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Topological phononics and acoustics have recently garnered significant attention
due to their promise of a wide range of advanced wave-controlling applications,
including mechanical computing, energy harvesting, and noise isolation.
Topological states are vibrational modes emerging inside frequency bandgaps,
and typically follow the bulk-boundary correspondence, meaning that the
topological features observed at boundaries are determined by the bulk
properties—the unit cell. Traditionally, topological states are characterized by
analyzing the eigenvectors of the effective Hamiltonian of a given unit cell.
However, this approach presents challenges when a rapid and accurate
design is needed to achieve desirable topological characteristics as it often
involves trial and error to obtain the ideal unit cell parameters. In this study,
we propose a rigorous methodology to inversely design one-dimensional
diatomic lattices based on the topological properties of complex phase loci,
derived from the off-diagonal elements of the effective Hamiltonian. We discuss
three representative shapes of complex phase loci: ellipse, epitrochoid, and
hypotrochoid. Our methodology can be further expanded to higher
dimensions, enabling more complex geometric designs for versatile
topological phononic and acoustic features.
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1 Introduction

Topological insulators (TIs) are materials that possess intrinsic bandgaps while being
conducive on non-trivial surfaces, edges, or corners (Haldane, 1988; Hasan and Kane, 2010)
due to the emergence of topological states. The number of topological states can typically be
characterized using a topological invariant derived from their bulk properties—a concept
known as the “bulk-boundary correspondence.” Unlike trivial states, topological states of
TIs are resilient to local perturbations and demonstrate high conductivity, making them
promising for next-generation electronic and photonic devices (Qi and Zhang, 2011; Xu
et al., 2017; Politano et al., 2017).

In recent years, research into acoustoelastic and phononic analogs of TIs has gained
momentum due to their unique ability to control phononic waves in unconventional ways.
These analogs are robust against disorders, exhibiting no backscattering (Roman and
Sebastian, 2015; Nash et al., 2015; Ma et al., 2018; Pal et al., 2016; Fleury et al., 2016),
allowing them to function effectively as phononic waveguides (Al Ba’ba’a et al., 2021; Wang
et al., 2015; Ma et al., 2019; Mousavi et al., 2015), diodes (Liu et al., 2017; Zhou et al., 2020),
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logic gates and switches (Pirie et al., 2022; Bahrami and Bahrami,
2024; Li et al., 2024), and acoustic topological field-effect transistors
(Lee et al., 2022). Meanwhile, the inverse design of acoustoelastic
metamaterials to optimize topological states has also been proposed
(Christiansen et al., 2019; Du et al., 2020; Ding et al., 2024). Like their
electronic counterparts, phononic topological states also appear to
adhere to the principle of bulk-boundary correspondence and can be
characterized by a topological invariant derived from the spectral
evolution of the mechanical equivalent of Hamiltonian or
eigenvector obtained through unit-cell analysis. For instance, the
mechanical analog of the Su–Schrieffer–Heeger (SSH) model
consists of identical masses, m connected by springs with
alternating spring constants k1 and k2 (Figure 1A). Such a
mechanical system effectively yields an identical Hamiltonian to
that of a typical SSH model. When k1 ≠ k2, a bandgap opens in the
dispersion diagram (Figure 1B) and a complex (closed-loop) phase
function naturally emerges (Figure 1C). The topological invariant of
such a case is represented by the winding number, ], of the circular
phase function in the complex plane around the plane’s origin
(Asbóth et al., 2016). Systems with different winding numbers
are rendered topologically distinct, and it has been commonly
acknowledged that the difference in ] between two topologically
distinct domains indicates the number of topological states at the
domain boundary.

However, recent studies have shown that systems with more
complex connection networks, such as alternating non-local
interactions in SSH models (Rajabpoor Alisepahi et al., 2023;
Rajabpoor Alisepahi and Ma, 2024; Grundmann, 2020; Liu et al.,
2023), can exhibit multiple domain boundary states due to a higher ]

enabled by the presence of third-nearest neighbors. Additionally, the
winding trajectories in these systems differ from the circular paths
seen in the simple SSH model, which only considers nearest
neighbors (Figure 1A). Instead, these phase loci exhibit
interesting shapes with intricate internal loops. Moreover,
contrary to common belief, the presence of non-local interactions
means that details in the shapes of these phase loci—such as the
Berry connection in one dimension (1D) (Rajabpoor Alisepahi et al.,
2023; Cajić et al., 2024) and Berry phase in 2D (Dal Poggetto et al.,
2024)—are crucial for determining the actual number of topological
states between two domains with different ] values. This is more
significant than merely considering the difference in the winding
number ] (Rajabpoor Alisepahi et al., 2023; Cajić et al., 2024). These
details truly reflect the actual number of domain boundary states,
representing the phonon realization of the Jackiw–Rebbi
modes—that is, the number of topological states is de facto
determined by the number of Dirac points (Rajabpoor Alisepahi
et al., 2023; Jackiw and Rebbi, 1976) —rather than by the winding
numbers. Therefore, an analytical description of the detailed
winding trajectories of these loci is essential for accurately
characterizing the topology of systems with complex
connection networks.

