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   Abstract 

 We present a numerical gradient-index (GRIN) design metho-
dology for application in coherent mode conversion. Within 
the framework of geometric optics, a one-to-one correspon-
dence between the fi eld description and the ray description 
of the propagating beam is established using optical path 
lengths and the conservation of energy within a bundle of 
rays. A family of ray paths is chosen to transform the initial 
ray distribution into a target ray distribution. The specifi ed 
ray paths are used to calculate the index profi le of the GRIN 
structure required to effect the gradual transformation from 
the input beam to the desired output beam. We demonstrate 
our approach with a GRIN structure design that converts a 
Gaussian beam into a fl at-top beam.  

   Keywords:    beam shaper;   GRIN;   inhomogeneous; 
  mode conversion;   ray trace.     

  1. Introduction 

 Mode conversion optics is useful in a variety of coherent opti-
cal systems. For example, the Gaussian irradiance of a stable 
spherical mirror laser resonator mode is not always ideally 
matched to the application at hand, and conversion to another 
shape can be desirable. In particular, it can be shown that the 
irradiance of a light beam at the focal plane of a lens is maxi-
mized when the lens pupil is illuminated by a laser beam that is 
  uniform   in both amplitude and phase  [1] . Alternatively, appli-
cations such as holography and laser Doppler velocimetry 
require uniform illumination in the near fi eld, whereas laser 
radar systems often require uniform far-fi eld illumination  [2] . 
A second area where beam shaping fi nds utility is in the area 
of coherent laser beam combining  [1, 3] . A special optical 
system is generally used to establish phase coherence across 
a laser array. The resultant beam then consists of a single spa-
tial mode (because all lasers are locked in phase), but often 
maintains the shape of the original array. For many practical 
applications, this mode shape must be converted into a more 
useful format (such as a Gaussian or uniform distribution) to 

take full advantage of the spatial coherence of the laser mode. 
Indeed the highest radiance (defi ned as power per unit area per 
unit solid angle, where the area and solid angles are defi ned 
in terms of second-order intensity moments) is obtained when 
the mode is converted into a Gaussian distribution  [4] . 

 Over the years, many techniques have been developed to 
change the shape of coherent modes  [5, 6] . These include 
aspheric refractive optics  [7, 8] , spherical refractive optics 
with specifi c amounts of spherical aberration  [9] , refl ective 
optics  [10, 11] , holographic methods  [12] , polarization-based 
techniques  [13, 14] , and grating superposition techniques 
 [15] . One method that has not been as well explored is the 
use of gradient-index (GRIN) technology for beam shaping. 
In a GRIN structure, the index of refraction of a material is 
changed in a specifi ed manner as a function of location within 
the material. With the recent advances in arbitrary GRIN fab-
rication techniques, it is reasonable to assess whether GRIN 
structures can perform arbitrary coherent mode conversion. 
A selection of these techniques include: slurry-based three-
dimensional (3D) printing  [16] , neutron irradiation  [17] , 
various methods of chemical vapor deposition  [18 – 22] , ion 
exchange  [23, 24] , ion stuffi ng  [25] , and the sol-gel method 
 [26 – 28] . Each fabrication technique is subject to its own 
limitations; the primary limiting characteristics of a particu-
lar process pertaining to our application of GRIN materials 
are the physical depth into which the refractive index of the 
material can be modifi ed(depth of the gradient), the maxi-
mum change in the refractive index and most importantly, 
the type of index profi le the process can achieve. As the cur-
rent limits to the depth of the gradient are generally on the 
order of several millimeters, the advent of microscale GRIN 
mode converters in the realm of microoptics is foreseeable 
in the near future. Previous researchers have explored GRIN 
structures as replacements for aspheres in a more traditional 
Gaussian-to-fl at-top converter  [29] . In this paper, however, 
we explore the promise of GRIN for more generalized beam 
shaping, establish a design procedure for an arbitrary redis-
tribution of irradiance, and propose several optimization 
strategies. Potential advantages of GRIN optics for general-
ized beam shaping include elements with planar input/output 
surfaces for more convenient interfacing to lasers and fi bers, 
high optical effi ciency, short device lengths, convenient inte-
gration of passive optics with mechanics and packaging, and 
convenient fabrication of microoptics and arrays.  

