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The diffuse field sound absorption coefficient (SAC) of a sound absorber can be
obtained from an average over the incidence angles of the oblique incidence
plane wave SAC. The plane wave SAC can be derived from the plane wave
complex-valued reflection coefficient defined as the ratio of the reflected sound
pressure at a given point on thematerial surface to the incident sound pressure at
the same point. In practice, the material is excited by a monopole, and the
reflection coefficient becomes a local quantity which is a function of the source
height and the radial distance from the source. This local reflection coefficient
obtained at various points on the material surface is commonly used to
approximate the oblique incidence plane wave reflection coefficient. The
error in estimating the diffuse field SAC introduced by this approximation has
not been explored in the literature. This paper investigates this error as a function
of the material extent, thickness, and source height using an analytical approach
to calculate the local reflection coefficient. The calculation is based on Allard’s
model which describes the sound propagation above an infinite lateral extent
porous material backed by a rigid wall and excited by a monopole. Using finite
element simulations as a reference, the analytical model is shown to provide a
good approximation of the diffuse field sound absorption performance of
sufficiently large material areas. The diffuse field SAC calculated from plane
wave reflection coefficients and local reflection coefficient are compared. The
limitations inherent in deriving diffuse field SACs from local reflection
measurements obtained with a monopole are highlighted.
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1 Introduction

One of the key metrics used in evaluating and comparing materials’ sound absorption
capabilities is the Sound Absorption Coefficient (SAC). SACs depend on the nature of the
incident sound field. Typically, idealized incident fields such as diffuse field and normal or
oblique incidence plane waves are employed in practical assessments.

For a homogeneous material with infinite lateral extent excited by an oblique incidence
plane wave at an incidence angle θ, the SAC—denoted as αpw(θ,ω)—can be determined
using the complex-valued reflection coefficient—denoted as R̂(θ,ω)—where ω represents
the angular frequency. R̂(θ,ω) is defined as the complex-valued ratio of the reflected sound
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pressure at a specific point on the material surface to the incident
sound pressure at the same point. This coefficient is intricately
linked to the material surface impedance Ẑs (Pierce, 1989).
αpw(θ,ω) can then be obtained from the relationship
αpw(θ,ω) � 1 − |R̂(θ,ω)|2. In the scenario of a plane wave and
homogeneous material, the reflection coefficient (and thus the SAC)
remains independent of the position of the point on the material
surface. The diffuse field SAC can be derived from an averaging
process over the incidence angles of αpw(θ,ω) (Allard and
Atalla, 2009).

In practical applications, the material is excited by a monopole,
and the reflection coefficient, denoted as R̂loc(r, zs,ω), is a local
quantity (Nobile, 2005; Dragonetti and Romano, 2015; Dragonetti
et al., 2016) influenced by the source height zs and radial distance r
from the source. This local reflection coefficient R̂loc(r, zs,ω),
measured at different points on the material surface, is
commonly utilized to approximate R̂(θ,ω). In this context, θ,
determined by zs and r, represents the angle between the normal
to the material surface and the line connecting the source position to
the point of interest on the material surface. An associated local
sound absorption coefficient, αloc(r, zs,ω), can then be calculated.
αloc(r, zs,ω) may exhibit significant variation across the material
surface and is influenced by material dimensions as well as the
incident wave-front impinging upon it (Dragonetti and
Romano, 2015).

R̂loc(r, zs,ω), or equivalently R̂loc(θ, zs,ω) since r � zs tan θ, is
typically estimated using a microphone doublet positioned at a short
distance from the material. Implicit in this process is the assumption
that, locally, the incident and reflected fields demonstrate
characteristics similar to a plane wave. Once R̂loc(θ, zs,ω) has
been determined for multiple incidences by varying the
measurement point along the material surface and subsequently
substituted for R̂(θ,ω), the diffuse field SAC can be obtained by
averaging αpw(θ,ω) over the various incidence angles.

Alternatively, based on reciprocity and assuming that
the material is homogeneous, R̂loc(θ, zs,ω) values measured
with a microphone doublet above the material surface for a
monopole source moved at various positions (synthetic array) in
free-field conditions can be utilized in a synthesis method to
retroactively compute the SAC for any incident sound field,
particularly a diffuse field (Robin et al., 2014; 2019). Although
the approximation of R̂(θ,ω) by R̂loc(θ, zs,ω) introduces a
degree of error, the conditions under which the error in
estimating the diffuse field SAC from R̂loc(θ, zs,ω) is
minimized (taking into account the effect of material size,
thickness, and/or source height) have not been thoroughly
explored in the literature.

