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and Qingyi Zhu™
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Background: Immunogenic cell death (ICD) is considered a particular cell death
modality of regulated cell death (RCD) and plays a significant role in various
cancers. The connection between kidney renal clear cell carcinoma (KIRC) and
ICD remains to be thoroughly explored.

Methods: We conducted a variety of bioinformatics analyses using R software,
including cluster analysis, prognostic analysis, enrichment analysis and immune
infiltration analysis. In addition, we performed Quantitative Real-time PCR to
evaluate RNA levels of specific ICD genes. The proliferation was measured
through Cell Counting Kit-8 (CCK-8) assay and colony-formation assay in RCC
cell lines.

Results: We determined two ICD subtypes through consensus clustering
analysis. The two subtypes showed significantly different clinical outcomes,
genomic alterations and tumor immune microenvironment. Moreover, we
constructed the ICD prognostic signature based on TF, FOXP3, LY96, SLC7A11,
HSP90OAAL, UCN, IFNB1 and TLR3 and calculated the risk score for each patient.
Kaplan-Meier survival analysis and ROC curve demonstrated that patients in the
high-risk group had significantly poorer prognosis compared with the low-risk
group. We then validated the signature through external cohort and further
evaluated the relation between the signature and clinical features, tumor
immune microenvironment and immunotherapy response. Given its critical
role in ICD, we conducted further analysis on LY96. Our results indicated that
downregulation of LY96 inhibited the proliferation ability of RCC cells.

Conclusions: Our research revealed the underlying function of ICD in KIRC and
screened out a potential biomarker, which provided a novel insight into
individualized immunotherapy in KIRC.

KEYWORDS

immunogenic cell death, kidney renal clear cell carcinoma, tumor immune
microenvironment, prognostic signature, immunotherapy
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Introduction

Renal cancer is one of the most common malignant tumors
around the world (1). Renal cell carcinoma (RCC) accounts for 90%
of renal cancer and kidney renal clear cell carcinoma (KIRC)
accounts for the majority of RCC (2). Although surgical
operation brings a good prognosis to early-stage KIRC patients
(3), advanced and metastatic KIRC still have poor clinical prognosis
and outcome due to their insensitivity to radiotherapy or
chemotherapy regimens (4). With the improved awareness of the
role of immunological factor in tumor progression and prognosis,
immunotherapy, especially checkpoint inhibitors, has become an
important approach for unresectable KIRC (5, 6).

Immunogenic cell death (ICD) is a particular cell death
modality of regulated cell death (RCD) (7, 8). Previous researches
have indicated that ICD can induce adaptive immune response
against the antigens of dead or dying tumor cells through damage-
associated molecular patterns (DAMPs), which include ATP
release, calreticulin exposure, and HMGBI (high mobility group
box 1) secretion (9, 10). The pivotal factor of cancer
immunotherapy is how to avoid the immune escape of cancer
(11). Specific immunogenic chemotherapy induces ICD to
transform immune cold tumors into hot ones and increase the
sensitivity of tumor cells to checkpoint inhibitors in several tumor
cell lines (12). However, evidence of the effectiveness of this
procedure is still lacking, which prompts us to explore the
possibility of using ICD in clinical application.

In this study, we categorized patients on the premise of their
expression of ICD genes and evaluated the difference in prognosis
and immunotherapy response. We further identified several ICD
biomarkers and constructed a scoring signature in which risk score
was prominently associated with clinical features and tumor
progression. Eventually, we predicted several drugs with high
sensitivity to high-risk patients. We furthermore speculated that
LY96 may serve as a potential novel therapeutic target and we
verified the findings by experiments. Our results provided new clues
for the development of tumor immunotherapy for KIRC.

Materials and methods
Retrieval of ICD genes

We obtained 1,736 ICD-related genes using the keyword
“immunogenic cell death” in the GeneCards database (https://
www.genecards.org/). At the same time, we summarized 171
ICD-related genes from relevant literature (13, 14). Then, the
intersection of two gene sets yielded 73 genes that were
considered as ICD key genes and included in our research.

Acquisition and preprocessing of data

The TPM transcriptome data that involved 541 tumor samples
and 72 normal samples and matched clinical data of KIRC were
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obtained from the TCGA database (https://portal.gdc.cancer.gov/).
The E-MTAB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1980/) was selected as external validation
cohort, which comprised RNA sequencing data and clinical
information of 101 KIRC samples. Samples without survival data
were removed from the cohort.

Differentially expressed ICD genes and
protein—protein interaction network

Differentially expressed ICD genes (DEIGs) were identified by
the “limma” R package (15). The protein-protein interactions
(PPIs) among DEIGs were constructed using the Search Tool for
the Retrieval of Interacting Genes (STRING) database (https://
string-db.org/). Cytoscape v3.9.1 was used to draw the network
(16). MCODE was a plugin of Cytoscape, which we conducted to
identify highly interconnected functional cluster.

Construction of ICD-related subtypes and
functional enrichment analyses

The R package “ConsensusClusterPlus” was performed to
identify ICD molecular subtypes. The maximum subtypes were
set at nine and the maximum number of iterations was set to 1,000
to guarantee the reliability of statistical analysis. Samples were
clustered into two subtypes according to the result. Differentially
expressed genes (DEGs) between two ICD subtypes were identified
with cutoffs of |log2 fold change (FC)| > 1 and false discovery rate
(FDR)< 0.05 for functional enrichment analyses. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were implemented to predict proper biological functions
and pathways of DEGs between ICD subtypes through the
“ClusterProfile” package. Gene set enrichment analysis (GSEA)
was also performed to investigate proper mechanism of actions of
DEGs via GSEA version 4.1.0 (http://software.broadinstitute.org/
gsea/). KEGG, Hallmark, and Reactome gene sets were downloaded
from the Molecular Signature Database (MSigDB, https://
www.gsea-msigdb.org/gsea/downloads.jsp). The minimum gene
set was set as 5 and the maximum gene was set as 5,000 based on
the gene expression profile and phenotypic grouping. Each gene set
was repeatedly permutated 1,000 times for each analysis. p-
value< 0.05 was considered to be statistically significant.

Comparison of genomic alterations of
different ICD subtypes

Somatic mutation data of KIRC patients were downloaded from
the TCGA database in “maf” format. Waterfall plots were plotted by
the “Maftools” R package to visualize and summarize gene
mutation. We further downloaded the segmented copy number
variation (SCNV) data of KIRC from the GDC portal using the
“TCGAbiolinks” R package for somatic copy number analysis
according to a previous study (17). The alteration of gene copy
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number and GISTIC score for each sample were analyzed through
GISTIC 2.0 software (https://cloud.genepattern.org/). We also
calculated the burden of copy number loss or gain on the basis of
total number of genes with copy number changes at focal and arm
levels for further comparison between two ICD subtypes (18).

Tumor immune microenvironment
of ICD subtypes

The ESTIMATE algorithm was conducted to evaluate the
tumor immune microenvironment (TME) of KIRC patients (19).
The ESTIMATE algorithm calculated the stromal and immune
score to predict the infiltration of matrix and immune cells. The
CIBERSORT algorithm was applied to convert the gene expression
data into expression of 22 immune cell types (20). The immune cell
type with low expression was removed. By analyzing the correlation
and difference of immune cell types between two subtypes, we
mapped the correlation heatmap and multiple-group barplot to
visualize the results. Furthermore, we analyzed the difference of
HLA and checkpoint genes expression between the two subtypes.
The HLA and checkpoint genes were acquired from a previous
study (21).

Construction and validation of ICD
prognostic signature

Univariate Cox regression was performed to screen out
prognosis-related ICD genes with the criteria p< 0.05 of training
set. Dimension reduction was carried out through the supervised
regression random forest algorithm of the “randomForestSRC”
package (ntree = 1,000) (22). The top 10 significant genes were
selected for further multivariate Cox regression. ICD risk score was
calculated by the following formula:

. N
Risk score = >':1, o4x;

N, o, and x represent the number of selected genes, coefficient,
and expression value. Patients in the training and validation set
were divided into two groups according to ICD risk score. Kaplan-
Meier (KM) survival curve and ROC curve were used on both the
training set and validation set to assess the reliability of the ICD
Prognostic Signature. Area under the curve (AUC) was used to
quantify the ROC curve. We then visualized the clinical features of
two risk groups by a heatmap. Variation analyses of clinical factors
between different risk groups and correlation analyses focused on
ICD risk score and clinical factors were also conducted. Univariate
and multivariate Cox regression analyses were used to figure out
independent prognostic factors. A nomogram was plotted based on
the R package “NomogramEX” (23) and proportional hazards
assumption was examined. Calibration curves of 1, 3, and 5 years
were plotted to assess the nomogram.
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Immunotherapy response prediction

TIDE (Tumor Immune Dysfunction and Exclusion) was an
algorithm that integrated the characteristics of T-cell dysfunction and
T-cell exclusion to predict immunotherapy response in tumor patients.
The TIDE webserver (http://tide.dfci.harvard.edu/) was used to analyze
the normalized expression data, and assigned a TIDE score to each
patient where >0 was determined as no responder and<0 was
determined as responder. The Subclass Mapping (SubMap) method
was also put into use to predict the response of different groups to anti-
PD-1 and anti-CTLA4 immunotherapy. In this analysis, we compared
the expression profile of the two ICD risk groups we defined with
another published dataset containing 47 patients with melanoma that
responded to immunotherapies (24).

Connectivity map analysis

The Cmap website (https://clue.io/) provides a connectivity
map analysis to predict potential useful small molecular drugs
using the 150 most significant up- and downregulated DEGs
between two risk groups. All 300 DEGs included in our analysis
were identified using the “limma” R package and showed a
significant difference with the criterion of p< 0.05. The inclusion
criterion for determining potential useful small molecular drugs was
the absolute value of Cmap score greater than 90.

Cell culture and quantitative real-time PCR

Human RCC cell lines, including 786-O and 769-P, and the
human renal tubular epithelial immortalized cell line HK-2 were
obtained from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). 786-O and 769-P cells were cultured in Roswell
Park Memorial Institute medium (RPMI-1640; Gibco) and HK-2
was cultured in DMEM/F-12 (Gibco). All these cells were
maintained in medium supplemented with 10% fetal bovine
serum (Gibco) and 1% penicillin/streptomycin (Thermo Fisher)
at 37°C in a 5% humidified CO, atmosphere.

A total of nine paired fresh-frozen KIRC tissues and normal
tissues were obtained from patients diagnosed with KIRC at The
Second Affiliated Hospital of Nanjing Medical University.

The total RNAs were isolated from tissues or cells using Trizol
reagent (Invitrogen Life Technologies) according to the manufacturer’s
instructions. The quantity and quality of the extracted total RNA were
assessed by using a NanoDrop 2000c spectrophotometer (Thermo
Scientific). The total RNA was reverse-transcribed using HiScript III
All-in-one RT SuperMix Perfect for qPCR (Vazyme; R333).
Quantitative real-time PCR (qRT-PCR) was performed with Taq Pro
Universal SYBR gPCR Master Mix (Vazyme; Q712-02) using a CFX96
Touch Real-Time PCR Detection System (Bio-Rad). Beta-actin was
used as an internal control, and the relative expression level for genes
was calculated by the 27*4“* method. The primers used for qRT-PCR
are listed in Table S3.
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Cell transfection

For transfection, cells were seeded in six-well plates and grown
to 40%-60% confluence by the time of transfection. Small
interfering RNA (siRNA) and its negative control reagents were
purchased from GenePharma Company. siRNAs were transfected
with LipofectamineTM 3000 reagent (Invitrogen, USA) according to
the manufacturer’s instructions. Target sequences of the siRNAs are
shown in Table S4.

Cell Counting Kit-8 assay

Cell proliferation was measured by using the Cell Counting Kit-
8 (CCK-8) (Vazyme; A311-01) according to the manufacturer’s
instructions. Briefly, cells were seeded onto plastic 96-well plates at
an initial density of 2 x 10° cells/well. Then, CCK8 solution was
added to each well at the indicated times and incubated for an
additional 2 h at 37°C. Thereafter, OD,s, values were measured.

Colony formation assay

The clonogenic potential of transfected or infected cells was
evaluated by plate colony formation assay. Cells were seeded onto
plastic six-well plates at an initial density of 1x 10> cells/well in
appropriate growth media and incubated for 2 weeks. The cells were
fixed with 4% paraformaldehyde, and stained with Crystal Violet
Staining solution (Beyotime; C0121). The stained cell colonies were
counted and analyzed.

Statistical analysis

Statistical analysis and figures were performed using R software
v4.1.0 and GraphPad Prism 8 (San Diego, USA). Spearman analysis
was performed to calculate correlation coefficients. Chi-square test was
used for categorical data. The association between clinicopathologic
data and expression profile was estimated by the Wilcoxon rank test
and logistic regression. All results with p-value< 0.05 were considered
statistically significant. The pheatmap and ggplot2 R packages were
engaged for the mapping. KM survival and ROC curve based on
survival and timeROC packages were performed to assess survival
outcomes. Sangerbox (www.sangerbox.com) was used to improve the
quality of figure. *, **, ***, and *** represent p< 0.05, p< 0.01, p< 0.001,
and p< 0.0001, respectively.

Results

Identification of differentially expressed
ICD genes and the protein—protein
interaction network

From previous literatures and GeneCards database (25), 73
common genes were considered as ICD core gene (Table S1).
Subsequently, the R package “limma” was applied to identify
DEIGs (Figure 1A). A total of 61 DEIGs, namely, 52 upregulated
and 9 downregulated genes, were screened out. A heatmap was used
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for visualization of the expression (Figure 1E). The PPI network of
DEIGs was retrieved using the STRING database (Figure 1B) and
visualized by the Cytoscape software (Figure 1C). Functional key
subnetwork analysis was performed through the MCODE
algorithm, consisting of the following modules: LY96, TLR4,
IRF3, and RIPKI1, which was considered as a significant module
with a high MCODE score (Figure 1D).

Generation of two ICD subtypes through
consensus clustering

To further reveal the relationship between expression of DEIGs
and KIRC, we utilized the “ConsensusClusterPlus” R package to
classify molecular subtype with KIRC patients according to the
expression levels of DEIGs. Samples were clustered into two clusters
after K-means clustering (Figures 2A, B). Then, KM survival
analysis indicated that patients in the ICD-low subtype showed
dismal prognosis compared with patients in the ICD-high subtype
(Figure 2C). Furthermore, as displayed in Figure 2D, the genomic
expression of ICD genes was compared in two clusters. Cluster Cl1
(n=383) was considered as ICD-high subtype for exhibiting a higher
expression of ICD genes while cluster C2 (n = 145) was considered
as ICD-low subtype. Differences of clinical features between the two
distinct subtypes were also plotted for visualization in Figure 2D.

Functional enrichment analyses

In order to investigate the potential molecular mechanism and
biological activity of ICD subtypes, subtype-related DEGs were figured
out for functional enrichment analysis for GO and KEGG analysis. GO
analysis demonstrated that DEGs were mainly involved in immune
response, regulation of immune system process, defense response, and
leukocyte activation (Figure 3A). KEGG analysis revealed that DEGs
were mainly enriched in cancer-associated pathways, including the
PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor
resistance, PD-L1 expression and the PD-1 checkpoint pathway in
cancer, and the chemokine signaling pathway (Figure 3B), implying
that immunogenic cell death acts as a crucial factor in the progression
of RCC. Moreover, GSEA based on KEGG, Hallmark, and Reactome
gene sets was used for further exploration. The results suggested that
immunity and cancer-related pathways were highly concentrated in the
ICD-high subtype, including the T- and B-cell receptor signaling
pathway, the p53 signaling pathway, IL2-STAT5 signaling, and
interleukin 1 and 17 signaling (Figures 3C-E).

Genomic alterations of different ICD
subtypes

The somatic mutation landscape was also analyzed in two subtypes
(Figures 4A, B). Although VHL, PBRM1, TTN, and SETD2 were the
most frequent mutations, the relative frequency varied among different
subtypes. We then analyzed the GISTIC scores and copy number gain/
loss percentage in the ICD-high and -low group. The result revealed
that the ICD-low subtype was more likely to have a higher GISTIC
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Acquisition of common ICD genes. (A) Venn diagram of the 73 common ICD genes. (B) Protein—protein interactions among the 73 common ICD
genes. (C) Visualization of the PPI network conducted on Cytoscape. (D) Visualization of the functional subnet module. (E) Heatmap of differentially
expressed ICD genes between normal and tumor samples in KIRC. * represents p< 0.05, ** represents p< 0.01, *** represents p< 0.001.
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score (Figure 4C) and copy number gain/loss percentage (Figure 4D).
The burden of copy number gain and loss in the ICD-high group was
decreased compared with the ICD-low group at arm level while there
was no remarkable difference at focal level (Figures 4E, F). It appeared
that arm level copy number alterations mainly contributed to the
difference in ICD expression level.

Assessment of tumor immune
microenvironment and checkpoints in
distinct subtypes

Accumulating evidence revealed that ICD had significant
correlation with antitumor immunity. In our research, we
analyzed the tumor immune microenvironment of two subtypes
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and discriminated immune-related characteristics between two
subtypes. We first calculated the TME status using the
ESTIMATE algorithm. As depicted in Figure 5A, the stromal
score, immune score, and ESTIMATE score (p< 0.05) were
significantly higher in the ICD-high subtype than those in the
ICD-low subtype while tumor purity was the opposite.

Then, we calculated the fraction of 22 kinds of tumor-
infiltrating immune cells (TIICs) through the CIBERSORT
algorithm and removed the low-expression cell line. Grouping
histogram showed the distribution of TIICs (Figure 5B).
Macrophages and T cells accounted the most for the total.
Pearson’s correlation was performed to analyze TIIC correlation
(Figure 5C). We next examined immune cell infiltration to assess
differences in the immune context of the tumor immune
microenvironment between two subtypes. The ICD-high subtype
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Construction of two ICD subtypes through consensus clustering. (A) Heatmap exhibits consensus clustering result for k = 2. (B) Consensus
clustering cumulative distribution function (CDF) and delta area under the CDF curve for k = 2 to k = 9. (C) Kaplan—Meier curves of OS in ICD-high
and ICD-low subtypes. (D) Heatmap of 73 ICD gene expression and clinical factors in different subtypes. Corresponding feature names are shown at
the right of the heatmap.

showed high infiltration of CD8 T cells, activated CD4 memory T  significant genes—7 risk genes and 3 protect genes—were screened
cells, follicular helper T cells, regulatory T cells (Tregs), and MO  out (Figures 6A-C). KM analysis were carried out on the 1,023
macrophages, while the ICD-high subtype was characterized by =~ combinations of the top 10 genes (Table S2). We selected
high infiltration of resting CD memory T cells, monocytes, M1 and  the combination with the lowest p-value of KM analysis as ICD
M2 macrophages, and resting dendritic cells (Figure 5D).  prognostic signature containing TF, FOXP3, LY96, SLC7A1l,
Meanwhile, the expressions of HLA genes and immune HSP90AA1, UCN, IFNBI, and TLR3. The ICD risk score was
checkpoint genes were different among the distinct subtypes. The  calculated as follows: ICD score = (0.10917254 * TF) + (0.16458303
result suggested that HLA genes (Figure 5E) and checkpoint genes ~ * FOXP3) + (0.90393805 * LY96) + (0.50920311 * SLC7Al1l) +
(Figure 5F) were markedly higher in the ICD-high subtype. (—0.88020896 * HSP90AAL) + (0.99872821 * UCN) + (1.28833498 *
IFNBI1) + (-0.78540411 * TLR3). We allocated patients into high-risk

and low-risk group according to their ICD risk score. KM survival

Construction and validation of the ICD analysis was performed to determine the overall survival (OS) time
prognostic signature between different risk groups and ROC curve quantifying by AUC was
utilized to examine prognosis on the training set (TCGA cohort) and

For the purpose of predicting the prognosis accurately and  validation set (E-MTAB-1980 cohort). According to our results,
credibly, we constructed an ICD prognostic signature based on  patients with low ICD risk score demonstrated a prominent survival
supervised regression random forest algorithm. The top 10  benefit in both training set and validation set (Figures 6D, E). The AUC
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curves showed that ICD risk score had an acceptable prognostic value
for KIRC patients. The AUC values for predicting 1-, 3- and 5-year OS
in the training set were 0.76, 0.72, and 0.76, respectively, and those in
the validation set were 0.68, 0.71, and 0.72 (Figures 6G, H).
Additionally, expressions of survival status and heatmap of each set
were also presented (Figures 6F, I).

