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Ultrasound has been used to modulate neural activity in rodents and primates;
however, combining ultrasound stimulation with in vivo imaging in freely moving
animals has been challenging. Here, we design and validate a transducer to
overcome these challenges in the rodent. We develop a head-mounted
ultrasound transducer that can be combined with a fiber photometry system.
This combination allows us to monitor ultrasound-evoked responses in striatal
neurons in awake and freely moving animals. Together, this system allows for a
high-resolution analysis of ultrasound-evoked biology at the level of both neural
circuits and behavior in freely moving animals, critical to providing a mechanistic
understanding of ultrasound neuromodulation.
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Introduction

Ultrasound has been successfully used to modify targets within the mammalian
brain. At high intensities, it can ablate tissues (Fry et al., 1955) for treating cancer
(Martin et al., 2014) and other neurological conditions like epilepsy (Lipsman et al.,
2014; Wang et al., 2015); when combined with contrast agents, it can open the blood-
brain-barrier (Hynynen et al., 2005; McDannold et al., 2012) and deliver small molecule
drugs (Treat et al., 2007; Alonso et al., 2013) or viral vectors (Alonso et al., 2013). In
contrast, ultrasound at lower intensities can directly modulate neuronal activity
(Khraiche et al., 2008; Tyler et al., 2008; Tufail et al., 2010). Moreover, ultrasound
has been shown to both activate and inhibit neural activity (Bachtold et al., 1998; Lee
et al., 2015; Wang et al., 2015; Lee et al., 2016; Legon et al., 2018; Guo et al., 2022), with
differential effects on excitatory and inhibitory neurons based on stimulus parameters
(Yu et al., 2021). Not surprisingly, the mechanisms underlying in vivo ultrasound-
evoked neurostimulation remain unclear, but may include thermal- (O’Brien, 2007),
mechanical- (Tyler, 2011), auditory- (Guo et al., 2018; Sato et al., 2018), or cavitation-
(Plaksin et al., 2014) driven effects. Thus, despite the promise of fully non-invasive
ultrasound-based neuromodulation, additional efforts are needed to establish the
underlying mechanism, particularly within the mammalian brain.

Electrophysiology, with its excellent temporal resolution, is the preferred method for
studying neuronal function (Buzsáki et al., 2012). However, using this method has limited
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use in vivo. While intracellular recordings can be made from a
maximum of only a few individual cells (Margrie et al., 2002;
Petersen et al., 2003; Chauvette et al., 2010); extracellular
recordings measuring activity from multiple cells lack cellular
specificity (Buzsáki et al., 2012). Moreover, recording devices for
measuring electrical signals from hundreds or thousands of neurons
need to be miniaturized to reduce tissue damage (Kim et al., 2013).
In contrast, whole-brain imaging techniques, like fMRI, have

contributed to understanding how neuronal circuits responding
to external stimuli are distributed across large brain regions
(Craddock et al., 2013; Van Essen et al., 2013), but have limited
spatial and temporal resolution. One solution to these problems is
to combine imaging techniques like two-photon microscopy or
fiber photometry with fluorescent reporters, where neuronal
circuits can be probed at cellular resolution in an intact brain
(Grewe and Helmchen, 2009; Grienberger and Konnerth, 2012).

FIGURE 1
Miniature ultrasound transducers for use with freely moving mice. Conventional ultrasound trans-ducers are typically made for imaging and can
result in heating or tissue damage when used for cellular stimula-tion. Our device made from single crystalline Lithium Niobate using the manufacturing
process described in this figure (A–G) can deliver sufficient power through the skull without any significant temperature changes. The device snaps on to
a headplate (mounted on themouse) usingmagnets and the entire assembly weighs less than a gram. The pressure and temperatureweremeasured
using a fiber optic hydrophone in the striatum (H) and show signifi-cannot pressure changes for varying input powers to the device (J) and insignificant
temperature changes (I–K). The vibration amplitude was characterized using a laser doppler vibrometry scan of the transducer face (L) and shows the
presence of a narrow-band peak centered at 6.5 MHz.
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Moreover, genetically encoded calcium indicators can be targeted
to specific cell populations, whose activity can then be optically
monitored at cellular and even sub-cellular resolution
(Helmchen and Denk, 2005; Svoboda and Yasuda, 2006; Göbel
et al., 2007).