Another approach to estimating the SAC of an absorber is to
directly use a power-based definition. In this regard, the SAC can be
defined as the ratio of the sound power absorbed by a given area of
the material to the incident sound power flowing through the same
area. This definition, utilizing an area-averaged SAC, provides a
more representative estimate for the overall surface (Kuipers et al.,
2012, 2014). Recently, the area-averaged effective SAC of a rigid-
backed homogeneous porous material subjected to a monopole
excitation—referred to as αmon—has been investigated using both
analytical and finite element models (Sgard et al., 2024). The impact
of factors such as source height, material lateral extent, and material

characteristics (thickness and acoustical properties) on αmon have
been highlighted. It has been demonstrated that the sound
absorption performance of porous materials under monopole
excitation significantly differs from that observed under plane
wave and diffuse field excitations, especially at low frequencies
when the source is in close proximity to the material. It should
be noted that unlike SAC derived from the local reflection coefficient
which can be measured using a microphone doublet, assessing αmon

requires either the measurement of sound powers (Kuipers et al.,
2014, 2012) or the estimation of the complex effective density and
wave number either through direct measurement (Allard et al.,
1992) or use of a model (e.g., Johnson-Champoux-Allard (JCA))
linking these variables with porous material intrinsic parameters
which can themselves be determined using various techniques
(Allard and Atalla, 2009). The area-averaged effective SAC is an
interesting indicator for assessing the overall sound absorption
performance of the material.

This study is fully based on theoretical and numerical models. Its
objective is to investigate the extent to which the diffuse field SAC of
a porous material, αd,loc, can approximate the traditional diffuse field
SAC, referred to as αd, calculated from plane wave reflection
coefficients. With the assumption of sufficiently large finite size
materials, the investigation relies on Allard’s model (Allard et al.,
1992) to describe the sound propagation above the porous material.
This model also allows fast calculations for parametric studies. For
small finite size materials whose sound absorption performance is
affected by lateral boundary conditions, αd,loc can be calculated
alternatively using a numerical method such as the finite element
(FE) approach. This numerical approach serves as a reference
solution to verify the results of the proposed analytical model
and allows one to establish the limits of the analytical model by
discussing the effect on αd,loc of the material finite size along with its
associated boundary conditions.

The paper is organized as follows. Section 2 presents the
theoretical developments for calculating the SAC based on
Allard’s model for the sound propagation above a rigid-frame,
infinite-lateral-extent porous material excited by a monopole.
Next, common definitions of the SAC based on plane wave and
diffuse field excitations are recalled. In Section 3, the SAC αd,loc
calculated from Allard’s model is verified using a numerical finite
element (FE) approach. Then, the capability of the analytical model
to provide SAC values for porous material samples of finite size is
assessed by comparing them with FE calculations across various
sizes, thicknesses, and boundary conditions. Furthermore,
numerical comparisons between αd,loc and αd, for different
monopole heights, material lateral extents, and material
thicknesses are conducted to assess associated errors. Section 3
concludes with a discussion on the limitations of the study, while
Section 4 outlines its conclusions.

2 Materials and methods

2.1 Allard’s model

In the following, the convention p(r, z, t) � R[p̂(r, z,ω)ejωt] is
used where p̂ denotes the complex sound pressure, p̂*, R[p̂],I[p̂]
and |p̂| denote its complex conjugate, real part, imaginary part and
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absolute value, respectively. a(t) denotes the time average over a
period of the time dependent quantity a(t). Assuming cylindrical
symmetry, we consider a monopole of volume flow rate Q̂ located at
(0, 0, zs) in a fluid of density ρ0 and sound speed c0 above a porous
material cylindrical sample of radius rmax and thickness d of porosity
ϕ backed by a rigid surface (Figure 1).

The porous material should behave as an equivalent fluid of
complex equivalent density ρ̂m (effective density ρ̂m,e � ρ̂m

ϕ ) and wave
number k̂m. For a material of infinite lateral extent (rmax → ∞), the
sound pressure at any point above the porous material is given by
(Thomasson, 1977; Allard et al., 1992):

p̂ r, z,ω( ) � jρ0ωQ̂
e−jk0R1

R1
− e−jk0R2

R2
+ ∫+∞

0

2ρ̂m,e

ρ̂m,e ]̂0 + ρ0 ]̂m tanh ]̂md( )e
−]̂0 zs+z( )J0 rkr( )krdkr( )

(1)

where r � ������
x2 + y2

√
is the radial distance between the source and the

receiver and z denotes the vertical distance between the point of
interest and the material surface. J0 is the zeroth-order Bessel

function. In addition, R1 �
�����������
r2 + (zs − z)2

√
, R2 �

�����������
r2 + (zs + z)2

√
,

]̂20 � k2r − k20, ]̂
2
m � k2r − k̂

2

m. k0 is the wave number in air, and kr
refers to a radial wave number. For the receiver (r, z), an incidence
angle θ can be defined (Figure 1). Eq. 1 can also be rewritten as

p̂ r, z,ω( ) � p̂inc r, z,ω( ) + p̂ref r, z,ω( ) (2)
where

p̂inc r, z,ω( ) � jρ0ωQ̂
e−jk0R1

R1
(3)

is the incident sound pressure field and p̂ref(r, z,ω) is the reflected
sound pressure field given by:

p̂ref r, z,ω( ) � jρ0ωQ̂ −e
−jk0R2

R2
+ ∫+∞

0

2ρ̂m,e

ρ̂m,e ]̂0 + ρ0 ]̂m tanh ]̂md( )e
−]̂0 zs+z( )J0 rkr( )krdkr( )