While it is now established that coupling beyond nearest
neighbors in diatomic lattices uncovers new types of winding
trajectories of the complex phase, controlling these trajectories
and their overall shapes remains an open challenge. To address
this knowledge gap, we propose a novel methodology that enables
the selection of complex phase trajectories and facilitates the inverse
design of a diatomic lattice exhibiting these intricate phase

FIGURE 1
(A) Schematic of a diatomic lattice with a circular complex phase locus. (B) Typical dispersion diagrams with the cases of k2 < k1, k2 � k1, and k2 > k1,
corresponding to topologically trivial, transition (bandgap closing), and topologically non-trivial cases. Note that Ω � ω

����
m/k

√
, where k � k1 + k2 in this

case. (C) Complex phase loci ϵ projected on the complex plane for the three cases in subfigure (B).
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functions. We begin by revisiting the conventional diatomic lattice,
characterized by a circular complex phase locus, and then discuss
three representative locus shapes: ellipse, epitrochoid, and
hypotrochoid. A step-by-step inverse design process is outlined
for creating diatomic lattices that embody these complex loci.
Furthermore, we establish connections between the mathematical
features of these complex closed-loop locus geometries and the
inversely designed diatomic lattices, analyzing their impact on the
winding number through detailed parametric studies. By
introducing this inverse-design methodology, our study lays the
foundation for realizing wave-based acoustic and mechanical
devices with complex and unconventional topological features,
which are unattainable using simple lattices and structures.

2 Inverse design methodology

2.1 Revisiting the 1D Su–Schrieffer–Heeger
model: the circular locus

To introduce our inverse design methodology for complex
closed-loop locus geometries, we begin our discussion by
revisiting the well-established simple 1D mechanical analog of
the SSH model with identical masses, m, and alternating springs
with stiffness parameters, k1 and k2 (Figure 1A). The governing
dynamical equations describing the displacements (i.e., the first and
second degrees of freedom uj and vj) of the two masses in unit cell j,
the stiffness matrix of the mechanical system, and the corresponding
dispersion relation can be found in Appendix A. The topological
features are primarily represented by the chiral matrix, C(q), which
is derived by eliminating the identical diagonal elements from the
stiffness matrix (which is also the effective Hamiltonian) and is given

C q( ) � 0 −ϵ†
−ϵ 0

[ ], (1)

where q is the wavenumber. The off-diagonal elements, ϵ and ϵ†, are
complex conjugates; ϵ will be the focus of our discussion now. Here,
ϵ is referred to as the “complex phase locus,” which is a complex
function of the wavenumber q and stiffness parameters k1 and k2; it
is expressed as,

ϵ � k1 + k2e
iq. (2)

As detailed in Appendix A, the eigenvalues of C(q), denoted as
λ, can then be solved as:

λ � ±|ϵ|/m. (3)

Results of the normalized eigenvalues Ω2 � mλ/k (with
k � k1 + k2) for q ∈ [−π, π] and different relationships between
k1 and k2 are presented in Figure 1B.

We now focus on how ϵ dictates the topology of the diatomic
lattice. If ϵ in Equation 2 is depicted in the complex plane for a
complete cycle of the wavenumber q ∈ [0, 2π], the result is a perfect
circle with a radius of k2 and a center shifted horizontally by k1 from
the origin. This can be easily proven by transforming the expression
ϵ into the form:

ϵ � x + iy, (4)

with x � R(ϵ) (y � I(ϵ)) being the real (imaginary) part of ϵ.
Using Equations 2, 4, the x and y values can be shown as:

x � k1 + k2 cos q( ), (5a)
y � k2 sin q( ), (5b)

once again, representing a circle with the radius being k2 as shown in
Equations 5a, b and the parametric variable (or angle) being q. The
shift of the circle’s center in the x-direction is also evident by the
addition of k1 in Equation 5a. As shown in Figure 1C, the center of
the circle is at the coordinates (k1, 0), located on the positive
real axis, since k1 > 0 is required for dynamical stability (k2 > 0 is
also enforced for the same reasoning). From the figure, we can count
the number of times the locus ϵ winds about the origin of the
complex plane—the winding number, ]—which characterizes the
topological domain-boundary states of this simple SSH lattice. Such
a winding number can be equivalently computed using the
following integral:

] � ∫π
−π
B q( )dq, (6)

where B(q) is the Berry connection, defined as per Chiu et al. (2016):

B q( ) � 1
4πi

tr σ3C
−1∂qC[ ]. (7)

Here, σ3 denotes the third Pauli matrix and tr[·] represents the
matrix trace.

