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Introduction: Cannabis and its main psychoactive constituent, delta-9-
tetrahydrocannabinol (THC), are thought to weaken neurocognitive processes.
However, past experimental research examining the acute effects of THC on
neurocognition has produced mixed results. The current study aims to advance
this literature through application of computational modeling and consideration
of individual differences in cannabis use history and subjective drug effects.
Methods: In a double-blind THC administration experiment, N= 30 healthy late
adolescent and young adult occasional to regular cannabis users (53% men; ages
18–25) received THC (7.5 mg, oral) and placebo. They completed a Go/No Go
(GNG) task at the time of peak drug effect. We analyzed GNG data using the drift
diffusion model, which provides measures of effects of THC on three
components of neurocognition: cognitive efficiency (drift rate), response caution
(boundary separation), and motor response execution processes (non-decision
time). Bayesian statistical methods were used to assess relations between
individuals’ neurocognitive parameter differences across the experimental
conditions (THC—placebo) and several relevant covariates (cannabis use history
and subjective drug effects).
Results: Overall, THC vs. placebo did not significantly alter any parameter. However,
THC was associated with greater between-person variability in both drift rate and
nondecision time, suggesting heterogeneity in the effects of the drug. THC
weakened cognitive efficiency (slower drift rates) to a greater extent in participants
with less cannabis use. Further, stronger subjective effects (drug “effect” and drug
“high”) were related to poorer cognitive efficiency during THC intoxication.
Discussion: Results add to our understanding of the acute neurocognitive effects
of THC. Slower cognitive efficiency after THCwas highly heterogeneous, and was
related to both recent cannabis use and subjective drug effects. These findings
support the notion that acute effects of cannabis on cognitive efficiency (GNG
drift rate) are reduced by individuals’ tolerance to cannabis.

KEYWORDS

cannabis, δ9-tetrahydrocannabinol (THC), neurocognition and behavior, inhibition, Go/
no-go, computational psychiatry, young adult, subjective drug effects
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Introduction

Cannabis use is increasing rapidly in the U.S., and is most

prevalent among youth and young adults (1, 2). Indeed, in 2023

25% of 18–25-year-olds reported consuming cannabis in the past

month (3). Moreover, legalization of recreational cannabis use

has been associated with reductions in perceived harmfulness of

cannabis among adolescents and young adults (2). At the same

time, public interest has brought cannabis to the forefront of

media discussions and scientific debates, raising concerns about

safety and adverse impacts on key neurocognitive processes while

intoxicated (4, 5). Despite a recent increase in research on

cannabis use and neurocognition (6, 7), the evidence remains

mixed. This is a critical gap in the literature, as understanding

the effect of cannabis on neurocognitive processes has wide-

reaching public health implications [e.g., driving under the

influence, increases in injuries due to falls; (8)].

Previous research on the acute effects of cannabis on

neurocognitive processes has produced mixed results. With

respect to Reaction Time (RT), a common measure of inhibitory

control, two small studies (N = 14 and N = 18) with heavy

cannabis users (at least daily use) found that smoked cannabis

increased premature responses on a RT task and accidental wall

hits during a virtual maze task (9, 10). Three other studies

(N range = 20–37) using light (>10 lifetime occasions of use; use

around 1.5 times/week) to heavy (use >4 days/week) cannabis

users demonstrated that both oral and inhaled vaporized THC

increased stop signal reaction time on the Stop Signal Task [SST;

(11–13)]. However, these studies varied widely in the doses of

THC administered, including doses as high as 35 mg (12, 13).

Findings on acute THC effects on another common measure of

inhibitory control, errors of commission, have also been mixed.

Van Wel and colleagues (2013) found that a high dose,

300 microgram/kg or approximately 21 mg, of THC did not

affect stop signal reaction time or number of omission errors, but

THC increased errors of commission. This is consistent with

some other reports that THC increased errors of commission in

occasional cannabis users [less than 25 occasions of lifetime use

and less than 11 occasions of past month use, respectively; (14,

15)]. However, two other studies using participants with a range

of cannabis use histories failed to detect this effect (11, 16).

In addition to variable effects of THC across studies, there is

also considerable within-study variability. Many studies report

negative associations between THC and performance on one or

two neurocognitive measures, but performance is often unaltered

between placebo and THC on several other neurocognitive

measures. For example, Hart and colleagues (2001) found THC

increased premature responding and completion time for several

cognitive tasks, but accuracy on these and other cognitive tasks

were unaltered among N = 18 adults (21–35 years old) who, on

average, used cannabis 6 days a week. Similarly, McDonald and

colleagues (2003) reported adverse effects on SST performance

following a 15 mg dose of THC, but no effects of a 7.5 mg dose,

and no THC effects on the GNG, or Delay or Probability

discounting tasks at either dose. Further, while Pabon and Wit

(15) found that THC acutely increased errors of commission on
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GNG at a 15 mg dose, there was no effect of THC on errors of

omission/misses across both 7.5 mg and 15 mg doses among

N = 60 adult females. In summary, experimental studies that have

examined the acute effects of THC on neurocognitive processes

have produced mixed results. We propose that mixed results may

be due to: (1) measurement issues with behavioral measures of

neurocognitive processes and, (2) failure to consider that

individual differences in cannabis use history may impact acute

THC effects on neurocognition.

Previous studies examining links between cannabis use and

neurocognitive functioning have frequently used assessments

designed to measure distinct higher-order neurocognitive functions

(e.g., attentional shifting, working memory, inhibitory control, etc.),

measures which often suffer from psychometric problems (17, 18).

Indeed, the dominant framework posits that higher-order

neurocognitive functioning is characterized by a set of complex,

modular functions (19). However, this framework has led to

considerable heterogeneity in measurement and terminology (20)

and has not been well-supported by psychometric studies (21).

