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The propagation of acoustic waves in fluids and solids produces fascinating
phenomena that have been studied since the late 1700s and through to today,
where it is finding broad application in manipulating fluids and particles at the
micro to nano-scale. Due to the recent and rapid increase in application
frequencies and reduction in the scale of devices to serve this new need,
discrepancies between theory and reality have driven new discoveries in
physics that are underpinning the burgeoning discipline. While many
researchers are continuing to explore the use of acoustic waves in
microfluidics, some are exploring vastly smaller scales, to nanofluidics and
beyond. Because many of the applications incorporate biological
material—organelles, cells, tissue, and organs—substantial effort is also being
invested in understanding how ultrasound interacts with these materials.
Surprisingly, there is ample evidence that ultrasound can be used to directly
drive cellular responses, producing a new research direction beyond the
established efforts in patterning and agglomerating cells to produce tissue. We
consider all these aspects in this mini-review after a brief introduction to
acoustofluidics as an emerging research discipline.
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Introduction

Acoustofluidics is the transport and manipulation of fluid and suspended solid objects
through the attenuation, compression and non-linear interactions of a passing acoustic wave.
The discipline has flourished in the past 15 years after it was found to solve several important
problems at small scales commensurate with many current and anticipated applications,
from medical diagnostics to spray generation, improving recharging rates in batteries, and
the formation of tissues. Acoustofluidics phenomena first served to confound scientists since
some of the earliest published works, from helping to drive a disagreement between E.F.F.
Chladni (Chladni, 1787) and Félix Savart in the early 19th century over spurious particle
patterns atop vibrating plates (Bell, 1991) to demonstrations by Michael Faraday 30 years
later (Faraday, 1831), the pioneering analyses by John William Strutt (later Lord Rayleigh)
30 years after that (Strutt, 1883), and onwards to mysterious “quartz” wind blowing in the
faces of materials scientists working with quartz oscillators (Eckart, 1948) and the unique
presentations and demonstrations of fluid jetting from surface acoustic wave (SAW) devices
by Showko Shiokawa in the 1990s (Shiokawa et al., 1989).

If not for an extraordinary need for new methods to manipulate fluids and suspended
cells, particles, and molecules, acoustofluidics might have remained merely a curiosity just as
it had for nearly two hundred years. Pressure, capillary, electromotive, magnetic, and
acceleration-driven forces were too weak or too cumbersome to use at scales below a
few millimeters in many potential applications in healthcare and chemistry (Laser and

OPEN ACCESS

EDITED BY

Likun Zhang,
University of Mississippi, United States

REVIEWED BY

Feiyan Cai,
Chinese Academy of Sciences (CAS),
China
Philip Marston,
Washington State University,
United States

*CORRESPONDENCE

James Friend,
jfriend@ucsd.edu

RECEIVED 18 July 2023
ACCEPTED 22 September 2023
PUBLISHED 02 October 2023

CITATION

Friend J (2023), Acoustofluidics.
Front. Acoust. 1:1261027.
doi: 10.3389/facou.2023.1261027

COPYRIGHT

© 2023 Friend. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Acoustics frontiersin.org01

TYPE Mini Review
PUBLISHED 02 October 2023
DOI 10.3389/facou.2023.1261027

https://www.frontiersin.org/articles/10.3389/facou.2023.1261027/full
https://crossmark.crossref.org/dialog/?doi=10.3389/facou.2023.1261027&domain=pdf&date_stamp=2023-10-02
mailto:jfriend@ucsd.edu
mailto:jfriend@ucsd.edu
https://doi.org/10.3389/facou.2023.1261027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org/journals/acoustics#editorial-board
https://www.frontiersin.org/journals/acoustics#editorial-board
https://doi.org/10.3389/facou.2023.1261027


Santiago, 2004). The concept of microfluidics as a means to offer
“lab-on-a-chip” became less a revolution and more an evolution
with the tiny fluidic chips taking up residence in labs filled with large
pieces of equipment capable of delivering the pressures and
controlled flows necessary to operate them: “chips-in-a-lab.” It
took the two previous decades to today for microfluidics
researchers to begin to integrate acoustofluidics and produce
solutions to the problems. Today, acoustofluidics is a flourishing
discipline, with research being pursued from better understanding
the fundamentals of how acoustic waves interact with materials to
commercial and clinical application of the phenomena to address
immediate unmet needs. We briefly review these topics, highlighting
a few remarkable works among a growing body of quality work,
hinting at the directions the discipline is progressing into the future.