A common method to monitor fluorescent signals uses an
implanted fiber optic cannula (Adelsberger et al., 2005; Lu et al.,
2010). Though invasive, this method (fiber photometry) is well-
suited to record neural activity across cell populations in freely-
moving animals (Martianova et al., 2019). In addition, fiber
photometry can also be used to record signals from multiple
locations in the rodent brain (Kim et al., 2016; Sych et al., 2019).
Moreover, the result is an aggregate of calcium changes from many
neurons that cannot be easily resolved, but provides a
complementary approach to microendoscopic or two-photon
imaging (Jennings et al., 2015). Combining ultrasound
stimulation with this imaging method would provide insights
into the mechanisms underlying ultrasound-evoked
neuromodulation.

Here, we develop a new, lightweight ultrasound transducer that
can be mounted on the head of a freely moving animal and integrate
this device with a fiber photometry system. This setup allows us to
monitor calcium signals from striatal neurons in moving animals
upon ultrasound stimulation.

Results

A new ultrasound transducer for modulating
neural activity in freely moving mice

Most ultrasound applications use lead zirconate titanate
(PZT) transducers, which are prone to heating and hysteresis
at higher frequencies (Morozov et al., 2005). In contrast,
transducers made from lithium niobate have been shown to
have minimal heating and no hysteresis at frequencies
typically used for neuromodulation (Nakamura and Shimizu,
1989; Collignon et al., 2018). We started with a micro-miniature
coaxial swivel connector (MMCX, Figure 1A) and exposed the
central pin and surrounding ceramic insulation using a Dremel
benchtop drill (Figure 1B). Next, we added a layer of backing
epoxy (Epotek 302, Epoxy Technologies Inc., Billerica,
United States of America) onto the modified connector,
leaving the lead tip exposed (Figure 1C). We fabricated a
lithium niobate transducer (see Methods for details) and
soldered it to the device to establish an electrical contact
(Figure 1E). This device uses a custom-designed magnetic
connector to attach to a matching plate on the animal’s head.
The magnetic connector is designed to slide onto the device and is
anchored in place using a backing epoxy (Figure 1F). The final
assembly (Figure 1G) mass is ~0.6 g and was characterized for its
pressure outputs in an ex vivo preparation as previously
described (Figure 1H (Vasan et al., 2022)). Ultrasound has
been shown to cause heating in target tissues (O’Brien, 2007).
We monitored the temperature rise in the striatum using a fiber
optic hydrophone and found that the change in temperature did
not exceed 0.1°C (Figure 1I) during use. In addition, we found
that the pressure through the intact skull was between

0.3–0.5 MPa (Figure 1K). We also analyzed the vibrational
characteristics of this device using laser Doppler vibrometry
and found that the fundamental thickness mode’s resonance
frequency was 6.56 MHz (Figure 1L). This device was then
used in combination with fiber photometry probes as
described in later sections for analysis of neural activity in
freely moving animals.

Stereotactic placement of the device on the
head of an adult mouse

Previous studies have shown that ultrasound stimulation can
evoke neuronal activity in both cortex and hippocampus (Tufail
et al., 2010), but have yet to assess this in more ventral regions of
the brain. To assess the feasibility of ultrasound stimulation in
freely moving mice, the device was attached to a headplate
mounted to the skull with dental cement and a fiber optic
cannula was implanted to target the dorsal striatum using
stereotactic coordinated (Murphy et al., 2022). To test whether
a sparse population of neurons could be stimulated, we expressed
a genetically encoded calcium indicator, GCaMP6s, in
cholinergic neurons, which constitute about 2% of neurons in
the dorsal striatum (Zhou et al., 2002). We mounted a ChAT::
CRE transgenic mouse on a stereotax under anesthesia
(Figure 2A) and injected a floxed virus expressing GCaMP6s
(Figure 2B) using a calibrated nanoliter injection system
(Nanoject II). The head plate was affixed to the device and the
assembly was lowered over the injection site (Figure 2D). Next,
the head plate was anchored in place using dental cement
(Figures 2E, F). We then dried the exposed area and
implanted a fiber optic cannula as previously described
(Hollon et al., 2021; Dong et al., 2022). Finally, the scalp was
sutured, and additional ultraviolet curable dental cement was
used to firmly affix the head plate (Figures 2H, I). Mice were
allowed to recover for two to 4 weeks prior to conducting studies
with the head-mounted transducer.