(4)

2.2 Calculation of the SAC

2.2.1 Oblique incidence—Plane wave excitation
The oblique incidence plane reflection coefficient for a given

incidence angle θ can be computed from the material surface
impedance Ẑs(θ,ω) by:

R̂ θ,ω( ) � Ẑs θ,ω( ) cos θ − Z0

Ẑs θ,ω( ) cos θ + Z0

(5)

where Z0 is the acoustic characteristic impedance of air. For an
equivalent fluid of thickness d with a rigid backing,

Ẑs θ,ω( ) � −jẐc,m ω( )
k̂m cot d

�����������
k̂
2

m − k20 sin
2 θ

√( )
ϕ

�����������
k̂
2

m − k20 sin
2 θ

√ (6)

with Ẑc,m the characteristic impedance of the material given by
Ẑc,m � ωϕ

ρ̂m,e

k̂m
. The oblique incidence plane wave SAC is then

given by:

αpw θ,ω( ) � 1 − R̂ θ,ω( )
∣∣∣∣∣ ∣∣∣∣∣2 (7)

2.2.2 Oblique incidence—monopole excitation
For a monopole excitation, the local sound absorption

coefficient can be computed from the local reflection coefficient

FIGURE 1
Description of the problem of interest.

Frontiers in Acoustics frontiersin.org03

Sgard et al. 10.3389/facou.2024.1414356

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2024.1414356


referred to as R̂loc(θ, zs,ω) � R̂loc(r, zs,ω) given by the ratio of
p̂ref(r, 0,ω) and p̂inc(r, 0,ω):

αloc θ, zs,ω( ) � 1 − R̂loc θ, zs,ω( )
∣∣∣∣∣ ∣∣∣∣∣2 (8)

with tan θ � r
zs
. In this study, p̂inc(r, 0,ω) and p̂ref(r, 0,ω) are

calculated using Eqs. 3 and 4 respectively, assuming that ρ̂m,e and
k̂m are known. It is important to recall that Eq. 8 assumes that, locally,
the incident and reflected fields demonstrate characteristics similar to
a plane wave. When this assumption fails, this expression needs to be
revisited (see e.g., Sgard et al. (2024)). In an experimental framework,
R̂loc(θ, zs,ω) is typically estimated from the transfer function
between two microphones (microphone doublet) located at a short
distance from the material surface (Robin et al., 2014; 2019). This
microphone doublet approach allows for separation of the incident
sound pressure from the reflected one without any need to know ρ̂m,e

and k̂m. It is worth noting that, using reciprocity, the local reflection
coefficient R̂loc(r, zs,ω) can be obtained by keeping the receiver at a
fixed position and varying the source position or keeping the source at
a fixed location and changing the receiver position. Note that by using
the stationary phase approximation, Eq. 3 reduces to the plane wave
case when |]̂0zs| becomes large (Allard and Atalla, 2009).

2.2.3 Diffuse field
The diffuse field (or random incidence) SAC can be obtained

from the oblique incidence plane wave SAC by Paris (1928):

αd θmax,ω( ) � ∫θmax

0
αpw θ,ω( ) cos θ sin θdθ
∫θmax

0
cos θ sin θdθ

(9)

where αpw(θ) is obtained by Eq. 7. θmax is theoretically equal to 90+.
In practical applications, as is common for sound transmission loss
(Hopkins, 2007; Bies and Hansen, 2014), smaller empirical values
(typically 78+) can be used for better correlations between
predictions and field or laboratory measurements (field
incidence). In addition, it is notable that when the diffuse field
SAC is calculated using field synthesis approaches based on an array
of monopoles above a lateral finite size material (e.g., of radius rmax)
and a fixed microphone doublet (referred to as αsynth), better
agreement between αsynth and αd is achieved when values of θmax

corresponding to the largest incidence angle in Eq. 9 are selected
(Robin et al., 2019). This incidence angle is determined from the size
and the height of the array and is related to the solid angle that the
array subtends from the microphone doublet position.

Alternatively, the diffuse field SAC of a material sample of radius
rmax can be approximated in terms of the local reflection coefficient
R̂loc(θ, zs,ω) obtained for a monopole excitation (height zs) at
various angles θ (or equivalently at various radial distances on the
material surface):

αd,loc θmax, zs,ω( ) � ∫θmax

0
αloc θ, zs,ω( ) cos θ sin θdθ
∫θmax

0
cos θ sin θdθ

� 2
z2s

r 2
max

+ 1( )∫rmax

0
1 − R̂loc r, zs,ω( )

∣∣∣∣∣ ∣∣∣∣∣2( ) z2s r

z2s + r2( )2 dr
(10)

which constitutes an approximation of the diffuse field sound
absorption coefficient calculated from Eq. 9. In Eq. 10, the value of

θmax has been obtained from the solid angle that the material
subtends from the source position (see Figure 1)— tan θmax � rmax

zs
.