Further, measures of these higher-order functions do not typically

account for strategic or motor response processes that can impact

behavioral performance metrics and are also potentially impacted

by THC intoxication. For example, does an increase in mean RT

after THC administration reflect decreases in cognitive efficiency, a

more cautious response strategy, slower motor processes, or some

combination of these processes? In summary, common practices

for measuring higher-order cognitive functions have likely

contributed to confusion regarding the effects of THC on

neurocognition. An alternative framework that has emerged from

the computational modeling literature posits that individuals’

efficiency of accumulating goal-relevant evidence is a domain-

general cognitive individual difference dimension that largely

underlies many modular neurocognitive functions (22–24).

Importantly, formal computational models that index evidence

accumulation also account for other sources of influence on

behavioral performance, like motor response speed and strategy.

This alternative framework therefore both shows great promise as a

plausible model of a general process that drives diverse

neurocognitive functions and provides a method for disaggregating

additional processes that influence behavioral performance.

Notably, no studies to date have utilized this approach with respect

to elucidating the effects of THC on neurocognitive functions.

Evidence accumulation models are a well-validated framework

from mathematical psychology and computational neuroscience

that explain individuals’ choices and RTs on a wide array of

cognitive tasks. The models posit a process in which individuals

gather evidence for possible choices until a critical evidence

threshold is reached for a given choice (25, 26). The diffusion

decision model [DDM; (27, 28)], one of the most commonly

used evidence accumulation models, decomposes task

performance into parameters representing several mechanisms of

influence on behavioral performance: (1) efficiency of evidence

accumulation toward the correct choice (“drift rate”; v), (2)

degree of response caution (boundary separation; a), (3) response

biases, which tend to favor decisions with higher probabilities

(start point; z), and (4) processes unrelated to the decision
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process, such as time for stimulus encoding and motor response

execution [non-decision time; Ter; (29)]. The DDM has

previously been used to measure these mechanisms on the GNG

by accounting for construct-irrelevant influences on GNG

performance (30, 31). Additionally, application of the DDM to

behavioral data from an alcohol experimental paradigm has been

fruitful in advancing our understanding of the acute effects of

alcohol, which include both decreased efficiency of evidence

accumulation and increased motor response speed (32). In other

words, using this approach allows us to better understand

whether an increase in mean RT after THC administration

reflects poorer cognitive efficiency (slower drift rate/efficiency of

evidence accumulation), a more cautious response strategy

(higher boundary separation response caution), slower motor

processes (higher non-decision time), or some combination of

these processes. We propose that application of this model to

GNG data during THC administration will help clarify previous

mixed results regarding the effects of cannabis on acute

neurocognitive functioning.

A second reason for mixed results may be a failure to consider key

individual difference factors, including cannabis use history and

subjective drug effects, when examining the impact of THC on acute

neurocognition. Invoking the notion of drug tolerance, it may be

expected that individuals who use less cannabis and/or report

experiencing stronger drug effects following THC ingestion would

be more likely to display poor neurocognitive functioning.

Indeed, Ramaekers and colleagues (2009) reported differences in

neurocognitive performance following ingestion of 500 micrograms/

kg or approximately 35 mg THC between heavy (cannabis use more

than 4 days/week) and occasional (weekly use or less) cannabis

users. Even at this high dose, heavy cannabis users did not display

poorer performance on the majority of neurocognitive tasks,

indicating tolerance effects. These findings strongly suggest that

cannabis use history has a significant impact on the association

between cannabis use and acute neurocognitive functioning. Yet, the

majority of previous studies in this literature do not consider the

role of cannabis use history in acute THC effects on neurocognition.

Further, many studies recruited participants who are homogenous in

their cannabis use [e.g., either very light cannabis users with no past

month use or very heavy cannabis users with more than weekly

use; (16, 33)], which precluded their ability to investigate how

cannabis history may modify acute THC effects on neurocognition.

Relatedly, adolescents who report stronger experiences of feeling

the effects of THC or feeling “high” may be more likely to display

worse neurocognitive functioning. While past research has

demonstrated that participants report more subjective drug effects

in THC condition compared to placebo (10), no previous studies

have examined whether individual differences in the strength of

these subjective drug effects impacts neurocognitive functioning

following THC administration. In summary, failure to examine

individual differences in cannabis use history and subjective drug

effects may obscure relations between THC and adverse impacts on

neurocognitive functioning, especially among light or occasional

cannabis users.

The current study was designed to systematically assess the

acute effects of THC on neurocognition in a sample of late
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adolescent and young adult cannabis users whose cannabis use

history ranged from at least 10 times in their lifetime to more

regular use (use 1–6 days per week). Additionally, we applied the

DDM to GNG data in order to improve measurement reliability

and parse several mechanisms of influence on behavioral

performance. Although previous research suggests that THC may

negatively impact behavioral performance on GNG, no past

studies have applied the DDM to behavioral data during THC

administration. Therefore, the acute effects of THC on specific

DDM parameters which quantify several neurocognitive and

motor response processes underlying behavioral performance is

unknown. Regarding tolerance, it was expected that poorer

performance on GNG following THC administration would be

stronger among individuals with less recent cannabis use history

and who reported experiencing more subjective drug effects.
Materials and methods