Assessing locomotor behavior with head-
mounted transducer

To determine whether locomotor behaviors are affected by
the presence of the ultrasound transducer, mice of several
genotypes were assessed in rotarod (Figure 3A) and open-field
assays (Figure 3C). Control mice, untethered by the transducer
and cables, stayed on the rotarod an average of 53.6 s ( ± 6.9 s
SEM), and an average of 63.2 s ( ± 3.9 s SEM) when connected via
magnet and cables to the transducer (Figure 3B). These results
did not reach significance in either direction, indicating that the
presence of the tethered transducer did not affect the ability of the
mice to maintain their coordination on the rotarod. In open-field
assays, ambulatory behaviors measured by average distance and
velocity in both the first 5 minutes (Figures 3D, E) and 45 min
(Figures 3F, G) did not change significantly in the presence of the
transducer either, indicating that the head-mounted transducer
design is compatible with freely-moving mouse behavior and
assays.
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Ultrasound-evoked activation of striatum in
freely moving mice

We used fiber photometry recordings to test whether
transcranial ultrasound could evoke calcium activity in freely
moving animals. After recovery from the protocol described
above (Figure 4), mice were attached to the ultrasound delivery
and fiber photometry systems (Figure 4A). We first confirmed that
the fiber optic cannula was placed into the dorsal striatum and
GCaMP6s expression was restricted to cholinergic neurons in the
striatum (Figure 4B). All animals (N = 5) showed significant
increases in cholinergic calcium activity upon ultrasound
stimulation compared to controls (Figures 4C, D). Together,
these results show that the custom-designed ultrasound device is
capable of delivering sufficiently powerful ultrasound to
endogenously activate striatal cholinergic neurons in an awake,
freely moving animal, while avoiding the hindering of the
animal’s movement in an open field or upon a rotating rod.

Discussion

We demonstrate the development of a novel method for
integrating ultrasound neuromodulation tools with well-
established readout techniques for neuronal activity. Specifically,
we develop a new head-mounted transducer that can be combined

with a fiber photometry system to stimulate striatal neurons in a
freely moving mice. We designed, fabricated, and tested a small
lightweight transducer that can be mounted on the head of freely
moving mice. Although there are other works that use head-
mounted transducers (Murphy et al., 2022; Yang et al., 2023),
they have used lower frequencies, higher pressure inputs and do
not present validation of the devices with rotarod and open field
tests. This device can deliver stimuli with 0.3–0.5 MPa peak negative
pressure in a deep brain region, the dorsal striatum. The mechanical
index for the parameters listed in this study is 0.19, well below the
U.S Federal Drug Administration’s mandated clinical safety
threshold of 1.9 for bubble-free tissue, and is half the threshold
for bubble-laden tissue (Nelson et al., 2009; Church et al., 2015).
These parameters are thus unlikely to cause cavitation in tissue and
do not affect cell viability. Further, the frequency used in this study is
well outside the hearing threshold for mice (1–100 kHz) (Heffner
and Heffner, 2007). Specifically, we show that we can activate
calcium activity in cholinergic neurons without hindering the
animal’s ability to explore freely or grasp a rotating rod.
Moreover, the ultrasound transducer can be removed from the
head plates (these are attached using a magnetic connector),
allowing the animals to be returned to their home cages and be
repeatedly tested, as is commonly done in most striatal-driven
behaviors (Balleine et al., 2007; Lipton et al., 2019). We used
fiber photometry as a readout of ultrasound-evoked
neuromodulation, however, recent studies have shown that these