This angle corresponds to the maximum incidence angle
achievable for a sample of radius rmax excited by a monopole of
height zs. It is important to note that αd,loc is an approximate
effective SAC indicator, not a power-based area-averaged effective
SAC (Kuipers et al., 2012; 2014; Sgard et al., 2024). It can thus yield
anomalous and counterintuitive SAC values (including negative
values) when the plane wave approximation fails to hold.

In the above equations, all the integrals are computed
numerically using a vectorized adaptive quadrature method
(integral Matlab R2023b® Mathworks routine for 1D-integrals
and integral2 for 2-D integrals) (Shampine, 2008).

3 Results and discussion

The different models previously presented utilize the complex
effective density ρ̂m,e and wave number k̂m, which are determined
using the Johnson–Champoux–Allard (JCA) equivalent fluid model
(Allard and Atalla, 2009). The five macroscopic parameters
necessary for this model were measured at the GRAM-ICAR
laboratory at the École de Technologie Supérieure (Montreal,
Canada) using conventional direct characterization apparatus
(porosimeter, tortuosimeter, and resistivity meter), supplemented
by impedance tube measurements (an indirect method is used for
determining viscous and thermal characteristic lengths). The porous
material under investigation in this study is a melamine foam
described by a rigid frame model, and the corresponding JCA
parameters are listed in Table 1. The parameters for the air are
ρ0 = 1.2 kg m-3 and c0 = 343.96 m s-1.

3.1 Verification of the proposed approach

The calculation of the SAC αd,loc (Eq. 10) based on the local
reflection coefficient obtained with Eq. 3 and 4 is verified through
comparison with a FE model solved in COMSOL Multiphysics
6.2. This FE model has been validated by comparing the
simulated and measured transfer function between two
microphones above a finite extent melamine sample for two
different source positions (Berry, 2024; Sciard et al., 2024) and
therefore serves as a reference. To replicate the configuration of
the analytical model—consisting of a rigid-backed laterally
infinite material coupled to a semi-infinite air domain—the FE
model incorporates a cylinder with a sufficiently large radius Rsph

and thickness d backed by a rigid wall. The porous material
interfaces with a hemispherical air domain of radius Rsph. A
perfectly matched layer (PML) ring of thickness t is placed
around the air sphere to simulate the Sommerfeld condition.
Along the lateral boundary of the porous material, another PML
is applied to absorb waves radially, simulating the material’s
infinite nature in this direction. The monopole source is assumed
to be positioned on the cylinder axis at height zs above the
material. Given the axisymmetric nature of the problem, a 2D-
axisymmetric model is solved (see Figure 2A for a cross-section
in the (r, z) plane). In Figure 2A, the orange line denotes the
interface between the porous material and the air, while the
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vertical green edge corresponds to the PML boundary condition
for the porous material. The SAC αd,loc defined by Eq. 10 is
computed using both the analytical and the FE models on a disk
of radius rmax (surface S delineated by a dashed black line). In the
FE model, the local reflection coefficient R̂loc(r, zs,ω) is
calculated from the reflected sound pressure obtained by
making the difference between the total sound pressure above
the material resulting the FE solving and the incident sound
pressure given by Eq. 3.

In the ensuing analysis, computations are conducted within the
frequency range of 50–2000 Hz for a 5 cm-thick melamine material,
with a θmax value of 78° examined at two different source heights
(zs = 0.2 m and 1 m). This corresponds to two distinct radii: rmax =
0.94 m and 4.7 m. The FE model used values of Rsph = 8 m and t =
8 cm. The JCA parameters in Table 1 are used for the analytical
approach and the FEmodel. The FEmeshes allow for convergence of
the SAC αd,loc calculations up to 2000 Hz.

Figure 2B plots αd,loc between 50 Hz and 2000 Hz with a
frequency step of 10 Hz. Excellent agreement between the
analytical model and the FE model is obtained for both source
positions, verifying the analytical model for calculating αd,loc.

3.2 Finite size effect and boundary
conditions of the porous material

In practice, the porous sample is of finite size. However when
calculating αd,loc (Eq. 10) using the analytical model based on

Eqs 3 and 4, the reflected sound pressure field utilized in Eq. 4 is
the one above a material with infinite lateral extent. Thus, the
analytical model does not account for the scattering due to the
finite size, nor considers the boundary condition on the lateral
side of the sample. If the analytical model is to be used to estimate
αd,loc of a sample of radius rmax, the error committed by
neglecting the aforementioned effects must be evaluated. This
is achieved by comparing the SAC obtained through the
analytical model with that obtained through a FE model of a
material sample of finite size and given boundary conditions.
Thus, the FE model configuration comprises a porous material
cylinder of radius rmax and thickness d, situated within a semi-
anechoic room and resting on a rigid floor (Figure 3A).