  2. Ray description of optical beams 

 In an optical medium where the refractive index can vary with 
position, geometric optics is often used to calculate the trajec-
tory of a ray propagating through the structure. We assume 
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beam in that plane along the radial direction. The integrated 
irradiance function is particularly convenient when assigning 
variable amounts of fl ux to each ray in the ray description. 
Because this ray description is based on energy conservation, 
each ray represents a set amount of fl ux across a unit surface 
area lying perpendicular to the ray. Thus, ray angles must be 
accounted for when calculating the irradiance of the optical 
beam in a given plane from its ray description and vice versa. 
Conversely, given a ray distribution in a particular plane, inte-
grating the irradiance of each successive ray as one moves 
away from the axis of symmetry yields a stepwise approxi-
mation to the integrated irradiance function. The irradiance 
profi le of the optical beam in that plane can then be obtained 
by differentiating the interpolated version of the integrated 
intensity function. An example of a ray distribution calculated 
from the integrated irradiance function of a Gaussian irradi-
ance profi le is shown in Figure  1  . 

 The phase distribution of the optical beam is represented 
by the collective OPLs of the ray distribution. The OPLs of 
all rays must be identical along geometrical wavefronts. In 
addition, ray directions must be consistent with the shape of 
the geometrical wavefront because rays are always perpen-
dicular to the local wavefront. This holds true for continuous 
distributions of the refractive index.  

  3. Solving for the refractive index 

 In this section, we address the following question: Given a 
particular coherent mode transformation, is it always possible, 
subject to the limitations of ray optics, to fi nd a GRIN distribu-
tion that will perform the desired transformation ?  To answer 
this, we consider a refractive index distribution   =�( ) ( , )n n x yrr  
used for a two-dimensional irradiance redistribution where  x  
denotes the propagation axis. Suppose there is a ray family 
 Y ( x,h ) that contains all the rays in the conversion mapping such 
that evaluating  Y ( x,h ) at a particular value of  h  singles out a 
ray path. If  Y ( x,h ) is completely specifi ed, solving a fi rst-order 
partial differential equation will determine the refractive index 
profi le of the GRIN structure needed to effect the conversion. 

the scalar wave equation can be satisfi ed by a trial solution 
of the form: 
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 This condition defi nes a  ‘ slowly varying ’  optical medium  [30]  
and must be satisfi ed in our designs where   

�
( )n r  is continuous 

in order for geometric optics to be valid. 
 The framework of geometric optics requires a one-to-one 

correspondence between the fi eld description and ray descrip-
tion of an optical beam. Once this relationship has been estab-
lished, the Eikonal equation, Eq. (2), and its associated ray 
equation, can be used in conjunction with the intensity law 
of geometric optics to compute the propagation of the opti-
cal beam inside a known optical medium (neglecting diffrac-
tion). This is known as the direct problem of ray tracing. Our 
design methodology addresses the inverse problem of deter-
mining the refractive index profi le of an optical medium using 
defi ned ray trajectories. Both analytical and numerical solu-
tions to the inverse problem have been studied in  [31] . The 
present study prescribes a simpler numerical method to solve 
the inverse problem for application in coherent mode conver-
sion. By appropriate application of the Eikonal and ray equa-
tions, the refractive index distribution required to guide rays 
along prescribed trajectories can be calculated. 

 Recalling that radiant energy is conserved within a bundle 
of rays according to the geometric optics intensity law for 
propagation of energy, one can relate ray density to the irra-
diance of an optical beam. Rhodes and Shealy used this law 
to calculate the redistribution of irradiance by two aspheric 
refractive surfaces. Starting with an input beam represented by 
uniformly spaced rays of variable irradiance, they calculated 
the radial distance (from the axis of symmetry) of each ray at 
the output aperture  [7] . The irradiance of the optical beam is 
represented by the local ray density and its phase by the col-
lective optical path length (OPL) of the ray distribution. 