For the conventional diatomic lattice, where the complex phase
locus is given by Equation 2, the Berry connection can be derived
analytically. This involves evaluating the inverse and the q-derivative
of the chiral matrix C(q) in Equation 1 and substituting them into
Equation 7. The resulting expression for the Berry connection is
as follows:

B q( ) � k2 k2 + k1 cos q( )( )
2π k21 + k22 + 2k1k2 cos q( )( ). (8)

By performing the integral in Equation 6 for the Berry
connection (i.e., the integrand) in Equation 8 using MATLAB’s
symbolic toolbox, we obtain the winding number:

] � 1
2

1 − sgn
k1 − k2
k1 + k2

[ ]( ). (9)

The topological invariant—the winding number μ as expressed
in Equation 9—can thus be summarized as follows:

] � 1 k2 > k1
0 k2 < k1

{ (10)

As observed from Figures 1B, C, if k1 < k2, the locus ϵ will wind the
origin once, ] � 1, suggesting the choice of the unit cell being
topological and vice versa.

In the following sections, we will inversely design diatomic
lattices with complex networks based on the shape of ϵ given by
the relationship between x and y in Equation 4. Three examples of
complex phase loci will be presented to demonstrate how to design a
mechanical network system to achieve desired topological
characteristics.
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2.2 Ellipse

In this section, the inverse design methodology for a diatomic
lattice based on an elliptical complex phase locus is detailed. Herein,
the masses, m, of the inverse-designed lattices are assumed to be
constant throughout this study, and emphasis is placed on the spring
interconnections. Using Equation 4, the parametric form the x and y
coordinates for an ellipse, with its center being on the positive
real axis, are given by:

x � k1 + k2 cos q( ), (11a)
y � k3 sin q( ). (11b)

Here, k1 shifts the center of the ellipse from the origin of the
complex plane, similar to its role in Equation 5a for a circular locus.
The parameters k2 and k3 define the semi-major and semi-minor
axes of the ellipse, respectively. Substituting Equations 11a, 11b into
Equation 4, we obtain the following:

ϵ � k1 + k2 + k3
2

eiq + k2 − k3
2

e−iq. (12)

Notice that Equation 12 reduces to Equation 2 when k2 � k3, as
a circle is a special case of an ellipse. The parameters k1, k2,
and k3 not only define the geometry of the ellipse but also
determine the properties of the springs interconnecting the
diatomic lattice.

To inversely design a lattice from the complex phase locus
expressed in Equation 12, we need to understand the roles of
each term constituting ϵ in conjunction with the Bloch theorem.
Recall that the terms ϵ and ϵ† are the off-diagonal elements in the
chiral matrix C in Equation 1, which describes the coupling between
the unit cell’s degrees of freedom. For instance, ϵ represents the
coupling between the second degree of freedom in the current unit
cell vj and the first degree of freedom uj. The latter can be in the
current cell or any other cell, expressed through the term e±iq.
Similarly, ϵ† couples the first degree of freedom to the second
in any cell.

Thus, we can establish the interconnecting network between the
two degrees of freedom based on the following three characteristics
of Equation 12:

• Characteristic 1: The term k1 couples the two degrees of
freedom within the current unit cell j, i.e., uj and vj, as it
is independent of the wavenumber q.

• Characteristic 2: The second term, (k2 + k3)/2, is multiplied by
eiq, indicating that the second degree of freedom in cell j, i.e.,
vj, is coupled with the first degree of freedom in the next cell,
j + 1, expressed as uj+1 � ujeiq per the Bloch theorem,
through a spring constant (k2 + k3)/2.

• Characteristic 3: The third term, (k2 − k3)/2, is multiplied by
e−iq, suggesting that vj is connected with the first degree of
freedom in the previous cell, j − 1, i.e., uj−1 � uje−iq, through a

FIGURE 2
(A) Schematic of a diatomic lattice with a complex phase locus of an ellipse. (B) Dispersion diagrams of the lattice in Subfigure (A)with a constant k3
and k2 < k1, k2 � k1, and k2 > k1. Note thatΩ2 � mλ/k, where k � k1 + k2 in this case. (C) Complex phase loci ϵ projected on the complex plane for the three
cases in subfigure (B). Analogous to the diatomic lattice with nearest neighbor interactions only (Figure 1), the lattice is topologically non-trivial only if the
locus (the ellipse in this case) winds the origin once (] � 1), which happens if k2 > k1.
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spring constant of (k2 − k3)/2, which requires a beyond-
nearest-neighbor connection. To ensure dynamical stability,
k3 < k2 must be enforced.