The finite element (FE) model resembles that depicted in
Figure 2A. The porous material is coupled with a hemispherical
air domain of radius Rsph surrounded by a PML of thickness t. This
configuration is devised to emulate a semi-infinite air domain. In
Figure 3A, the interface between the porous material and the air
domain is delineated by the black–orange dashed line. The green line
indicates the lateral boundary of the porous material. Two distinct
boundary conditions are applied to this vertical edge: a rigid-wall
boundary condition, termed the “rigid frame”, and a coupling
condition, labeled the “no frame”. The former involves
surrounding the material with a rigid frame (null normal particle
velocity) while the latter establishes a coupling between the porous
material and the surrounding air, ensuring continuity of sound
pressure and normal particle velocity. Subsequently, R̂loc(r, zs,ω) is
computed for both the analytical and FE models and substituted in

TABLE 1 Johnson–Champoux–Allard’s parameters for the porousmaterial under study (FR: Flow resistivity, VCL: viscous characteristic length, TCL: thermal
characteristic length).

Porosity [1] Tortuosity [1] FR [N.s.m-4] VCL [μm] TCL [μm]

Melamine foam 0.97 1.02 8644 123 168

FIGURE 2
(A) 2D-axisymmetric finite elementmodel of an infinite lateral extent porousmaterial used for verification (cross-section in the (r, z) plane) [Adapted with
permission from (Sgard et al., 2024). Copyright 2024, Acoustical Society of America.] (B) Sound absorption coefficient αd,loc of a melamine foam (d � 5 cm) for
θmax = 78°–comparison between the present analytical approach (Analytical) and FE simulation (FEM) for two source heights zs = 0.2 m and zs = 1 m.
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Eq. 10 to obtain αd,loc. Similarly to section 3.1, in the FE model, the
local reflection coefficient R̂loc(r, zs,ω) is calculated from the
reflected sound pressure obtained by making the difference
between the total sound pressure above the material resulting the
FE solving and the incident sound pressure given by Eq. 3. For the
FE model, values t = 8 cm and Rsph � rmax + 0.5m are used, and the
meshes allow for convergence of αd,loc in the frequency band of
interest (50-4,000 Hz).

Computations have been conducted for a melamine foam
specimen (see Table 1 for parameters). Figure 4 displays a
comparative analysis between the analytical model and FE
simulations under “rigid frame” and “no frame” boundary
conditions for various radii rmax and source heights, considering
two material thicknesses of 5 cm and 20 cm. Notably, the thickness
of the material may exert a discernible influence on the
manifestation of boundary effects. Angle θmax, corresponding to
the solid angle that the material subtends from the source position,
has been fixed at 78+, which corresponds to field incidence. Source
heights of zs � 0.1 m, 0.2 m, 0.4 m, and 1 m have been considered.
The sample radii rmax � 0.47 m, 0.94 m, 1.88 m, and 4.7 m were
selected accordingly using rmax � zs tan θmax (Figure 3B).

Figure 4 shows that for the material sizes and the two
thicknesses considered here, there is no difference between the
“rigid frame” and “no frame” boundary conditions for αd,loc
computed with the FE approach. Above 600 Hz, both
analytical and FE models yield the same results. Consequently,
in this frequency range the material finite size has no effect on
αd,loc. Discrepancies between the analytical and FE models arise at
low frequencies (<600 Hz for rmax �0.47 m, <400 Hz for rmax �
0.94 m, <300 Hz for rmax � 1.88 m, and <200 Hz for rmax � 4.7 m).
As expected, the impact of the finite size is more pronounced as
rmax (size) decreases and d (thickness) increases. For rmax ≥ 1.88m
(Figures 4C, D), the deviations stay minor (maximum
values <0.04 for d = 5 cm and <0.08 for d = 20 cm) below
150 Hz. For rmax � 0.94 m (Figure 4B), the discrepancies remain
minimal and occur below 400 Hz (maximum values <0.08 for
d = 5 cm and <0.11 for d = 20 cm). For rmax � 0.47m (Figure 4A), the

magnitude of deviations slightly increases with maximum values of
0.14 for d = 5 cm and 0.15 for d = 20 cm below 210 Hz. Consequently,
if one’s focus lies on scenarios involving materials whose
characteristics align with what is studied in this paper, assuming a
minimum sample dimension rmax greater than about 1 m ensures that
the boundary effects of the material are of minor importance, and
employing the analytical model yields accurate approximations of
αd,loc across materials with finite size of radius rmax. To accurately
assess the acoustic absorption behavior of the material samples when
their radial extents fall below 1m and frequencies are below 600 Hz, it
is necessary to incorporate considerations for both finite size and
boundary conditions, such as utilizing a Finite Element (FE)modeling
approach. It must be noted that the identified limit of 1 m relies upon
specific material properties, thicknesses, and source heights explored
in this study, which could vary depending on configurations diverging
from those presented herein. Therefore, caution should be exercised
when extrapolating these findings outside the scope of the current
investigation. Subsequently, only material samples with radius rmax

larger than 1 m will be considered and the analytical model will be
employed to calculate the associated αd,loc.