 Consider a radially symmetric optical beam where the ray 
height  y  represents the radial distance of the ray from the axis 
of symmetry. To determine the positions of the rays in the 
ray description of the optical beam, a stepwise approximation 
to the integrated irradiance function   ϕ  ( y ) can be employed, 
where   ϕ  ( y  0 ) describes the total irradiance contained within 
 y   <   y  0  in a plane that is orthogonal to the axis of symmetry. 

Naturally, d

dy

ϕ describes the irradiance profi le of the optical 
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 Figure 1    Ray distribution calculation using a stepwise approxima-
tion to the integrated irradiance function for a Gaussian irradiance 
profi le. Each ray represents the same amount of radiative fl ux.    
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wavefronts. Thus, subject to the aforementioned conditions, 
it is always theoretically possible to convert any coherent 
mode into any other coherent mode with a properly designed 
GRIN element.  

  4. Numerical implementation 

 Although the system of ordinary differential equations in Eq. 
(6) can be used in principle to determine the refractive index 
along the geometrical wavefronts of the ray family  Y ( x,h ), it 
is possible to use a more straightforward method to calcu-
late this index profi le using only the wavefronts. The Eikonal 
equation, Eq. (2), provides an intuitive way of justifying this 
approach and can be written in the form: 

   ∇ =
�� � � ˆ( ) ( )S nr r ss (7) 

 where a constant contour of   
�

( )S r  describes a geometrical 
wavefront of constant OPL and  ̂ss  is a unit vector lying per-
pendicular to the wavefront at position   

�
.r  Eq. (7) states that 

the product between the refractive index and arc length is 
responsible for an incremental increase in   

�
( )S r . This means 

the refractive index can be calculated easily with two differ-
ent constant contours of   

�
( ).S r  Therefore, rather than solving 

the system of ordinary differential equations in Eq. (6), it is 
possible to obtain the index profi le of the GRIN structure by 
constructing wavefronts from just a small number of sam-
pling rays and performing elementary calculations. We will 
denote the sampling rays as  Y ( x,h   s  ), where a discrete value of 
 h   s   corresponds to a particular sampling ray. 

 Our numerical method starts by defi ning the initial and fi nal 
positions of the sampling rays in  Y ( x,h   s  ) from the input and 
output optical beams. Owing to the discrete nature of rays, the 
initial and fi nal ray distributions are obtained from a stepwise 
approximation to an integrated intensity function   ϕ  ( y ). The ini-
tial and fi nal directions of the rays in  Y ( x,h   s  ) can be calculated 
straightforwardly by differentiating the phase (with respect to 
 y ) in their irrespective fi eld distributions (as rays are always 
perpendicular to the local wavefront). In addition, the OPL of 
the rays in  Y ( x,h   s  ) must be specifi ed (up to an arbitrary con-
stant) in the input and output ray distributions and be consistent 
with the phase distribution of the optical beam in those planes. 
Finally, a predetermined amount of radiative fl ux is assigned to 
each ray such that the energy propagating at the specifi ed ray 
angles yields the proper amount of irradiance in the plane of 
interest. As irradiance is represented by local ray density in the 
prescribed ray description, there tends to be an excessive num-
ber of rays in regions of high irradiance and insuffi cient rays 
in regions of low irradiance. This becomes problematic when 
we encounter irradiance profi les with high contrast. One pos-
sible solution is to insert additional sampling rays of variable 
radiative fl ux into the sampled conversion mapping  Y ( x,h   s  ) in 
a manner that does not affect the irradiance profi le of the input 
and output beams. Two different sampling ray paths  Y ( x,h   s  ) 
belonging to the same ray family  Y ( x,h ) are shown in Figure  2  . 

 Each ray in the output distribution is paired up with a ray 
in the input distribution in a manner that is consistent with 

The complete derivation is available in  [31] . We will briefl y 
outline the solution starting with the ray equation, Eq. (4). 