Based on these three characteristics, the degrees of freedom are
connected as described, resulting in the diatomic lattice in Figure 2A,
with the unit-cell equations of motion being:

m€uj + k1 + k2( )uj − k1vj − k2 + k3
2

( )vj−1 − k2 − k3
2

( )vj+1 � 0,

(13a)
m€vj + k1 + k2( )vj − k1uj − k2 − k3

2
( )uj−1 − k2 + k3

2
( )uj+1 � 0.

(13b)
We can observe that if the degrees of freedom in Equations 13a,

b are condensed via the Bloch theorem, the resulting stiffness matrix
will have constant diagonal elements of k � k1 + k2 despite the
introduction of a new spring constant k3. Interestingly, the
diagonal elements of the stiffness matrix for the diatomic lattice
in Figure 2A are identical to those of a conventional diatomic lattice
(Figure 1A) without next-nearest-neighbor connections, (see
Appendix A). This similarity arises from the cancellation of the
equal magnitude but opposite sign stiffnesses k3/2 from the nearest
and next-nearest couplings.

To reveal the topological properties of the diatomic lattice with
an elliptical phase locus in Figure 2A, the winding number is
calculated by performing the integral in Equation 6 for the chiral
matrix C in Equation 1 with ϵ defined in Equations 11a, b. This
process yields a closed-form expression for the winding number:

] � 1
2

1 − sgn
k1 − k2
k3

[ ]( ). (14)

As with the conventional diatomic lattice with a circular locus in
Figure 1C, the winding number is defined via Equation 14,
indicating that it only depends on k1 and k2, provided that k3 > 0
to ensure dynamical stability. Figures 2B, C illustrate the dispersion
relation and the corresponding complex phase loci, respectively, for
three cases: (i) topologically trivial k2 < k1, (ii) topological transition
k2 � k1 with the sole bandgap closed, and (iii) topologically

nontrivial k2 > k1. The last case can be inferred by the winding of
the ellipse around the origin of the complex plane (i.e., ] � 1 as
indicated by Equation 10), which is clearly seen in the right-most
panel of Figure 2C.

2.3 Epitrochoid

Next, we shift our focus to a more complex family of loci known
as epitrochoids, whose general form is depicted in Figure 3A.
Epitrochoids are closed-loop roulettes generated by tracing a
point fixed at a distance k4 (initially pointing to the negative real
axis) from the center of a circle with radius k3. Termed the
“epicycle,” this circle rolls counterclockwise without slipping
around the outside surface of a stationary circle of radius k2,
completing a closed loop. The stationary circle is assumed to
have its center on the positive real axis, with a horizontal
distance of k1 from the origin of the complex plane. Here, we
define an integer n that takes a value greater than 2; its relationship
to the inversely-designed lattice will be explained shortly.
Additionally, depending on the epitrochoid parameters, this
integer n determines the number of internal loops the
epitrochoid may exhibit—specifically n − 1 internal loops.

From the general epitrochoid locus, various special cases can be
derived by selecting different sets of parameters. For instance, when
k3 � k4 and n≥ 2, we obtain epicycloids (Figure 3Bi). When k3 � k2
and n � 2, we obtain a limaçon (also known as “Pascal’s snail”),
similar to the system briefly discussed by Chen et al. (2018). For the
latter, a looped limaçon (Figure 3Bii) occurs when k4/k3 > 1,
transitioning to a non-looped limaçon when k4/k3 � 1, at which
point the curves take the shape of an epicycloid with a single cusp
(often called a “cardioid”). When 1/2< k4/k3 < 1, the limaçon curve
loses its inner loop and features a dimple instead (Figure 3Biii).
Further reduction of the ratio below one-half smooths out the curve
to a convex limaçon until k4 approaches 0, at which point the
limaçon converges to a circle (Figure 3Biv). Note that n � 1 also
results in a circle of radius k2 + k3 − k4, which is not of interest in
this work. As discussed next, the parameters k1 through k4 will be
related to the spring constants of a diatomic lattice via the inverse
design methodology.

FIGURE 3
(A) Complex phase locus of an epitrochoid shape, shown for n � 7, resulting in n − 1 internal loops; its geometrical properties are related to the
stiffness parameters in the diatomic lattice (Figure 4). (B) Multiple special cases of the epitrochoid shown for reference, along with their respective
parameters, including (i) epicycloid, (ii) looped limaçon, (iii) dimpled limaçon, and (iv) circle.
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Again, the inverse design of a diatomic lattice with an
epitrochoid complex phase locus starts by explicitly stating x and
y parametric expressions in Equation 4 for an epitrochoid, which are
given by:

x � k1 + k2 + k3( )cos q( ) − k4 cos
k2
k3

+ 1( )q( ), (15a)

y � k2 + k3( )sin q( ) − k4 sin
k2
k3

+ 1( )q( ). (15b)