Participants

Participants (N = 30) were a community sample of non-

treatment-seeking late adolescents and young adults (ages 18–25)

recruited from the Chicagoland area through online and printed

advertisements. Inclusion criteria consisted of 18–25 years old,

English fluency, ≥10 lifetime cannabis use but current use <7

days/week, 19–26 body mass index, and generally medically and

physically healthy. Exclusion criteria consisted of <12 years of

education, current night shift worker, current or lifetime DSM-5

Diagnosis of psychosis, mania, Attention-Deficit/Hyperactivity

Disorder, Obsessive Compulsive Disorder, Feeding and Eating

disorder, Posttraumatic Stress Disorder, or substance use disorder

(SUD) (except for mild or moderate CUD or AUD), significant

depression or anxiety symptoms (>7 on Hamilton Depression or

Anxiety Rating Scales), alcohol use >4 days/week, >20 cigarettes/

week [or electronic nicotine delivery system (ENDS) equivalent],

desire to cut down/stop cannabis use, currently engaged in SUD

treatment, use of psychoactive medications in past 4-weeks,

cognitive dysfunction (e.g., history of head injury with >5 min

loss of consciousness, intellectual disability, organic mental/

neurologic syndrome, pervasive developmental disorder), or MRI

contraindications (current pregnancy, left-handedness, presence

of ferrous-containing metal in body, claustrophobia).
Procedures

Data from the current study were drawn from a larger ongoing

study (NCT04512365). Study protocols were approved by the

University of Illinois at Chicago Institutional Review Board and

in accordance with the Declaration of Helsinki. All data and

analysis code are available upon request.

Interested individuals completed a brief survey and were

contacted via telephone to assess eligibility criteria. Eligible

participants completed a screening visit, during which informed

consent was obtained and a battery of questionnaires assessing
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cannabis use history was completed. All questionnaires were

completed via REDCap (34). Qualifying participants completed a

within-subject, double-blind, randomized study using a cross-

over design in which they attended two drug administration

visits, 4–7 days apart on which they received oral 7.5 mg THC

(dronabinol) or placebo, 45 min prior to completing a Go/No-Go

task. Participants were asked to abstain from all substance use

for at least 24 h before each study session. Data for the current

study were drawn from the screening visit (i.e., pre-laboratory

sessions), as well as the laboratory drug administration visits.
Measures

Covariates
Sociodemographic factors, including sex, race, ethnicity,

educational attainment, height, and weight were collected via a

demographics questionnaire. At screening, the Structured Clinical

Interview for DSM-5 Disorders (SCID-5-RV) was administered

to assess current and past DSM-5 CUD (35).

Daily sessions, frequency, age of onset, and
quantity of cannabis use inventory (DFAQ-Cu)

At screening, participants completed the DFAQ-CU (36) to

assess patterns of cannabis use. Past month cannabis use

frequency was estimated with a numerical response ranging from

0 to 31 (i.e., “Approximately how many days of the past month

did you use cannabis?”). To measure past year cannabis use

frequency, participants were asked “which of the following best

captures the average frequency you currently use cannabis?”.

Participants selected from 13 response options, ranging from

0 = “I do not use cannabis” to 12 = “More than once a day.”

Responses to this question were recoded continuously to

approximate past year cannabis use. For example, 0 and 1= “Less

than once a year” were recoded to 0, 7 = “Once a week” was

recoded to 52, and 11 = “Once a day” was recoded to 365. 12

was recoded to reflect twice a day, or 730 times in the past year.

More information on the recoding of and response distribution

to this variable is provided in Supplementary Table S2.

Lifetime cannabis use frequency
At screening, study personnel administered the modified Drug

History Questionnaire [mDHQ; based on (37)] to participants. As

part of this semi-structured questionnaire, study personnel asked

participants how many years they used cannabis and then asked

them about their average cannabis use occasions during those

years (e.g., use 1×/week over 1 year = 52 cannabis use occasions).

Study personnel were trained to ask about changes in use during

those years and to incorporate changes in use into calculation of

cumulative lifetime use frequency.

Cannabis use disorder identification test-revised
(CUDIT-R)

At screening, participants completed the CUDIT-R to assess

past 6-month cannabis use and cannabis use problems, and to

screen for further CUD assessment (38). Participants responded
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to eight items using a 5-point Likert scale (0 = Never to 4 = Daily

or Almost Daily). Example items included, “How often in the

past 6 months have you devoted a great deal of your time to

getting, using, or recovering from cannabis?” and, “How often in

the past 6 months did you fail to do what was normally expected

from you because of using cannabis?”. Responses were summed

to create a total score (possible range = 0–32). A total score of 8

or more indicates hazardous use; a score of 12 or more indicates

the need to assess for cannabis use disorder.

Subjective drug effects
During the drug administration sessions, participants

completed the Drug Effects Questionnaire [DEQ (39);] at

baseline (0 min; prior to drug administration), 30 min (prior to

the GNG task), and 60 min (immediately after the GNG task).

On the DEQ, participants rated their responses to the questions,

“Do you feel any drug effects?” and “Do you feel high right

now” (rated from “not at all”=0 to “very strongly”=100). For

DEQ analyses, we used change scores before to after the GNG

task (mean of 30 and 60 min assessments) and subtracted

placebo from THC scores (40).

Go/no-go task
The GNG task [based on (41, 42)] was administered 45 min

after placebo and THC administration. At the beginning of each

block, participants were instructed to press either the left or right

button for letters that differed from the previous letter (i.e., Go

trials), and to withhold a response if the letter was the same as

the prior letter (i.e., No-go trials). For every No-go trial,

participants could either respond (failed inhibition; FI) or

withhold a response (successful inhibition; SI). Similarly, for

every Go stimulus, participants could either respond (hit) or

withhold (miss). Go and No-go stimuli (i.e., the letters) were

presented for 200 ms with a response window of 700 ms.