FIGURE 2
Device implant procedure. Mice are anesthetized using isoflurane and mounted on a stereotax. An incision is made to expose the skull (A) and the
bregma and lambda structures were identified to perform virus injections (B). The area was cleaned with cotton swabs (C) and the MMCX device-
headplate assembly was lowered over the injection site (D,E). The headplate was affixed using UV-curable dental cement (F) and additional implants (such
as fiberphotometry cannulas) were implanted at this stage. The scalp was sutured (G) and additional dental cement was dispensed (H) at this stage if
needed. The exposed skull (I) was cleaned using hydrogen peroxide and cotton swabs before returning the mouse to its cage.
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data primarily reflect non-somatic changes in calcium andmight not
correspond to spiking-related activity (Legaria et al., 2022).
Consistently, we suggest that our device can be used to modify
neuronal calcium levels in striatal neurons. More broadly, we
suggest that this device can be combined with mouse genetics to
probe the ultrasound and sonogenetic control of neuronal circuits
and behaviors. Collectively, our system can be used to provide
mechanistic insights into how ultrasound affects specific neuronal
circuits and their associated behaviors.

Materials and methods

Animals

Animals used in this study were group housed in an American
Association for the Accreditation of Laboratory Animal Care
approved vivarium on a 12 h light/dark cycle, and all protocols
were approved by the Institutional Animal Care and Use
Committee of the Salk Institute for Biological Studies. C57BL/
6 mice (JAX 000664), aged 10–14 weeks were used to measure
ultrasound pressures in vivo. ChAT-Cre mice aged P22 and older
were used for fiber photometry experiments. The mice were free
to move when the ultrasound stimulus reported in this study was
delivered.

Ex vivo hydrophone measurements

Hydrophone measurements were performed with a fiber-optic
hydrophone (FOHS92, Precision Acoustics, Dorchester, UK) ex
vivo. C57BL/6 mice (JAX 000664), aged 10–14 weeks, were
sacrificed and decapitated. The skin over the skull was removed,
followed by removal of the lower mandible, soft palate and hard
palate. Once the ventral part of the brain was exposed, the mouse
head preparation was placed dorsal side down on the diffuser
assembly coupled with ultrasound gel, and the hydrophone tip
was lowered into the ventral portion of the brain using a
micromanipulator. Data from measurements made on at least
three animals is shown.

Fiber photometry

A commercially available fiber photometry system (FP3002,
Neurophotometrics, San Diego, CA) was used to measure
calcium activity in vivo. Briefly, recordings were done by
alternating 473 nm and 415 nm excitation light at 80 Hz, for a
total of 40 Hz recordings in calcium dependent GCaMP6s and
isosbestic (calcium independent) channels, respectively. Excitation
power was adjusted to provide 50 μW of light at the tip of the patch
cord, calibrated with a fiber optic power meter (PM20A, Thor Labs,

FIGURE 3
Asessing mobility of animal with head-mounted transducer. (A,B) Rotarod and (C–G) open field tests were conducted to assess mobility of the
animal with the device. Mice outfitted with the wearable ultrasound device (red) show no reduction (N = 6, Mann-Whitney test) in ability to stay on the
rotor rod (schematic, (A) as measured by time spent on rotarod over three trials compared to naive controls (gray) with no device (B). In open field testing
(D–G), mice connected to the wearable ultrasound device (red) display no reduced locomotion as measured by average velocity in the first
5 minutes, total distance convered in the first 5 minutes, average velocity over 45 min, or total distance covered over 45 min (N = five to six, Mann
Whitney test).
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Newton, NJ). For anesthetized recordings with the larger device,
mice were anesthetized and held at 1% isoflurane, adjusted as needed
to maintain sedation on the stereotactic frame without abolishing all
measurable brain activity. The skin over the skull was removed and
the transducer coupled to the skull with ultrasound gel. For awake,
behavior-based recordings, the mouse was anesthetized to allow for
careful attachment of the fiber optic cable. After the head-mounted
device was attached via magnets and coupled with ultrasound
gel, the mouse was allowed to wake up in its home cage, and
ultrasound stimulations were delivered interspersed with control
pulses.