3.3 Use of αd,loc to approximate αd

The goal of this section is now to assess the limits of using the
diffuse field SAC αd,loc (Eq. 10) obtained from the oblique incidence
local reflection coefficient under a monopole excitation for various
receiver locations on the material surface to approximate the classical
diffuse field SAC αd (Eq. 9) calculated from plane wave reflection
coefficient. It should be recalled that for values of rmax larger than
about 1 m, the analytical model based on Eq. 10 for calculating αd,loc
provides a very good approximation to results obtained for finite-size
materials of radius rmax.

Figures 5 and 6 display the corresponding SACs of a melamine foam
(see Table 1) for thicknesses of 0.01m, 0.05m, and 0.2 m as a function of
frequency for three source heights (20m, 2m, and 0.2 m) and two values
of limit angle θmax, respectively. Recall that θmax corresponds to the

FIGURE 3
(A) 2D-axisymmetric FE model of a finite size rigid-backed porous material (cross-section in the (r, z) plane) [Adapted with permission from (Sgard
et al., 2024). Copyright 2024, Acoustical Society of America.] (B) Source positions andmaterial lateral extents rmax of interest corresponding to θmax � 78+

Frontiers in Acoustics frontiersin.org06

Sgard et al. 10.3389/facou.2024.1414356

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2024.1414356


maximum angle of incidence that could be achieved whenmeasuring the
local reflection coefficient using, for example, amicrophone doublet. This
angle is obtained when the microphone doublet is located at the outer
boundary of thematerial. The corresponding radial distance is thus equal
to rmax. Since the limit angles and the monopole heights are fixed, values
of rmax corresponding to θmax are determined using rmax � zs tan θmax in
the calculation of αd,loc. In the following, θmax is equal either to 90+ or
78+. θmax � 90+ corresponds to an infinite lateral extent material. In
order to obtain the SAC of a laterally infinite material, the value of rmax is
increased progressively by doubling its value at each step, starting from

rmax � 1 m until the metric ϖ � ∑
f

Δαd,loc(f)/∑
f

α(N)
d,loc(f) is below

0.005 in the frequency range of computation (50–4,000 Hz). In the

previousmetric, the sum∑
f

is carried out over discrete frequencies in the

interval 50–4,000 Hz (frequency step of 10 Hz). In addition, Δαd,loc
represents the absolute value of the difference between the value of αd,loc
calculated at steps N and N-1—that is, for rmax � r (N−1)

max � 2N−1 m and
for rmax � r (N)

max � 2N m. Sufficiently large values of rmax are thus chosen
for αd,loc to converge towards αd,loc,∞ according to the criterion
ϖ≤ 0.005. θmax � 78+ corresponds to the common value used for
field incidence. In this case, the radial distances rmax associated with
the three source heights are indicated in the legends of Figures 6A–C.

To quantify the global error over the whole frequency range of
interest between αd,loc and αd, a relative error defined as ϖr �∑
f

|αd,loc(f) − αd(f)|/∑
f

αd(f) is introduced. One also considers

a frequency referred to as fc above which the absolute error between
αd,loc(f) and αd(f) is less than a given threshold ϵ. The
approximation is considered good when ϵ = 5%. Tables 2 and 3
display the values of ϖr and fc for the considered configurations
when θmax � 90+ and 78+, respectively.

3.3.1 Case θmax � 90+

Table 2 and Figure 5 show that for a given thickness, fc

decreases with the source height. αd,loc is a good approximation
of αd at mid to high frequencies for zs � 2m and zs � 0.2 m and at all
frequencies for zs � 20 m (source in the far field). Below fc, αd,loc is
always smaller than αd and can even be negative. This potential for
negative values arises from the approximation inherent in Eq. 8,
which assumes that the incident and reflected sound pressure field
wavefronts are planar—a condition that does not hold true at low
frequencies as mentioned in Sections 2.2.2 and 2.2.3. In general,
when thickness d of the material increases for a given source height
(zs � 0.2 m and zs � 2 m), the frequency fc beyond which a good
approximation holds is shifted to lower frequencies (Table 2). One

FIGURE 4
αd,loc as a function of frequency for 5 cm thick and 20 cm thick melamine for various source heights and values of rmax for θmax � 78+ (see Figure 3B).
Comparison between the present approach (analytical) and FE simulation accounting for two different material lateral boundary conditions (rigid frame
and no frame) for (A) rmax � 0.47 m, zs � 0.1 m (B) rmax � 0.94 m, zs � 0.2 m (C) rmax � 1.88 m, zs � 0.4 m, and (D) rmax � 4.7 m, zs � 1 m.
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exception is observed when the thickness is changed from 1 cm to
5 cm for zs � 20 m where frequency fc rather increases but the
difference between the two frequencies is very small and is close to
the lower limit of the frequency band of interest. The approximation
deteriorates at low frequencies when the source gets closer to the
material and the material gets thinner. Overall, as seen in Table 2,
global error ϖr decreases with the material thickness for a given
source height and with the source height for a given thickness.