Physics of acoustofluidics

As the application of acoustics at high power and small scales is
pursued, the fundamental theories, models, and approaches to
analysis in acoustofluidics needs revisiting and revision. Some of
this work has been underway for a number of years (Friend and Yeo,
2011; Connacher et al., 2018), but many efforts are still underway
today to explain phenomena both old and new.

Acoustic streaming

Among the earliest evidence of a discrepancy in theory relevant
to acoustofluidics was the careful exposition by Sir James Lighthill
(Lighthill, 1978), pointing out that past theories devised to explain
acoustic streaming in the boundary layer (Schlichting, 1932) and
bulk (Strutt, 1883; Nyborg, 1965) had several key problems, most
especially the choice to ignore inertial effects in bulk streaming. Even
so, much of the acoustofluidics literature even to today—and even
popular computational software like COMSOL—makes use of the
classical approach espoused by Nyborg (1965), and the
consequences have been to produce analytical results that only
roughly approximate reality. Lighthill (1978) pointed out that the
creep flow or slow streaming approximation inherent in these
models was invalid for frequencies beyond about 1 MHz and
powers of more than a few tens of milliwatts.

Fast streaming
More recent efforts to recast acoustic streaming have produced

useful closed-form representations of the phenomena valid even for
high frequencies and high powers, so-called fast streaming, but with
dauntingly complex intermediate steps (Orosco and Friend, 2022).
Ample opportunity remains in further describing acoustic streaming
with analysis more appropriate to modern uses of the phenomena.
Work is still underway to improve these modern approaches and
overcome the flaws of past models in acoustic streaming, but
researchers are also working on new forms of acoustic streaming
in hopes of overcoming one of its key flaws: an inability to pump
fluids against a significant pressure head. Acoustic streaming drives
flow only against weak pressure gradients of less than approximately
1 kPa. However, by enlisting the finite amplitude deformation of the
boundary with the propagation of the acoustic wave through the

fluid bulk, a new form of acoustic streaming in confined
media—acoustogeometric streaming—has been discovered in
which the non-linear coupling between the motion of the
boundary and the acoustic wave drives rapid fluid flow in a
channel and against adverse pressures exceeding 1 MPa (Zhang
et al., 2021a), far superior to classic streaming. Though
reminiscent of peristaltic pumping and the Liebau pump
mechanism (Davtyan and Sarvazyan, 2021), in fact the
mechanism relies on acoustic wave propagation in the fluid,
unlike these schemes. It is also sufficient to drive rapid fluid flows
in nanochannels and to transport, split, combine, and even mix 20 to
200 fL droplets within (Zhang et al., 2021b). A notable use of acoustic
streaming in confined flows is in rechargeable batteries, where it has
been used to rapidly recharge previously unrechargeable lithium
metal batteries (Huang et al., 2020) and to make 10-min charging
possible in lithium ion batteries for up to 2,000 cycles (Huang et al.,
2022). If driven continuously, large amplitude acoustic waves
streaming can lead to significant heating in milli-scale and larger
frozen and fluid samples (Horesh et al., 2023), but because of the
dominance of surface area-driven effects together with the rapid
flow, at micro-scale and smaller, the heating is mitigated by rapid
conduction into the surrounding materials.