Accuracy feedback was presented after each trial for 1,000 ms

(i.e., green/yellow bar for correct/incorrect responses,

respectively). Inter-trial intervals were marked by a fixation cross

presented on the center of the screen for a randomized duration

between 500 and 1,000 ms. Participants completed at least 2

blocks of the task, with at least 288 Go trials and 72 No-go

trials. New blocks were presented until participants generated at

least 20 FI responses.
Data analytic strategy

Diffusion decision model (DDM) estimation
We fit the DDM to GNG data using Bayesian estimation in

Dynamic Models of Choice software (43). With respect to

varying numbers of trials across some participants, the minimum

number of trials in this study was greater than the number

previously found to be sufficient for recovery of DDM

parameters for GNG tasks (31). Further, our Bayesian analytic

approach accounts for this feature of the GNG task by adjusting

the uncertainty of parameter estimates based on the amount of

data per person (leading to greater uncertainty for individuals
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with fewer trials). Prior to model estimation, we excluded

individuals with missing data from either session (n = 5) or those

with an overall accuracy rate <.55 at either session (n = 1),

leaving a total of 30 participants for analysis. Next, following

standard procedures for fitting the DDM (44), “fast guess”

response times <150 ms were excluded, which affected <1% of

response. The central five drift diffusion model parameters were

estimated: drift rates for go (v.go) and no-go stimuli (v.nogo),

response conservativeness (a), nondecision time (Ter), and

response bias (z). A parameter for between-trial variability in Ter

was included, but between-trial variability in v and z were not

estimated due to difficulties with parameter recovery and findings

that the main DDM parameters are not substantially affected by

their omission (45). Latency and variability in Ter were captured

by estimating two parameters representing the lower bound (t0)

and upper bound (st0) of the uniform distribution of variability

in nondecision times across trials, respectively. The scales for the

drift rate and boundary separation parameters are arbitrary in

that they are determined by the value of a scaling parameter

(46). In this case, between-trial variability in drift rate was set to

1 as a scaling parameter. The scale for non-decision time is in

seconds, and t0 ranged from 0.14 to 0.22 in the placebo

condition and from 0.13 to 0.20 in the THC condition. st0

ranged from 0.03 to 0.21 and from 0.03 to 0.34 in the placebo

and THC conditions, respectively. High values on this parameter

are thought to represent more time spent encoding stimuli and

executing motor responses.

We conducted two different types of DDM analyses. First, as

described in detail below, we completed a model comparison

analysis to assess which of the four main DDM parameters (v, a,

Ter, z) showed evidence varying between the THC and placebo

conditions. Each model considered in the comparison analysis

was fit at the individual level, with all parameters estimated

separately for each participant, due to concerns about potential

biases in model selection analyses conducted with hierarchical

Bayesian models (47). Once an optimal model was indicated by

the model selection analysis, we then estimated a hierarchical

Bayesian version of the model, in which all individual-level

model parameters were assumed to follow normal distributions

described by mean (μ) and standard deviation (σ) hyper-

parameters. Hierarchical Bayesian models improve the estimation

of individual-level parameters by allowing information about the

group distribution to constrain individual-level parameter

estimates (48, 49). In addition, posterior distributions for the

group-level hyper-parameters can be used to make inferences

about how DDM parameters vary across groups and conditions:

differences in mean (μ) parameter posteriors indicate changes in

the average level of a DDM parameter while differences in the

standard deviation (σ) indicate changes in variability of that

DDM parameter between individuals in the group.

All sampling from model parameter posteriors at both the

individual and group level was conducted using the differential

evolution Markov chain Monte Carlo method (50) with broad,

uninformative priors (Supplementary Table S1). Convergence was

determined by evaluating whether the Gelman-Rubin statistic

(51) was <1.10 and by visual inspection of chains to ensure
Frontiers in Adolescent Medicine 05
stability. Posterior predictive plots (Supplementary Figure S1)

indicated that the model provided adequate fit to the GNG data.

Model comparison analysis
Models that allowed all possible combinations of parameters of

interest (v, a, Ter, z) to vary between the placebo and THC

conditions were estimated. These comparisons involved 16

candidate models including a “null” model in which none of the

parameters varied by experimental condition. Following

individual-level Bayesian estimation of all candidate models, the

models were compared on two information criterion metrics that

assess model fit while penalizing for complexity: the deviance

information criterion [DIC (52):] and Bayesian predictive

information criterion [BPIC (53):]. The model that displayed the

lowest value of each information criterion was selected as the

optimal model for parsimoniously describing differences between

the placebo and THC conditions.

Relationships of cannabis use history and
subjective THC effects with parameter differences

Following hierarchical Bayesian estimation of the optimal

model derived from the model-comparison procedure, we used

posterior samples for the mean (μ) and standard deviation (σ)

group-level parameters from the THC and placebo conditions to

quantify evidence for differences in parameter means and

parameter variability across the experimental conditions. As in

our prior work (54, 55), evidence was represented as the

proportion of the posterior difference distribution that was above

0 (P). P was computed by sampling without replacement from

the samples for a given group-level parameter in each condition,

subtracting each placebo sample from its corresponding THC

sample, and counting the proportion of samples for which one

condition was greater than the other. For interpretability we

always computed the proportion of samples above 0 for the

condition that had the greatest number of samples above 0,

leading to P values that range between 0.5 and 1.0. P quantifies

the probability that the posterior different distribution is

consistent with the hypothesis that a difference exists. Although

P can be interpreted on a continuous scale, we adopt our prior

guidelines (55): P values >0.75 were interpreted as positive, but

weak, evidence for a difference while P values >0.95 were

considered strong evidence.

We also aimed to assess relations between individuals’

parameter differences across the experimental conditions (THC—

placebo) and several relevant covariates. We subtracted

individual-level posterior samples for parameters of interest in

the placebo condition from those in the THC condition to create

posteriors for each individual’s experimental effect in the

parameter. We then used a “plausible values” analysis (56–58) to

compute the posterior distribution for the correlation coefficient

(r value) between the posterior difference scores and covariate.

This procedure first involves generating the posterior distribution

for the sample’s correlation coefficient by assessing the

correlation between the covariate and each posterior sample.

Next, the posterior for the population’s correlation coefficient is

estimated with the approach outlined by Ly et al. (56) using a
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TABLE 1 Participants characteristics.