 The equation governing the ray path in an inhomogeneous 
optical medium follows directly from the Eikonal equation, 
Eq. (2), and is given by: 
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 where  ds  is the arc length along the ray path,   
�
r is the position 

vector of a point on the ray trajectory, and   
�

( )n r  is the index of 
refraction at position   

�
r. If all rays in  Y ( x,h ) follow trajectories 

where the ray heights  y  are single-valued functions of posi-
tion along the propagation axis, i.e.,  y   =   y ( x ), then Eq. (4) can 
be rewritten as: 
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 where  w   =  ln( n ( x,y )). This can be conveniently expressed in 
the form of a fi rst-order partial differential equation, which 
can be reduced to the following system of ordinary differen-
tial equations using the method of characteristics: 
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 where the single ray paths  y   =   y ( x ) have been generalized to the 
entire ray family  Y ( x,h ) in the conversion mapping. The fi rst 
equation simply describes the geometrical wavefronts that lie 
perpendicular to the ray paths, whereas the second equation 
solves for the index of refraction along these wavefronts. A 
solution for  n ( x,y ) exists if the ray family  Y ( x,h ) satisfi es the 
following conditions  [31] :

    • Y ( x,h ) has continuous second partial derivatives 
  

2

2 .
d Y

dx   
   • Y ( x,h ) has continuous second mixed partial derivatives 

  
.

d dY

dh dx
⎛ ⎞
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   • Y ( x,h ) has continuous fi rst partial derivatives 
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dh
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 The ray equation, Eq. (4), also allows us to solve for the 
gradient of the refractive index   ∇

�� �
( )n r  along any particular 

ray path. However, the gradient calculated from the entire 
ray family  Y ( x,h ) will not be a conservative fi eld without 
imposing the proper constraints, suggesting that a solution 

  
�

( )n r  does not exist. To guarantee the existence of a solu-
tion in the gradient method, we must require all rays in 
 Y ( x,h ) to have identical OPLs along all possible geometrical 
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specifi ed. These values are completely arbitrary, provided that 
the change in OPL is monotonic as we follow the ray paths in 
one direction. The possibility of having discontinuities in the 
refractive index along these wavefronts is inconsequential for 
ray paths in  Y ( x,h ) (by application of Snell ’ s law) because the 
rays are always perpendicular to the plane of discontinuity. 

 The intersection between the ray paths  Y ( x,h   s  ) and wave-
fronts  X ( y,l   i  ), whose position is denoted by   

�
( , ),i sl hr  provide 

sample points where the OPL is known. This can be used 
to calculate the refractive index between two adjacent OPL 
sample points along a particular sampling ray using the OPL 
difference and arc length: 
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 where   φ  ( l   i   ,h   s  ) is the OPL at   
�
( , ).i sl hr  This calculation is repeated 

for every pair of adjacent OPL sample points and the resulting 
data points for the refractive index are used to interpolate the 
overall refractive index profi le of the GRIN structure.  

  5. Gaussian-to-fl at-top GRIN design 

 To verify our approach, the design formula outlined in the pre-
vious section is used to calculate the refractive index profi le of 
a GRIN structure that converts an input Gaussian beam into a 
circular output beam with uniform irradiance. The confi gura-
tion is shown in Figure  3  . The radial symmetry of this irradi-
ance redistribution allows the problem to be treated using just 
one dimension in the transverse plane. However, the irradiance 
profi le must scale linearly with radial distance from the axis of 
symmetry to account for the coordinate transformation. 

 As both the input and output beams have planar wave-
fronts in this particular design, all rays in the input and output 
ray distributions are parallel to the axis of symmetry. Cubic 
polynomials and half-period sinusoids are two potential 
functions to describe the ray paths  Y ( x,h   s  ) in the conversion 
mapping. The choice between the two results in a slightly dif-
ferent refractive index profi le in the design. We discuss this 
choice of mapping functions in a subsequent section. For this 
design, half-period sinusoidal ray paths are chosen for  Y ( x,h   s  ), 
as shown in Figure 2. The geometric wavefronts  X ( y,l   i  ) are 

energy conservation and does not result in any intersecting 
rays (intersection of ray trajectories violates the second con-
dition that guarantees the existence of a solution to the inverse 
problem). Each pair is assigned a ray path  Y ( x,h   s  ) whose 