The details and applications of streaming
There is also work proceeding on understanding the nature of

acoustic streaming around obstacles and through complex media.
Zhang and Rallabandi (2022) demonstrated with careful work that
the one and two-dimensional representations of acoustic streaming
(Lighthill, 1978; Dentry et al., 2014) may be inadequate to fully
describe even the qualitative behavior of confined flows. Instead,
because the acoustic wave propagation is made more complex by the
confinement, fully three-dimensional representations may be
necessary to accurately describe the flow, even in slow streaming
conditions. By introducing complex forms of the acoustic wave that,
for example, contains helical propagation components that add in an
angular momentum flux in addition to the axially propagating
component pioneered by Hefner and Marston (1999) and
analyzed in careful detail by Zhang and Marston (2011), it
becomes possible to selectively manipulate particles in fluid
samples (Jiang et al., 2016; Tian et al., 2019; Gong and Baudoin,
2021), an aspect described later. It is also possible to produce particle
concentration in sample droplets suitable for biological samples
(Zhang et al., 2021c) with acoustic streaming from spirally
propagating acoustic waves, though it does require the use of a
different cut of the piezoelectric substrate (Zhang N. et al., 2020), an
aspect not often studied in modern acoustofluidics and one in which
significant progress could be made into the future. Likewise, in many
of these devices the electrodes used to generate the acoustic waves
within and upon the piezoelectric substrate are typically cursory or
directly derived from device designs used for telecommunications in
the 1970s or even the original interdigital electrode design (White
and Voltmer, 1965). However, recent work on electrode design
tailored to acoustofluidics appears to offer distinct improvements in
performance and capabilities, such as the remarkable multielectrode
structure used to selectively trap particles described later (Gong and
Baudoin, 2021), an “unapodization” approach to produce a laterally
uniform acoustic wave (Zhang et al., 2021d), or even to completely
remove the electrode from the substrate and using a flexible
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substrate simply pressed into contact with it instead (Dumčius et al.,
2023).

Acoustophoresis

Much of what has come to define acoustofluidics has depended on
the interaction between acoustic waves and small objects suspended in
fluids, dating from particle propulsion (King, 1934) and patterning
(Kundt, 1866) that still produce valuable research questions today
(Tan et al., 2007a; Dorrestijn et al., 2007; Zhou et al., 2016). Though
Lord Rayleigh (Strutt, 1883) was one of the first researchers to explain
the effects of acoustically-driven forces on
particles—acoustophoresis—a more thorough treatment was
produced by King (1934), though he assumed incompressible
fluids and particles in a manner incompatible with most of today’s
work. Today’s research on acoustofluidics typically directly or
indirectly relies upon a classic publication by Gor’kov (2014),
where a potential function was defined that streamlined the
computational effort to determine the forces that appear on
particles. Gor’kov’s method permits the determination of the forces
on small or Rayleigh particles from an acoustic field around them. For
many years, particle manipulation using acoustic waves relied on
standing waves in a fluid, with numerous publications reporting
various perturbations of this basic arrangement.

Modern particle manipulation
Roughly coincident with the advent of surface acoustic wave

devices to access higher frequencies in a format compatible with the
needs of microfluidics (Stone et al., 2004), traveling waves or a
combination of standing and traveling waves were found to be useful
in producing particle patterning and manipulation in droplets (Tan
et al., 2007b; Li et al., 2008), plain channels (Tan et al., 2009a),
channels with wall patterning (Behrens et al., 2015) to prevent
reflections and standing waves, focusing electrodes (Destgeer
et al., 2013) to accomplish the same aim, changing frequencies
with split electrodes (Tan et al., 2009b), tilted electrodes (Collins
et al., 2016) for precise particle separations across the width of a
fluidic channel, in polymer devices (Moiseyenko and Bruus, 2019),
and multiple devices in series (Ng and Neild, 2021). The analysis of
particle behavior in fluids also rapidly progressed in this time, with
the elimination of assumptions made in King’s work by Yosioka and
Kawasima (1955), though with a complex presentation by Doinikov
(1996) and Doinikov (2006) in later years, made more cogent by
Bruus’ efforts even later on (Settnes and Bruus, 2012), though it is
important to note that there is an error in that paper: their
predictions for the viscous force for the traveling wave case has a
factor of two error, explained in a pair of works by Marston and
Zhang (Marston, 2013; Marston and Zhang, 2016). These efforts
(Doinikov, 1996; Doinikov, 2006; Settnes and Bruus, 2012) notably
go through the difficult process of including viscous and thermal
effects in particle manipulation from the acoustic waves, which are
important in many modern acoustofluidics devices. Related to this
effort was the discovery of Saito et al. (2001) and Shi et al. (2009) and
thorough analysis (O et al., 2018) of acoustic tweezing—capture of
one or a small number (Gong and Baudoin, 2019) of particles by
acoustic waves, and the elucidation of acoustic streaming’s effects on
propelling particles (Nadal and Lauga, 2014).