Variable Adolescent and young
adult cannabis users

(N= 30)
Age 21.63 (2.14)

Sex (% female) 47%

Ethnicity (% hispanic) 23%

Race
% Caucasian 60%

% Non-caucasian 40%

BMI 22.57 (2.03)

Current substance use
Cannabis (days/week) 1.10 (1.58), range = 0–6

Cannabis (days/month) 5.73 (6.65), range = 0–25

Cannabis (days/year) 61.30 (67.93), range = 0–286

Cannabis (occasions/lifetime) 186.23 (217.37), range = 12–800

Hazardous cannabis use (CUDIT-R score) 4.83 (2.59), range = 2–12

Alcohol (drinks/week) 3.73 (3.57), range = 0–12.50

Cannabis use disorder (CUD)
Current CUD 7% (n = 2; mild CUD)

Past CUD 20% (n = 6)
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uniform prior for the population’s r value that spans values from

−1 to 1. The density of this distribution above 0, relative to

below 0, is then used to compute a P value for inference.

To assess whether cannabis use history affected acute responses

to THC, we examined responses in relation to both cannabis use

history (past month cannabis use frequency, past year cannabis

use frequency, lifetime cannabis use frequency, and CUDIT-R

total score) and subjective drug effects (DEQ “feel” and “high”

scores). We examined the two parameters with the greatest

variability after THC: drift rates (v.go, v.nogo) and the upper

bound of the nondecision time distribution (st0), which primarily

indexes variability in nondecision times. As both drift rates

showed similar evidence of increased heterogeneity during acute

THC as drift rates across experimental conditions typically reflect

a single task-general drift rate factor (22, 23), we averaged the

v.go and v.nogo rates to produce an average drift rate (v.avg)

index for analyses. Posterior distributions for Pearson

correlations were estimated with past year cannabis use

frequency, past month cannabis use frequency, lifetime cannabis

use frequency, CUDIT-R scores, or DEQ difference scores and

within-person difference scores in drift rate (v.avg) or variability

in nondecision time (st0) across THC and placebo conditions.

Relations between cannabis use history and
subjective THC effects

To assess relations between cannabis use history and subjective

THC effects, we performed inferential correlation analyses using

Bayes Factors (BFs) in JASP (59, 60). BFs represent the

likelihood of the data given a specific hypothesis—such as the

hypothesis that the effect size is not 0—compared to the

likelihood of the data under the null hypothesis. For instance, a

BF of 5 suggests that the data are five times more likely under

the research hypothesis than under the null. Conversely, a BF of

0.50 implies that the data are two times more likely under the

null hypothesis. Accordingly, BFs below 1 offer only weak or

inconclusive support for the research hypothesis, while BFs above

1 provide support, with larger BF values indicating increasingly

stronger or decisive evidence.
Results

Participant characteristics

Descriptive statistics are presented in Table 1. On average,

participants were 22 years of age with 15 years of education, and

the sample had slightly more males. Regarding race, 60% of

participants were White, 17% were Asian, 10% were Multiracial,

7% were Black, 3% were Native American, and 3% identified as

“Other”. The majority of participants (77%) were Not Hispanic.

Our sample captured significant variability in cannabis use.

Indeed, past month frequency of cannabis use ranged from 0 to

25 times. Similarly, there was a wide range of past year frequency

of cannabis use, with adolescents and young adults endorsing

between 0 and 286 days of cannabis use in the past year

(Supplementary Table S2) and between 12 and 800 days of
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cannabis use in their lifetime (Supplementary Table S3). Past

year cannabis use frequency was strongly correlated with past

month (r = 0.94) and lifetime (r = 0.60) cannabis use frequency.

With respect to problem cannabis use, 5 participants reported

CUDIT-R scores in the hazardous range. One participant met

criteria for current mild CUD only, one met criteria for both

current and past mild CUD, and 5 had only past CUD.

Participants consumed a mean of 3.75 drinks per week, and 6

participants endorsed any past month nicotine use.
Subjective drug effects

Participants reported feeling significant drug effects and high

during THC sessions compared to placebo sessions (see

Figure 1). Indeed, THC increased feel and high scores (Feel:

THC (M = 28.90, SD = 21.80); placebo (M = 21.89, SD = 17.68); t

(29) = 1.71, p = .049; High: THC (M = 22.98, SD = 23.94); placebo

(M = 13.48, SD = 12.45); t(29) = 2.20, p = .02). Results of

inferential correlation analyses suggested little evidence for

associations between recent cannabis use and subjective drug

effects. Specifically, there was weak evidence for correlations

between past year cannabis use and high and feel scores (High:

r = 0.08, BF = 0.25; Feel: r = 0.27, BF = 0.62). Results were similar

for past month cannabis use, with little evidence for associations

with subjective drug effects (High: r = 0.18, BF = 0.35; Feel:

r = 0.32, BF = 0.91).
Model comparison results

DIC and BPIC values for each model in the comparison

analysis, zero-based for clarity, are displayed in Table 2. Both

information criteria indicated clear inferiority of the null model,
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FIGURE 1

Subjective ratings of drug effects across the drug administration visits. THC significantly increased ratings of feel drug effects and high compared to
placebo.

TABLE 2 Results from the model comparison analysis contrasting models that explain performance differences between the placebo and THC conditions
using all possible combinations of parameters of interest.