To construct the complex phase locus ϵ with the
epitrochoid roulette, the factor multiplied by the wavenumber
in the cosine/sine arguments in Equations 15a, b must be
an integer n. Therefore, k2/k3 + 1 � n, mandating that
k2 � (n − 1)k3. Thus, the parametric equations in (Equations
15a, b) reduce to:

x � k1 + nk3 cos q( ) − k4 cos nq( ), (16a)
y � nk3 sin q( ) − k4 sin nq( ). (16b)

Substituting Equations 16a, b back into Equation 4 provides the
expression of ϵ as:

ϵ � k1 + nk3e
iq − k4e

inq. (17)
Following the methodology presented in Section 2.2, the

diatomic lattice corresponding to the complex phase locus in
Equation 17 is shown in Figure 4. Note that due to the negative
stiffness k4 coupling (as implied by Equation 17), an elastic
foundation must be implemented to prevent dynamical
instability. Consequently, adding an elastic foundation stiffness
equal to twice k4 is recommended. This adjustment results in the
following equations of motion for the unit cell:

m€uj + k1 + k2 + k3 + k4( )uj − k1vj − k2 + k3( )vj−1 + k4vj−n � 0,

(18a)
m€vj + k1 + k2 + k3 + k4( )vj − k1uj − k2 + k3( )uj+1 + k4uj+n � 0.

(18b)
After utilizing k2 + k3 � nk3, Equations 18a, b become

m€uj + k1 + nk3 + k4( )uj − k1vj − nk3vj−1 + k4vj−n � 0, (19a)
m€vj + k1 + nk3 + k4( )vj − k1uj − nk3uj+1 + k4uj+n � 0. (19b)

FIGURE 4
Schematic of a diatomic lattice with coupling beyond next neighbors, resulting in a complex phase locus of epitrochoid shape.

TABLE 1 Summary of possible winding numbers for an epitrochoid complex
locus.

Parity
of n

k1 ≫nk3, k4 nk3 ≫ k1, k4 k4 ≫ k1,nk3 Other

Odd ] � 0 ] � 1 ] � n ] � 2, 4, . . .

Even ] � 0 ] � 1 ] � n ] � 1, 3, . . .

FIGURE 5
Barycentric triangles, showing the winding numbers (left) and bandgap width (right) for n � 5 and swept values k1, k3, and k4, such that
k � k1 + nk3 + k4, for a diatomic lattice with epitrochoid complex locus. Five distinct regions are obtained, each of which corresponds to a specificwinding
number, ], with the boundaries in-between representing the transitional states when the bandgap closes, occuring at |ϵ| � 0. Note that the sole bandgap
significantly grows in size when approaching the corners of the Barycentric triangles, i.e., k1 → k, nk3 → k, or k4 → k.
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The topology of the diatomic lattice with an epitrochoid locus
depends on the choice of the three stiffness parameters k1, k3, and k4,
as k2 and k3 are dependent (as discussed above). Since k1 + nk3 + k4
in Equations 19a, b represents the sum of the spring constants
connected to each mass in the lattice and remains constant, we
define this spring constant as k � k1 + nk3 + k4. Recall that the
integer n denotes the connection between one of the degrees of
freedom in the current cell j and its counterpart in the (j − n)th cell.
Therefore, the choice of k1, k3, and k4 is constrained by a given set of
k and n.

As illustrated in Figure 3, the parameter k1 determines the center
position of the complex locus, while k2 � (n − 1)k3 governs the size
of the main loop. The stiffnesses k3 and k4 control the size of the
epitrochoid’s internal loops, if present. When the internal loops are
much smaller than the main loop (i.e., when k4 ≪ k3), the system

FIGURE 6
Dispersion relations and complex phase loci of five distinct topological states of epitrochoid diatomic lattices obtained by varying stiffness
parameters k1, k3, and k4 with the constraint of k � k1 + nk3 + k4 when n = 5 Choices of k1, k3, and k4 corresponding to each ] are summarized in Table 2.
Note that ϵ is normalized with respect to k.

TABLE 2 Selected combinations of stiffness parameters and their
corresponding winding numbers for the lattices with epitrochoid and
hypotrochoid complex phase loci, shown in Figures 6 and 10, respectively.
Note that n � 5 and k � k1 + nk3 + k4 are satisfied for all cases.