In recent years, researchers have reported more thorough
approaches to understanding how particles are being
manipulated. Guo et al. (2016), report the ability to precisely
control particle positioning in microfluidic devices fully in three
dimensions. Kang et al. (2018), report the formation of cellular
cylindroids using acoustic waves as a precursor to functional tissue
in understanding inadequate blood supply. Acoustic tweezers, too,
have continued to be refined and improved, particularly with spiral
electrode structures (Baudoin et al., 2019; Tian et al., 2019; Baudoin
et al., 2020; Gong and Baudoin, 2021) that accommodate dynamic
rearrangement of the particle patterns. However, the most
innovative recent discovery regarding multiple particle
manipulation is perhaps the adoption of holography to produce
complex patterns in two (Melde et al., 2016) and three dimensions
(Melde et al., 2023).

Bubbles
Beyond particles, substantial work has also been conducted in

examining the effects of acoustic waves on bubbles, both in terms of
manipulating them (Bertin et al., 2015) and inducing acoustic
streaming around them (Rallabandi et al., 2014). Pioneering work
on the forces produced upon the bubbles from acoustic waves was
provided by Eller (1968), particularly for bubbles smaller than the
size required for resonance, Asaki and Marston (1994) for bubbles
larger than the size required for resonance, and Lee and Wang
(1993). Submicron gas vesicles formed internally by bacteria and
algae to resist sedimentation and to cause them to float towards the
surface of water—where there may be abundant light—has been
found to be a durable alternative to microbubbles used in acoustic
contrast imaging and, potentially, targeted delivery of drugs or
serving as a nucleation site for cavitation. Researchers have
shown an understanding of the underlying resonance behavior of
these vesicles, showing they resonate at over 1 GHz (Zhang S. et al.,
2020), but vastly more important has been the demonstration of
their ability to selectively bind to specific cells for manipulation (Wu
et al., 2023).

Active particles and overcoming discrepancies
Moreover, active particles—motile cells—have been explored as

interesting measurement devices for describing the pattern of acoustic
waves in devices (Kim et al., 2021a) and to determine the amplitude of
the acoustic forces in two (Kim et al., 2021b) and three dimensions (Cui
et al., 2023). Motile particles have been shown to strongly affect the
rheology of fluids via experiments enabled by acoustically-driven jetting
(McDonnell et al., 2015), in agreement with analytical predictions
(Saintillan, 2010). Researchers have also made progress on
understanding the discrepancies present between analysis and
experiments, with the discovery of the importance of matching, or
at aminimum, predicting acoustic impedances (Baek et al., 2021). There
also has been work on replacing soft microfluidics materials with
bonded glass or silicon to improve acoustic transmission and reduce
losses for improved efficiency (Langelier et al., 2012).

Interfacial fluid dynamics

Acoustofluidics also serves in shaping the fluid interface at the
boundary between water, oil, or air. The phenomenon of jetting was
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a principal driver of the start of modern acoustofluidics, with
Shiokawa et al. (1989) presenting the curious jetting of droplets
of water from the surface of SAW devices in the 1990s, followed by
early demonstrations of atomization (Kurosawa et al., 1995). Over
the years, there have been many studies of jetting and atomization,
with various attempts at trying to both better understand the
phenomena and to utilize it.