height  Y  and slope 
  

dY

dx
 are constrained in the input and output

 
planes. An infi nite number of choices exist for  Y ( x,h   s  ) that will 
satisfy these constraints. However, requiring all ray paths in 
 Y ( x,h   s  ) to follow the same functional form (e.g., a low-order 
polynomial) generally reduces the complexity of the design. 
Once the trajectories of the sampling rays have been chosen, 
extrapolation can be used to construct a family of wavefronts 
 X ( y,l ) that lie perpendicular to every ray in  Y ( x,h   s  ). A discrete 
set of these constructed (or  ‘ sampling ’ ) wavefronts, denoted 
by  X ( y,l   i  ), is used to compute the refractive index profi le 
responsible for the gradual evolution of the wavefront as the 
optical beam propagates through the GRIN structure. 

 The inverse problem of calculating the refractive index 
profi le from the defi ned ray trajectories presents an infi nite 
number of solutions. This is because solving the ordinary dif-
ferential equations in Eq. (6) can only determine the refrac-
tive index profi le up to an arbitrary function of the geometrical 
wavefronts  [31] . In order to narrow the design down to a 
unique solution, the OPLs of the sampling wavefronts must be 
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 Figure 2    (A) Ray trace of a high contrast irradiance profi le, show-
ing sparse data points in low irradiance areas. (B) Additional sam-
pling rays are inserted to overcome sparse sampling. Lighter shades 
of the ray path indicate decreasing amounts of radiative fl ux for the 
particular ray.    
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 Figure 3    Diagram of a Gaussian-to-fl at-top beam converter using a 
GRIN structure. Incident Gaussian beam width is 0.354 mm. Output 
beam radius is 1 mm.    
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associated with fabrication will often impose additional con-
straints in the design process. In particular, materials used for 
fabricating the GRIN structure limit the dynamic range of the 
refractive index profi le, defi ned as  Δ  n   =   n  max

  -  n  
min

 . Fortunately, 
there are several methods that can be used to reduce  Δ  n  in our 
design. 

  6.1. Method 1 

 If changes to the ray paths in the conversion mapping  Y ( x,h ) 
are not allowed, the minimum  Δ  n  of the GRIN structure can 
be determined from the maximum arc length ratio of the 
structure,  α  

max , given by: 

   

α
⎛ ⎞
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⎝ ⎠

,

,

max
max

min

i s
s

max
i

i ss

ds

ds
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 where  ds   i,s   is the arc length between sampling wavefronts 
 X ( y,l   i  ) and  X ( y,l   i  + 1 ) along the sampling ray corresponding to 
 h   s   in  Y ( x,h   s  ). As the OPL is constant between any two adja-
cent wavefronts (or more generally, any two wavefronts), 

the arc length ratio can also be expressed as 
  
α = .min

max
max

n

n
 This 

reveals that the ratio of  n  
min  to  n  max  is determined solely by 

constructed from  Y ( x,h   s  ) and are depicted in Figure  4  . The 
refractive index is set to a constant along the axis of sym-
metry; this constrains the OPLs of the sampling wavefronts. 
Using Eq. (8) to calculate the refractive index profi le of the 
GRIN structure, the interpolated result is shown in Figure  5  . 

 A forward ray trace is used to verify the design. Starting with 
the same irradiance distribution (represented using a smaller 
number of rays), each ray is traced through the GRIN structure 
using the ray equation, Eq. (4), to obtain the output ray distribu-
tion. A straightforward numerical implementation of the forward 
ray trace can be found in  [32] . The irradiance and phase profi le 
of the output beam is shown in Figure  6  . The GRIN structure 
is shown to redistribute the irradiance profi le of the Gaussian 
beam into a circular fl at-top beam with a peak-to-valley OPL 
error (phase error) of  λ /16 (assuming a wavelength of 1  μ m).  