3.3.2 Case θmax � 78+

When θmax is reduced to 78+, increasingly smaller material
surfaces are involved as zs decreases (Figure 3B). Overall, Table 3
shows that the global error ϖr for a given configuration is
reduced when compared to θmax � 90+. The same trends as
Table 2 are observed regarding the error decrease with the
material thickness for a given source height and with the
source height for a given thickness. Figure 6 indicates that

FIGURE 5
Comparison of two ways (Eqs 9, 10) of calculating the sound
absorption coefficients for three source heights 20 m, 2 m, and 0.2 m
as a function of frequency for θmax � 90+ and a melamine of thickness
d (A) 1 cm (B) 5 cm (C) 20 cm.

FIGURE 6
Comparison of two ways (Eqs 9, 10) of calculating the sound
absorption coefficients for the source heights 20 m, 2 m, and 0.2 m as
a function of frequency for θmax � 78+ and a melamine of thickness d
(A) 1 cm (B) 5 cm (C) 20 cm.
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similar observations as for θmax � 90+ can be made in the case
θmax � 78+.

4 Conclusion

This study numerically investigated the error between the
diffuse field SAC αd of a porous material, calculated from plane
wave reflection coefficients and that obtained from local oblique
incidence reflection coefficients for a monopole excitation,
referred to as αd,loc. The local reflection coefficient has been
analytically determined using Allard’s model, which describes
sound propagation above a porous material of infinite lateral
extent backed by a rigid wall and excited by a monopole.
Comparisons have been made between αd,loc and αd for a
melamine foam sample as functions of material extent,
thickness, and source height for two limit angles.

The key findings are:

• The analytical model provides a good approximation of the
local SAC αd,loc for finite-size materials, with a radius
exceeding 1 m for the configurations studied. However,
the threshold value may vary for other configurations
(material properties, thickness, source height). In
general, for materials of finite lateral extent, a more
sophisticated model (e.g., FE) can be used to predict
αd,loc very accurately. The analytical model enables
calculation of SAC αd,loc for an infinite material, using
substantial values of radius rmax.

• αd,loc was found to be a good approximation of the diffuse field
SACαd for randomandfield incidences atmid to high frequencies,
but its accuracy decreases at low frequencies, especially when the
source is close to the material and the material is thin.

• Increasing the monopole height improves accuracy at lower
frequencies, provided that the material area is chosen
appropriately relative to the source height to ensure the
proper limit angle.

• For material surfaces typically encountered in laboratory
conditions and when the source is close to the material,
one can expect to approximate the field incidence diffuse

field αd using αd,loc only at mid to high frequencies and for
sufficiently thick materials.

Additional simulations for other homogenous porous materials
(felt, fibers, and foams similar to those considered in Sgard et al.
(2024)) were conducted using the analytical model within its
domain of validity. Although not reproduced here for sack of
concision, these simulations showed similar trends in the
application of αd,loc as an approximation of αd. Further work
would involve an experiment to corroborate the numerical
observations.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors without undue reservation.

Author contributions

FS: Conceptualization, Formal Analysis, Funding acquisition,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. NA:
Conceptualization, Methodology, Software, Validation,
Writing–review and editing. OR: Writing–review and editing.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This research
has been funded by IRSST (grant 2018-0027).

Acknowledgments

The authors acknowledge the support of the IRSST for
funding this research. This paper benefited from the
application of OpenAI’s GPT-3, version 3.5, generative AI

TABLE 2 Values of frequency fc for αd,loc and values of error ˆr between αd,loc and the reference αd in each configuration for θmax � 90+

d � 1 cm d � 5 cm d � 20 cm

zs [m] 0.2 2 20 0.2 2 20 0.2 2 20

fc [Hz] (αd,loc) 2905 600 50 1125 505 95 805 235 70

ϖr (αd,loc) 0.290 0.048 0.005 0.131 0.032 0.004 0.059 0.013 0.002

TABLE 3 Values of frequency fc for αd,loc and values of the error ˆr between αd,loc and the reference αd in each configuration for θmax � 78+

d � 1 cm d � 5 cm d � 20 cm

zs [m] 0.2 2 20 0.2 2 20 0.2 2 20

fc [Hz] (αd,loc) 2735 495 50 1120 500 50 805 235 70

ϖr (αd,loc) 0.264 0.041 0.005 0.121 0.028 0.003 0.058 0.013 0.001

Frontiers in Acoustics frontiersin.org09

Sgard et al. 10.3389/facou.2024.1414356

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2024.1414356


technology, which was employed to enhance the linguistic
accuracy and quality of the content.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Allard, J.-F., and Atalla, N. (2009). Propagation of sound in porous media: modelling
sound absorbing materials. 2nd edn. Wiley-Blackwell.

Allard, J.-F., Lauriks, W., and Verhaegen, C. (1992). The acoustic sound field above a
porous layer and the estimation of the acoustic surface impedance from free-field
measurements. J. Acoust. Soc. Am. 91 (5), 3057–3060. doi:10.1121/1.402941

Berry, A. (2024).Development of a measurement system for the characterization of absorbent
treatments in the laboratory by optimization of an innovativemethod and creation of a database
of absorption coefficients (in french ‘Développement d’un système de mesure pour la
caractérisation des traitements absorbants en laboratoire - Optimisation d’une méthode
innovante et création d’une base de données de coefficients d’absorption’). Research Report
R-1186-fr. Montréal, QC, Canada: IRSST, 131.

