type of tech-

nologies are being adopted, modeling and model-based 

pattern correction are always required, and often, new 

modeling techniques are desired. In all cases, both highly 

rigorous models and resource efficient models are needed 

for different applications. The use of high-performance 

computing platform and efficient algorithms are unavoid-

able to achieve continued scaling. Ultimately, our goal 

is to accelerate the rate of discovery and time to imple-

ment new enabling technologies. Realizing this vision 

will require the active collaboration of funding agencies, 

universities, and industry. We believe that we can keep 

semiconductor scaling practical and vibrant well into the 

future.   
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