Clinical features of the prognostic
ICD risk signature

After clinical information analysis, we first drew a heatmap to
illustrate the difference between two risk groups (Figure 7A). Then,
Chi-square test was performed to evaluate the clinical difference
between two risk groups. Grade, stage, T staging, and M staging
were considered to have a significant difference between the high-
and low-risk group whereas age and gender had no difference
(Figures 7B-G). Meanwhile, we further analyzed the correlation of
ICD risk score and four diverse clinical parameters. The boxplots
showed the substantially elevated ICD risk score in the higher grade,
stage, T staging, and M staging according to the p-value of
difference analysis between the groups (Figures 7H-K). Thus, it
was surprising that the value of ICD risk score had the capability to
assess tumor progression.
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Establishment of nomogram to predict
patient prognosis

We applied univariate and multivariate Cox regression analyses to
explore independent prognostic factors. Clinicopathologic features
including age, gender, grade, and stage with ICD risk score were
displayed in the training set, which confirmed that ICD risk score was
an independent prognostic factor of KIRC (univariate Cox: HR: 2.758,
95% CI: 2.231-3.404, p-value< 0.001; multivariate Cox: HR: 2.095, 95%
CI: 1.671-2.827, p-value< 0.001, respectively) (Figures 8A, B). Owing to
the high correlation between ICD risk score and prognosis, clinical
parameters including age, N staging, and grade together with ICD risk
score were incorporated to construct a nomogram. All features in the
nomogram met the standard of p-value of proportional hazards
assumption greater than 0.05. The nomogram was utilized to
estimate 1-, 3-, and 5-year OS for KIRC patients (Figure 8C). As
shown in Figures 8D-F, calibration curves of 1, 3, and 5 years were
established to evaluate the performance of nomogram and presented
great accuracy between actual observations and predicted values.

Relation between ICD signature and tumor
immune microenvironment

Based on the findings above, we had confirmed the potential
role of ICD in antitumor immune response. The relation between
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Comparison of genomic alternations between different subtypes. (A, B) Oncoprint display of the 10 most frequently mutated genes in the ICD-high
subtype (A) and ICD-low subtype (B). (C, D) Comparison of GISTIC score (C) and gain/loss percentage (D) of copy number profiles between different
subtypes. (E) Focal level of CNV burden between two subtypes. (F) ICD-low subtype showed a higher arm level of CNV burden. *** represents p< 0.001.

ICD risk score and TIICs was scrutinized. The results demonstrated
that patients with elevated ICD risk score exhibited a negative
correlation with CD8 T cells, follicular helper T cells, activated NK
cells, and a positive correlation with M0 macrophages (Figure 9A).
The validation cohort showed the same tendency (Figure 9B).

To investigate the role of ICD risk score on response to
immunotherapy, we used TIDE (http://tide.dfci.harvard.edu)
analysis to quantify the rate of response to TIDE score for each
patient. The results showed that the high-risk group had a higher
percent of non-responder patients (Figure 9C). Notably,
immunotherapy responder patients showed a lower ICD score
compared with non-responder patients (p-value< 0.05)
(Figure 9D). In addition to TIDE prediction, we also compared
the expression profile of two risk groups with a published dataset
containing 47 patients with melanoma that responded to
immunotherapies. As for our result, the high-risk group was
more conceivable to respond to anti-PD-1 therapy with the
Bonferroni-corrected p-value of 0.011 (Figure 9E).
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Prediction of small molecular drug

We employed the Connectivity Map (CMap) tool, which was
widely used to discover potential small molecular drugs, with 150
up- and downregulated DEGs between two risk groups. We finally
identified 12 candidate small molecular drugs with absolute CMap
score > 90, namely, fostamatinib, YC-1, NM-PP1, torin-2,
tipifarnib-P2, apigenin, SB-431542, cycloheximide, amonafide,
linifanib, piperacillin, and ochratoxin-a (Table 1).

LY96 promotes the proliferation of
KIRC in vitro

The eight ICD signature genes’ expression was analyzed by
qRT-PCR in nine pairs of KIRC and adjacent tissues (Figure S1).
We measured the mRNA expression of LY96 in human renal cortex
proximal convoluted tubular epithelial cell (HK-2) and two human
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KIRC cell lines (786-0 and 769-P), and the highest expression was
found in 786-O (Figure 10A). To evaluate the biological roles of
LY96 in KIRC, small interfering RNA (siRNA) that specifically
target LY96 was designed. According to the expression of LY96 in
different cell lines, siRNA-LY96 was transfected into 786-O. The
knockdown efficiency was confirmed by qRT-PCR analyses, which
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showed that more than 50% LY96 was knockdown. As shown in
Figure 10B, the expression levels of LY96 were significantly
decreased in siRNA-infected 786-O cells compared to negative
control (NC) cells. CCK-8 and colony formation experiments
demonstrated that downregulation of LY96 inhibited the
proliferation ability of 786-O cells (Figures 10C, D).
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Construction and validation of the ICD prognostic signature. (A) Volcano plot of prognosis-related ICD genes preliminarily identified by univariate
Cox analysis with the screening criteria p< 0.05. The red icons represent risk factors (HR > 1), and the blue icons represent protective factors (HR< 1).
(B) The top 10 important ICD genes based on the relative importance calculated by random forest algorithm. (C) Sankey diagram demonstrated the
prognosis effect of top 10 important ICD genes. (D-F) Kaplan—Meier curve of OS prognosis (D), timeROC plot (E), and risk plot including risk score
distribution, survival status, and heatmap of eight signature genes (F) in the training set. (G, I) Kaplan—Meier curve of OS prognosis (G), timeROC plot
(H), and risk plot including risk score distribution, survival status, and heatmap of eight signature genes () in the validation set.

Discussion

Cancer immunotherapy has made a revolution in cancer treatment
through establishing a connection between the human immune system
and cancer (26). Various types of immunotherapies, including cellular
or antibody therapy (27), immune checkpoint therapy (28), CAR T-cell
therapy (29), and cancer vaccination (30), have been applied to KIRC
patients (31). ICD is a kind of RCD and considered sufficient to activate
an adaptive immune response (32, 33). The mechanism of action
encompasses the release of DAMPs, which can be recognized by innate
pattern recognition receptors (PRRs) from dying tumor cells, which
results in tumor-specific immune response (34). In addition, numerous
drugs in other kinds of radiation therapy, chemotherapy, or
immunotherapy have the potential to augment ICD (35). Overall, we
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believed that ICD therapy together with other therapies will be greatly
beneficial for cancer treatment.

Our research identified 73 core ICD genes through searching
previous studies and public databases. Consensus clustering analysis
was applied to split patients into two subtypes based on ICD gene
expression. Our research revealed that the ICD-low subtype tended to
have a favorable clinical outcome. We then screened the DEGs between
high and low subtypes of ICD and used them in biological function and
pathway enrichment analyses. Based on the results of enrichment
analysis, DEGs were mainly enriched in biological functions such as
immune response, regulation of immune system process, defense
response and leukocyte activation, and pathways associated with
immunity and cancer-related signaling pathways, including the
PI3K-Akt signaling pathway, P53 pathway, IL2-STAT5 signaling
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Clinical relevance of the ICD prognostic signature. (A) Heatmap of clinical factors in different risk groups. (B-G) Clinical differences between high and
low risk groups including age (B), gender (C), grade (D), stage (E), T staging (F), and M staging (G). (H-K) ICD score differences between groups of
grade (H), stage (1), T staging (J), and M staging (K). *** represents p< 0.001.

pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer,
and B-cell receptor signaling pathway. STATS5 is regulated by the IL-2
family and significantly contributes to tumor cell survival and
malignant progression of disease through influencing NK cell (36).
P53 plays a key role in cancer-cell-autonomous functions. The loss of
P53 can lead to the decrease of recruitment and activity of myeloid and
T cells, and eventually result in immune evasion (37). Alissa
Chackerian’s team suggested that ICD can be induced by dinaciclib
and enhance anti-PD1-mediated tumor suppression (38).
Furthermore, tumor immune infiltration landscape was
calculated by the ESTIMATE and CIBERSORT algorithms. The
score calculated by ESTIMATE for the two subtypes revealed that
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the ICD-high subtype was negatively correlated with tumor purity
and positively correlated with immune, stromal, and estimate
scores. Thus, HLA and checkpoint genes showed considerably
high expression in the ICD-high subtype.

The ICD prognostic signature was built with TF, FOXP3, LY96,
SLC7A11, HSP90AA1, UCN, IFNBI, and TLR3 to predict the
prognosis by quantification metric. Patients in the high-risk
group had significantly poorer prognosis compared with the low-
risk group according to the KM survival analysis and ROC curve,
and an external dataset was introduced for validation. We evaluated
and found a significant correlation between risk score and clinical
factors such as grade, stage, T staging, and M staging. Moreover,
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Independent prognostic factors and nomogram model. (A, B) Outcomes of univariate prognostic analysis (A) and multivariate prognostic analysis (B).
(C) Nomogram for evaluating the possibility of KIRC patients mortality at 1, 3, and 5 years. (D—F) Calibration for assessing the conformity between
nomogram OS and observed OS at 1 year (D), 3 years (E), and 5 years (F). ** represents p< 0.01, *** represents p< 0.001

CD8 T cells, follicular helper T cells (Tth), and activated NK cells
showed a negative correlation with risk score whereas MO
macrophages showed a positive correlation. Tth cells were
accepted as a distinct lineage of helper CD4 T cells. Tth is
associated with the presence of tertiary lymphoid structures
(TLS), which were commonly linked to better outcome (39, 40).
It was reported by Timothy W. Hand and colleagues that Tth cells
promote the formation of TLS and drive antitumor immunity in
colorectal cancer (41). In addition, Julie Niogret’s team revealed that
Tth cells significantly contribute to CD8-dependent antitumor
immunity and anti-PD-L1 efficacy (42). Our findings indicated
that our signature was a good predictor of immunotherapy response
rate. We then validated these results through TIDE analysis. A
lower percentage of responders was observed in the high-risk group
compared with the low-risk group. The result of submap analysis
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dramatically showed the better response of the high-risk group to
anti-PD-1 therapy. Subsequently, we predicted the potential useful
small molecular drugs through CMap analysis.

According to results of Cytoscape and supervised regression
random forest algorithm, we determined LY96 (Lymphocyte
antigen 96) as a hub gene to ICD in KIRC. LY96, also known
as myeloid differentiation 2 (MD?2), is a co-receptor to TLR4.
LY96 is considered to play a key role in inflammation and
immune-related diseases such as rheumatoid arthritis, Crohn’s
disease, and inflammatory diabetic cardiomyopathy (43-45).
Several studies have shown that LY96 is correlated with
tumorigenesis and progression (46). The interaction of LY96
and TLR4 promotes the release of pro-inflammatory cytokines
and adhesive molecules, which accelerates colon cancer growth
and lung metastasis (47). In gastric cancer, LY96 can activate
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Correlation of ICD prognostic signature with immune cells and immunotherapy responses. Scatter plots revealed the correlation between risk score
and infiltration of CD8 T cells, follicular helper T cells, activated NK cells, and MO macrophages in the training set (A) and validation set (B). (C) The
immunotherapy responders had a higher percentage in the low risk group. (D) The immunotherapy responders had a lower risk score. (E) Submap
analysis manifested the sensitivity of patients in different risk groups to PD1 and CTLA4 therapy.

TABLE 1 Candidate small molecular drugs analyzed by CMap tools.

Name Score  MOA Target

Fostamatinib 97.92 SYK inhibitor SYK, FLT3, RET

YC-1 96.26 Guanylyl cyclase activator HIF1A, GUCY1A2, GUCY1A3, GUCY1B3

NM-PP1 94.11 Mutant kinase inhibitor CAMK2A, LCK, MAPKS, PRKACA, RIPK2, SRC

Torin-2 93.59 MTOR inhibitor MTOR

Tipifarnib-P2 93.37 Farnesyltransferase inhibitor FNTA, FNTB

Apigenin 90.81 Casein kinase inhibitor, cell proliferation inhibitor, cytochrome = AKRI1BI1, AR, CDK6, CFTR, CYP19A1, CYP1A2, CYP1B1, HSD17B1,

P450 inhibitor MAOA, ODC1, XDH

SB-431542 90.08 TGF beta receptor inhibitor TGFBR1, ACVRIC, ACVRIB

Cycloheximide = -93.2 Protein synthesis inhibitor GSK3B, RPL3

Amonafide -95.98 Topoisomerase inhibitor TOP2A, TOP2B

Linifanib -96.26 PDGEFR receptor inhibitor, VEGFR inhibitor CSF1R, KDR, PDGFRB, FLT1, FLT3, FLT4, CSF1, KIT, PDGFRA, RET,
TEK

Piperacillin -97.5 Bacterial cell wall synthesis inhibitor none

Ochratoxin-a —-97.88 | Phenylalanyl tRNA synthetase inhibitor SLC22A6

Frontiers in Immunology 18 frontiersin.org


https://doi.org/10.3389/fimmu.2023.1207061
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.
A B
— 3+ 786-0
3
c il b 1.57
% T g *k
g 2
= 2-1 n
3 e —
lﬁ Q g 1.0+
< > w e
z - < >
o Zz -
E 1 w x
iy E 0.5 -
2 g
s &
] ©
o “ o0l
HK-2 786-O 769-P & . QS\V.
>
D
NC siRNA
786-0
FIGURE 10

10.3389/fimmu.2023.1207061

Cc
= NC 786-0
= siRNA 20 « NC
E = siRNA
{=
o 1.5
0
=
o 1.0
=3
s
a 057 =
o .»//J"
0.0 T T T T
Oh 24h 48h 72h 96h
Time (hours)
786-0
150 Kk
2
E
hd ——
§ 0y 100
£z
E%
o R
5 50
c
2 —
<]
(8]
0*
O \at
N

LY96 promotes the proliferation of ccRCC in vitro. (A) gRT-PCR verified the expression level of LY96 in RCC cell lines. (B) gRT-PCR analysis of LY96
MRNA in 786-0O cells treated with negative control (NC) or LY96 siRNA. (C) CCK-8 was performed to determine the proliferation abilities of 786-O
cells treated with negative control (NC) or LY96 siRNAs. (D) Colony formation was performed to determine the proliferation abilities of 786-0O cells
treated with negative control (NC) or LY96 siRNAs. ** represents p< 0.01, *** represents p< 0.001.

macrophage-mediated NF-«xB and STAT3 pathways to promote
tumor progression (48). The result of QRT-PCR validated the
upregulated expression of LY96 in RCC cell lines and clinical
samples. Additionally, CCK-8 and colony formation
experiments demonstrated that downregulation of LY96
inhibited the proliferation ability of 786-O cells. We also
validated the different expression of all signature genes in tissues.

In conclusion, our research evaluated the associations of
prognosis, biological function and pathways, and immune
infiltration landscape with ICD subtypes in KIRC. Furthermore,
we constructed a prognosis-related ICD signature based on TF,
FOXP3,LY96, SLC7A11, HSP90AA1, UCN, IFNBI1, and TLR3. The
signature was verified to have an independent prognostic value and
provided an exact survival prediction. In addition, we determined
LY96 as a potential biomarker. Based on previous studies, our
research might provide a theoretical basis for the development of a
novel immunotherapy for the treatment of KIRC. However, several
limitations remain to be addressed in our study. The cohort in
research mainly comprise Western samples, which may influence

Frontiers in Immunology 19

the usability of the findings to other populations. Further clinical
trials were also required to verify our conclusion.
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Peripheral blood CD3+HLADR+
cells and associated gut
microbiome species predict
response and overall survival to
immune checkpoint blockade
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Carsten Bokemeyer®, Tim H. Briimmendorf*?®, Tom Luedde
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Eppendorf, Hamburg, Germany, *Department of Gastroenterology, Hepatology and Infectious
Diseases, University Hospital Dusseldorf, Medical Faculty of Heinrich Heine University Dusseldorf,
Dusseldorf, Germany, “Center for Integrated Oncology Aachen-Bonn-Cologne-Dusseldorf
(CIOABCD), Aachen, Germany, *Department of Medicine 1V, University Hospital Rheinisch Westfallisch
Technische Hochschule (RWTH) Aachen, Aachen, Germany

Background: The search for biomarkers to identify ideal candidates for immune
checkpoint inhibitor (ICI) therapy is fundamental. In this study, we analyze
peripheral blood CD3+HLADR+ cells (activated T-cells) as a novel biomarker
for ICI therapy and how its association to certain gut microbiome species can
indicate individual treatment outcomes.

Methods: Flow cytometry analysis of peripheral mononuclear blood cells
(PBMCs) was performed on n=70 patients undergoing ICI therapy for solid
malignancies to quantify HLA-DR on circulating CD3+ cells. 16s-rRNA
sequencing of stool samples was performed on n=37 patients to assess
relative abundance of gut microbiota.

Results: Patients with a higher frequency of CD3+HLADR+ cells before
treatment initiation showed a significantly reduced tumor response and overall
survival (OS), a worst response and experienced less toxicities to ICl therapy. As
such, patients with a frequency of CD3+HLADR+ cells above an ideal cut-off
value of 18.55% had a median OS of only 132 days compared to 569 days for
patients below. Patients with increasing CD3+HLADR+ cell counts during
therapy had a significantly improved OS. An immune signature score
comprising CD3+HLADR+ cells and the neutrophil-lymphocyte ratio (NLR)
was highly significant for predicting OS before and during therapy. When allied
to the relative abundance of microbiota from the Burkholderiales order and the
species Bacteroides vulgatus, two immune-microbial scores revealed a
promising predictive and prognostic power.

Conclusion: We identify the frequencies and dynamics of CD3+HLADR+ cells as
an easily accessible prognostic marker to predict outcome to ICls, and how these
could be associated with immune modulating microbiome species. Two
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unprecedented immune-microbial scores comprising CD3+HLADR+, NLR and
relative abundance of gut bacteria from the Burkhorderiales order or Bacteroides
vulgatus species could accurately predict OS to immune checkpoint blockade.

KEYWORDS

PD-1, HLA-DR, checkpoint inhibitors, microbiome, prognosis, biomarker

Introduction

Immune checkpoint inhibitors (ICI) contributed to a drastic
change in the landscape of cancer therapy, giving hope to many
advanced cancer patients, which are now able to achieve improved
response and overall survival (1-3). Currently, more than 8 different
such agents have been approved for a wide spectrum of cancer
entities (4). Nonetheless, many patients only experience toxicities
and/or fail to respond to ICI therapy. The question, which patients
would mostly benefit from immune checkpoint blockade, remains
yet unanswered, despite countless studies identifying different
biomarker candidates. Among these are peripheral blood-based
biomarkers such as specific lymphocyte subpopulations (5) and
the neutrophil-to-lymphocyte ratio (NLR) (6), as well as the relative
abundance of diverse taxa in the gut microbiome with a certain
heterogeneity across cohorts (7).

The human leukocyte antigen-DR isotype (HLA-DR) is a major-
histocompatibility complex class II (MHC-II) molecule present on the
surface of antigen presenting cells (APCs), which together with a
foreign peptide constitute a ligand for T-cells and engage T-cell
response. It is known as an immune stimulation and late activation
marker (8) for T-cells. CD3+HLADR+ cells are deemed as activated T
lymphocytes, which are upregulated in autoimmune diseases (9) and
HIV infection (10). In cancer patients they have had divergent results,
with high CD3+HLADR+ levels being associated with shorter relapse-
free survival in Hodgkin and non-Hodgkin lymphoma (11, 12), but
with better response to neoadjuvant therapy in breast cancer (13).
Studies assessing HLA-DR expression on lymphocytes as a potential
biomarker for ICI therapy are scarce and focus mainly on single tumor
entities (14).

The gut microbiome, which shows tremendous immune
modulatory effects, mediated through different species (7), has
recently emerged as another field of interest in terms of

Abbreviations: (n)DC, (non-)Disease Control; APC, Antigen Presenting Cell;
CPN, Cancer Patient Network; CR, Complete Remission; FMT, Fecal Microbiota
Transplantation; HLA-DR, Human Leukocyte Antigen-DR Isotype; ICI, Immune
Checkpoint Inhibitor; IL-12- Interleukin-12; IMS, Immune-Microbial Score;
IRAE, Immune Related Adverse Event; MHC-II, Major Histocompatibility
Complex II; NLR, Neutrophil to Lymphocyte Ratio; OS, Overall Survival;
OUT, Operational Taxonomic Unit; PBMC, Peripheral Blood Mononuclear
Cell; PD, Progressive Disease; PFS, Progression Free Survival; PR, Partial
Remission; SD, Stable Disease; TMB, Tumor Mutational Burden; UICC, Union

for International Cancer Control.
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predicting response to immune checkpoint blockade. An active
manipulation of the human microbiome through dietary
interventions (15) or fecal microbiota transplantation (FMT)
seems to increase efficacy to ICI therapy, and can even, in some
cases, overcome a prior resistance to PD-1 and CTLA-4 antibodies
(16). However, an association between activated T cells and specific
microbiome species have, to our knowledge, not been studied. In
the present analysis, we evaluate the prognostic role of CD3
+HLADR+ cell frequencies and its dynamics during ICI therapy
and analyze how they correlate with the relative abundance of
microbiome species that could influence HLA-DR expression.

Patients and methods
Study population

70 patients with advanced stage solid neoplasia were
prospectively recruited at the interdisciplinary cancer outpatient
clinic at the University Hospital RWTH Aachen from August 2017
to September 2019 (see Table 1 for patient characteristics) before
undergoing ICI therapy, as described before (17). The study was
conducted in accordance with the ethical standards laid down in the
1964 Declaration of Helsinki and its later amendments and the
protocol was approved by the ethics committee of the University
Hospital RWTH Aachen, Germany (EK 206/09) with all patients
delivering written informed consent.

Determination of response to ICl therapy

Patients were regularly consulted by a trained oncologist prior to
each therapy cycle. Determination of response to ICI therapy was based
on clinical and radiological evaluation by CT scan approximately every
three months, evaluated by at least two independent experienced
radiologists. Based on the assessment, patients were stratified into
two groups: patients with a complete response (CR), partial response
(PR) and stable disease (SD) were included in the “disease control”
(DC) group, while the ones who exhibited progressive disease (PD)
were enrolled in the “non-DC” group.