Model Drift Rate (v) Boundary separation (a) Nondecision time (t0/st0) Response bias (z) DIC BPIC
Null 0 0 0 0 832.25 712.29

Full 1 1 1 1 17.96 42.08

v 1 0 0 0 451.54 393.91

v_a 1 1 0 0 257.26 215.6

v_t0 1 0 1 0 65.89 43.84

v_z 1 0 0 1 272 229.23

v_a_z 1 1 0 1 222.1 202.54

v_a_t0 1 1 1 0 0 0

v_t0_z 1 0 1 1 69.72 73.13

a 0 1 0 0 535.5 435.71

a_t0 0 1 1 0 189.8 144.01

a_z 0 1 0 1 298.78 226.89

a_t0_z 0 1 1 1 59.59 32.84

t0 0 0 1 0 336.94 258.27

t0_z 0 0 1 1 126.37 75.58

z 0 0 0 1 418.09 334.62

Deviance information criterion (DIC) and Bayesian predicative information criterion (BPIC) values are zero-based for clarity by subtracting the value for the best-fitting model from all values.
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suggesting that there was evidence for performance differences

between the conditions. Both DIC and BPIC indicated that the

model allowing drift rates (v), boundary separation (a), and

nondecision processes (t0/st0) to vary across conditions was the

best-fitting model. The full model displayed worse fit, suggesting

that the start point/bias (z) parameter value was not necessary to

explain experimental differences. Hence, a model allowing v, a,

and t0/st0 to vary across THC and placebo conditions was

retained as the optimal model and estimated in a hierarchal

Bayesian analysis.
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Tests of parameter differences between
placebo and THC conditions

After a burn-in period was completed, the hierarchal model

achieved convergence following 120 iterations of 33 chains,

leaving 3,960 posterior samples available testing differences

between experimental conditions. Posterior distributions for

group means and standard deviations in each experimental

condition are displayed in Figure 2. Despite the results of the

model selection indicating that several parameters displayed
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FIGURE 2

Posterior distributions for group means (left column) and standard deviations (SDs, right column) of each diffusion model parameter in the placebo
(PBO; blue) and THC (green) conditions. Posteriors are displayed as violin plots that feature box plots of the posterior samples surrounded by kernel
density plots of the same samples.
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differences between placebo and THC conditions, there was little

evidence for experimental effects in the group means of drift

rates (v.go μ P = 0.61, v.nogo μ P = 0.62), boundary separation

(a μ P = 0.64), or nondecision processes (t0 μ P = 0.73, st0 μ

P = 0.64). Tests of group standard deviations revealed more

substantial evidence for greater variability in drift rates (v.go σ

P = 0.76, v.nogo σ P = 0.79) and in the upper bound of the

nondecision time distribution (st0 μ P = 0.97) under THC

condition relative to placebo. There was little evidence for

experimental differences in the variability of boundary separation

(a σ P = 0.56) or the lower bound of the nondecision time

distribution (t0 σ P = 0.51). Taken together, these findings

indicate relatively little evidence for systematic differences in

group mean parameter values during acute THC relative to

placebo. However, evidence for greater variability in drift rates

and nondecision processes during acute THC, coupled with the

results of the model comparison analyses supporting differences

in all three types of parameters, suggests that THC acutely

produces heterogeneous effects on the DDM parameters. To

explore sources of this heterogeneity, we evaluated whether

individuals’ difference scores for the experimental effect were

related to cannabis use history and subjective drug effects.
Relationships of cannabis use history and
subjective THC effects with parameter
differences

There was evidence that lower past year cannabis use was related

to both poorer cognitive efficiency after THC (slower GNG drift

rate) (v.avg r = 0.16, P = 0.88; Figure 3), and greater variability in

time spent encoding stimuli or executing motor responses after

THC (more variable non-decision times; st0 r =−0.20, P = 0.97;

Figure 3). Effects were in a similar direction, albeit weaker, with
FIGURE 3

Correlation plot for difference in drift rate between THC and placebo (PBO) c
difference in nondecision time variability between THC and placebo condit
past year cannabis use demonstrated poorer cognitive efficiency (slower G
executing motor responses (more variable non-decision times) during THC
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respect to drift rate (v.avg r = 0.08, P = 0.74), when examining the

effects of past month cannabis use. Participants with less past

month cannabis use demonstrated strong evidence of greater

variability in non-decision time in response to THC

administration (st0 r =−0.21, P = 0.97). Results differed slightly

when examining lifetime cannabis use frequency. Indeed, there

was little evidence that lifetime cannabis use was related to

cognitive efficiency after THC (drift rate) (v.avg r =−0.04,
P = 0.61). However, similar to past year and past month use,

lifetime cannabis use did associate with variability in time spent

encoding stimuli or executing motor responses after THC (non-

decision time variability; st0 r =−0.23, P = 0.98; Figure 4).

Regarding hazardous use, results were similar to past year

cannabis use when examining relationships with CUDIT-R

scores, but the magnitude of associations was smaller and

evidence was weaker (see Figure 5). The correlation between

CUDIT-R scores and cognitive efficiency was in the expected

direction, but small in magnitude and relatively weak in evidence

(v.avg r = 0.08, P = 0.75). Adolescents and young adults with less

hazardous patterns of cannabis use demonstrated evidence of

greater variability in non-decision times (st0 r =−0.13, P = 0.86)

during the THC condition. Inspection of scatterplots of relations

with the st0 parameter (Figures 3, 5) suggested that this

parameter’s relations with cannabis use history may have been

driven by two “high-leverage” points that were 2.72 and 3.85

standard deviations above the group’s mean difference score,

respectively. However, analyses in which these two participants’

data were excluded continued to show effects in the same

direction, albeit with slightly weaker evidence (past year use

r =−0.10, P = 0.76; CUDIT-R r =−0.08, P = 0.70).

There was evidence that individual differences in subjective

drug effects impacted the acute neurocognitive effects of THC.

Indeed, participants that reported higher DEQ “Feel” scores

during THC (vs. placebo), demonstrated poorer cognitive
onditions, and past year cannabis use frequency (left). Correlation plot for
ions, and past year cannabis use frequency (right). Participants with less
NG drift rate) and greater variability in time spent encoding stimuli or
condition.
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FIGURE 4

Correlation plot for difference in nondecision time variability
between THC and placebo conditions, and lifetime cannabis use
frequency. Participants with less lifetime cannabis use
demonstrated greater variability in time spent encoding stimuli or
executing motor responses (more variable non-decision times)
during THC condition.
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efficiency in response to THC (v.avg r =−0.23, P = 0.96; Figure 6).