Immunohistochemistry

Immunofluorescence was collected from free-floating 50 μm
sections after extended (3 days) fixation in 4% paraformaldehyde
or 10% formalin for better visualization of cannula lesion.
Sections were blocked at room temperature for 1 h in blocking
buffer (0.25% Triton-X and 5% donkey serum in 1x phosphate
buffered saline (PBS). Up to three of the following primary
antibodies were then applied for incubation in blocking buffer
overnight at 4°C: chicken or rabbit polyclonal GFP (1:250 Aves
GFP-1020 or ThermoFisher A6455, respectively) for labelling
GCaMP6s positive neurons, goat polyclonal ChAT (1:250 EMD
Millipore, AB144P) for labelling cholinergic neurons, and
chicken polyclonal Parvalbumin (1:250 Encor Biotech, CPCA-

PvalB) for labeling PV-interneurons. Following primary
antibody incubation, sections were washed three times for
5 min each in PBS to reduce non-specific antibody binding
effects. Secondary antibodies conjugated to fluorophores 488,
594, or 647 raised in donkey or goat (1:500) were applied for
3 hours at room temperature in blocking buffer. Nuclei were
stained with DAPI (1:1000 ThermoFisher D1306) before washing
sections three times in PBS for 5 min each. Sections were
mounted on slides with a coverslip using ProLong Gold
Antifade Mountant (P10144, ThermoFisher, Waltham, MA)
and allowed to dry for 24 h before confocal imaging (LSM
880, Zeiss, Oberkochen, Germany).

Rotarod assay

ChAT-Cre mouse locomotor behaviour was evaluated on a
Rotor-Rod (SD Instruments, San Diego, CA). Mice underwent a
single day of training at a constant speed of 4 RPM for 3 min to
acclimate to the Rotor-Rod. The next day, mice were placed on a rod
that started at 0 RPM and gradually increased to 30 RPM over a 5-
min period. The latency to fall off the rod was collected. Each mouse
underwent 4 trials daily with a 20-min inter-trial interval in which
mice were returned to their cages. The latency to fall off was
averaged across the three best trials. This procedure was repeated
across 5 days. The experimenter was blinded as to the identity of
groups.

FIGURE 4
Simultaneous fiber photometry recordings and transcranial ultrasound stimulation in awake, freelymovingmouse. Schematic of recording setup (A),
with fiber photometry cannula implanted anterior to magnetic headplate holding custom built 6.56 MHz ultrasound transducer on head of CHAT-IRES-
Cremouse. Immunofluoresence confirms fiber photometry cannula (white dotted line) in dorsal striatum, as well as GCAMP6s expression in ChAT+ cells
of the striatum (B). Sample average trace of ultrasound ON trials (red) compared to ultrasound OFF (sham control) trials (gray) aligned to onset of
ultrasound at time 0 (C) shows increased fluoresence under stimulation. MaximumGCAMP6s fluorescence in ultrasound trials (Stim) is significantly higher
than in Sham conditions across five mice, calculated in the 3-s window after stimulus delivery (D).
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Ultrasound transducers