Assessment of peripheral PBMC subsets

One peripheral blood EDTA tube was drawn per patient (n=70)
prior to ICI therapy initiation, at an early (after one to two cycles,
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Parameter Study cohort Subgroup of patients for microbiome analysis
Cancer patients n=70 n=37

Sex [%]:

male-female 70.0 - 30.0 64.9 - 35.1
Age [years, median and range] 67.0 [38-87] 67.4 [38-87]
BMI [kg/m?, median and range] 24.4 [15.9-42.3] 25.2 [15.9-40.0]
Tumor entity [%]

NSCLC 342 29.7
Melanoma 20.0 29.7
Urogenital tract 12.9 13.5

GIT 14.3 10.8

Head and neck 10.0 5.4

Other malignancies 8.6 10.8
Staging [%]

UICC III 10.0 13.5
UICC IV 90.0 86.5
ECOG PS [%]

ECOG 0 7.1 135
ECOG 1 542 59.5
ECOG 2 372 27.0
ECOG 3 15 0.0
Therapeutic agent [%]

Nivolumab monotherapy 614 59.5
Pembrolizumab monotherapy 229 16.2
Nivolumab/Ipilimumab 8.6 135
Other (Avelumab, Durvalumab) 7.1 10.8
Smoker status [%]

Never 10.0 13.5

Yes, ex 41.4 37.8

Yes, present 14.3 10.8
Unknown 343 37.8

Prior therapy [%]

Yes 67.1 56.9

No 329 432

Side effects [%]

Any 386 459

CTC G3 or higher 7.1 10.8

BMI, body mass index; ECOG PS, “Eastern Cooperative Oncology Group” performance status, NSCLC, non-small cell lung cancer; GIT, gastrointestinal tract; CTC, common toxicity criteria.

n=51) and late time-point (after three to five cycles, n=47) during
therapy. Freshly isolated cells were lysed using the Immunoprep
Reagent System (Beckman Coulter) and staining was performed
with two different flow cytometry panels. Panel 1 was stained with
the antibody mix CD45-FITC/CD56-PE/CD19-ECD/CD3-PC5, to
which the antibody CD-16 PE was added, and panel 2 was stained
with the antibody mix CD45-FITC/CD4-PE/CD8-ECD/CD3-PC5,
to which the antibody HLA-DR-PC7 was added (all antibodies from
Beckman Coulter, Krefeld, Germany), according to manufacturer s
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instructions. Flow-cytometry analysis was carried out and analyzed
using NAVIOS cytometer and analysis software (Beckman Coulter).
These analyses were performed within the clinical routine
diagnostics of immune status by the hematological laboratory of
the department of medicine IV of the University Medical Center
Aachen, which includes standardized gating strategy to distinguish
B cells (CD19+), NK cells (CD3-CD56+CD16+), and T cell subsets
(CD3+CD4+, CD3+CD8+, CD3+CD56+CD16+, CD3+HLA-DR+)
(Supplementary Figures 1A-D).
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16s rRNA sequencing of stool samples and
amplicon sequence analysis

Stool samples were obtained from n=37 patients before
initiation of therapy and from n=15 patients after three to five
cycles during therapy using a stool collection tube with 8ml DNA
stabilization Buffer (Stratec Molecular GmbH, Berlin, Germany)
and frozen aliquots were preserved at -80°C until further
processing. Samples were sequenced at the ZIEL Institute for
Food & Health Core Facility Mikrobiom/NGS (Freising,
Germany) according to methods described before (18). Shortly,
bead-beating and heat-treatment were used for cell lysis and gDNA
columns (Macherey-Nagel, Diiren, Germany) were employed to
purify metagenomic DNA. The V3/V4 region of 16 S ribosomal
RNA (rRNA) genes was amplified (25 cycles) from 24 ng DNA
using primers 341F and 785R49. After purification using the
AMPure XP system (Beckmann Coulter Biomedical GmbH),
sequencing was carried out in paired-end mode (PE275) with
pooled samples using a MiSeq system (Illumina, Inc., San Diego,
California, USA) following the manufacturer’s instructions and a
final DNA concentration of 10 pM and 15% (v/v) PhiX standard
library. The generated raw read files were pre-processed using the
IMNGS platform (19), a pipeline based on the UPARSE approach
(20) to build sample-specific sequence databases and OTU-based
profiles. We then further analyzed generated data using the Rhea
pipeline in R studio version 1.2.5, a set of R scripts for analysis of
Operational Taxonomic Units (OTUs) (21). Only OTUs with a
relative abundance > 0.5% total sequences in at least one sample
were further analyzed. For precise identification of certain OTU
sequences, the EzBioCloud database was used (22).

Statistical analysis

Shapiro-Wilk-Test was used to check for normal distribution of
the data. By employing the Mann-Whitney-U-Test and Kruskal-
Wallis-H-Tests, non-parametric data were compared. The median,
quartiles and ranges of these data are displayed in box plot graphics.
Kaplan-Meier curves aided in demonstrating the influence of a
specific parameter on OS. The Log-rank test was used to evaluate
statistical differences between subgroups. Repeated measures
ANOVA was used for longitudinal analyses of CD3+HLADR+
frequencies at the three time-points (before ICI treatment, early
and late time-point), reporting the main F-test. For calculation of
the optimal cut-off of CD3+HLADR+ cell frequencies and counts,
NLR and relative abundances of specific microbiome taxa to
discriminate between short- and long-term survivors, the “Charite
cut-off finder” was applied, which fits Cox proportional hazard
models to the dichotomized survival status (deceased or alive) as
well as the survival time (duration between first ICI administration
and death/last follow-up) and defines the optimal cut-off as the
value with the most significant split in log-rank test (23). In
addition, uni- and multivariate Cox-regression was performed
with parameters with a p-value of <0.100 in univariate testing
being included into multivariate testing. The hazard ratio (HR) and
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the 95% confidence interval are displayed. Gut microbiome analysis
was performed using the Rhea pipeline (21), mainly the
normalization (to account for differences in sequence depth),
beta- (computed based on generalized UniFrac distances) (24)
and alpha-diversity (on the basis of species richness and Shannon
effective diversity) (25), as well as taxonomic binning steps (using
SILVA and RDP classifier) (26, 27). The Spearman correlation
coefficient was used for correlation analyses between flow cytometry
data and relative abundances of specific taxa in the gut microbiome.
All statistical analyses were performed using SPSS 23 and 25 (SPSS,
Chicago, IL, USA) and R studio version 1.2.5 (Posit PBC, Boston,
MA, USA). A p-value of < 0.05 was considered statistically
significant (* p < 0.05; ** p < 0.01; *** p < 0.001).

Results
Characteristics of the study population

70 patients with advanced solid malignancies receiving ICI
therapy were included (detailed characteristics are shown in
Table 1). The median age was 67.0 years (range 38 to 87 years).;
70.0% were males. The predominant cancer entity was NSCLC
(34.2%), followed by malignant melanoma (20.0%), urogenital
cancer (12.9%), Gl-cancers (14.3%), head and neck tumors
(10.0%) and others (8.6%). Only patients in UICC stadium III
(10.0%) and IV (90.0%) were recruited. Immune related adverse
effects (IRAE) of any grade were experienced by 38.6% of patients
and 7.1% experienced IRAE graded >3. All patients were treated
with immune checkpoint inhibitors only. Of all 70 patients, a
subgroup of 37 and 16 patients were available for stool
microbiome analyses at baseline and at 3 months after treatment
initiation (see Table 1).

Baseline frequencies of peripheral blood
CD3+HLA-DR+ cells significantly predict
toxicity, response at 6 months and survival
at 6 months after initiation of immune
checkpoint blockade

First, we assessed differences between pretreatment CD3
+HLADR+ cell frequency between ICI-responders (DC) and non-
responders (non-DC) three and six months after therapy initiation.
In this case, only a non-significant trend towards a higher CD3
+HLADR+ cell frequency in non-responders compared to
responders could be observed after 3 months, however a clear
association between a better therapy response and lower
pretherapeutic CD3+HLA-DR+ cell frequencies (Psmonths=0.051,
Pémonths=0.008, Figures 1A, B) was observed. When looking at 3-
and 6-months-survival, patients who were still alive six months
after treatment initiation had a significantly lower initial CD3
+HLA-DR+ cell frequency compared to non-survivors (p=0.003,
mediang, vivor=6.65%, mediangeceasea=11.15%), while a similar trend
towards lower CD3+HLADR+ cell frequency among patients who
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FIGURE 1

IRAE (CTCAE 2 3)

CD3+HLADR+ cell frequencies before ICI therapy significantly predict OS, response and toxicity. (A, B) High CD3+HLADR+ cell frequencies in the
peripheral blood at baseline indicate a worse response to ICl therapy at 3 and 6 month (pzmonths=0.051, Pemonths=0.008). (C, D) High baseline CD3
+HLADR+ cell frequencies indicate poor 3 and 6 months survival under immune checkpoint blockade (P3months=0.067, Pemonths=0.003). (E) Baseline
CD3+HLADR+ cell frequencies are higher among patients who develop immune related adverse events (IRAE) under ICI therapy (p=0.043). (F)
Overall survival is lower in patients who do not develop any grade of IRAE (median OS: 151 days vs. “not reached”, p<0.001). (G) Baseline frequencies
of CD3+HLADR+ cells do not differ between patients experiencing IRAE > grade 3 and patients who do not (p=0.595). *: significant (p<0.05); **:

highly significant (p<0.01); n.s.: not significant (p>0.05).

died within the first three months became apparent (p=0.067,
Figure 1C, D).

In a further step, we looked at differences in CD3+HLADR+ cell
frequencies with respect to treatment-related adverse events.
Interestingly, patients not experiencing IRAE of any grade had
significantly higher CD3+HLADR+ cell frequencies
(mediany=6.60% vs. median,,=10.00%, p=0.043, Figure 1E).
Notably, in our cohort, patients who experienced IRAE of any
type showed an improved overall survival (p<0.001, Figure 1F).
However, the presence of HLA-DR expressing T cells before
treatment failed to predict iRAE graded 3 or higher among all
patients (p=0.595, Figure 1G).

Frequencies of peripheral blood CD3
+HLADR+ cells are comparable across
different clinical characteristics but
associated with the ECOG performance
status and can be influenced by the

ICI regimen

For further characterization of the predictive role of CD3
+HLADR+ values in ICI therapy, these were evaluated according
to different clinical characteristics. Regarding tumor entity, sex,
tumor stadium (UICC), smoking status and whether patients had
previous lines of systemic therapy, no significant differences could
be observed (Supplementary Figures 2A-E). Notably, there was a
significantly higher peripheral blood CD3+HLADR+ frequency in
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patients with a higher ECOG performance status compared to
patients with a lower ECOG performance status (p=0.026,
Supplementary Figure 2F). Despite observing no significant
difference between CD3+HLADR+ cell frequencies at baseline
with respect to the administered ICI agent (Supplementary
Figure 2G), HLADR+ cell frequencies were significantly higher at
the early time-point in patients receiving a combined anti-PD-1/
CTLA immune checkpoint blockade with Nivolumab and
Ipilimumab (p=0.036, Supplementary Figure 2H).

Pretreatment circulating CD3+HLADR+
frequencies are an independent predictor
of overall survival to ICl therapy

Based on the predictive power of activated T cells regarding 3-
and 6-months-survival, we next took a deeper look at the prognostic
role of these cells with respect to OS using Kaplan-Meier-curve
estimates. In a first step, patients were split into two groups based
on the median frequency of these cells. Interestingly, the median
CD3+HLADR+ frequency (9.1%) at baseline significantly
discriminated between short- and long-term survivors (p=0.035,
Figure 2A). Since the median is likely not ideal to discriminate
patients regarding OS, we then applied the Charite cut-off finder
(further described in Patients and Methods) to establish a
prognostically highly relevant cut-off value for CD3+HLADR+
cell frequencies (18.5%). Patients with a pretreatment CD3
+HLADR cell frequency below this ideal cut-off survived
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Baseline and longitudinal frequencies of circulating CD3+HLADR+ cells predict overall survival to immune checkpoint blockade. (A) Patients with
baseline CD3+HLADR+ cell frequencies above the median (9.1%) have a significantly impaired overall survival (OS, p=0.035). (B) A baseline CD3
+HLADR+ cell frequency above the ideal cut-off value (18.5%) indicate a significantly reduced median OS (132 vs. 569 days, p<0.001). (C)
Frequencies of CD3+HLADR+ cells significantly increase from baseline to the early-time point (p=0.015) but remain unaltered thereafter (error bars
indicate SEM). (D, E) Patients with CD3+HLADR+ cell frequencies above the ideal cut-off at the early and late time-point have a significantly
impaired OS (Peary=0.008, piate=0.024). (F, G) Increasing CD3+HLADR+ cell frequencies between baseline and the early or late time-point indicate a
better outcome (Ppasetine/early=0-019, Ppaseiinesate=0.032). *: significant (p<0.05); **: highly significant (p<0.01); n.s.: not significant (p>0.05)

significantly longer (median 569 days) than patients above this
threshold (median 132 days, p<0.001, Figure 2B).

For further characterization of the role of CD3+HLADR+ cell
frequencies as independent predictors of OS, we applied uni- and
multivariate Cox-regression analyses. Univariate Cox-regression
further sustained our hypothesis that the frequency of CD3
+HLADR+ cells acts as a potent prognostic predictor in patients
undergoing immune checkpoint blockade (HR: 1.068 [95%ClI: 1.037
- 1.099], p<0.001, Table 2). Next, we included several prognostically
relevant parameters such as CD3+CD8+ cell frequencies at baseline,
ECOG PS, Hemoglobin, AST and ALT (p<0.110, Table 2) into
multivariate Cox-regression analysis, which revealed peripheral
blood CD3+HLADR+ cell frequencies as an independent
predictor for OS in patients before commencement of ICI therapy
(HR: 1.054 [95%CI: 1.007-1.103], p=0.024, Table 2).

Frequency of CD3+HLADR+ cells during
ICI treatment can predict overall survival

Consequently, we evaluated the relevance of circulating
activated T cells throughout therapy using two further time
points beyond the baseline: an early time-point (after only one or
two cycles of therapy, n=51) and a late time-point (after three to five
cycles of therapy, n=47). First, we looked at how ICI could influence
the abundance of these circulating cells during therapy. By
employing repeated measures ANOVA analysis comprising the
three time-points we could show that there was no significant
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effect across all time-points (F (1.35, 48.65) = 1.686, p=0.201,
Figure 2C), however a significant difference could be
demonstrated in the post hoc pairwise comparison using the
Bonferroni correction between the baseline and the early-time
point (p=0.015). As pretreatment frequencies of activated T cells
were strong predictors of OS, we next hypothesized that
longitudinal values could also be prognostically relevant and serve
to monitor therapy during its course. As before, we calculated
optimal cut-off frequencies of circulating CD3+HLADR+ cells at
the early and late-time points (frequency of CD3+HLADR+ ¢y
18.0%, frequency of CD3+HLADR+,.: 8.9%). As hypothesized,
patients with a frequency of activated T-cells above the ideal cut-oft
survived significantly shorter than patients with frequencies below
(Pearty=0.008, HR,ypy: 2.790 [95%CI: 1.261-6.177], p=0.011;
Plate=0.024, HRyye: 2.714 [95%CI:1.104-6.667], p=0.030,
Figures 2D, E). Next, we looked at how the ICI-induced dynamics
of these frequencies (increasing/decreasing between baseline and
early/late time-point) predicted OS. Notably, patients with
increasing frequencies of CD3+HLADR+ cells between baseline
and the early as well as late time points showed a significantly
improved overall survival, with patients with increasing levels living
a median of 587 days (A baseline/early time-point) and for
Abaseline/late time-point not reaching their median OS, while
patients with decreasing frequencies of activated T cells had a
median OS of only 162 and 292 days, respectively (pearlys
baseline=0.019, HR ariy/baseline: 2:338 [95%CT: 1.126-4.854], p=0.023,
Plate/baseline=0.032, HRjze/paseline: 2423 [95%CI: 1.052-5.576],
p=0.018, Figures 2F, G).
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TABLE 2 Uni- and multivariate Cox-regression analysis for the prediction of overall survival.

Parameter univariate Cox-regression multivariate Cox-regression
p-value Hazard-Ratio (95% ClI) p-value Hazard-Ratio (95% ClI)
CD3+HLADR+ frequency <0.001 1.068 (1.037-1.099) 0.024 1.054 (1.007-1.103)
CD3+CD8+ frequency 0.107 1.022 (0.995-1.050) 0417 0.982 (0.940-1.026)
Age 0.679 1.006 (0.979-1.033)
Sex 0.796 0.971 (0.474-1.773)
UICC tumor stage 0.432 1.604 (0.494-5.213)
ECOG PS 0.012 1.977 (1.164-3.356) 0.059 1.953 (0.976-3.907)
Leukocyte count 0.521 1.020 (0.961-1.082)
Neutrophil count 0.440 1.000 (1.000-1.000)
Lymphocyte count 0.275 1.000 (0.999-1.000)
NLR 0.166 1.021 (0.992-1.051)
Hemoglobin 0.001 0.865 (0.794-0.943) 0.087 0.915 (0.826-1.013)
Sodium 0.379 0.969 (0.903-1.040)
Potassium 0.250 0.671 (0.341-1.323)
ALT 0.005 1.012 (1.004-1.020) 0.147 1.014 (0.995-1.033)
AST 0.023 1.012 (1.002-1.022) 0.801 0.997 (0.977-1.018)
Bilirubin 0.022 1.069 (1.010-1.131) 0.232 1.050 (0.969-1.138)
Creatinine 0.788 0.948 (0.643-1.397)
LDH 0.777 1.000 (0.998-1.002)

UICC, Union for International Cancer Control; ECOG PS, Eastern Cooperative Oncology Group performance status; NLR, neutrophil to lymphocyte ratio; ALT, alanin aminotransferase; AST,
aspartate aminotransferase; LDH, lactate dehydrogenase.

Kaplan Meier estimates of monotherapy vs dual therapy patients,

Frequency of CD3+HLADR+ cells predict
toxicity, response and overall survival in
patients undergoing monotherapy with a
single ICI agent

showing no significant differences (p=0.677).

An immune signature score comprising

Bearing in mind that, in our study, patients undergoing dual
blockade contribute majorly to the significant increase in CD3
+HLADR+ cell frequencies after the first cycle of therapy (Figure
2C, Supplementary Figure 2G-H), we have performed an analysis of
response, OS and toxicity in patients undergoing ICI monotherapy
(n=64) (Supplementary Table 2). As seen in the table, we could
show that the role of CD3+HLADR+ cell frequencies in the
peripheral blood towards predicting response (Ps3months=0.089,
Pémonths=0.016), and toxicity (p=0.109) and OS remains (Ideal cut
off: 18.5%, median OS 587 vs. 132 days, p<0.001, HR: 5.003 [95%CI:
2.308-10.845], p<0.001), even when regarding longitudinal values
and their dynamics (Pearly<0.001, HReqny: 4.508 [95%CI:1.860-
10.925], Plate=0.031, HRyye: 2.640 [95%CI:1.056-6.603]; Peartys
baseline=0.035, HR qrtybascline: 2240 [95%CI: 1.038-4.830], p=0.040,
Plate/baseline=0.038, HRye/baseline: 2.410 [95%CI: 1.024-5.673],
p=0.044), despite the exclusion of patients undergoing dual
immune checkpoint blockade (n=6). The calculated ideal cut-offs
using the Charite cut-off finder are the same for both patient
populations (single agent vs. all). We then compared OS using
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CD3+HLADR+ cell frequencies and the
neutrophil-to-lymphocyte ratio is a highly
significant OS predictor

The NLR, a well investigated biomarker for patients undergoing
ICI (6), was validated in our cohort as a predictor of OS for all three
time-points (baseline, early and late time-points), when using its
respective ideal cut-off value (NLRpgselinei4-37, Pbaseline<0.001;
NLR 411,:3.95, Pearty=0.049; NLRy,:6.33, Plre=0.001; Figure 3A-
C). Repeated measures ANOVA analysis demonstrated no
significant change in NLR across all three time-points (F (2, 92) =
1.053, p=0.353, Figure 3D), Based on these results and the findings
above related to CD3+HLADR+, we established an immune
signature score combining CD3+HLADR+ and NLR and how it
could predict OS. In this case, frequencies of CD3+HLADR+ and
NLR above the ideal cut-off were seen as risk factors. Patients
bearing e.g., two risk factors had a significantly shorter OS (median
OS 132 days) compared to patients with no risk factors (median OS
not reached) (p<0.001, HR: 12.454 [95%CI: 4.221-36.749], p<0.001,
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FIGURE 3

Prognostic relevance of the neutrophil-to-lymphocyte ratio (NLR) and a prognostic immune signature score including CD3+HLADR+ cell
frequencies. (A-C) A NLR above the respective ideal cut-off value at baseline or the early/late time-point is associated with a significantly impaired
overall survival (OS). (D) The NLR remains unaltered over time (error bars indicate SEM). (E) A novel immune signature score comprising baseline
frequencies of CD3+HLADR+ cells and the NLR significantly predict OS. (F, G) The combined immune signature score shows a strong prognostic

relevance for the early and late time-points. n.s.: not significant (p>0.05).