Results did not support an effect of DEQ “Feel” difference

scores on non-decision time (st0 r = 0.04, P = 0.66). Finally,

participants that reported higher DEQ “High” scores during

THC (vs. placebo) demonstrated poorer cognitive efficiency

(v.avg r =−0.19, P = 0.92) in response to THC. Surprisingly,

participants who reported greater “High” scores during THC had

lesser increases in non-decision time variability (st0 r =−0.23,
μ P = 0.97) during THC intoxication. The relation between

“High” scores and st0 was also robust to the removal of the two

high-leverage points (r =−0.20, P = 0.89; Figure 7).
FIGURE 5

Correlation plot for difference in drift rate between THC and placebo (PBO
nondecision time variability between THC and placebo conditions, and
frequent/hazardous cannabis use) demonstrated poorer cognitive efficienc
lower CUDIT-R scores (less frequent/hazardous cannabis use) demonstrate
responses (more variable non-decision times) in response to THC administ
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Discussion

The current study sought to examine the influence of THC on

neurocognitive performance in a sample of late adolescent and

young adult occasional to regular cannabis users with

considerable variability in their cannabis use history. Our sample

was particularly well-positioned to test study aims and findings

are likely to generalize to typical US adolescents and early adults,

who vary in their cannabis use patterns (2, 61). We applied the

DDM (27) to GNG data within a hierarchical Bayesian modeling

framework in order to improve measurement reliability and

validity by parsing THC’s effects on DDM parameter estimates

that index mechanisms that underlie behavioral performance. We

also explored how individual differences in cannabis use history

impacted acute THC effects on neurocognitive functioning.

Overall, we found little evidence for systematic mean differences

between THC and placebo conditions in any neurocognitive

parameter. Interestingly, we found evidence for greater variability

in THC relative to placebo across both drift rate (cognitive

efficiency) and between-trial variability in nondecision time

(motor response execution), suggesting heterogeneous effects of

THC on GNG performance. Our hypothesis that poorer

neurocognitive performance on GNG following THC

administration would be stronger among individuals with less

recent cannabis use and those who reported experiencing more

subjective drug effects was also supported by evidence.

To our knowledge, this is the first study to apply a

computational modeling approach, the DDM, to a behavioral

task assessing neurocognition in a double-blind acute THC drug

administration study. This represents an advancement from prior

work because the DDM provides reliable and valid measures of

several mechanisms that influence behavioral performance

(22–24, 29, 62). Interestingly, our findings suggested that there
) conditions, and CUDIT-R score (left). Correlation plot for difference in
CUDIT-R score (right). Participants with lower CUDIT-R scores (less
y (slower GNG drift rate), but this was a small effect. Participants with
d greater variability in time spent encoding stimuli or executing motor
ration.
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FIGURE 6

Correlation plot for difference in drift rate between THC and placebo
(PBO) conditions, and difference in DEQ feel score between THC
and placebo conditions (left). Participants with higher DEQ Feel
scores during THC condition demonstrated poorer cognitive
efficiency (slower GNG drift rate) during THC condition.
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were no systematic differences in group mean parameter values

during the THC condition relative to placebo. This is consistent

with two previous studies which utilized the same dose of THC

(7.5 mg) and reported no main effects of THC on GNG

performance (11, 15). Additionally, our results corroborate those

from a prior study that used a slightly higher 10 mg dose of

THC; Borgwardt and colleagues (2008) found no significant

differences for mean inhibition errors or mean reaction times on

GNG between placebo and THC conditions. However,

Bhattacharyya and colleagues (2015) also used a 10 mg dose and

reported that THC acutely increased errors of commission on
FIGURE 7

Correlation plot for difference in drift rate between THC and placebo (PBO)
conditions (left). Correlation plot for difference in nondecision time variability
between THC and placebo conditions (right). Participants with higher DE
efficiency (slower GNG drift rate) and had lesser increases in variability in t
non-decision times) in response to THC administration.
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GNG. Importantly, our sample differed with respect to

participants’ cannabis use history. Whereas all participants in

Bhattacharyya and colleagues’ (2015) study used fewer than 25

times in their lifetime, adolescents and early adults in the current

study endorsed great variability in their use, ranging in using

cannabis from 12 to 800 times in their lifetime. It may be that

the main effect of THC intoxication on neurocognitive

functioning at a relatively low dose is only detectable among

individuals who are cannabis naïve, who use very infrequently, or

who have had abstained from cannabis use for a long period of

time. Importantly, results from the current study revealed greater

between-person variability in drift rates and nondecision

processes in the THC condition, suggesting that the acute effects

of THC produce heterogeneous effects on some DDM

parameters. Taken together with the extant mixed literature in

this area, our findings support the notion that examination of

individual differences that may impact the acute effects of THC

on neurocognition is warranted.

The current study aimed to identify potential sources of

heterogeneity by testing whether tolerance effects may account

for individual differences in neurocognition following THC

administration. Our data were well-positioned to test this

question, as we recruited a sample of late adolescent and young

adults with considerable variability in their cannabis use history.

Notably, there was great variability in use patterns with the

majority of the sample endorsing non-hazardous use, but 23%

(n = 7) of the sample meeting criteria for a lifetime diagnosis of

CUD. Consistent with our hypothesis, results revealed that

participants with less past month and past year cannabis use

demonstrated poorer cognitive efficiency (greater reductions in

drift rates) in response to THC administration. On the other

hand, lifetime cannabis use history was not related to acute THC

effects on cognitive efficiency, providing preliminary evidence
conditions, and difference in DEQ high score between THC and placebo
between THC and placebo conditions, and difference in DEQ High score
Q High scores during THC condition demonstrated poorer cognitive
ime spent encoding stimuli or executing motor responses (less variable
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that perhaps more recent (compared to more distal) cannabis use is

important to consider when examining tolerance effects on

neurocognitive functioning in response to THC intoxication.