Stiffness
parameters

Winding number (])

Set
no.

k1 nk3 k4 Epitrochoid Hypotrochoid

1 3k/5 k/5 k/5 0 0

2 k/5 3k/5 k/5 +1 +1

3 k/5 k/5 3k/5 +5 −5

4 k/3 k/3 k/3 +2 −1

5 0.275k 0.275k 0.45k +4 −3
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exhibits only two possible winding numbers: 0 and +1, depending on
whether k2 + k3 � nk3 is smaller or greater than k1. This behavior
aligns with that of a simple SSH model with weak or negligible non-
local interactions. As the non-local spring constant k4 increases, the
internal loops grow in size and begin to wind around the
origin counter-clockwise. The winding number then assumes
positive odd or even integers when n is even or odd, respectively.
This phenomenon can be attributed to the symmetry of the
locus about the real axis. When k4 ≫ nk3 and k1 is relatively
small, the size of the internal loops approaches that of the main
loop, resulting in the maximum possible winding number,
equal to n. A summary of possible winding numbers for an
epitrochoid complex locus is shown in Table 1, and examples of
winding numbers for various cases of n are provided
in Appendix B.

Additionally, it is important to note that the maximum number
of Dirac points in the first Brillouin zone, corresponding to the

number of band crossings when the bandgap is closed, is n. This
corresponds to the difference between the maximum and minimum
values of ]. This observation aligns with the phonon realization of
the Jackiw–Rebbi theory (Jackiw and Rebbi, 1976) in lattices with
non-local interactions, as discussed by Rajabpoor Alisepahi
et al. (2023).

For example, consider the case of n � 5. Here, five distinct
topological states are observed, corresponding to winding
numbers of ] � 0, 1, 2, 4, and 5, as depicted in the barycentric
triangle in Figure 5. When the combination of these stiffness
parameters varies along the transition boundaries between
regions of different winding numbers, the bandgap closes when
|ϵ| � 0, indicating topological transitions. Note that the numerical
procedures for calculating μ follows Pal et al. (2018).

It is worth noting that the bandgap’s width increases
significantly near the corners of the Barycentric triangle,
which correspond to the cases k1 → k, nk3 → k, or k4 → k

FIGURE 7
(A) Complex phase locus of a hypotrochoid shape, shown for n � 7, resulting in n + 1 internal loops. Its geometrical properties are related to the
stiffness parameters in the inverse-designed diatomic lattice (Figure 8). (B) Special cases of the hypotrochoid transforming into simpler geometries, each
with their respective parameters.

FIGURE 8
Schematic of a diatomic lattice with coupling beyond next neighbors, resulting in a complex phase locus of hypotrochoid shape.

TABLE 3 Summary of possible winding numbers for a hypotrochoid complex locus.

Parity of n k1 ≫nk3, k4 nk3 ≫ k1, k4 k4 ≫ k1,nk3 Other

Odd ] � 0 ] � 1 ] � −n ] � −1,−3, . . .

Even ] � 0 ] � 1 ] � −n ] � −2,−4, . . .
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FIGURE 10
Dispersion relations and complex phase loci of the five distinct topological states of hypotrochoid diatomic lattices when n � 5, obtained by varying
stiffness parameters k1, k3, and k4 with the constraint of k � k1 + nk3 + k4. Choices of k1, k3, and k4 corresponding to each ] are summarized in Table 2.
Note that ϵ is normalized with respect to k.

FIGURE 9
Barycentric triangles, showing the winding numbers (left) and bandgap width (right), for n � 5 and swept values k1, k3, and k4, such that
k � k1 + nk3 + k4, for a diatomic lattice with a hypotrochoid complex locus. Five distinct regions are obtained, each of which corresponds to a specific
winding number, ], with boundaries in-between representing the transitional states when the bandgap closes (i.e., when |ϵ| � 0). Note that the sole
bandgap significantly grows in size when approaching the corners of the Barycentric triangles, when k1 → k, nk3 → k, or k4 → k.
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(Figure 5). This behavior arises because the bandgap width is
strongly influenced by the degree of space inversion symmetry
(SIS) breaking within a unit cell. Near the corners of the
Barycentric triangle, SIS is significantly disrupted due to large
disparities between the nearest neighbors (near the top two
corners) and the beyond-nearest neighbors (near the bottom
corner). At the center of the triangle, where the strengths of k1,
nk3, and k4 are comparable, the symmetry-breaking effects of
nearest and beyond-nearest neighbors compete. This
competition leads to intermediate values of the winding
number ] and weakens the overall symmetry-breaking effect,
resulting in a narrower bandgap. Therefore, the area of each ] in
the barycentric triangle does not directly correlate with the
bandgap width. Instead, the bandgap width is determined by
the specific combination of k1, nk3, and k4, which governs the
extent of SIS breaking.

To highlight the difference between the topologically distinct
regions, five representative combinations of stiffness parameters are
selected and listed in Table 2. Their corresponding dispersion relations,
calculated using Equation 3 in conjunction with Equation 17, as well as
their complex phase loci, are presented in Figure 6.