Figure 3E). This score could also significantly predict OS at the early
and late-time points of therapy (Pearty=0.002, HReqpy: 2.000 [95%CIL:
1.120-3.571], Peariy=0.019; Piye<0.001, HRjyye: 2.143 [95%Cl: 1.157-
3.970], Plae=0.015, Figures 3F, G).

Correlation between CD3+HLADR+
frequencies, T cell subsets and gut
microbiome taxa

In a latter step, we took a glance at how the prognostically
highly relevant CD3+HLADR+ cell frequencies correlated with
other immune status parameters, clinical parameters and relative
abundance of taxa from the gut microbiome measured by 16s rRNA
sequencing. Figure 4 depicts an overview of gut microbiome
analyzes, with patients showing no significant different beta-
diversity related to time-point, response and survival at 6 months
therapy (Figure 4A-C). Furthermore, relative abundances of
specific taxa do not differ significantly between baseline and late-
time point, despite interesting shifts in the proportions that some
taxa represent within the gut microbiome. At the order level, the
proportion of Bacteroidales decreased from 40% before therapy to
about 25.5% at the late time point, while Clostridiales, which before
therapy represented 52.1% of all orders, increased to 65.0% at the
late time-point. At a family level, Lachnospiracae represented 38.9%
before therapy, a proportion which decreased to 29.3% after
treatment (Figure 4D-L).

Regarding the immune status, frequencies of CD3+HLADR+
cells significantly correlated with the frequency of CD3+CD8+ cells
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(p<0.001, r;=0.521, Supplementary Figure 3A), and the frequency of
CD3+CD4+ cells (p=0.002, r;=-0.360, Supplementary Figure 3B).
Concerning clinical parameters, CD3+HLADR+ cell frequencies
correlated with the ECOG performance status (p=0.005, r;=0.329,
Supplementary Figure 3C). Finally, with regards to the measured
microbiome taxa, the presence of activated T cells in the peripheral
blood correlated with the relative abundance of the order
Burkholderiales (p=0.006, r,=-0.474, Supplementary Figure 3D).
At a deeper taxa level inside this order, these frequencies showed
further correlations to the family Sutterellaceae (p=0.001, r;=-0.628,
Supplementary Figure 3E) and within it the genus Sutterella
(p=0.010, r,=-0.474 Supplementary Figure 3F). Furthermore, a
significant correlation could be established to the Genus
Bacteroides (p=0.029, r,=-0.365 Supplementary Figure 3G). More
detailed values on these taxa are depicted in Supplementary Table 1.

Baseline CD3+CD8+ cell frequencies also
play a role in toxicity, response and overall
survival prediction to ICl therapy, yet
inferior to CD3+HLA-DR+ cell frequency

Since CD3+HLA-DR+ cell frequencies positively correlate
significantly with CD3+CD8+ cell frequencies in our cohort,
while negatively correlating with CD3+CD4+ cell frequencies, we
postulate that most of these CD3+HLA-DR+ cells are indeed CD3
+CD8+HLA-DR+ cells. To further investigate this aspect, we
looked at the role that baseline CD3+CD8+ cells play regarding
response, toxicity and OS prediction for patients in our cohort
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(Supplementary Table 3). CD3+CD8+ baseline cell frequencies
seem to play a role in predicting disease control at 3 and 6
months (p=0.044 and p=0.026 respectively), toxicity of all grades
(p=0.025), as is the case for CD3+HLA-DR+ cell frequencies. Also,
by calculating an ideal cut-off for CD3+CD8+ cell frequency
(23.65%) it is possible to discriminate between short- and long-
term survivors, with patients with cell frequency values above
23.65% at baseline surviving a median of only 170 days compared
to 658 days for patients below this value (HR: 2.323 [95%CI: 1.221-
4.418], p=0.010). However, when using univariate Cox regression
analysis, CD3+CD8+ cell frequencies at baseline do not pose as an
independent predictor of overall survival, contrarily to CD3+HLA-
DR+ cells (UVA: p=0.107). When adding CD3+CD8+ cells to the
multivariate analysis, the independent prognostic power of CD3
+HLA-DR+ cells is unaffected (HR: 1.054 [95%CI: 1.007-1.103],
p=0.024, Table 2). Notably, despite the fact that the strong positive
correlation between these two cell populations is not only present at
baseline (p<0.001, rs=0.521) but also at early (p=0.004, rs=0.397)
and late time-points (p=0.001, rs=0.484), contrarily to longitudinal
values of CD3+HLA-DR+ and their dynamics that pose as
predictors of overall survival through the course of therapy as
shown above, longitudinal values of CD3+CD8+ and their
dynamics don’t show any type of predictive value, even when
calculating an ideal-cut off (pea;y=0.4, plate=0.056, peqriy/
baseline=0.319, pja/baseline=0.995).
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Relative abundance of specific gut
microbiome taxa associated with CD3
+HLADR+ cell frequencies can significantly
predict overall survival

Here, we focused on four taxa that showed associations to the
frequencies of CD3+HLADR+ cells: the Burkholderiales order, the
Sutterellaceae family, Genus Sutterella and the Genus Bacteroides.
Patients with a relative abundance of bacteria from the
Burkholderiales order below the ideal cut-off of 0.422% lived
significantly shorter (median OS 129 days) than patients with
values above this cut-off (median OS not reached, p<0.001, HR:
6.219 [95%CI: 2.217-17.446], p=0.001, Figure 5A). Inside this order,
a similar effect could be demonstrated for bacteria from the
Sutterellaceae family related to an ideal cut-off of 0.405%
(p=0.029, Supplementary Figure 4A) and within it the Genus
Sutterella (Sutterella;ge,:0.254%, p=0.032, Supplementary
Figure 4B) The Bacteroides genus failed to pose as a significant
predictor of OS (p=0.064, Supplementary Figure 4C), but within it,
we identified a prognostically significant OTU representing the
species Bacteroides (B.) vulgatus (OTU3). Patients with a relative
abundance of B. vulgatus above the ideal cut-off (7.146%) lived
significantly longer (p=0.015, HR: 5.153 [95%CI: 1.186-22.397],
p=0.029, Figure 5B) than patients below this value. When looking at
these prognostically relevant taxa in a follow-up stool sample after
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FIGURE 5

Prognostic relevance of specific gut microbiome taxa associated with CD3+HLADR+ cell frequencies. (A, B) A relative abundance of bacteria from the
Burkholderiales order or Bacteroides vulgatus species below the ideal cut-off is associated with a significantly impaired outcome. (C—E) The immune-
microbial score A (comprising ideal cut-offs of the NLR, the frequency of CD3+HLADR+ cells and the rel. abundance of the Burkholderiales order) is a
strong predictor of survival in patients undergoing ICI therapy. (F-=H) The immune-microbial score B (comprising ideal cut-offs of the NLR, the frequency
of CD3+HLADR+ cells and the rel. abundance of Bacteroides vulgatus) is a strong predictor of survival in patients undergoing ICl therapy.

three to five cycles, these showed no prognostic relevance, possibly
due to the low sample number (n=15). Nonetheless, patients with a
relative abundance of B. vulgatus below the median (4.63%) at the
late time-point showed a tendency towards better OS (p=0.092,
Supplementary Figure 4D). In addition, also a tendency towards
improved survival could be shown in patients with decreasing
relative abundance of B. vulgatus between baseline and the late
time-point (p=0.132, Supplementary Figure 4E).

A combined immune-microbial score
including activated T cells, NLR and the
relative abundance of Burkholderiales
order or Bacteroides vulgatus species has
an important prognostic role

We then proceeded to develop two immune-microbial scores
(IMS), one at the order level, involving the ideal cut-offs of the relative
abundance of Burkholderiales, the NLR and frequencies of CD3
+HLADR+ cells, and one at species level, involving the relative
abundance of B. vulgatus, NLR and CD3+HLADR+. Concerning
the first score (IMS-A), patients with at least 1 risk factor already had a
significantly impaired overall survival (p=0.011, HR: 8.914 [95%CI:
1.181-67.292], p=0.034, Figure 5C). An even more relevant
discrimination could be achieved for patients with 3 risk factors vs
patients with less (p<0.001, HR: 6.732 [95%CI: 2.352-19.272], p<0.001,
Figure 5D). Figure 5E shows a depiction of all 4 groups and how each
risk factor contributes to a further deterioration of OS (p=0.001, HR:
2.681 [95%CI: 1.513-4.750], p=0.001). For the second score (IMS-B),
patients with at least 1 risk factor did not live significantly shorter
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(p=0.075, Figure 5F). However, a significant difference could be seen
in patients with all 3 risk factors, which had an impaired median OS of
120 vs. 1009 days for less than 3 or no risk factors (p=0.001, HR: 4.853
[95%CI: 1.843-12.778], p=0.001, Figure 5G). Again, all 4 groups can be
significantly distinguished from each other (p=0.008, HR: 2.625 [95%
CI: 1.440-4.785], p=0.002, Figure 5H).

Discussion

To this day, extensive studies around possible biomarkers for
ICI therapy have been performed, from invasive tissue-based
approaches such as PD-L1 scoring and the study of the tumor
microenvironment via profiling of co-inhibitory or co-stimulatory
receptor expression in situ (28, 29), to minimally invasive ones
studying different immunomodulators such as cytokines and cell
frequencies such as the NLR in the peripheral blood (30), genetic
profiles including tumor mutational burden (TMB) and
microsatellite instability (MSI) (31) as well as a recently
acknowledged key player in the immune system, the gut
microbiome, whose manipulation through dietary interventions
and FMT might impact response to ICIs (7, 16). So far, despite
several candidates, only PD-L1 scoring and the TMB have found
regular clinical use, still bearing some limitations (32).

In the present study, we show how easily measurable peripheral
blood frequencies of CD3+HLADR+ (activated T) cells can serve as a
notable predictor of response, outcome and possibly toxicity in patients
undergoing immune checkpoint blockade in advanced solid
malignancies. Furthermore, we show an unprecedented liaison between
these cells and some microbial taxa residing in the gut of patients.
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HLA-DR is an MHC-II class molecule expressed by APCs and is
seen as a late activation marker for T cells, that is upregulated 48
hours after mitogen stimulation (8). Several studies have shown the
role of high levels of HLA-DR+ T cells in HIV (33), autoimmune
disease (34) and transplant rejection (35). In cancer, the presence of
HLA-DR+ T cells in the peripheral blood has shown dichotomic
results. Higher pretreatment frequencies of CD8+HLADR+ in
breast cancer predicted better outcome to neoadjuvant
chemotherapy (13). In squamous cell carcinoma of the lung and
head and neck cancer, the same higher levels of circulating activated
T lymphocytes predicted impaired overall survival (36, 37). In the
ICI setting, little is known related to the biomarker role of
peripheral CD3+HLADR+ cells, but Carlisle et al. report how an
increase of a similar cell population after the first cycle of
immunotherapy with ICI predicts better progress free-survival
(PFS) and OS in RCC (14). In our cohort, we demonstrate how
the peripheral blood CD3+HLADR+ frequencies can represent
strong predictors of OS, with patients with higher pretreatment
levels of this molecule having an impaired response and OS to ICI
therapy. When frequencies of this cell population were above an
ideal cut-off, patients were at a 4.5-times higher risk of impaired
overall survival. We hypothesize that these high pretreatment levels
support the model of a dysregulated immune system and within the
CD3+HLADR+ population, some cells may have impaired
antitumor immunity as suggested before (38, 39), which possibly
cannot be reverted by immune checkpoint blockade. In addition,
patients with a higher frequency of these activated T cells before
therapy also have significantly less toxicity of any grade. Toxicity
and response have been shown to go hand in hand in immune
checkpoint blockade with patients with an immune system more
prone to successful antitumoral directed activation by ICI
demonstrating more side effects and an improved outcome (40),
as is the case in our cohort. Further sustaining our thesis of
dysregulated immune response and more erratic inflammation
symbolized by higher pretreatment frequencies of activated T
cells, ECOG status showed a strong correlation to pretreatment
CD3+HLADR+ and a significant effect on OS. Not only
pretreatment, but also sequentially assessed CD3+HLADR+ cell
frequencies predict OS. Rather than the static CD3+HLADR+
frequencies, that can also likely depict activated T cells with
impaired function unable to contribute to the antitumoral
response, we also demonstrate how the dynamics of these cells,
comparing early and late time-points to the baseline, can also
significantly predict OS. Patients with increasing levels of CD3
+HLADR+ levels as an immediate result of the first cycle(s) of
immunotherapy, showing an ICI-mediated activation of T cells in
the peripheral blood, which may consequently transit to the tumor
microenvironment and contribute to enhanced antitumoral
response, had a significantly prolonged OS, in line with prior
findings (14). Interestingly, this effect was most pronounced in
patients undergoing dual immune checkpoint blockade with
nivolumab and ipilimumab. However, analyses excluding patients
undergoing dual immune checkpoint blockade (n=6), using only
patients under monotherapy (n=64), show an unaltered predictive
and prognostic prediction power of CD3+HLA-DR+ cell
frequencies at baseline and during ICI therapy. We also
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hypothesize that our CD3+HLADR+ cells are mostly CD8+ cells,
since there is a significant positive correlation between both, while
CD3+HLADR+ cells in our cohort negatively correlate with CD4+
cell frequencies. Our analysis concerning the predictive and
prognostic prediction power of CD3+CD8+ cell frequencies
shows a role for this cell population in the baseline, which cannot
be verified with univariate analysis and when regarding longitudinal
frequencies. Furthermore, the inclusion of this cell population in the
multivariate analysis leaves the independent prognostic power of
CD3+HLA-DR+ cell frequencies at baseline unaltered. Thus it is
evident, that the prognostic relevance of CD3+HLA-DR+ is at least
partly specific for this cell population and does not only reflect the
CD8+ cell subset. Because of the complexity of the innumerous
players within the immune system and the even broader individual
cancer patient network (CPN), one single parameter is prone to
high fluctuation between cohorts. To tackle this issue, we further
analyzed a combined immune status score comprising frequencies
of CD3+HLADR+ cells and a well-studied biomarker within the ICI
framework, the NLR. The neutrophil to lymphocyte ratio has been
shown to act as a potent prognostic predictor in ICI therapy in
several cohorts, being a part of different immune signature scores
shown before such as the Gustave Roussy score (41). Neutrophils
have been described as facilitators of tumor growth and metastasis
and stimulators of tumor angiogenesis (42). Our presented score
can serve as an even better prognostic biomarker than the frequency
of activated T cells by itself, with patients with values above the ideal
cut-offs for both parameters before initiation of ICI treatment being
at a 12.5-times higher risk of death than patients with values below
the cut-offs for our cohort of patients. This immune status-based
score can also serve as a biomarker to monitor therapy, also
predicting OS of patients undergoing immune checkpoint
blockade at an early and a late-time point during therapy.
Another important aspect of our study is the gut microbiome.
We show how gut bacteria with significant correlations to the
frequency of activated T cells in the peripheral blood belonging to
the order Burkholderiales all the way to its genus Sutterella can
successfully predict better OS in patients undergoing ICI therapy.
Also, bacteria belonging to the species Bacteroides vulgatus were
identified as a potential biomarker for outcome prediction in this
setting, despite its genus Bacteroides only showing a trend towards
better OS in patients with higher relative abundance of these
bacteria. As already dissected by many reviews, the gut
microbiome, despite its irrefutable role in immune modulation
and its influence in cancer immunotherapy, is highly prone to
fluctuation with many different studies reporting different
prognostically relevant taxa, due to factors such as geography and
different enterotypes, lifestyle and diet, different techniques to
analyze samples and reference databases (43, 44). The relative
abundance of the Burkholderiales order has been shown to
impact relapse free survival (RFS) in lung tissue after resection of
stage II cancer (45). In the gut, some genus inside this order have
been shown in the past as successful predictors of OS, such as
Burkhorderiales spp., whose supplementation lead to recovery of
response to anti-CTLA4 treatment in melanoma mice by inducing
interleukin 12 (IL-12)-dependent TH;, immune responses (46),
whilst results concerning another genus within this order,
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Sutterella, are controversial, with one study showing how, contrarily
to our findings, higher relative abundances could predict worsened
OS in a NSCLC cohort undergoing ICI therapy (47), whilst
favorable manipulation of the microbiome by Diosgenin therapy
improved OS in patients with melanoma undergoing ICI therapy by
increasing the relative abundance of the Sutterella genus (48). Little
is known regarding the interaction of the Sutterella genus with the
immune system, however it seems to exercise a mild pro-
inflammatory activity, which we theorize could be beneficial
towards immune system activation within ICI therapy, and its
adhesion capacity to intestinal epithelial cells might suggest it has
a immunomodulatory role (49). Some Bacteroides species play an
anti-inflammatory role via recruitment of regulatory T-cells
(Tregs), suppression of IL-17 and increase of anti-inflammatory
IL-10 (50, 51). In addition, supplementation of Bacteroides spp. in
melanoma mice lead to enhanced antitumoral effects and improved
response to anti-CTLA-4 treatment (46). Here, we show how a
higher relative abundance of the genus Bacteroides, which
correlates negatively with CD3+HLADR+ cell frequencies, points
non-significantly towards better OS and show how a certain species,
Bacteroides vulgatus, can significantly predict OS. Interestingly, the
negative correlation between Bacteroides in the gut and HLADR+ T
cells in the peripheral blood can show how these possibly modulate
T cell function by contributing to Treg recruitment and
consequently to lesser activation of T cells. Since high levels of
CD3+HLADR+ cells in a pretreatment setting seem to be
unfavorable towards OS, it makes sense that high relative
abundances of Bacteroides vulgatus, which can control the
exaggerated presence of activated and somehow erratic T cells
and the immune dysregulation some of them might represent,
contribute to an improved OS in patients undergoing immune
checkpoint blockade for advanced solid cancer, as shown before in a
mouse model (52). Nevertheless, increasing CD3+HLADR+ cell
frequencies after commencement of ICI therapy led to improved
OS, since these most likely represent functional and active T cells
that can combat the tumor effectively and are recruited to the TME
as a result of checkpoint blockade. Simultaneously, a tendency
towards better OS could be shown for patients with decreasing
relative abundance of Bacteroides vulgatus after therapy initiation,
most likely due to decreasing Treg recruitment, cells that result in
impaired response to ICI therapy (53). In line with these findings, at
a late time-point (after five cycles), a lower relative abundance of
these bacteria also points towards improved outcomes. Finally, our
immune-microbial scores (IMS-A and B), taking into account
different factors of the complex interplay of the CPN such as
CD3+HLADR+ frequencies, the NLR and microbial taxa (A:
order Burkhorderiales, B: species Bacteroides vulgatus), serve as
highly effective, unprecedented biomarkers in the prediction of
outcome for patients with diverse advanced solid malignancies
under different ICI agents.

In terms of limitations, the lack of other therapies besides ICI
that our patient population is exposed to does not allow us to state
whether CD3+HLADR+ cells and the presented microbial taxa as
biomarkers are ICI specific or may also play a role in
chemotherapy, radiotherapy or resection. In addition, the
heterogeneity of our single-center patient cohort, where different
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cancer entities under different ICI agents are present, is one of our
main limitations. Nonetheless, this same heterogeneity deems our
patient population as a pan-cancer cohort, where the above
depicted biomarkers show significance across a wide spectrum of
malignancies and ICI drugs. Furthermore, the single-center design
allows a more comprehensive and valid comparison of different
demographic, clinical, radiological and laboratorial parameters
across different time-points. Nevertheless, it should be noted that
our analyses represent exploratory analyses only and the
established cut-off values need external validation before an
implementation into clinical routine could eventually be
considered. Additionally, it is important to mention that since
our flow cytometry data arise from a standardized and clinically
established analysis by the laboratory of the hematological
department of the University Medical Center Aachen, data are
extracted from patient files, CD3+CD8+HLA-DR+ cell frequencies
are beyond the scope of our manuscript, since their calculation
does not belong to the accredited “immune status panel”.
Nonetheless, we strongly believe that using the implemented
standardized workflow (including the clinically validated gating
strategy) from this accredited institution for these patient samples
has the invaluable benefit that the generation of these results is
highly comparable and any potential individual experimental bias
is greatly reduced. Finally, the divergent results concerning
different taxa as predictors of OS to ICI across different studies
show how the gut microbiome and the enterotype are highly
dynamic parameters dependent on individual characteristics such
as geography and ethnicity (54), an effect that should be further
explored in a multi-center design using the same sampling strategy
and 16s rRNA sequencing techniques.