Additionally, participants who endorsed low levels of past

month, past year, and lifetime cannabis use, and low CUDIT-R

scores displayed greater variability in time spent encoding stimuli

or executing motor responses in response to THC administration

(more variable non-decision times; st0 parameter). As the

nondecision time parameter is difficult to attribute to any

particular process, however (63), it is unclear which specific

processes may underlie this pattern of increased nondecision

time variability.

Our findings that some effects of THC on cognition appear to

be moderated by recent use are consistent with one prior study

which found that occasional cannabis users (weekly cannabis use

or less) demonstrated poorer neurocognitive performance

following ingestion of 35 mg THC among, while heavy cannabis

users (use more than 4 days/week) generally did not display

evidence of poorer neurocognition (12). Our results extend this

work by utilizing the DDM to decompose several mechanisms of

influence on behavioral task performance, and suggest that both

cognitive efficiency and stimulus response encoding/motor

response execution may be adversely impacted by THC among

adolescents and young adults with less frequent cannabis use.

Further supporting our hypothesis, participants who endorsed

strong drug “effect” and drug “high” on subjective effects measures

demonstrated greater reductions in cognitive efficiency during

THC intoxication. Surprisingly, adolescents and young adults

who reported more strongly feeling “high” following THC

ingestion demonstrated less nondecision time variability during

THC intoxication, spending less time encoding stimuli and

executing their motor response. Again, given previous research

that has found that the nondecision time parameter is difficult to

attribute to a particular neurocognitive or motor process (63),

interpretation of this effect is challenging. Future studies are

needed to replicate and further explore this result. Indeed, this is

the first experimental study, to our knowledge, to demonstrate

that individual differences in subjective drug effects may modify

the acute effects of THC on neurocognition. Previous studies that

fail to account for individual differences in tolerance effects likely

obscure the acute, adverse effects of THC on neurocognition

among individuals with lower tolerance.
Limitations

Findings from the current study should be interpreted within

the context of certain limitations. First, our study was limited by

only one dose (7.5 mg) of THC, as it was drawn from a larger

study which employed fMRI methodology during placebo and

THC sessions, and employing fMRI methodology is expensive

and time-intensive. Still, it may useful for future studies to use

varying doses of THC. Second, our sample size was small,

limiting statistical power. Although we employed Bayesian

statistical methods and primarily examined within-person

differences across experimental conditions to appropriately
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analyze our small sample, it would nonetheless be useful for

future work to recruit larger sample sizes in order to replicate

our results and ensure generalizability. Third, the GNG task was

administered at 45 min post-THC administration close to peak

drug effects (seen around 60 min, see Figure 1), but not during

peak drug effects. Therefore, drug effects on task performance

may have been greater during peak effects; although previous

THC experimental studies using the same dose did not see

significant effects of THC on GNG performance during peak

intoxication (11, 15). Future research is needed to replicate our

results. Fourth, the current sample captured normative cannabis

use patterns among cannabis-using community adolescents and

young adults. Therefore, results may not generalize to clinical

populations with higher levels of psychopathology and future

research with clinical samples is needed. Fifth, all three measures

of cannabis use frequency (lifetime, past year, and past month)

were strongly correlated, limiting our ability to disentangle the

effects of longer-term cannabis use from recent cannabis use.

Future studies may aim to recruit samples that are more varied

with respect to recency of use (e.g., comparing participants who

endorse lifetime cannabis use, but have ceased recent use to

those who are actively using) to provide a more nuanced

understanding of the role of cannabis use tolerance in modifying

acute THC effects on neurocognitive functioning. Finally, while

prior studies have found that development in brain regions and

activations underlying cognitive efficiency appears to plateau or

show only very slight ongoing improvements from mid-

adolescence into young adulthood (30, 64, 65), it is possible that

developmental effects influenced our findings. Future studies may

aim to examine how individual differences in neurocognitive

functioning during THC intoxication differ based on stages of

brain development underlying these abilities.
Implications and conclusions

Findings from the current study suggest that effects of THC on

neurocognitive processing are heterogenous across individuals and

are potentially influenced by individuals’ tolerance effects and

subjective experiences of intoxication. In other words, individuals

who use cannabis more frequently and/or who do not experience

feeling the “effects” or “high” after ingestion of a 7.5 mg dose of

THC do not show THC-induced weaknesses (at a 7.5 mg dose)

in performance on the GNG, likely due to tolerance. Conversely,

our findings demonstrate that adolescents and young adults who

endorse infrequent cannabis use and/or strong subjective THC

effects are particularly susceptible to display worse

neurocognition, specifically in cognitive efficiency, even at a

relatively low dose of 7.5 mg. Additionally, adolescents and

young adults with infrequent cannabis use may show poorer

ability to encode stimuli and execute their motor responses

during THC intoxication. This could have critical public health

implications, suggesting that a wide range of behaviors involving

cognitive efficiency or motor response execution, like driving or

catching oneself from falling, may be weakened at even low doses

of THC among some adolescents who use cannabis infrequently.
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Importantly, these results do not suggest that adolescents and

young adults should increase their cannabis use to avoid adverse

impacts on neurocognitive functioning. Rather, it is likely that

there are complex individual differences in tolerance to THC

intoxication, that are explained in part by recent patterns of

cannabis use and subjective drug effects. Future research should

explore other factors (social context, mood state, etc.) that may

also play a role in impacting the acute effects of THC on

neurocognitive functioning across different dosages. Finally, our

findings support growing consensus that evidence accumulation

models, like the DDM, are fruitful in enhancing psychometrics of

behavioral tasks of neurocognition (22–24).
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