Bies, D. A., and Hansen, C. H. (2014). “Engineering noise control: theory and
practice,”. 3rd edn. London: CRC Press. doi:10.1201/9781482264739

Dragonetti, R., Opdam, R., Napolitano, M., Romano, R., and Vorländer, M. (2016).
Effects of the wave front on the acoustic reflection coefficient. Acta Acustica united
Acustica 102 (4), 675–687. doi:10.3813/AAA.918984

Dragonetti, R., and Romano, R. A. (2015). Considerations on the sound absorption of non
locally reacting porous layers. Appl. Acoust. 87, 46–56. doi:10.1016/j.apacoust.2014.06.011

Hopkins, C. (2007). Sound insulation. 1st edn.Amsterdam:Elsevier/Butterworth-Heinemann.

Kuipers, E. R., Wijnant, Y. H., and De Boer, A. (2012). A numerical study of a method
for measuring the effective in situ sound absorption coefficient. J. Acoust. Soc. Am. 132
(3), EL236–EL242. doi:10.1121/1.4745839

Kuipers, E. R., Wijnant, Y. H., and De Boer, A. (2014). Measuring sound absorption:
considerations on the measurement of the active acoustic power. Acta Acustica united
Acustica 100 (2), 193–204. doi:10.3813/AAA.918699

Nobile, M. A. (2005). The spherical wave absorption coefficient of a patch of material.
J. Acoust. Soc. Am. 85 (S1), S61. doi:10.1121/1.2027070

Paris, E. T. (1928). L.On the coefficient of sound-absorption measured by the
reverberation method. Lond. Edinb. Dublin Philosophical Mag. J. Sci. 5 (29),
489–497. doi:10.1080/14786440308565092

Pierce, A. D. (1989). Acoustics, an introduction to its physical principles and
applications. New York, USA: McGraw-Hill.

Robin, O., Berry, A., Doutres, O., and Atalla, N. (2014). Measurement of the
absorption coefficient of sound absorbing materials under a synthesized diffuse
acoustic field. J. Acoust. Soc. Am. 136, EL13–19. doi:10.1121/1.4881321

Robin, O., Berry, A., Kafui Amédin, C., Atalla, N., Doutres, O., and Sgard, F.
(2019). Laboratory and in situ sound absorption measurement under a
synthetized diffuse acoustic field. Build. Acoust. 26 (4), 223–242. doi:10.1177/
1351010X19870307

Sciard, M., Berry, A., Sgard, F., Dupont, T., and Robin, O. (2024). Estimation of
acoustical materials sound absorption coefficient under oblique incidence plane wave
and diffuse field via Allard model inversion. Build. Acoust. 31, 147–175. doi:10.1177/
1351010X241235515

Sgard, F., Atalla, N., Robin, O., and Berry, A. (2024). On the area-averaged effective
sound absorption coefficient of porous materials excited by a monopole. J. Acoust. Soc.
Am. 155 (2), 1135–1150. doi:10.1121/10.0024767

Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. J. Comput.
Appl. Math. 211 (2), 131–140. doi:10.1016/j.cam.2006.11.021

Thomasson, S. (1977). Sound propagation above a layer with a large refraction index.
J. Acoust. Soc. Am. 61 (3), 659–674. doi:10.1121/1.381352

Frontiers in Acoustics frontiersin.org10

Sgard et al. 10.3389/facou.2024.1414356

https://doi.org/10.1121/1.402941
https://doi.org/10.1201/9781482264739
https://doi.org/10.3813/AAA.918984
https://doi.org/10.1016/j.apacoust.2014.06.011
https://doi.org/10.1121/1.4745839
https://doi.org/10.3813/AAA.918699
https://doi.org/10.1121/1.2027070
https://doi.org/10.1080/14786440308565092
https://doi.org/10.1121/1.4881321
https://doi.org/10.1177/1351010X19870307
https://doi.org/10.1177/1351010X19870307
https://doi.org/10.1177/1351010X241235515
https://doi.org/10.1177/1351010X241235515
https://doi.org/10.1121/10.0024767
https://doi.org/10.1016/j.cam.2006.11.021
https://doi.org/10.1121/1.381352
https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2024.1414356

	On the use of the local reflection coefficient to assess the diffuse field sound absorption coefficient of a porous material
	1 Introduction
	2 Materials and methods
	2.1 Allard’s model
	2.2 Calculation of the SAC
	2.2.1 Oblique incidence—Plane wave excitation
	2.2.2 Oblique incidence—monopole excitation
	2.2.3 Diffuse field


	3 Results and discussion
	3.1 Verification of the proposed approach
	3.2 Finite size effect and boundary conditions of the porous material
	3.3 Use of αd,loc to approximate αd
	3.3.1 Case θmax=90∘
	3.3.2 Case θmax=78∘


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