In conclusion, despite its needed confirmation in a larger
validation cohort, this study shows the potential role of CD3
+HLADR+ cells as predictors of response and toxicity in patients
undergoing immune checkpoint blockade and its role in the
prediction of OS in these patients before and during therapy, an
effect independent of tumor entity or ICI agent. Furthermore, not
only its static values but also its dynamics during ICI therapy play a
significant predictive role. To better depict the complex interplay
between different host immune modulators within the cancer
patient network and their interaction, we present unprecedented
immune-microbial scores (IMS), which can accurately predict
outcome of patients with advanced solid malignancies undergoing
ICI therapy. Multicenter approaches, including different therapeutic
modalities (e.g. mono vs. dual immune checkpoint blockade) and
larger, independent cohorts should be performed to get a better
insight on the precise role of CD3+HLADR+ cells and the
combined parameters.
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Introduction: Programmed cell death ligand 1 (PD-L1) expression in tumor tissues
is measured as a predictor of the therapeutic efficacy of immune checkpoint
inhibitors (ICIs) in many cancer types. PD-L1 expression is evaluated by
immunohistochemical staining using 3,3 -diaminobenzidine (DAB)
chronogenesis (IHC-DAB); however, quantitative and reproducibility issues
remain. We focused on a highly sensitive quantitative immunohistochemical
method using phosphor-integrated dots (PIDs), which are fluorescent
nanoparticles, and evaluated PD-L1 expression between the PID method and
conventional DAB method.
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Methods: In total, 155 patients with metastatic or recurrent cancer treated with ICls
were enrolled from four university hospitals. Tumor tissue specimens collected
before treatment were subjected to immunohistochemical staining with both the
PID and conventional DAB methods to evaluate PD-L1 protein expression.

Results: PD-L1 expression assessed using the PID and DAB methods was
positively correlated. We quantified PD-L1 expression using the PID method
and calculated PD-L1 PID scores. The PID score was significantly higher in the
responder group than in the non-responder group. Survival analysis
demonstrated that PD-L1 expression evaluated using the IHC-DAB method
was not associated with progression-free survival (PFS) or overall survival (OS).
Yet, PFS and OS were strikingly prolonged in the high PD-L1 PID score group.

Conclusion: Quantification of PD-L1 expression as a PID score was more
effective in predicting the treatment efficacy and prognosis of patients with
cancer treated with ICls. The quantitative evaluation of PD-L1 expression using
the PID method is a novel strategy for protein detection. It is highly significant
that the PID method was able to identify a group of patients with a favorable

prognosis who could not be identified by the conventional DAB method.

KEYWORDS

phosphor-integrated dots, fluorescent nanoparticles, immunohistochemistry, imaging
pathology, quantitative evaluation, PD-L1, immune-checkpoint inhibitors, biomarker

1 Introduction

Immune checkpoint inhibitors (ICIs) have been developed as
antitumor agents with mechanisms completely different from those
of conventional cytotoxic chemotherapies for patients with cancer.
Immune checkpoint mechanisms were originally intended to
regulate excessive autoimmune responses. However, in the cancer
microenvironment, cancer cells use immune checkpoints to escape
antitumor immune responses, involving pathways mediated by
immune checkpoint molecules such as programmed death
protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), and various other factors. PD-1 and its ligand
programmed cell death ligand 1 (PD-L1) are fundamental factors
in the immune checkpoints that interfere with immune escape (1).
The clinical efficacy and safety profile of anti-PD-1 and anti-PD-L1
antibodies have been demonstrated in various cancer types (2).
CTLA-4 negatively regulates immune function through its
interaction with B7 (CD80/CD86) expressed on the surface of
cancer cells, and its competitive action with CD28, which
activates T cells (3, 4). Anti-CTLA-4 antibodies have shown
efficacy in multiple types of cancers as monotherapy or in
combination with other ICIs, especially the anti-PD-1 antibody.
The therapeutic effects of ICIs have had a strong impact on cancer
treatment, not only by improving response rates and prolonging
progression-free survival (PFS) but also by providing a “long-tail
effect,” which is characterized by the long-term overall survival (OS)
of patients with cancer. Thus, ICIs have become a significant
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breakthrough in cancer immunotherapy, showing remarkable
efficacy against various cancer types by suppressing checkpoint-
mediated immune escape (5). Table 1 summarizes the results of
representative phase III pivotal studies that evaluated the efficacy of
ICI treatment and served as the basis for approval (6-14). In
contrast, many clinical trials have reported that ICIs are
ineffective in all patients with cancer, especially ICI monotherapy,
with an efficacy rate of only 10-30% (15). Therefore, further
improvement in the efficacy of ICIs is necessary. The expression
of PD-L1 molecules, high-frequency microsatellite instability, and
tumor mutation burden have been identified as potential predictive
biomarkers of the therapeutic response to ICIs; however, no
definitive factors have been reported to correctly predict the
treatment response to ICIs (16). Therefore, superior predictive
biomarkers with high therapeutic efficacy and prognostic value
are urgently needed.

To date, most studies on the biomarkers of ICI treatment have
focused on the analysis of PD-L1 expression in tumor tissues using
immunohistochemistry (IHC). PD-L1 expression in tumor tissue
has been used as a biomarker in determining cancer treatment with
ICIs (17), but is not used universally in many types of cancers. PD-
L1 expression detected by THC analysis has several limitations as a
predictive biomarker. Although treatment responses to anti-PD-1
or anti-PD-L1 antibody therapies are associated with the expression
of PD-L1 protein in tumor tissues, approximately 10-40% of PD-
L1-negative patients also respond to anti-PD-1 or anti-PD-L1
therapies (18, 19). Conversely, we often encounter cases where
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TABLE 1 Main results of the previous pivotal phase Il trials of immune checkpoint inhibitors in advanced cancer.

Trial

Follow-up
duration

Cancer type

Regimen

Treatment
line

PD-L1
expression

Median PFS,
months
(95% ClI)

Median OS,
months
(95% Cl)

Reference

1 KEYNOTE-024 Phase IIT 5y NSCLC Pembrolizumab, 200 mg q3w Ist TPS>50% 7.7 26.3 (6)
(6.1-10.2) (18.3-40.4)
2 CheckMate 057 Phase IIT 5y Non-squamous Nivolumab, 3 mg/kg q2w 2nd, 3rd All comers 2.5 11.1 (7)
NSCLC (2.2-3.5) (9.2-13.1)
3 OAK Phase I1I - NSCLC Atezolizumab, 1200 mg q3w 2nd, 3rd All comers 2.8 13.8 (8)
(2.6-3.0) (11.8-15.7)
4 ATTRACTION-  Phase III 3y Gastric cancer Nivolumab, 3 mg/kg q2w 3rd~ All comers 1.6 53 9)
§ 2 (adenocarcinoma) (1.5-2.3) (4.6-6.4)
-
L
g 5 KEYNOTE-045 Phase IIT 2y Urothelial cancer Pembrolizumab, 200 mg q3w 2nd~ All comers 2.1 10.1 (10)
S (1.9-2.1) (8.0-12.3)
=
6 CheckMate 141 Phase 111 2y Head and neck Nivolumab, 240 mg q2w 2nd~ All comers 2.1 7.7 (11)
(Squamous carcinoma) (1.9-3.2) (3.1-12.6)
7 CheckMate 067 Phase I1T 6.5y Malignant melanoma Nivolumab, 3 mg/kg q2w 1st All comers 6.9 36.9 (12)
(5.1-10.2) (28.2-NR)
z 8 CheckMate 067 Phase IIT 6.5y Malignant melanoma Nivolumab, 1mg/kg q3w + Ist All comers 11.5 72.1 (12)
§ ipilimumab, 3mg/kg q3w (8.7-19.3) (38.2-NR)
=
29 KEYNOTE-189 Phase IIT >2y Non-squamous Pembrolizumab, 200 mg q3w + Ist All comers 9.0 220 (13)
% NSCLC platinum doublet therapy, q3w (8.1-10.4) (19.5-24.5)
g
S 10 Impower 130 Phase IIT - Non-squamous Atezolizumab, 1200 mg q3w + CBDCA | 1st All comers 7.0 18.6 (14)
NSCLC (q3w) + nab-PTX(qlw) (6.2-7.3) (16.0-21.2)

NSCLC, non-small cell lung cancer; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; OS, overall survival; TPS, Tumor Proportion Score; CI, confidence interval; no., number; qlw, once weekly; q2w, once every 2 weeks; q3w, every 3 weeks.
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PD-LI1-positive patients do not respond to ICIs. This contradiction
is considered to be caused by PD-L1 expression as determined by
IHC and visual inspection by pathologists, which limits the
objectivity of determining PD-L1 expression levels. In other
words, the evaluation of PD-L1 expression performed by
pathologists using THC is limited because it does not provide a
quantitative evaluation and lacks objectivity. Another limitation of
the THC method is that the immunohistochemical staining method
of the PD-L1 molecule is based on the intensity of the color
visualized by the chromogenic agent 3,3’-diaminobenzidine
(DAB). In the conventional IHC method generally used in the
clinical setting, tissue sections are incubated with primary
antibodies and biotin-labeled secondary antibodies, followed by a
reaction with streptavidin-labeled horseradish peroxidase (HRP)
and a secondary antibody, and then with HRP and DAB
chromogen. Therefore, in IHC-DAB, the staining intensity
depends on the enzymatic activity of HRP and is greatly affected
by the air temperature, reaction time, and HRP substrate
concentration (20). Consequently, the quantitative sensitivity and
dynamic range of conventional IHC methods using DAB for
pathological diagnosis are poor.

As described above, the scoring method of the former THC is
dependent on the staining intensity, so it is not completely
quantifiable. To overcome these limitations of IHC-DAB, we
focused on the phosphor-integrated dot (PID) method using
fluorescent nanoparticles, a novel protein quantification method
developed by Konica Minolta, Inc. (Tokyo, Japan). Although
existing IHC-DAB coloration systems have quantitative problems
in low-expression groups, the PID system has a wide dynamic
range, enabling the detection of both low- and high-expression
groups (21). Fluorescent THC can effectively improve the
quantitative sensitivity of conventional IHC-DAB; however, tissue
autofluorescence hinders sensitivity (22). To improve this
fluorescent THC autofluorescence deficiency, the PID method is
further characterized by the 100-fold luminance of conventional
fluorescent nanoparticles and high lightfastness, which is >10 times
higher than those of existing fluorescent dyes (21). Given these
characteristics, the system is expected to measure protein
expression more quantitatively, including in a range undetectable
by existing IHC. Compared to conventional IHC-DAB, the PID
method provides more objective data on protein expression because
it is possible to count the number of PID particles that bind in a
one-to-one fashion with antibodies in each cell. Additionally, an
image processing method was developed to calculate the PID
particle counts for the acquired images. We compared the
characteristics of the PID schemas with those of conventional
THC. We present a schema outlining the PID method (Figure 1A)
and a table comparing the features of each method (Table 2). Recent
studies have explored the application of fluorescent nanoparticles in
quantitative diagnostics because of their high photostability and
brightness; however, their clinical application has not yet been
achieved. Although two previous studies evaluated PD-L1
expression using the PID method (23, 24), it is unclear whether it
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can be a predictive biomarker for the therapeutic efficacy of ICIs,
such as anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibodies.

Application of the PID method is expected to overcome the
limitations of IHC-DAB in quantifying protein expression levels.
Furthermore, PD-L1 expression, which is used as a companion
diagnostic marker to determine indications for ICI treatment, is not
a definitive biomarker. Thus, there is a need to identify superior
biomarkers for predicting the efficacy of ICIs. In this study, we
compared the correlation between conventional IHC-DAB and a
novel PID method for detecting PD-L1 expression in patients with
cancer treated with several ICIs. We analyzed whether the
evaluation of PD-L1 protein expression using the PID method
predicted the therapeutic efficacy of ICIs more reliably than the
conventional DAB system.

2 Materials and methods
2.1 Ethics statement

The study was conducted in accordance with the guidelines of
the Declaration of Helsinki and approved by the Ethics Committees
of Showa University School of Medicine (approval number: 2772),
Fukushima Medical University (approval number: 2019-262),
Saitama Medical University (approval number: 2409), and
Gunma University (approval number: HS2020-201). Informed
consent was obtained from all patients involved in the study.

2.2 Patient selection

This study enrolled 155 patients with metastatic or recurrent
cancer who were treated with ICIs. The patient cohort included
patients with several types of cancer, including non-small cell lung
carcinoma (NSCLC), gastric cancer, urothelial carcinoma, head and
neck carcinoma, and malignant melanoma. This was a multicenter
retrospective cohort study, and patients were diagnosed and treated
at Showa University Hospital, Fukushima Medical University
Hospital, Saitama Medical Center, and Gunma University
Hospital from December 2015 to December 2022. All patients
were treated with treatment regimens, including ICIs shown in
Table 3, that were administered according to the clinical settings.

2.3 Assessment of the treatment response

Each patient’s treatment response was evaluated using
computed tomography scans as imaging assessments. The
treatment efficacy was evaluated according to the Response
Evaluation Criteria in Solid Tumors version 1.1 (25). Overall
survival (OS) was defined as the date from the start of the first
administration of treatment to the date of mortality due to any
cause or the last follow-up. Progression-free survival (PES) was
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FIGURE 1

(A) Schematic explanation for the phosphor-integrated dot (PID) imaging of cancer tissues. The target protein, programmed cell death ligand 1 (PD-
L1) molecules in this study, in tumor tissue were immunostained with monomeric and biotinylated monoclonal primary and monoclonal secondary
antibodies. Then, the samples were stained with streptavidin-coated PID by biotin-streptavidin binding. (B) Immunohistochemistry of cancer tissue
using PID staining. Red spots on the tumor cells indicate PID particles. (C) The number of PID particles were quantified in whole regions of tumor
tissue specimen. The number of PD-L1-positive PID particles per 12 ym x12 pum in the tumor cell nuclei were counted and shown as a heat map.
The "PD-L1 PID score” for each case was calculated as the mean value of the number of PID particles per 12 um X 12 um area within each tissue

specimen. px, pixel.

defined as the date from the start of treatment to the first
documented progressive disease, mortality due to any cause, or
the last follow-up, whichever occurred first. The cut-off date of
follow-up was set as December 2022.

The “median PFS” or “median OS,” based on the results obtained
from the phase IIT pivotal clinical trials (Table 1), were used to
uniformly evaluate the patient treatment efficacies of patient
populations with different types of cancer. The patient population
was divided into two groups (responder and non-responder) or three
groups (long responder, responder, and non-responder), according to
the treatment response prescribed above for each cancer type and
treatment regimen. We then performed an analysis to compare PD-L1
expression evaluated by the PID method in each group.

Frontiers in Immunology

2.4 Evaluation of PD-L1 expression using
the IHC-DAB method

All tumor tissue specimens evaluated for PD-L1 expression
were obtained before each patient received ICI treatment. The
staining procedure for IHC using DAB and the evaluation
method for PD-L1 expression were performed according to
clinical routines, which have already been used for companion
diagnosis when ICIs are administered to patients with cancer. We
prepared formalin-fixed, paraffin-embedded tissue samples
obtained by biopsy or resection. To evaluate their PD-L1 THC
assay, 155 slides were tested using Dako PD-L1 IHC 28-8 PharmDX
kits (anti-PD-L1 28-8 rabbit monoclonal primary antibody; Dako,

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1260492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ohkuma et al.

TABLE 2 Methodology for quantifying protein expression.

10.3389/fimmu.2023.1260492

Method Advantage Disadvantage

FACS Suitable for measuring the total amount of protein present | Not possible to evaluate both cell morphology and protein expression-dependent
in the cell. characteristics simultaneously.

IHC Both cell morphology and protein expression-dependent The intensity of DAB staining depends on the enzymatic activity of HRP and is greatly
characteristics can be evaluated simultaneously. affected by reaction time, temperature, and HRP substrate concentration; thus, the

quantitative sensitivity of IHC-DAB is low.

Fluorescent  Effectively increases the quantitative sensitivity of Poor photostability and interference with tissue autofluorescence.

IHC conventional THC.

THC with High fluorescence intensity and high photostability. Requires specific equipment for PID analysis.

PIDs Newly developed image processing method enables
calculation and quantification of the number of PID
particles in the obtained images.

FACS, fluorescence-activated cell sorting; IHC, immunohistochemistry; PIDs, phosphor-integrated dots; DAB, 3,3 -diaminobenzidine; HRP, horseradish peroxidase.

TABLE 3 Clinicopathological characteristics of all patients.

Characteristic

Age (y) (mean + SD) 67.5+9.4
Sex (n)

Male 119
Female 36
Cancer type (n)

Non-small cell lung carcinoma 109
Gastric cancer (adenocarcinoma) 28
Urothelial carcinoma 11
Head and neck cancer (squamous carcinoma) 4
Malignant melanoma 3
Site of pathological specimen (n)

Primary tumor 129
Metastatic tumor 26
ICI Regimen (n)

Nivolumab monotherapy 101
Pembrolizumab monotherapy 45
Pembrolizumab + platinum-based chemotherapy 4
Atezolizumab + platinum-based chemotherapy 3
Nivolumab + ipilimumab 1
Atezolizumab monotherapy 1

PD-L1 PID score (mean (min - max)) 2043 (556-15757)

PD-L1 expression (IHC) (n)

>50% 27
1-49% 59
<1% 60
Not evaluable 9

SD, standard deviation; ICI, immune checkpoint inhibitor; PID, phosphor-integrated dots;
THC, immunohistochemistry.

Frontiers in Immunology

41

Glostrup, Denmark) for nivolumab, PD-L1 IHC 22C3 PharmDX
kits (anti-PD-L1 22C3 mouse monoclonal primary antibody;
Agilent Technologies, Santa Clara, CA, USA) for pembrolizumab,
and Ventana PD-L1 SP142 (anti-PD-L1 28-8 rabbit monoclonal
primary antibody; Ventana, Antwerp, Belgium) for atezolizumab,
according to the manufacturers’ instructions. Two independent
pathologists were experts in interpreting the clinical cut-off values
of the assays used in this study and independently evaluated all 155
immunostained slides. IHC tests were scored by pathologists in
accordance with a previous article (26). Missing or damaged tissue
cores were excluded from the analysis, as was the case with <100
total tumor cells for scoring. The 28-8, 22C3 assays were used to
evaluate PD-L1 expression in tumor cells, whereas the SP142 assay
was used to assess PD-L1 expression in both tumor and immune
cells (27). Two methods were used to evaluate PD-L1 expression.
The Tumor Proportion Score was evaluated as the percentage of
PD-LI-positive cells among the total tumor cells, and it is used as a
companion diagnostic tool for lung cancer. The Combined Positive
Score was evaluated as the ratio of the number of PD-L1-positive
tumor cells plus tumor-infiltrating immune cells, e.g., lymphocytes
and macrophages, to the total number of tumor cells, and it is used
to evaluate PD-L1 expression in other types of cancer (26).

2.5 Evaluation of PD-L1 expression with
the fluorescence properties of PIDs

We used the same tumor tissue specimens to evaluate PD-L1
expression as for the IHC-DAB method. Tissues collected before the
patient received ICI treatment were used for analysis. The
quantitative immunohistochemical detection of proteins using
PID nanoparticles has been previously described (21). The
pathological sections were incubated with a primary antibody
against PD-L1 22C3 (Agilent Technologies, Santa Clara, CA,
USA). The sections were incubated with the secondary antibody,
which is Universal Secondary Antibody (Ventana, Antwerp,
Belgium), for 30 minutes at 25°C. Envision Flex Target Retrieval
Solution was activated at a low pH for 20 minutes at 95°C. The
sections were then treated with PID-conjugated streptavidin (0.06
nM) for 2 hours at 25°C. The negative control was prepared using
PID staining but without the primary antibody. Hematoxylin was
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used for nuclear counterstaining. The sections were irradiated at
580 nm, and the fluorescence intensity was measured using a whole
slide scanner (NanoZoomer S60; Hamamatsu Photonics K. K.,
Shizuoka, Japan) and a CMOS camera (ORCA-Flash version 4.0
LTPlus; Hamamatsu Photonics K. K., Shizuoka, Japan). Image
capture, autofocusing, and shading correction were automated
using the NDP.scan software (version 3.2.17, Hamamatsu
Photonics K. K., Shizuoka, Japan) (Figure 1B). The number of
PID particles was quantified using an automated exclusive QUIK
software (version 1.0.1.0, Konica Minolta, Inc., Tokyo, Japan) in
whole regions of the tumor tissue specimen. The input fluorescence
images underwent high-pass filtering to eliminate background
autofluorescence and noise. Subsequently, the positive bright
spots resulting from the PIDs were accurately detected within
fluorescence microscopy images. A previous article delved into
examining the relationship between fluorescence intensity and
particle count within a bright spot (21). Gonda et al. established a
standard curve exhibiting a positive correlation between
fluorescence signals and PID particle count. Employing this
method, the fluorescence intensity of each positive bright spot
analyzed in this study was translated into the corresponding PID
particle count. The quantity of particles per 12 pm x 12 um square
area was visualized as a heat map. The “PD-L1 PID score” for each
case was derived using the subsequent formula, computed as the
mean value of the number of PID particles per 12 pm x 12 pum
square area within each tissue specimen (Figure 1C). The unit of
PID score is expressed as/144 um?.

Sum of number of PID particles in whole regions of the specimen
Number of square areas of 12 um x 12 um

PID score (/144 ,umz):

Therefore, the resulting fluorescent images were captured,
processed, and homogenized using a computer image-processing
method that quantified the number of PID nanoparticles.

2.6 Statistical analysis

Statistical tests were performed, and figures were created using
GraphPad Prism 9.4.1 software (GraphPad Software Inc., San
Diego, CA, USA). Student’s t-test and Fisher’s exact test were
employed to compare the patient characteristics between the two
groups. The Spearman correlation coefficient was used to analyze
the associations between the variables. The comparison of PD-L1
expression values between the two groups was conducted using the
Mann-Whitney U test. For multiple comparisons of PID scores
between the three groups, statistical analyses were performed using
one-way analysis of variance with the Dann-Bonferroni multiple
comparison test. Statistical significance was defined at a p-
value <0.05.