2.4 Hypotrochoid

This section explores complex phase loci in the shape of
hypotrochoids. These closed-loop roulettes are generated like the
epitrochoids discussed in Section 2.3, with the definitions of
parameters k1 through k4 remaining unchanged (Figure 7A).
However, there are two key differences in terms of the rotation
of the epicycle: (1) it rolls without slipping on the inside surface of
the stationary circle in the counterclockwise direction, and (2) the
distance k4 fixed to the epicycle is initially oriented to the positive
real axis. Like the epitrochoid case, an integer n≥ 1 is defined, and a
hypotrochoid may exhibit n + 1 internal loops, depending on its
parameters. This integer n plays a crucial role in the inverse design of
a diatomic lattice with a hypotrochoid complex locus, as will be
elaborated shortly.

Under special conditions, a generic hypotrochoid complex phase
locus can transform into more simplified geometries (Figure 7B). For
instance, it becomes a hypocycloid when k3 � k4 and n≥ 2 (Figure 7Bi)
and an ellipse when n � 1, k2 � 2k3 and k4 ≠ k3 (Figure 7Bii). In the
special case of an ellipse, the minor and major axes are equal to k3 − k4
and k3 + k4, respectively, reinforcing that a zero k4 results in a circle
(with a radius of k3) (Figure 7Biii). Additionally, the ellipse collapses to
a line when k3 � k4, resulting in a looped line, often referred to as the
“Tusi mechanism” (Figure 7Biv).

Following Equation 4, a hypotrochoid roulette in the complex
plane is defined via the following x and y parametric functions:

x � k1 + k2 − k3( )cos q( ) + k4 cos
k2
k3

− 1( )q( ), (20a)

y � k2 − k3( )sin q( ) − k4 sin
k2
k3

− 1( )q( ). (20b)

As in the case of the epitrochoid, the factor multiplied by the
wavenumber in the cosine/sine arguments in Equations 20a, b must

be an integer. Therefore, k2/k3 − 1 � n (or k2 � (n + 1)k3), which, in
combination with Equations 4, and 20a, b yields the following
complex phase locus:

ϵ � k1 + nk3e
iq + k4e

−inq. (21)
After constructing the diatomic lattice corresponding to ϵ in

Equation 21, as shown in Figure 8, the following equations of motion
for the unit cell are derived:

m€uj + k1 + k2 − k3 + k4( )uj − k1vi − k2 − k3( )vj−1 − k4vj+n � 0,

(22a)
m€vj + k1 + k2 − k3 + k4( )vj − k1uj − k2 − k3( )uj+1 − k4uj−n � 0,

(22b)
which, after using k2 − k3 � nk3, simplify to:

m€uj + k1 + nk3 + k4( )uj − k1vi − nk3vj−1 − k4vj+n � 0, (23a)
m€vj + k1 + nk3 + k4( )vj − k1uj − nk3uj+1 − k4uj−n � 0. (23b)

Topological transitions in lattices featuring hypotrochoid loci
are achieved by tuning the stiffness parameters k1, k3, and Equations
23a, 23b k4. As in the case of epitrochoid loci, k1 determines the
center position of the complex locus, k2 � (n + 1)k3 governs the size
of the main loop, and k3 and k4 control the size of the internal loops,
if present. Mirroring the epitrochoid loci, when the internal loops
are significantly smaller than the main loop (i.e., when k4 ≪ k3), the
winding number is either 0 or +1, depending on whether k2 −
k3 � nk3 is smaller or greater than k1. As the non-local spring
constant k4 increases, the internal loops may begin to wind around
the origin in a clockwise direction, and the winding number assumes
negative odd or even integers, matching the parity of the integer n.
This progression continues until k4 ≫ nk3, at which point the size of
the internal loops approaches that of the main loop. Assuming that
k1 remains relatively small, the system reaches its maximum possible
winding number, ] � −n. A summary of possible winding numbers
for hypotrochoid complex loci is provided in Table 3, and examples
of winding numbers for various cases of n are detailed
in Appendix B.

Similar to the epitrochoid complex phase loci, the maximum
number of Dirac points in the first Brillouin zone is n, matching the
difference between the maximum and minimum values of ].

Using n � 5 as an example, we numerically calculate the winding
numbers for all combinations of stiffness parameters within the
constraint k � k1 + nk3 + k4. As with the epitrochoid complex phase
loci, we identify five distinct winding numbers of
] � 0, +1, −1, −3, and, −5, separated by boundaries where the
bandgap closes (precisely at |ϵ| � 0), as shown in the barycentric
triangle in Figure 9. Like the epitrochoid case, when the combination
of stiffness parameters relatively small along the transition
boundaries between regions of different winding numbers, the
bandgap closes, signaling topological transitions. Furthermore,
the bandgap reaches its maximum size when k1, nk3 or k4
approaches k (Figure 9). Five representative combinations of
stiffness parameters (listed in Table 2) are selected to showcase
their corresponding dispersion relations, winding number, and
complex phase loci (Figure 10).