Jetting
Jetting via SAW devices has produced useful models for

acoustic streaming that take into account both the viscosity
and the compressibility of the fluid (Tan et al., 2009a); both
are important in properly predicting the formation of the jet.
Such jets were generated from vertical ejection against gravity
with symmetrically induced acoustic waves at high intensity for a
short period. This format produced a means to rapidly form a
thin fluid filament across a narrow gap: an extensional rheometer.
The filament narrows over time due to drainage of the fluid
axially along the filament. This, in turn is controlled by the
viscosity of the fluid, such that the diameter of the fluid
filament reduces over time in a manner dependent upon the
extensional viscosity of the fluid and the presence of large
molecules (Bhattacharjee et al., 2011) or even active particles
(McDonnell et al., 2015) that alters the stability of the fluid
filament. It has been known, however, that the jet could be ejected
at an angle since Shiokawa’s time, dependent in a complex way on
the relative amplitude of SAW coming into the parent droplet
responsible for generating the jet. This was finally explained in a
recent work where jetting angles exceeding the Rayleigh angle
were shown to occur due to surface tension-mediated effects
(Connacher et al., 2020). Ample work remains, however, as
illustrated by a recent fascinating work in which individual
droplets were extracted from a fluid interface using acoustic
waves (Lirette et al., 2019) that produce an unprecedented
pulling force (Fan et al., 2021) via vortices that likewise can be
generated even in inhomogeneous materials (Fan et al., 2019).

Atomization
With atomization, early work mainly attempted to produce

basic characterization of the phenomena through either imaging
(Barreras et al., 2002) or physical analogy (James et al., 2003; Qi
et al., 2008), though the challenge has been to produce a physical
understanding of the phenomena that stands up to greater
scrutiny. Recent work has indicated the reason for the
challenge is the fact the destabilization of the fluid interface
necessary for the atomization occurs via non-linear coupling of
the standing wave generated in the parent fluid. As the fluid
interface deforms, the standing wave pattern shifts, changing the
acoustic pressure distribution on the fluid interface, changing its
shape. At low amplitudes, this deformation transitions from a
static configuration (Manor et al., 2011) to a linear, harmonic
(Tan et al., 2010) oscillation. As the oscillation increases in
amplitude, however, it quickly becomes non-linear (Zhang
et al., 2023), exhibiting strong turbulence (Orosco and Friend,
2023), making linear stability theory, approximate solution
methods, and similar traditionally useful approaches
ineffective. Nonetheless, many applications have been explored
by researchers in recent years, from generation of nanoparticles

(Alvarez et al., 2008) to the generation of intercellular matrix
atomization to identify molecule concentrations in mass
spectroscopy (Bllaci et al., 2013), and delivery of gene
therapeutics-based vaccines via the lungs (Rajapaksa et al.,
2014). Many aspects of atomization require further study,
from the fundamental physics underpinning the phenomena
to better designs (Collignon et al., 2018) for reliably and
continuously producing droplets.

Biomedicine and acoustofluidics

Because the principal use of microfluidics technologies is in
the improvement of healthcare diagnostics and treatment, many
of the applications of acoustofluidics have likewise been in this
discipline (Rufo et al., 2022). The vast majority of particle
manipulation work, for example, has ultimately been pursued
due to a desire to pattern, sort (Franke et al., 2010; Zhang et al.,
2021c), propel (Bo et al., 2009; Fujii et al., 2021), or agglomerate
cells in wells (Kurashina et al., 2017) or open dishware (Mei et al.,
2022). Exosome trapping has been an important topic of research
via acoustofluidics (Habibi et al., 2020), as exosomes may be
produced by cancer cells as they metastasize and may contain
genetic information sufficient to identify their source. The release
and transport of cells in cell culture flasks and media using
acoustic streaming and pressure has helped to show that the
use of trypsin is not always necessary to release cells (Kurashina
et al., 2019) and that overall proliferation may be improved by
acoustically-driven recirculation. The proliferation and viability
of adherent cells has also been examined in conjunction with
acoustic waves, using standing-wave ultrasound in a microfluidic
chip (Hultström et al., 2007) and cells suspended in a droplet
upon a SAW device (Li et al., 2009), demonstrating that cells
survive and proliferate despite exposure to ultrasound above
1 MHz. Even better, it has recently been shown that exposing
immotile sperm to standing wave SAW renders them motile, a
potentially revolutionary result in treating impotence and in
animal husbandry (Gai et al., 2022).