Regarding survival analyses, the survival durations (PFS and
OS) of the patients were assessed using the Kaplan-Meier method
and statistically analyzed using the log-rank tests. All tests were
two-sided. When we compared between two groups using the log-
rank tests, a p-value <0.05 was considered statistically significant.
When performing comparisons among three groups with the
Kaplan-Meier analysis, log-rank tests were performed for each of
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the triplicate pairs. P-values judged to be significantly different had
to be adjusted and p-value <0.01667 (calculated 0.05 divided by 3)
was determined to be statistically significant for comparison among
three groups with Kaplan-Meier survival analysis.

3 Results
3.1 Clinicopathological characteristics

The clinicopathological characteristics of the patients are
summarized in Table 3. Detailed patient information and data are
presented in Supplementary Table S1. The median length of follow-
up periods for all enrolled patients was 13.6 months (range, 0.5-
69.1 months).

3.2 Correlation of PD-L1 expression
between the IHC-DAB and PID methods

We investigated the correlation between PD-L1 expression
measured by the THC-DAB method and PD-L1 expression
analyzed by the PID method using the Spearman correlation
coefficient test. Nine patients were excluded from the IHC-DAB
test because of low tumor cell counts (<100 total tumor cells);
therefore, 146 patients were included in the analysis. A modest
positive correlation was observed between PD-L1 expression
measured using the IHC-DAB and PID methods (r=0.3272,
p<0.0001; Figure 2). In contrast, there were some cases in which
PD-LI expression levels were not positively correlated between the
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FIGURE 2

Correlation between programmed cell death ligand 1 (PD-L1)
expression measured by immunohistochemical staining using 3,3 " -
diaminobenzidine chronogenesis (IHC-DAB) method and PD-L1
phosphor-integrated dot (PID) score. The Spearman correlation
coefficient was used to analyze the correlation. A modest positive
correlation is observed between PD-L1 expression measured by the
IHC-DAB and PID methods (r=0.3272, p<0.0001). *Statistically
significant: p<0.05.
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two methods, such as a low PD-L1 PID score, despite the high PD-
L1 expression measured using the IHC-DAB method. We show
several images comparing PD-L1 expression between the IHC-DAB
and PID methods in Figures 3A-D. Several patients exhibited a high
PD-L1 PID score, irrespective of the low PD-L1 expression level
assessed by IHC-DAB. We identified 7 patients with PD-L1 (IHC-

10.3389/fimmu.2023.1260492

DAB) levels below 20% yet possessing a high PD-L1 PID score
(>4000). We conducted a comparative analysis between this patient
subgroup and the remaining patients to assess background
characteristics. The examination revealed no statistically
significant differences in patient background characteristics
between the two patient groups (Supplementary Table S2).

DAB-IHC

PID

FIGURE 3

px, pixel.

Representative images for visual comparison of programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3 -
diaminobenzidine chronogenesis (IHC-DAB) and phosphor-integrated dot (PID) methods. (A) The case of high expression in IHC-DAB and high PID
score: PD-L1 expression 90-100% (IHC-DAB), PD-L1 PID score 15757. (B) The case of low expression in IHC-DAB and high PID score: PD-L1
expression <1% (IHC-DAB), PD-L1 PID score 8487. (C) The case of high expression in IHC-DAB and low PID score: PD-L1 expression 90-100% (IHC-
DAB), PD-L1 PID score 2024. (D) The case of low expression in IHC-DAB and low PID score: PD-L1 expression <1% (IHC-DAB), PD-L1 PID score 762.
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3.3 Correlation between the PD-L1 PID
score and patient survival

The correlation between the PD-L1 PID score and survival
duration (PFS and OS) was analyzed using the Spearman
correlation coefficient test (n=155). There were weak positive
correlations between the PID score and PFS in the overall cohort
of patients (r=0.2800, p<0.001, Figure 4A). Similar to PFS, a weak
positive correlation with the PID score was observed for OS in the
overall cohort (r=0.2712, p<0.001, Figure 4B). PD-L1 PID scores
before ICI treatment, as determined by the PID method, correlated
with prolonged PFS and OS in patients with cancer who received
ICI treatment.

3.4 Comparison of PD-L1 PID scores by
the treatment efficacy of patients

We verified whether PD-L1 expression levels obtained using the
PID method before treatment initiation predicted the efficacy of ICI
treatment in patients. The overall patient population was divided
into two groups, responder and non-responder, based on their
treatment response to ICIs, and PD-L1 PID scores were statistically
compared between the two groups using Mann-Whitney U test
(n=155). The duration of PFS for the responder group was defined
by four criteria: PFS of each patient was 1) longer than “median
PFS,” 2) “median PFS”+3 months, 3) “median PFS”+6 months, 4)
“median PFS”+12 months, based on “median PFS” data obtained
from previous reported phase III pivotal trials evaluating ICI
treatments (Table 1) (6-14). PD-L1 PID scores were not
significantly different in the analysis that distinguished non-
responders from responders according to the “median PFS”
described above (p=0.5596, Figure 5A). However, PD-L1 PID
scores were significantly higher in responders than in non-
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PFS”+12 months were defined as responders (p=0.0242,
Figure 5B; p=0.0082, Figure 5C; and p=0.0323, Figure 5D,
respectively). Regarding OS, the duration of OS for the
responders was defined by the criteria in which each patient’s OS
was longer than the “median OS” reported in the previous pivotal
trials (Table 1) (6-14). PD-L1 PID scores were significantly higher
in responders than in non-responders according to prolonged OS
(p=0.0136, Figure 5E).

Additionally, the patient population was divided into three
groups: long responders, responders, and non-responders. PD-L1
expression as the PID score in each group was compared between
the three groups with the “median PFS” reported from the pivotal
trial as previously described (Table 1) (6-14). Multiple comparison
test results were statistically analyzed using the Dann-Bonferroni
multiple comparison test (n=155), and the PID scores were
significantly higher in long responders than in responders
(p=0.0498, Figure 6A; p=0.0190, Figure 6B), or non-responders
(p=0.0179, Figure 6C; p=0.0363, Figure 6D). Based on these
analyses of comparison between two and three groups, pre-ICI
treatment PD-L1 expression measured as PID score by the PID
method was associated with favorable PFS and OS in patients with
cancer who received cancer immunotherapy with ICIs. The results
regarding PFS suggest that PD-L1 PID scores might be predictive of
better prognosis, as PID scores were higher in responders with
longer PES.

3.5 Kaplan—Meier survival analysis
according to PD-L1 expression by the IHC-
DAB method

Based on the cut-off values (50% and 1%) of PD-L1 expression
by the IHC-DAB method, which is clinically applied (26), the
patient cohort was divided into two groups, “high” and “low”
according to PD-L1 expression levels by the conventional IHC-
DAB method. Then, we compared both groups using Kaplan-Meier
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Correlation between programmed cell death ligand 1 (PD-L1) expression as the phosphor-integrated dot (PID) score and progression-free survival
(PFS) and overall survival (OS). The Spearman correlation coefficient was used to analyze the correlation between the PD-L1 PID score and survival
durations of (A) PFS and (B) OS. (A) There are weak positive correlations between the PID score and PFS in the overall cohort of patients. Similar to
PFS, (B) a weak positive correlation with the PID score is observed for OS in the overall cohort. *Statistically significant: p<0.05.
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Comparison of programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) scores by treatment efficacy, responders and non-
responders. Overall patient populations were divided into two groups, responders and non-responders, based on their treatment responses of
immune checkpoint inhibitors, and PD-L1 PID scores were statistically compared between both groups. (A) PD-L1 PID scores are not significantly
different in the analysis that distinguished non-responders from responders according to the “median PFS". (B—D) However, PD-L1 PID scores are
significantly higher in responders than in non-responders in this analysis for each patient's PFS: (B) >"median PFS"+3 months, (C) >"median PFS"+6
months, and (D) >"median PFS"+12 months were defined as the responders. (E) Regarding OS, PD-L1 PID scores were significantly higher in R than
in NR according to prolonged OS. R, responders; NR, non-responders; med, median. *Statistically significant: p<0.05

survival analyses with the log-rank tests for PFS and OS. In the
overall patient population (n=155), OS was significantly prolonged
in the PD-L1 high (PD-L1(IHC) 250%) group (p=0.0347,
Figure 7B), and a similar trend was observed with a cut-off value
of 1%, which was not statistically significant (p=0.0697, Figure 7D).
Regarding PFS, there were no significant differences between the
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high and low groups of PD-L1 expression by the IHC-DAB method
with cut-off values of 50% (p=0.1607, Figure 7A) and 1% (p=0.1153,
Figure 7C). We additionally performed sub-analyses for the NSCLC
patient cohort because of the large number of patients (n=109), but
the results were not statistically significant (Supplementary
Figures 1A-D).
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Comparison of programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) scores by treatment efficacy. The patient population was
divided into three groups: long-responders, responders, and non-responders. One-way analysis of variance with the Dann—-Bonferroni multiple
comparison tests were performed to compare the three groups. (A, B) PID scores are significantly higher in long-responders than in responders
(p=0.0292, A; p=0.0190, B) and (C, D) non-responders (p=0.0179, C; p=0.0363, D). LR, long-responders; R, responders; NR, non-responders; med,

median. *Statistically significant: p<0.05.
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Kaplan—Meier survival analysis according to programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3" -
diaminobenzidine chronogenesis (IHC-DAB) method in two groups. Based on the cut-off values (50% and 1%) of PD-L1 expression by the IHC-DAB
method, the patient cohort was divided into two groups, "High” and “Low” according to PD-L1 expression levels by conventional IHC-DAB. In the
overall patient population (n=155), we compared both groups using Kaplan—Meier survival analyses with log-rank tests for PFS and OS

(A, C) Regarding PFS, there are also no significant differences between the "High” and “Low" groups of PD-L1 expression by the IHC-DAB method,
which were defined by the cut-offs of (A) 50% and (C) 1%. (B) OS is significantly prolonged in the "High” (PD-L1(IHC) >50%) group, (D) and there is a
similar trend with a cut-off value of 1%, which is not statistically significant. HR, hazard ratio; Cl, confidence interval. *Statistically significant: p<0.05

Furthermore, based on the PD-L1 cut-off values (50%, 1-49%,
and 1%) evaluated by the IHC-DAB method, the patient population
was divided into three groups according to PD-L1 expression levels,
“High,” “Medium,” and “Low” groups, and then we compared the
three groups using Kaplan-Meier survival analyses with the log-
rank tests for PFS and OS. In the overall patient population
(n=155), OS in the “High” (PD-L1(IHC) =50%) group was
statistically prolonged compared to that of the “Low” (PD-LI
(IHC) <1%) group (p=0.0146, Figure 8B). However, no significant
results were obtained for PFS (Figure 8A) when the three groups
were categorized based on PD-L1 expression by the ITHC-DAB
method. Sub-analyses for the NSCLC patient cohort were also
performed (n=109), and there were no statistically significant
findings in the Kaplan-Meier survival analyses for both PFS
(Supplementary Figure 2A) and OS (Supplementary Figure 2B).
Therefore, these analyses indicated that the PD-L1 expression levels
defined by the conventionally used IHC-DAB method with PD-L1
cut-off values were not associated with favorable PFS and OS, except
for the “High” (PD-L1(IHC) 250%) group in OS.

Frontiers in Immunology

3.6 Determining the cut-off value of the
PD-L1 PID score

There are no criteria for defining high or low PD-L1 expression
using the proportional integral derivative method. To determine an
appropriate cut-off value for the PD-L1 PID score, we defined
“high” and “low” PD-L1 expression by the IHC-DAB method as the
outcomes and plotted receiver operating characteristic (ROC)
curves regarding the PID scores. The PID score with the highest
value, calculated by the formula [Sensitivity - (1 + Specificity)], was
defined as the most appropriate cut-off value by the Youden index
to distinguish between high and low PD-L1 expression groups (28).
Appropriate ROC curves with statistical significance were obtained
when PD-L1 IHC-DAB cut-off values of 50%, 20%, and 10% were
applied, and the most appropriate cut-off value of the PD-L1 PID
score was 1863 (Supplementary Figures 3A-H).

Moreover, we divided the PID scores into three groups for
analysis, as was done for the IHC-DAB method. The cut-off values
for dividing the patients into three groups were determined using
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Kaplan—Meier survival analysis according to programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3" -
diaminobenzidine chronogenesis (IHC-DAB) method between the three groups. Based on the PD-L1 cut-off values (50%, 1-49%, and 1%) evaluated
by the IHC-DAB method, the patient population was divided into three groups of PD-L1 expression levels, “"High,” “Medium,” and “Low" groups, and
then we compared the three groups by performing Kaplan—Meier survival analyses with the log-rank tests for PFS and OS. (A) In the overall patient
population (n=155), no significant results were obtained for PFS. (B) OS in the PD-L1 "High" (PD-L1(IHC) >50%) group was statistically prolonged
compared to that of the PD-L1 "Low" (PD-L1(IHC) <1%) group (p=0.0146, B). HR, hazard ratio; Cl, confidence interval; p, p-value; Med, medium.

*Statistically significant: p<0.01667.

percentile values: 1) PID score >2359 (75th percentile) for the
“High” group, 2) 948 (25th percentile)<PID score<2359 (75th
percentile) for the “Medium” group, 3) PID score <948 (25th
percentile) for the “Low” group (Supplementary Figure 4).

3.7 Kaplan—Meier survival analysis
according to the PD-L1 PID score

Based on the cut-off value (1863) of the PD-L1 PID score that
was obtained above, the patient cohort was divided into two groups,
“High” and “Low” according to the PD-L1 expression levels by the
PID method, and then we compared the two groups using Kaplan-
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FIGURE 9

Meier survival analyses with log-rank tests for PFS and OS. In the
overall patient population (n=155), PFS and OS were significantly
prolonged in the “High” PD-L1 PID score group (p=0.0005,
Figure 9A and p=0.0011, Figure 9B, respectively). We further
performed sub-analyses of the NSCLC patient cohort (n=109).
PFS was significantly longer in the “High” PID score group than
in the “Low” PID score group (p=0.0325, Supplementary
Figure 5A), and a similar trend was observed for OS in the
NSCLC patient cohort (p=0.0575, Supplementary Figure 5B).
Based on the percentile values, the PID scores were divided into
three groups, “High,” “Med,” and “Low” groups, for survival
analysis. Then, we compared the three groups using Kaplan-
Meier survival analyses with the log-rank tests for PFS and OS.

B
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Kaplan—Meier survival analysis according to the programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) score in two groups. Based
on the cut-off value (1863) of the PD-L1 PID score, the patient cohort was divided into two groups, “High” and “Low” according to PD-L1 expression
levels by the PID method, and then we compared the two groups using Kaplan—Meier survival analyses with the log-rank tests for PFS and OS. In the
overall patient population (n=155), both (A) PFS and (B) OS are prolonged in the “"High” PD-L1 PID score group with high statistical significance. HR,

hazard ratio; Cl, confidence interval. *Statistically significant: p<0.05.

Frontiers in Immunology

47

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1260492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ohkuma et al.

Only in these analyses of comparison among the three groups, a p-
value <0.01667 was considered to be statistically significant. In the
overall patient population (n=155), PES was significantly prolonged
in the “High” PD-L1 PID score group compared with the “Medium”
(p=0.0011, Figure 10A) and “Low” PD-L1 PID score groups
(p=0.0003, Figure 10A). Similar to PFS, the “High” PD-L1 PID
score group had more favorable OS than the “Medium” (p=0.0012,
Figure 10B) and “Low” PD-L1 PID score groups (p<0.0001,
Figure 10B). In the NSCLC cohort (n=109), PFS and OS were
longer in the “High” PD-L1 PID score group with strong statistical
significance than in the “Medium” (p=0.0098, Supplementary
Figure 6A; and p=0.0070, Supplementary Figure 6B, respectively)
and “Low” PD-L1 PID score groups (p=0.0059, Supplementary
Figure 6A; and p=0.0023, Supplementary Figure 6B, respectively).
Therefore, the results demonstrated that when the PID score was
used as the cut-oft value for the PD-LI expression level, the PID
score more clearly predicted the treatment efficacy and prognosis of
patients treated with ICIs.

4 Discussion

To evaluate whether quantitative detection of PD-L1 expression
predicts the clinical outcomes of patients with cancer treated with
ICIs, we demonstrated the expression of PD-L1 protein using two
different immunohistochemical detection methods, the
conventional THC-DAB and PID system. From the results
obtained herein, the quantitative evaluation of PD-L1 expression
by the PID score appears to be more effective than the cut-oft of PD-
L1 expression by the IHC-DAB method in predicting the treatment
efficacy and prognosis of patients with cancer treated with ICIs. PID
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scoring as a quantitative detection system is expected to resolve
some limitations of the IHC-DAB method for quantifying protein
expression levels.

Since the PID method was first reported in 2017 (21),
researchers have focused on this technology and its practical
applications. Gonda et al. published foundational articles on the
PID system and established a novel method for quantitative protein
evaluation by IHC using new fluorescent nanoparticles, called PIDs,
with high sensitivity and a wide dynamic range (21). The PID
method is strongly correlated with conventional human epidermal
growth factor receptor 2 (HER2) testing methods using IHC-DAB
(21, 29). In the present study, PD-L1 expression assessed using the
conventional IHC-DAB method was positively correlated with that
assessed using the PID method. Additionally, protein expression
assessed by the PID method has been reported to have a positive
linear correlation with that obtained by other methodologies such
as fluorescence activated cell sorting analysis (21, 29) or enzyme-
linked immunosorbent assay (ELISA) (24). Thus, the
reproducibility of the PID method was confirmed by comparison
with the other methods. It has also been verified whether protein
expression evaluated using the PID method can be used as a
biomarker for predicting treatment efficacy. The number of
HER2-positive PID particles in breast cancer tissue analyzed from
pretreatment biopsies have been shown to predict the therapeutic
efficacy of the anti-HER2 antibody (trastuzumab) (21). Guo et al.
showed that a high ratio of extranuclear-to-nuclear estrogen
receptor alpha (ERa) in patients with hormone receptor-positive
and HER2-negative breast cancer indicates a decreased likelihood of
benefiting from hormone therapy (30). Similar to our study, the
PID score for PD-L1 expression showed a higher prognostic value
than protein detection using IHC-DAB (23). Quantitative

Hin
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Kaplan—Meier survival analysis according to the programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) score between the three
groups. Based on the 25th and 75th percentile values, PID scores were also divided into three groups for the survival analysis. We compared the
three groups by performing Kaplan—Meier survival analyses with the log-rank tests for PFS and OS. In the overall patient population (n=155), both
(A) PFS and (B) OS are significantly prolonged in the “High" PD-L1 PID score group compared with the "Medium” (PFS, p=0.0011, A; OS, p=0.0012,
B) and "Low” PD-L1 PID score groups (PFS, p=0.0003, A; OS, p<0.0001, B). HR, hazard ratio; Cl, confidence interval; p, p-value; Med, medium

*Statistically significant: p<0.01667.
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evaluation of MYC protein expression using the PID method
stratified OS in patients with diffuse large B-cell lymphoma more
precisely than the conventional IHC-DAB method (31).

There have been limited studies on the quantitative evaluation
of PD-L1 molecules using the PID method. In a previous study, PD-
L1 expression in pancreatic ductal carcinoma was evaluated using
THC with PID, which could detect PD-L1 expression with higher
sensitivity than conventional THC-DAB. PD-L1 expression,
evaluated using the PID method, predicts poor prognosis (23).
Another study showed that digital immunostaining of PD-L1
expression was highly correlated with protein expression
measured by other methods, such as ELISA and quantitative
messenger RNA data generated by the nCounter system (24).
Both studies are valuable in that they evaluated PD-L1 expression
using the novel PID method, but they did not validate whether it
predicts the efficacy of ICI treatment. In our study, we not only
compared the PID method with the conventional ITHC-DAB
method in assessing PD-L1 expression but also analyzed the
relationship between PD-LI1 expression by IHC-DAB and
treatment response to ICIs using pre-ICI treatment tissue
specimens from 155 patients with cancer. When the patients were
classified into responder and non-responder groups based on the
duration of PFS and OS, the PD-L1 PID scores in the responder
group were higher than those in the non-responders. As our data
showed that PID scores tended to be higher in patients with a longer
PFS, it is possible that PID scores were better at predicting long
responders, which is a hallmark of ICI treatment. Furthermore,
when we performed survival analysis by dividing patients into high
and low PD-L1 PID score groups, PFS and OS were significantly
prolonged in patients with high PID scores. However, when the PD-
L1 expression level was evaluated using the conventional DAB
method, neither PES nor OS was significant and could not predict
treatment response or prognosis. We found that the PD-L1
expression level evaluated using the PID method has the potential
to be a better biomarker than the IHC-DAB method. There are
several possible reasons why the two analysis methods gave different
results. The main limitation of the IHC-DAB method is the
dependence of the staining intensity on the enzymatic activity of
HRP, which in turn is influenced by factors such as temperature,
reaction time, and HRP substrate concentration. Furthermore, the
efficacy of the IHC-DAB method is curtailed by the subjective
selection of noteworthy fields of view by pathologists and their
subsequent visual assessment of PD-L1 expression, which prevents
quantitative evaluation and lacks objectivity. Conversely, the PID
method features brightness levels 100 times greater than
conventional fluorescent nanoparticles, along with 10 times
greater lightfastness compared to existing fluorescent dyes (21).
These distinctive attributes equip the PID method with the capacity
to assess protein expression assessments in a more quantitative and
accurate manner than the DAB method. Additionally, the capability
of the PID method to comprehensively analyze entire regions of
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tumor tissue specimens permits the evaluation of PD-L1 expression
in whole areas that conventional visual inspection by pathologists
may not fully capture. These factors likely contribute to the
disparities in results observed between the DAB and PID methods.