Single-crystal lithium niobate transducers operating in the
fundamental thickness mode with lateral dimensions of 5 x
5 mm and a thickness of 500 μm were used in this study. The
128YX cut of lithium niobate was used and the fabrication process
involved cleaning of the wafer with acetone, isopropyl alcohol, and
ultra-pure deionized (DI) water followed by sputtering both sides
with an adhesion layer of 20 nm titanium followed by 1 μm gold.
The 36YX cut is typically recommended for thickness-mode
transducers, but in low-loss, narrowband applications, it has been
found that the 128YX cut produces superior coupling and output
amplitude (Collignon et al., 2018). The deposition parameters were
(with a Denton Discovery 635, Denton Vacuum LLC, New Jersey,
United States of America) 5–10 nm of Ti at 1.2–1.6 A/s with the
power set to 200W, with argon as the gas in the chamber at 2.3 mT
and the stage rotating at 13RPM to ensure uniform deposition over
the sample. The thickness of gold deposited was 1 μm at a rate of
7–9 A/s. Devices using the LN elements were driven using a
waveform generator (33600 A, Keysight Inc, Santa Rosa, CA)
and amplifier (VTC2057574, Vox Technologies, Richardson, TX),
and input power was measured using an oscilloscope (Infiniivision
MSOX 2024A, Keysight) mated to voltage (N2862B, Keysight) and
current probes (CT1, Tektronix, Beaverton, OR) connected as near
to the transducer as practicable. The gain on the amplifier was varied
to adjust the pressure and the control pulses were run at zero
amplifier gain during trials.

Open field

In the open field test, a 17″ x 17″ x 12” (Med Associates Inc.,
Fairfax, VT) was used to test the Locomotor abilities of mice. ChAT-
Cre, DAT-Cre, or wildtype mice were placed in the center of the
arena and their movement was tracked for 45 min. In test mice, head
transducer was attached to the headplate, and the wires were
threaded through a commutator to avoid tangles. The
commutator was secured to a flexible arm above the arena and
stabilized with a sturdy plank. If the transducer wires got tangled, the
recording was paused, and the transducer was readjusted before
resuming. 16- beam IR arrays along the X and Y-axis of the arena
tracked the position of the mouse. Activity monitor software was
used to analyze the average velocity and distance travelled in 60 s
bins. Average velocity and distance travelled was calculated for the
first 5 min and for the entire 45 min for each mouse. One device
mouse lost device for 2 out of 45 min and one control mouse was
removed for negligible ambulation.

Viral injections and implants

Intracranial injections were performed in a surgery work area
under aseptic conditions. Mice were anesthetized via 5% isoflurane
induction and held at 1% isoflurane (Somnosuite Kent Scientific,
Torrington, CT) throughout surgery on a heating pad and
stereotactic frame. After shaving and sterilization, a midline
incision into skin to expose the skull was made, and the skull
was leveled.

For cannula and head plate implantation, the skull was dried
and primed with OptiBond primer (KerrDental, Orange, CA). A
small craniotomy was made using a surgical drill (1.25 mm
diameter) at the appropriate coordinates. Injections into
dorsal striatum were made using a Nanoject III (Drummond
Scientific, Broomall, PA) via glass micropipette loaded with virus.
Virus was injected at 3 nL/s with 1 s pause until total volume was
injected. The micropipette was withdrawn 10 min after full
volume of virus was injected, after which a 200 μm fiber optic
cannula (Neurophotometrics, San Diego, CA) was lowered into
dorsal striatum 5 μm above the injection site. Using a minimal
amount of light-curable dental cement, the cannula was affixed in
place to the skull to provide maximal exposed skull for
subsequent ultrasound experiments.

For behavior experiments, a custom-designed head plate was
also affixed to the skull using dental cement just ventral to the
cannula leaving the central portion of skull exposed.

Following surgery, the skin was either closed where possible via
suture (AD Surgical, Sunnyvale, CA) or VetBond (3M, Two
Harbors, MN). Mice were injected with buprenorphine (1 mg/kg)
and monitored for at least 3 days post-surgery.

Injections were performed unilaterally into dorsal striatum
using coordinates +1.0 AP, −2.3 ML, −3.5 DV for vertical
injections and +1.7 AP, −2.3 ML, −3.5 DV for injections at 15*
on AP axis when leaving more room for head plate for a total of
300 nL. AAV9 hSyn.GCaMP6s.WPRE.SV40 (Addgene #100843-
AAV9) was injected at 1e13 into WT mice and
AAV9 Syn.Flex.GCaMP6s.WPRE.SV40 (Addgene #100845-
AAV9) was injected into ChATIRES−Cre mice.
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