Forming tissues and organoids

In the past few years, organoids—small three-dimensional tissue
cultures derived from stem cells—have been found to be promising
in identifying cancer treatments, how diseases develop, the
communication between organs in homeostasis, and in
understanding how the organs collectively respond to
environmental stressors. Forming them has traditionally been
tedious, but the adoption of acoustic manipulation methods has
transformed organoid formation into a much more straightforward
process using a well-based approach (Olofsson et al., 2018;
Sandström et al., 2022). Also using acoustofluidics in a well-
based approach, Ao et al. (2022) have shown via brain organoids
that the aging of the human brain may principally be driven by
monocytes. Traveling acoustic waves have also been used to rapidly
develop blood vessels in three-dimensional tissue constructs that
used human umbilical vein endothelial cells (Imashiro et al., 2021),
an important part of tissue engineering that has eluded researchers
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for many years. Likewise, it has long been difficult to accurately
position particles in the in vivo context, as tissue elasticity and
potential uptake of particles in to the lymph or cardiovascular
systems can quickly reposition such particles. Microbubbles were
selectively manipulated within the vasculature of zebrafish embryos
without disturbing the surrounding flow of blood (Jooss et al., 2022),
showing a remarkable means to trap particles over a long period of
time in live tissue. Durrer et al. (2022) introduced acoustic devices at
the end of a robotics system, demonstrating the trapping,
manipulation, pumping, and mixing of fluids, particles, and
zebrafish embryos at will in a microfluidic system.

Delivering drugs

Drug release schemes have also been considered over the
years, mainly through the use of small molecules through the skin
or timed-release oral delivery, or even the use of microneedle
patches that facilitate larger molecule delivery across the skin.
Demonstrating the use of acoustically-driven microneedles, Xu
et al. (2023) showed the ability to reverse anaphylaxis via a
multiple-dose delivery of epinephrine across the skin, with
results significantly improved over needle-based injectors for
this application. Endovascular drug delivery via injectables,
whether quick release or delayed release through encapsulated
drugs has also long been studied, but an important missing tool is
the ability to target specific tissues deep within the body and
outside the range of optical techniques and without the cost of
magnetic field systems (i.e., magnetic resonance imaging
equipment). There have been attempts at encapsulating or
decorating particles or bubbles with drugs so that ultrasound
can be used to release the drugs at a particular location, such as a
cancer tumor. A recent work reporting supercritical carbon
dioxide-formed liposomes produces a much more efficient
release of drugs upon exposure to ultrasound than past
microparticle-based approaches (Orita et al., 2023).

Sonogenetics

Sonogenetics is the use of ultrasound together with genetic
modification of cells and tissues to produce mechanosensitive
proteins that respond to the ultrasound in situ (Maresca et al.,
2018). There is substantial work underway to expand the library of
ultrasound-responsive ion channels and to better understand the
mechanisms underpinning cellular response to ultrasound,
especially by naive cells present in the nervous system (Cotero
et al., 2022) that may produce a useful method for treating
diabetes. Among the many potential channels, transreceptor
potential A1 has demonstrated a response to ultrasound at
6.91 MHz (Duque et al., 2022). The mechanism of action was
thought to involve cavitation or some sort of small-scale
streaming phenomenon, but it appears that membrane
deformation and consequent stretching is entirely sufficient to
produce the measured effects, including the threshold response
that requires a minimum level of ultrasound for ion channel
activation (Vasan et al., 2021; Vasan et al., 2022). This promises

to produce a method to activate or silence small groups of neurons at
will in a non-invasive manner.

Future directions of acoustofluidics

The utility of acoustics spans many disciplines, from
agricultural sprays to batteries, medical diagnostics, and drug
delivery. Today, with the development of acoustofluidics, the
utility has never been greater. A key to its rapid growth into the
future is the better understanding of the principles that underpin
it, especially in the context of high frequencies and exceedingly
small scales that today’s applications demand. The discipline will
need to adopt the broader range of acoustic waveforms and
generation methods, from SAW to the many other forms of
guided waves and beyond. Today, researchers trained not only in
acoustofluidics but also in applications are making rapid
advancements, using their knowledge of the needs together
with the toolbox of acoustics to produce valuable solutions.
More integration to produce complete technologies and
devices to solve today’s problems will be needed, and work
that spans engineering, physics, and medicine will be needed
as this field quickly grows from its modest roots.
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