Furthermore, the PID method has been applied to research
other than the search for predictive biomarkers of therapeutic
efficacy. Guo et al. performed PID analysis using the nearest
neighbor method, which takes advantage of the ability to analyze
the location of detected proteins in cells and tissues. ERat expression
in nuclear and extranuclear regions was detected and quantitatively
analyzed, resulting in higher sensitivity and specificity than
conventional ITHC-DAB in patients with breast cancer (30).
Suzuki et al. applied PID imaging to study antibody drugs to
elucidate their mechanism of action. They evaluated the
intratumor pharmacokinetics using PID imaging analysis, which
can assess the distribution of proteins to tumor target sites at the
microlevel, to analyze the intratumor distribution of a novel HER2-
targeted antibody drug conjugate, trastuzumab deruxtecan (32).
PID imaging analysis is expected to be used not only to detect
biomarkers such as HER2 and PD-L1 expressed in tumor tissue but
also as an ideal tool for elucidating the mechanism of action of
antibody drugs in tumor tissue in the clinical setting. Moreover, as
Inamura et al. analyzed the expression of colony stimulating factor-
1 receptor-expressing tumor-associated macrophages in lung
cancer tumor tissue (33), PID imaging technology will be
increasingly applied to analyze the immune microenvironment in
tumor tissue.

We found no significant difference in PID scores between
responders and non-responders when using the “median PFS”
reported in the pivotal trial as the cut-off, but significant results
were obtained when patients were divided by “median PFS”+3
months, “median PFS”+6 months, and “median PFS”+12 months.
In clinical trials of ICIs, PFS can be attributed to tumor shrinkage
(pseudo-progression) following disease progression (PD) or to
longer survival after PD, both of which suggest a delayed effect of
ICIs. Previous studies have reported that excluding modified PFS,
which excludes early PD events up to 3 months after
randomization, is a more accurate surrogate endpoint for OS
than actual PFS (34). Thus, considering the early PD of
approximately 3 months, it is possible that a median PFS of 3
months or more would be reasonable to obtain significant results.

The present study has several limitations. It is a retrospective
analysis, and there lies the aspect that it solely served as an exploratory
investigation into the utility of PD-L1 expression through the PID
method. In terms of the study design, the enrolled patients exhibited
heterogeneity and encompassed various cancer types. The inclusion of
diverse cancer types in this study gives rise to discrepancies in the
approach to evaluating PD-L1 expression by the IHC-DAB method
between NSCLC and other cancer types. Our assessment of PD-L1
expression by the IHC-DAB method aligns with the method employed
in clinical practice. TPS serves as a companion diagnostic tool for lung
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cancer, whereas CPS is utilized for assessing PD-L1 expression in other
cancer types within clinical settings. Furthermore, the determination of
the cut-off value of the PD-L1 PID score also remains a challenge.
Currently, no recommended or established cut-off values exist for
evaluating PD-L1 expression using the PID method. In this study, we
established our own cut-off values utilizing ROC curves and percentile
values. These cut-off values for PD-L1 PID scores may vary based on
patient background, such as different cancer types. To resolve these
issues and verify our results, conducting a prospective study with a
homogenized patient population is imperative. We are in the process of
planning a clinical trial to investigate PD-L1 expression through the
PID method in the future.

5 Conclusions

We evaluated PD-L1 expression using highly sensitive quantitative
immunohistochemistry with fluorescent nanoparticles (PIDs) in 155
patients with unresectable, recurrent, or metastatic cancer treated with
ICIs, and compared it with that using the conventional THC-DAB
method. Evaluation of PD-L1 expression by the IHC-DAB and PID
methods showed a positive correlation. The quantitative assessment of
PD-L1 expression using the PID method predicted responders to ICI
treatment. Furthermore, PFS and OS were significantly prolonged in
the group with higher PD-L1 PID scores, suggesting that quantitative
evaluation of PD-L1 expression by the PID method could be a
biomarker for predicting treatment efficacy and patient prognosis of
ICI treatment. It is significant that the PID method was able to identify
the favorable prognosis group that could not be detected using
conventional DAB staining. We propose prospective studies and
further research on the quantitative evaluation of PD-LI expression
using the innovative PID method with the aim of adapting this
methodology to clinical practice.
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Background: Accurate prediction of efficacy of programmed cell death 1 (PD-1)/
programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical
importance. To address this issue, a network meta-analysis (NMA) comparing
existing common measurements for curative effect of PD-1/PD-L1 monotherapy
was conducted.

Methods: We searched PubMed, Embase, the Cochrane Library database, and
relevant clinical trials to find out studies published before Feb 22, 2023 that use
PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene
expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/
immunofluorescence (MIHC/IF), other immunohistochemistry and
hematoxylin-eosin staining (other IHC&HE) and combined assays to determine
objective response rates to anti-PD-1/PD-L1 monotherapy. Study-level data
were extracted from the published studies. The primary goal of this study was to
evaluate the predictive efficacy and rank these assays mainly by NMA, and the
second objective was to compare them in subgroup analyses. Heterogeneity,
quality assessment, and result validation were also conducted by meta-analysis.

Findings: 144 diagnostic index tests in 49 studies covering 5322 patients were
eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-
0.89), the second diagnostic odds ratio (DOR) (5.09, 95% ClI: 1.35-13.90), and the
second superiority index (2.86). MSI had highest specificity (0.90, 95% Cl: 0.85-
0.94), and DOR (6.79, 95% ClI: 3.48-11.91), especially in gastrointestinal tumors.
Subgroup analyses by tumor types found that mIHC/IF, and other IHC&HE
demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC),
while PD-L1 IHC and MSI were highly efficacious in predicting the effectiveness in
gastrointestinal tumors. When PD-L1 IHC was combined with TMB, the sensitivity
(0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in
all studies.
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Interpretation: Considering statistical results of NMA and clinical applicability,
mIHC/IF appeared to have superior performance in predicting response to anti
PD-1/PD-L1 therapy. Combined assays could further improve the predictive
efficacy. Prospective clinical trials involving a wider range of tumor types are
needed to establish a definitive gold standard in future.

KEYWORDS

anti-PD-1/PD-L1 inhibitors immunotherapy, biomarkers, predictive value of tests, solid

tumor, meta-analysis

1 Introduction

Since the approval of anti-PD-1/PD-L1 inhibitors in the
treatment of melanoma in 2014, the overall survival of patients
has improved significantly. However, anti-PD-1/PD-L1
immunotherapy still has many shortcomings, such as PD-1/L1-
induced immune-related adverse events (irAEs) and
hyperprogression (1). It is important to predict patients’ response
to PD-1/PD-L1 immunotherapy based on the consideration of
medical economics.

Various testing assays have been approved to predict the
efficacy of anti-PD-1/PD-L1 immunotherapy response. Food and
Drug Administration (FDA) has approved PD-1/PD-L1 IHC, TMB,
proficient mismatch repair (pMMR) proteins, deficient mismatch
repair (AMMR), and MSI-high (MSI-H) for specific tumor types
and drugs as companion or complementary diagnostics (2).
Similarly, European Communities (CE) and National Medical
Products Administration (NMPA) have carried out their own
standards on companion diagnostics and prediction
assay applications.

PD-L1 THC, the first approved companion diagnostic
biomarker, aims to detect PD-1/PD-L1 expression on tumor cells
or inflammatory cells. However, the efficacy of IHC may be
influenced by the experience of pathologists, tumor types
examined, and the used scoring methods. Researchers are now
exploring the optimal detecting assay and scoring methods for
specific tumors (3).

TMB has been found to increase neoantigens of major
histocompatibility complexes (MHC) in various cancers, which
leading to better immunotherapy response in patients. Increasing
evidence indicates that different tumor types own various
expression levels of TMB. TMB is usually assessed by next-
generation sequencing (NGS) platforms, though standards of
threshold and application methods need to be defined exactly to
enhance accuracy across different tumor types. This would entail
considerations such as genome coverage, workflow, and appropriate
cutoff values (4). MSI and GEP display the difference in gene
expression as well. MSI-H phenotype arises from numerous
frameshift mutations due to deficits of the MMR system (5).
Patients with MSI-H are more likely to suffer from various
cancers, including colorectal cancer. MMR proteins, which could
be detected by IHC, polymerase chain reaction (PCR), and gene
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sequencing, are now being used to identify MSI-H patients in
various cancer types.

Detection and evaluation of tumor microenvironment (TME)
have also been explored in recent years (6). For example,
researchers have found that the epithelial-mesenchymal transition
(EMT)- and stroma-related gene expression status is related to
patients’ tumorigenesis and drug resistance (7, 8). mIHC/IF and
gene sequencing technique could offer more chances to verify (9).
GEP could also allow the integrations of different gene signatures
and training models to predict prognosis and drug response based
on the results of DNA-microarray and RNA sequencing (RNA-Seq)
(10-12). Some researchers have also explored the combined
approaches, such as TMB+GEP or TMB+IHC, since such
predictors could work through different mechanisms or may be
positively correlated with each other. All biomarker assays
mentioned above present novel opportunities to predict the
response rate of PD-1/PD-L1 inhibitors.

Assessment and evaluation of diagnostic tests could also benefit
from the increasing diagnostic test accuracy (DTA) studies and the
continuous development of statistical methods. In the era of evidence-
based medicine, meta-analysis plays an important role in integrating of
different studies with pairs of intervention using various
methodological methods. To enable the comparison of different
assays with limited data and generate a whole scale ranking results,
NMA turned out to be a better tool to indirectly compare and jointly
analyze three or more DTA studies simultaneously.

In this study, we compared the diagnostic accuracy of seven
biomarker testing assays, including PD-L1 IHC, TMB, GEP, MSI,
mIHC/IF, other IHC&HE, as well as combined assays for predicting
anti-PD-1/PD-L1 immunotherapeutic response. Diagnostic
accuracy measures used in this study included sensitivity,
specificity, relative sensitivity, relative specificity, PPV, NPV,
relative predictive values, DOR, and superiority index (13). It is
believed that the NMA performed here could provide stronger
clinical evidence for current medical practice.

2 Methods

This NMA was performed according to the Preferred Reporting
Items for Systematic Reviews and Meta-analyses (PRISMA)
NMA checklist.
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2.1 Eligibility criteria

The included research articles in this study were based on real-
world data, and English translations were available. The studies were
required to conduct PD-1/PD-L1 monotherapies and utilize at least
two predictive biomarker testing assays on pre-treatment tissue
samples. These assays could include PD-L1 IHC, TMB, GEP, MS],
mIHC/IF, HE for tumor-infiltrating lymphocytes (TIL), or other IHC
methods. Each biomarker testing assay should provide sufficient
information to determine the objective response rate (ORR) or
non-progression rate (NPR) and allow for the calculation of
sensitivity and specificity. If any testing assay had fewer than 15
tissue samples, it would not be considered. Hematologic cancers and
flow cytometry studies on tumor lysates were excluded.

2.2 Search strategy and data collection

We systematically searched PubMed, Embase, and the Cochrane
Library database for relevant studies and their errata (till February
2023). Additionally, we manually searched articles related to relevant
clinical trials. For example, the search formula of Embase included:
(“Immunohistochemistry “ OR “ Tumor mutational burden “ OR “
gene expression profiling “ OR “ multiplex immunofluorescence “ OR
“ neoantigen load “ OR “ Immunofluorescence “)[Find articles with
these terms] AND (“Pembrolizumab “ OR “ Nivolumab “ OR
Durvalumab “ OR “ Toripalimab “ OR “ Camrelizumab “ OR “
Atezolizumab “ OR “ Avelumab “ OR “ Avelumab “ OR
Budigalimab “)[Title, abstract or author-specified keywords] AND
(Research articles)[Filter]. The intact search formula and results were
in the Supplementary material.

Necessary information from eligible studies was extracted by
three researchers independently and all inconsistencies were settled
by discussion. The trial name, first author, year of publication, sample
size, trial phase, tumor type, PD-1/PD-L1 antibody, and index test
assay was recorded. To calculate sensitivity and specificity for each
index test, we organized ORR-related information into a 2x2 table.
We used Youden’s index, which combines values for sensitivity and
specificity to indicate test accuracy, to select the best-performing
threshold among multiple thresholds. If a clinical trial has multiply
publications, the one with most complete information was adopted.

2.3 Statistical analysis and
quality assessment

The main outcomes were calculated by NMA. As for Bayesian
NMA, the ANOVA model made it possible to use the original data
and arm-based (AB) model (14). The latter shows superiority to
contrast-based (CB) models by accommodating more complex
variance-covariance structures. NMA was mainly performed with
the R package “Rstan” (R version 4.2.2). In order to improve
accuracy and compare diagnostic assays one by one, calculations
were repeated 7 times (model_code = model, chains = 2, iterations =
10000, warmup = 5000, thin = 5), and then, we draw league tables
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for relative comparations. Given numerical variance, we chose the
median of sensitivity, specificity, PPV, NPV, SROC, and
superiority index.

The Midas module for DTA meta-analysis facilitated validation
of results and assessment of heterogeneity by forest plot and I*
analysis for every 7 biomarker modalities. Sensitivity, specificity,
DOR, and summary receiver operating characteristic (SROC)
curves and their associated area under the curve (AUC) were
analyzed by Midas, which employs a bivariate mixed-effects
logistic regression modeling framework and empirical Bayesian
predictions. Publication bias of studies was also evaluated by
Deeks’ funnel plot asymmetry test (p<0.05 indicating significant
asymmetry). The network graphs package on Stata were used to
draw the network graphs. Meta-analysis and drawing figures were
fulfilled in Stata (17.0 MP—Parallel Edition).

The QUADAS-C (Quality Assessment of Diagnostic Accuracy
Study) tool was used to assess the risk of bias and applicability in
each selected study. There were 4 sections for risk of bias: patient
selection, index test, reference standard, and flow and timing;
meanwhile, concerns regarding applicability were presented in 3
sections: patient selection, index test, and reference standard.

3 Results

3.1 Systematic review and characteristics of
the included studies

3652 articles from databases and an additional 304 articles
related to clinical trials were retrieved in total. After removing
duplicates and glancing at the abstracts and titles, 294 articles were
identified for full-text scrutiny. The literature search and study
selection flow were recorded in Figure 1. Ultimately, a total of 49
studies involving 5322 patients were included in our analysis. 144
diagnostic index tests were extracted across all 49 studies,
comprising PD-L1 THC (n=46) (15-58), TMB (n=27) (15-33,
58-62), combined assays (n=22) (7, 16, 18, 20, 23, 31, 34-38, 61,
62), other IHC&HE (n=19) (7, 16-18, 21, 30, 33-35, 37-45), MSI
(n=13) (21, 39, 46-53, 58, 61), GEP (n=13) (7, 16, 20, 23, 51, 53—
56, 60, 62) and mIHC/IF (n=4)(36, 37, 43, 57). HE staining was
used to score TIL. The situation where testing assays had been
directly compared was represented by a network plot (Figure 2).
15 types of tumors accounted for the majority of the studies, while
7 studies (18, 20, 27, 31, 42, 60, 61) involved several solid tumors. 8
of 13 MSI tests (39, 46, 47, 50-53, 58) detected gastrointestinal
cancer. The summary of included articles and details of studies
can be found in Supplementary Tables 1, 2.

3.2 Sensitivity, specificity, PPV and NPV

The sensitivity and specificity of NMA were summarized in
Table 1. Among the diagnostic index tests, mIHC/IF (0.76, 95% CI:
0.57-0.89) exhibited the highest sensitivity, whereas GEP (0.52, 95%
CI: 0.42-0.63), multi-assay (0.46, 95% CI: 0.39-0.52) and MSI (0.42,
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FIGURE 1

Flowchart Showing Literature Search and Study Selection. The study process followed the PRISMA guidelines. NMA, network meta-analysis

95% CI: 0.30-0.53) have low efficacy. Other IHC&HE (0.66, 95% CI:
0.57-0.73), PD-L1 IHC (0.63, 95% CI: 0.59-0.67), and TMB (0.62,
95% CI: 0.56-0.68) presented similar sensitivities to rule out stable
disease and progressive disease. As for specificity, MSI (0.90, 95%
CI: 0.85-0.94) and combined assays (0.84, 95% CI: 0.79-0.87)
performed better than the others. The specificities of the
remaining testing assays were quite close, with TMB, other
IHC&HE, PD-L1 IHC, GEP, and mIHC/IF having specificities of
0.65 (95% CI: 0.60-0.70), 0.63 (95% CI: 0.55-0.69), 0.61 (95% CI:

mIHC/IF
MsI
other IHC&HE /
TMB
GEP
PDL1IHC

combined assays

FIGURE 2

Network Plot. Both nodes and lines are weighted according to the
number of studies involved in each treatment and direct comparison,
respectively. PD-L1 IHC, Programmed cell death ligand 1
immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene
expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other
Immunohistochemistry and hematoxylin-eosin staining.
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0.58-0.64), 0.61 (95% CI: 0.52-0.69) and 0.57 (95% CI: 0.39-
0.73), respectively.

Table 1 also revealed that the PPV for each assay was below
0.60, indicating that positive results may not correctly predict the
response to PD-1/PD-L1 checkpoint inhibitors. MSI (0.56, 95% CI:
0.45-0.67) had the highest PPV, while GEP (0.33, 95% CI: 0.28-0.38)
was the lowest. However, all assays provided relatively good
performance in NPV, with even the lowest being near 0.80 (GEP:
0.8, 95% CI: 0.77-0.83). This suggested that these assays were useful
in providing evidence to refuse immunologic therapy due to the
accuracy of figuring out non-responsive patients.

3.3 Rankings, DOR and superiority index

Relative sensitivity, relative specificity, relative PPV, and relative
NPV were shown in the league table (Table 2). From the league
table for relative sensitivity (lower triangle of Table 2 (A), we can see
that mIHC/IF, other IHC&HE, and PD-L1 THC had similar efficacy
and performed better than TMB, GEP, combined assays, and MSI
according to the relative risk (RR) values. The upper triangle of
Table 2(A) represented the relative specificity, MSI and multi-assay
showed superiority to the other, meanwhile, the remaining tests
exhibited comparable efficacy. Similarly, MSI and combined assays
demonstrated higher relative PPVs among assays, as shown in the
lower triangle of Table 2(B). There was no difference among relative
NPVs (upper triangle of Table 2(B).

Table 1 presented the odds of responsive patients in test
positives versus the odds of responsive patients in test negatives
as measured by the DOR. MSI (6.79, 95% CI: 3.48-11.91) has the
highest DOR as its high specificity, followed by mIHC/IF (4.44, 95%
CI: 3.19-5.93), largely driven by its high sensitivity. In contrast, the
DOR for gene expression profiling (GEP) was noticeably lower at
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TABLE 1 Sensitivity, specificity, PPV, NPV, and diagnostic odds ratio (DOR) and superiority index by network meta-analysis.
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1.81 (95% CI: 1.31-2.40). The high superiority index indicated
biomarkers modality performs comparatively well in both
sensitivity and specificity. In contrast, the low superiority index
represents biomarkers that had a poor performance of at least one
assessment measure. As Table 1 summarized, the ranks of
superiority index from highest to lowest were TMB, mIHC/IF,
other IHC&HE, MSI, PD-L1 THC, combined assays, and GEP.

3.4 Heterogeneity and quality assessment

To further validate these present results, a meta-analysis was
conducted and revealed the same ranks of sensitivity, specificity,
and DOR as NMA (Table 3). The value of sensitivity and specificity
were very similar, indicating reliable results from the ANOVA
model used in the NMA. SROC generated through meta-analysis
displayed the AUC for each biomarker testing assay. mIHC/IF had
the largest AUC (0.80), while GEP exhibited the smallest (0.61) and
AUC of all others were close to 0.70 (Figure 3). Ranking trends for
AUC and DOR were similar, indicating the reliability of our ranking
results for NMA.

However, the heterogeneity for each biomarker was high due to
the absence of testing standards and various tumor types and
thresholds. Although we chose the best performance threshold, I*
was higher than 50% (Supplementary Figure 1). Nonetheless,
publication bias wasn’t obvious (p>0.1), according to
Supplementary Figure 2. QUADAS-C tools allowed us to evaluate
the quality (Supplementary Table 3).

3.5 Subgroup analysis

We conducted NMA for two subgroups of studies: 10 studies
focused on non-small cell lung cancer (NSCLC) (7, 23, 32-34, 45,
54, 58) and 12 studies centered around gastrointestinal tumors (19,
33, 39, 46, 47, 50-53, 58, 59) as reported in Table 4 and Table 5. For
NSCLC, mIHC/IF and multi-assay had high sensitivity (0.90, 95%
CI: 0.44-1.00) and specificity (0.90, 95% CI: 0.84-0.95) separately.
mIHC/IF, with only one study available, exhibited both high
sensitivity and specificity (0.89, 95% CI: 0.69-0.98), suggesting its
potential as a reliable biomarker modality. Further analysis based
on the ranks of DOR and superiority index suggested mIHC/IF,
multi-assay and other IHC&HE were better among the 6 testing
assays investigated.