Frontiers in Acoustics frontiersin.org10

Al Ba’ba’a and Ma 10.3389/facou.2025.1529474

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2025.1529474


3 Conclusion

Previous studies have demonstrated that topological states in
one-dimensional phononic crystals are determined not only by
the winding numbers but also by the shapes and trajectories of
complex phase loci derived from the off-diagonal elements of the
chiral stiffness matrices, which is related to the number of Dirac
points in the first Brillouin zone (Rajabpoor Alisepahi et al.,
2023). In this study, the characteristics that define the shapes and
trajectories of complex phase loci are analyzed. Using these
characteristics, we inversely designed intricate networks of
diatomic lattices. We focused on three categories of complex
phase loci: ellipse, epitrochoid, and hypotrochoid. Our analysis
revealed that their shapes and trajectories are influenced by
interactions between the diatomic lattice’s degrees of freedom
beyond the nearest neighbors. The possible winding numbers
emerging in each category of complex phase loci have been
studied, and parametric studies are compactly represented via
barycentric triangles. The implementation of these complex
mechanical networks can be achieved by incorporating non-
local interactions as shown by Rajabpoor Alisepahi et al.
(2023) and Chen et al. (2021).

The methodologies presented in this study can be extended to
higher-dimensional systems by analyzing the characteristics of
complex phase surfaces or Berry curvatures. These rigorous tools
for designing phononic crystals with desired topological
characteristics can enable the rapid and accurate design
of phononic and acoustic devices with ideal topological
properties, such as one-way wave propagation and multiple
localized states. These features will advance the development of
mechanical and acoustic technologies, including mechanical
computing, noise reduction, and energy harvesting, where
topological states offer robust solutions for these applications.
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Appendix A: Mathematical model of
typical diatomic lattices

Consider the jth unit cell of the diatomic lattice shown in
Figure 1A, which is comprised of identical masses m and
alternating springs k1 and k2. The unit cell has two degrees of
freedom, denoted uj and vj, with the following equations of motion:

m€uj + k1 + k2( )uj − k1vj − k2vj−1 � 0, (A.1a)
m€vj + k1 + k2( )vj − k1uj − k2uj+1 � 0. (A.1b)

Next, we define the degrees of freedom vector uj(t) � uj vj{ }T
and the Bloch-wave solution:

uj t( ) � ~u q( )ei jqa−ωt( ), (A.2)

where ~uj(q) � ~uj ~vj{ }T is the complex amplitude vector, a is the
lattice constant (assumed to be one throughout this work), i � ���−1√
is the imaginary unit, q is the wavenumber, ω is the frequency, and t
is time. By plugging in Equation A.2 into Equation A.1, the
equations of motion can be cast into an eigenvalue problem:

K q( )~u q( ) � mω2~u q( ), (A.3)
where K(q) is the stiffness matrix and is given by:

K q( ) � k −ϵ†
−ϵ k

[ ]. (A.4)

The constant diagonal elements of K(q) are k � k1 + k2, and the
superscript † denotes the complex conjugate of the off-diagonal

component ϵ (i.e., the complex phase locus). The dispersion relation
can be derived by finding the eigenvalues of Equation A.3 as:

ω �
���������
1
m

k ±|ϵ|( )
√

. (A.5)

Interestingly, shifting the eigenvalues of matrix K(q) by k
(equivalently shifting ω2 by k/m) does not influence the
topological properties of the diatomic lattice, given the constant
diagonal elements of the matrix. As such, we shall focus on the
topological properties of the chiral matrix:

C q( ) � K q( ) − kσ0 � 0 −ϵ†
−ϵ 0

[ ], (A.6)

resulting in the following eigenvalue problem:

C q( )~u q( ) � mλ~u q( ), (A.7)
where λ � ω2 − k/m is the shifted eigenvalue and σ0 represents the
zeroth Pauli matrix (equal to an identity matrix of size 2 × 2).

Appendix B: Numerical simulations for
winding numbers

For various values of n, the possible winding numbers for both
epitrochoid and hypotrochoid complex phase loci are numerically
generated under the constraint k � k1 + nk3 + k4. A summary of
these winding numbers is provided in Table A1.

TABLE A1 Examples of the winding numbers generated for the epitrochoid and hypotrochoid complex phase loci with various n values.

Value of n Epitrochoid Hypotrochoid

n � 2 ] � 0, 1, 2 ] � 0, 1,−2

n � 3 ] � 0, 1, 2, 3 ] � 0, 1,−1,−3

n � 4 ] � 0, 1, 3, 4 ] � 0, 1,−2,−4

n � 5 ] � 0, 1, 2, 4, 5 ] � 0, 1,−1,−3,−5

n � 6 ] � 0, 1, 3, 5, 6 ] � 0, 1,−2,−4,−6
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