  6. Design optimization 

 Modern fabrication techniques do not yet have the capability 
to produce GRIN structures with arbitrary  n ( x,y,z ). The issues 
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 Figure 6    Ray trace through the mode converter structure designed 
to convert a Gaussian intensity to a radial fl at-top intensity. (A) Input 
and output beam irradiance. (B) Relative phase error assuming a 
wavelength of 1  μ m.    
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beam with a 0.354-mm beam width. This optimal condition was 
determined by calculating  α  

max
  for various output beam radii. 

An important observation is that the refractive index variation 
is no longer monotonic along the radial direction. Recall that all 
rays in the previous mapping were being guided away from the 
axis of symmetry by the GRIN material, allowing for a mono-
tonic index with respect to radius. In the modifi ed conversion 
mapping, rays near the edge of the structure are being guided 
towards the center, whereas rays in the center are being guided 
away from the center. Thus, a non-monotonic index profi le is 
required. Figure  9  A shows the resulting refractive index pro-
fi le after resizing the output beam while keeping the refractive 
index constant along the axis of symmetry. The design in Figure 
9B relaxes this constraint and further reduces  Δ  n  by incorporat-
ing Method 1 after resizing the output beam.  

  6.3. Method 3 

 Another possibility to reduce   Δ   n  in the design is to modify the 
functional form of the ray paths when changes to  Y ( x,h ) are 
permitted. In Section 5, half-wave sinusoids were used in the 
Gaussian-to-fl at-top beam converter design. Figure  10   shows 
the change in the refractive index profi le if the rays were to 
follow cubic polynomials instead of sinusoids, where the 

the maximum ratio between the maximum and minimum arc 
lengths between any two adjacent sampling wavefronts. After 
calculating the ratio in Eq. (9), we can modify OPLs of the 
sampling wavefronts accordingly to reduce  Δ  n  in the design 
(recall that these are arbitrary as long as the OPL is mono-
tonically increasing as the optical beam propagates forward). 
Figure  7   illustrates the change in the refractive index profi le 
from the GRIN mode converter calculated in Section 5 after 
the OPL of the sampling wavefronts  X ( y,l

i ) has been modifi ed. 
As a general rule, the index profi le should be kept as simple 
and smooth as possible (i.e., maintaining continuous second 
derivatives and mixed partial derivatives).  

  6.2. Method 2 

 If we were to allow changes in the conversion mapping 
 Y ( x,h ), more options become available for reducing  Δ  n  in the 
design. One possibility is to scale the output beam. Figure  8   
shows the new conversion mapping after resizing the output 
beam to 55 %  of the input aperture, minimizing  Δ  n  for a Gaussian 
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 Figure 8    Conversion mapping after resizing the output beam to 
55 %  of the input aperture (minimizes  Δ  n  for a Gaussian beam with 
an initial beam width of 0.354 mm). Dotted line shows the extent of 
the conversion mapping.    
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 Figure 9    Interpolated refractive index profi le for a Gaussian-to-
fl at-top beam converter. (A) Radius of the output beam optimized 
to 55 %  of its original size with no Optical path difference (OPD) 
optimization. (B) Radius reduced to 55 %  and OPD was optimized 
to minimize refractive index ratio. White on graphs indicates regions 
outside the conversion mapping.    
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geometric optics, energy conservation was used to establish 
a general ray description of an optical beam. The conver-
sion mapping could then be specifi ed by choosing a family 
of ray paths. Under the appropriate conditions, the refractive 
index distribution that effects the mode conversion could be 
obtained by solving a partial differential equation or by using 
geometrical wavefronts. We described a simple approach 
based on wavefronts and demonstrated its effectiveness by 
designing a GRIN structure to convert an incident Gaussian 
beam into a circular fl at-top beam. A forward ray trace simu-
lation shows that the designed GRIN structure redistributes 
the irradiance of the incident beam as intended and produces 
the correct phase profi le. In addition, several methods of 
reducing the dynamic range of the GRIN structure were also 
discussed. We have shown in our simulations that these GRIN 
devices are capable of redistributing the irradiance profi le of 
an optical beam over extremely short propagation distances. 
The same applies for altering the shape of the wavefront in an 
optical beam. This feature is especially advantageous in the 
realm of microoptics where compact optical components are 
needed for integration in microsystems.  
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