In the case of gastrointestinal cancers, MSI had high specificity
(0.89, 95% CI: 0.82-0.92) and low sensitivity (0.40, 95% CI: 0.27-
0.54). PD-L1 THC along with other IHC&HE demonstrated
relatively high DOR and superiority index, besides MSI.

Concerning that the majority of combined assays contained 3
models, namely, TMB+GEP (n=6) (16, 20, 23), TMB+PD-L1 IHC
(n=6) (18, 20, 30), and PD-L1 IHC+other IHC&HE (n=5) (34-38).
A meta-analysis was performed to explore sensitivity, specificity,
DOR, and AUC (Supplementary Figure 3) in these models.
TMB+PD-L1 THC showed the best balance between sensitivity
(0.89, 95% CI: 0.82-0.94) and specificity (0.68, 95% CI: 0.53-0.81)
with high DOR (18, 95% CI: 9-37) and AUC (0.87, 95% CI: 0.84-
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TABLE 2 Relative sensitivity, relative specificity, relative PPV, and relative NPV by network meta-analysis.

10.3389/fimmu.2023.1265202

(A)

mIHC/IF 0.92 (0.69,1.21) 0.96 (0.83,1.17) 0.85 (0.62,1.19) 0.87 (0.60,1.15) 0.67 (0.46,0.90) 0.63 (0.43,0.83)

RANK7 GEP 1.03 (0.99,1.11) 1.00 (0.83,1.17) 0.94 (0.79,1.08) 0.73 (0.62,0.83) 0.68 (0.57,0.78)
RANK6 PD-L1 IHC 0.99 (0.88,1.12) 0.94 (0.86,1.04) 0.73 (0.68,0.79) 0.68 (0.63,0.73)

RANKI1 RANKS5 other IHC&HE 0.95 (0.82,1.10) 0.74 (0.65,0.84) 0.69 (0.60,0.78)

mIHC/IF RANK2 RANK4 TMB 0.78 (0.71,0.85) 0.72 (0.65,0.79)

0.90 (0.70,1.21) other IHC&HE RANK3 RANK3 combined assays 0.93 (0.87,0.99)

0.86 (0.69,1.14) 1.00 (0.85,1.10) PD-L1 IHC RANK4 RANK2 MSI

0.85 (0.66,1.15) 0.96 (0.81,1.11) 1.01 (0.95,1.12) TMB RANK5 RANK1

0.72 (0.53,0.97) 0.78 (0.64,0.99) 0.79 (0.69,0.91) 0.85 (0.68,1.04) GEP RANK6

0.63 (0.48,0.85) 0.73 (0.58,0.84) 0.70 (0.65,0.83) 0.74 (0.61,0.90) 0.80 (0.67,1.08) combined assays RANK?7

0.57 (0.38,0.81) 0.63 (0.46,0.82) 0.74 (0.68,0.81) 0.67 (0.48,0.88) 0.78 (0.56,1.05) 0.89 (0.61,1.21) MSI

(B)

GEP 0.99 (0.94,1.03) 0.97 (0.91,1.04) 0.96 (0.92,1.00) 0.96 (0.91,1.00) 0.94 (0.89,0.99) 0.94 (0.87,1.03)

RANK?7 combined assays 0.99 (0.93,1.05) 0.98 (0.94,1.01) 0.97 (0.94,1.00) 0.96 (0.92,10.0) 0.96 (0.90,1.04)
RANK6 MSI 0.99 (0.93,1.04) 0.98 (0.93,1.03) 0.97 (0.91,1.03) 0.97 (0.89,1.06)

RANK1 RANKS5 PD-L1 IHC 1.00 (0.97,1.03) 0.98 (0.94,1.02) 0.98 (0.92,1.07)

MSI RANK2 RANK4 TMB 0.99 (0.94,1.03) 0.99 (0.92,1.08)

0.86 (0.70,1.09) combined assays RANK3 RANK3 other IHC&HE 1.00 (0.93,1.09)

0.68 (0.54,0.85) 0.79 (0.68,0.90) TMB RANK4 RANK2 mIHC/IF

0.64 (0.50,0.81) 0.74 (0.62,0.88) 0.95 (0.78,1.12) other IHC&HE RANK5 RANK1

0.61 (0.50,0.77) 0.72 (0.62,0.81) 0.91 (0.81,1.03) 0.97 (0.82,1.14) PD-L1 IHC RANK6

0.60 (0.38,0.86) 0.70 (0.46,0.96) 0.89 (0.59,1.22) 0.94 (0.64,1.31) 0.97 (0.65,1.32) mIHC/IF RANK7

0.59 (0.46,0.76) 0.69 (0.58,0.81) 0.88 (0.74,1.05) 0.94 (0.75,1.15) 0.96 (0.80,1.13) 1.02 (0.69,1.50) GEP

(A) Relative risk (RR) values and 95% ClIs for sensitivity (lower triangle) and specificity (upper triangle) were in Table 2.

(B) Relative risk (RR) values and 95% CIs for PPV (lower triangle) and NPV (upper triangle) were in Table 2.

The values highlighted in bold indicated a significant difference between the two compared assays. Relative risk (RR) values <1.00 provided better predictive efficacy.

PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.

TABLE 3 Result validation by meta-analysis.

Ranks Test Sensitivity Test Specificity Test DOR

1 mIHC/IF 0.83 (0.14-0.99) MSI 0.96 (0.88-0.99) MSI 13 (6-9)

2 other IHC&HE 0.66 (0.55-0.75) combined assays 0.85 (0.79-0.89) mIHC/IF 12 (1-243)
3 PD-L1 IHC 0.63 (0.55,0.70) TMB 0.68 (0.60-0.74) multi-assay 5 (4-7)

4 TMB 0.63 (0.56-0.70) other IHCXHE 0.63 (0.57-0.69) other IHC&HE 3(2-5)

5 GEP 0.58 (0.38-0.76) PD-L1 IHC 0.63 (0.57.0.69) TMB 4(35)

6 combined assays 0.47 (0.39-0.55) GEP 0.61 (0.51-0.69) PD-L1 IHC 3(24)

7 MSI 0.36 (0.23-0.52) mIHC/IF 0.71 (0.45-0.88) GEP 2 (1,4)

DOR, Diagnostic odds ratio; PD-L1 THC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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FIGURE 3

SROC Plot of "mIHC/IF" “"combined assays” “MSI “ “TMB" “other
IHCE&HE" "PDL1 IHC" and “"GEP”" by Meta-analysis. SROC, Summary
receiver operating characteristic curves; AUC, Area under the curve;
PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry;
TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI,
Microsatellite instability; mIHC/IF, Multiplex immunohistochemistry/
immunofluorescence; other IHC&HE, Other Immunohistochemistry
and hematoxylin-eosin staining.

0.90). Conversely, the other models yielded higher sensitivity but
lower specificity compared to a single assay in the meta-analysis
(Supplementary Figure 3).

4 Discussion

In this article, we compared 7 common biomarker testing assays
to assess their efficacy in predicting response to PD-1/PD-L1
checkpoint inhibitors. mIHC/IF had the highest sensitivity (0.76,
95% CI: 0.57-0.89) and AUC (0.80), the second highest DOR (5.09,
95% CI: 1.35-13.90) and superiority index (2.86), but relative lower
specificity (0.57, 95% CI: 0.39-0.73). Although MSI exhibited the
highest DOR (6.79, 95% CI: 3.48-11.91), its application is mainly
limited to gastrointestinal tumors. Despite being the most
commonly used method in clinical practice, PD-L1 IHC had not
demonstrated obvious advantages in terms of sensitivity, specificity,
DOR, as well as superiority index. Yet, when PD-L1 IHC is
combined with TMB, a notable increase in sensitivity (0.89, 95%
CI: 0.82-0.94) was observed.

Our conclusion is in alignment with those from a previous
meta-analyses that had addressed similar topics (63, 64), which
indicated that mIHC/IF was superior to PD-L1 IHC, TMB and GEP
in predicting response to PD-1/PD-L1 checkpoint inhibitors and
that combinatorial assays could improve predictive efficacy. Yet, to
our best of knowledge, our study was the first to use NMA to
demonstrate the objective benefits of mIHC/IF in predicting
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patients’ response to PD-1/PD-L1 checkpoint inhibitors. Upon
stratifying by tumor types, we also observed that mIHC/IF had
both remarkable sensitivity and specificity in NSCLC. PD-L1,
mIHC/IF and IHC also manifested relatively high DOR and
superiority index in gastrointestinal cancers, which further
substantiated the strengths of mIHC/IF.

To address the challenge of ranking multiple diagnostic tests
simultaneously, statistical scientists have developed several new
models based on the Bayesian setting for NMA of DTA studies
(65), since traditional meta-analysis and NMA of intervention were
not efficient enough to handle this issue. Multivariate extensions of
meta-analysis models of DTA had been applied to NMA. In
addition, the ANOVA model used in this NMA could facilitate
ORR to be compared indirectly and rank testing assays directly (14).
Researchers could also compare multiple thresholds per testing
assay using certain models (66).

High sensitivity, DOR, and AUC of mIHC/IF collectively
indicated its superiority in identification of potential patients who
may benefit most from immunotherapy. mIHC/IF facilitates the
acquisition of quantitative multiplexed data, which plays a pivotal
role in deciphering the intricate relationship between tumor cells,
their microenvironment, and antigen expressions at the single-cell
level. This capability assumes paramount importance in
understanding tumorigenesis, cancer progression, and
immunotherapy responses. In all instances of mIHC/IF index
testing, CD8 was included, and T cell antigen expression was
examined. Various studies have established a link between T cells’
cytotoxicity and pro-inflammatory activity with patients prognosis
through its regulation of inherent immunological function by
tumor antigens like CD8 or PD-1 (67-70), which further
supports the potency of antigens on tumor-infiltrating
lymphocytes (TILs). However, false negative results obtained from
mIHC/IF screening may exclude some patients who may could
benefit from immunotherapy, suggesting the need to explore
additional proteins and combined assays to improve specificity.
To enhance the precision in scoring staining, many researchers have
incorporated artificial intelligence with mIHC/IF, rendering it a
relatively convenient and cost-effective method when compared to
combined assays (71). Thus, our study has concluded that mIHC/IF
had the best performance and a broad range of applications.

PD-L1 IHC, the most widely used assay, exhibited suboptimal
performance in sensitivity, specificity, and DOR. As previously
mentioned, TME is excessively intricate and heterogeneous to be
comprehensively elucidated by a singular mechanism. Furthermore,
expressions of PD-1 and PD-LI exhibit considerable interpatient
variability. These two factors collectively contribute to the
suboptimal performance of PD-L1 THC as a predictive marker.
The possible reasons for such unsatisfactory results varied,
including the lack of experience for pathologists, sample type
examined, and IHC assays used (72). A meta-analysis that
scrutinized and compared different IHC assays using tumor
proportion score (TPS) revealed that the sensitivity and specificity
values were similar except SP142 with lower sensitivity (73). The
quantification and assessment of PD-1 protein expression through
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TABLE 4 Subgroup analysis of NSCLC by network meta-analysis.

10.3389/fimmu.2023.1265202

Rank Test Sensitivity Rank Test Relative Sensitivity =Rank Test DOR
0.90 1607584.12

1 mIHC/IE 1 mIHC/TE 142 (0.68,1.74) mIHC/IE
(0.44,1.00) (5.95,833493.27)
0.64 bined

2 PD-LI IHC 2 PD-LI IHC 1.00 (1.00,1.00) combine 6.55 (2.96,12.88)
(0.56,0.72) assays

3 TMB 0.59 3 TMB 0.92 (0.73,1.11) other IHC&HE 6.20 (2.67,12.45)
(0.48,0.69) 22 B L ASOAEE
0.55

4 other IHC&HE (", 0 4 other IHC&HE | 0.87 (0.63,1.11) PD-L1 IHC 3.30 (2.10,4.96)
0.44

5 GEP 5 GEP 0.68 (0.48,0.89) TMB 2.88 (1.57,5.15)
(0.31,0.56)

bined 0.39 bined
6 combine 6 combine 0.61 (0.43,0.80) GEP 1.68 (0.79,3.13)
assays (0.27,0.50) assays

Relative Specific-

Specificity ity Superiority Index
bined 0.90 bined
1 combine 1 combine 1.41 (1.25,1.59) mIHC/IF 9.02 (1.00,11.00)
assays (0.84,0.95) assays

2 mIHC/IE 089 2 mIHC/TF 138 (1.06,1.61) other IHC&HE | 1.90 (0.33,7.00)
(0.69.0.98) =0 A0 Sl
0.82 bined

3 other IHC&HE 3 other IHC&HE | 1.27 (1.08,1.47) combine 1.07 (0.20,3.00)
(0.71,0.89) assays
0.67

4 GEP 4 GEP 1.04 (0.84,1.25) PD-LI THC 0.83 (0.20,3.00)
(0.55,0.78)
0.66

5 TMB 5 TMB 102 (0.84,1.22) TMB 0.65 (0.14,3.00)
(0.55,0.75)
0.64

6 PD-LI IHC 6 PD-LI IHC 100 (1.00,1.00) GEP 0.18 (0.09,0.33)
(0.58,0.70)

DOR, Diagnostic odds ratio; PD-L1 THC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite

instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.

TABLE 5 Subgroup analysis of gastrointestinal tumors by network meta-analysis.

Rank  Test Sensitivity | Rank @ Test Relative Sensitivity ~Rank  Test DOR

1 other IHC&HE  0.72 (0.35,0.95) | 1 other IHC&HE | 1.00 (1.00,1.00) 1 other IHC&HE 7.4 (0.35,37.15)
2 PD-L1 THC 056 (0.44,0.68) | 2 PD-L1 THC 0.84 (0.52,1.61) 2 MSI 5.73 (2.49,10.59)
3 TMB 055 (0.33,0.76) | 3 TMB 0.82 (0.41,1.64) 3 PD-L1 IHC 2.73 (1.45,4.76)
4 MSI 040 (0.27,0.54) | 4 MSI 0.60 (0.33,1.20) 4 mIHC/IF 1.92 (0.03,11.96)
5 mIHC/IF 037 (0.04,0.84) | 5 mIHC/IF 0.55 (0.06,1.48) 5 TMB 1.62 (0.39,4.56)
6 GEP 0.06 (0.00,0.39) | 6 GEP 0.10 (0.00,0.64) 6 GEP 0.45 (0,30,0.86)

Rank @ Test

Specificity

Relative Sensitivity

Superiority Index

1 MSI 0.89 (0.82,0.92) 1 MSI 1.91 (1.09,4.19) 1 MSI 4.17 (1.00,7.00)
2 GEP 0.70 (0.28,0.96) 2 GEP 1.50 (0.49,3.52) 2 PD-L1 IHC 3.44 (0.33,7.00)
3 PD-L1 IHC 0.67 (0.60,0.73) 3 PD-L1 IHC 1.44 (0.81,3.14) 3 other IHC&HE 3.09 (0.14,9.00)
4 mIHC/TF 0.56 (0.17,0.91) 4 mIHC/TF 1.19 (0.32,2.88) 4 TMB 1.30 (0.14,7.00)
5 TMB 0.52 (0.32,0.71) 5 TMB 1.13 (0.50,2.65) 5 mIHC/IF 1.17 (0.11,7.00)
6 other THC&HE 0.52 (0.21,0.82) 6 other IHC&HE 1.00 (1.00,1.00) 6 GEP 0.47 (0.09,3.00)

DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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scoring methods varied among different assays, such as TPS,
combined positivity score (CPS), and immune cell (IC) score (3).
Gastrointestinal tumors were characterized by their most extensive
proportions of MSI-H/dMMR, therefore, MSI status detection
could be a reasonable approach to predict the response to
immunotherapy. Subgroup analysis of gastrointestinal tumors
indicated that MSI detection offered a valuable method for ruling
out non-responsive patients due to its high specificity performance.
MSI detection was also conducted in other solid tumors, including
endometrial cancer, adrenocortical carcinomas, and multiple
endocrine neoplasias (MENs). High specificity, DOR, and AUC of
MSI suggested its potential applications in some other tumor types.
Regrettably, generalization of MSI detections to a wider range of
tumors may be prevented by the fact that most tumors in fact
exhibit microsatellite stability (MSS) status.

Our efficacy rankings placed TMB and other IHC&HE in the
middle, while GEP was ranked last, although they are closely related
to crucial aspects of tumor immunology such as neoantigen, TME,
and inflammatory gene signature. Nevertheless, it is important to
note that the MSI status, TMB, and GEP serve as indicators of the
gene phenotype, which is not directly associated with the primary
mechanism of PD-1/PD-L1 immunotherapy compared to protein
expression. The measurements obtained through MSI, TMB, and
GEP reflect events upstream of gene expression, which may
potentially diminish their predictive efficacy. Uncovering specific
and precise gene pathways solely through these indicators can prove
to be challenging. Whereas thresholds for TMB and GEP were
mainly determined by proportions, other IHC&HE methods
typically detected CD8 and TILs with different methods. This
highlights the potential impossibility that some immature tests
could have covered all types of tumors.

Combined assays provided more chances to improve the
prediction accuracy in current challenging scenario. When TMB
was combined with PD-L1 THC, the performance of sensitivity was
improved noticeably without sacrificing specificity. Ricciuti, B. et al.
have explored the association of high TMB with other biomarkers
and found that high TMB was related to higher proportions of
tumor-infiltrating CD8+, PD1+ T cells, and high PD-L1 expression in
cancer cells (74). Fumet, J.-D. et al. reported that tumors displaying
high PD-L1/low CD8 TILs developed microenvironments conducive
to tumor proliferation and exhibited poor outcomes (75). This may
explain the enhanced efficacy of combined assays. Yet,
the shortcomings of combined assays were high cost and
technical complexity.

Despite nearly a decade of research on companion or
complementary diagnostics for prediction purposes, the most
effective indicators for PD-1/PD-L1 inhibitors have not yet been
established for most tumors. While some testing assays such as
mIHC/IF and combined tests hold potential values, there was still
no perfect test with satisfactory sensitivity and specificity
simultaneously in our analysis. Consequently, clinicians should
exert appropriate caution when detecting predictive biomarkers
and interpreting associated results. Additionally, it is believed that
our NMA could provide supporting evidence to researchers and

clinicians for amelioration of predictive tests in future.
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5 Limitations

It is crucial to note that a high ORR doesn’t necessarily translate
into a high OS. It is essential to take care when interpreting results
based on studies that relied solely on ORR which may not take into
account of OS or progressive rate. To mitigate bias, it is worth
noting that the threshold we chose with Youden’s index may favor
higher sensitivity and specificity. An article with two or more
biomarker tests was selected, which may cause bias by giving up
some robust data in each test. Moreover, there was a significant
disparity between the number of studies conducted in PD-L1 THC
versus mIHC/IF. Last but not least, although our study mainly
covered 15 types of tumors, the generalization of the conclusion still
requires deliberation.

6 Conclusion

Various large prospective and retrospective studies have
investigated biomarkers for the prediction of PD-1/PD-L1
checkpoint inhibitors response. According to our network meta-
analysis, mIHC/IF had the best performance and a large range of
applications. Given the diverse employment of mIHC/IF with
different biomarkers across various studies, further investigations
involving precise combinations are warranted to enhance
prognostic prediction. When considering the selection of specific
markers, it is crucial to take into account not only their efficiency
and cost-effectiveness but also rely on substantiation from evidence
derived from molecular mechanisms. Further exploration was
required in combined assays of the high efficacy of TMB+PD-L1
IHC. Currently, there is a lack of studies or consensus regarding the
workflow of companion or complementary diagnostics in this
context. The existing approach is primarily based on clinicians’
acknowledgment, and we anticipate that future research will
provide more foundational evidence to support these practices.
What” more, more evidence based medicine are needed to
determine detailed testing modalities and thresholds for all types
of tumors, e.g. advanced ovarian cancer. Clinicians should be
cautious that the prognostic accuracy of each index test should be
interpreted in a particular situation.
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Introduction: Lung squamous cell carcinoma (LUSC) is a unique subform of
nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as
therapeutic targets leads to worse prognoses in patients with LUSC, even with
chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore,
research on the LUSC-specific prognosis genes is lacking. This study aimed to
develop a comprehensive LUSC-specific differentially expressed genes (DEGs)
signature for prognosis correlated with tumor progression, immune infiltration,
and stem index.

Methods: RNA sequencing data for LUSC and lung adenocarcinoma (LUAD)
were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs
analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify
specific DEGs associated with LUSC. Functional analysis and protein—protein
interaction network were performed to annotate the roles of LUSC-specific
DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and
least absolute shrinkage and selection operator regression analyses were
performed to select prognosis-related DEGs.

Results: Overall, 1,604 LUSC-specific DEGs were obtained, and a validated
seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3,
CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with
poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive
prognosis markers in patients with LUSC. Receiver operating characteristic
analysis further confirmed that the genetic profile could accurately estimate
the overall survival of LUSC patients. Analysis of immune infiltration
demonstrated that the high risk (HR) LUSC patients exhibited accelerated
tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions
of immune checkpoint genes differed significantly between the HR and LR
cohorts. A ceRNA network containing 19 IncRNAs, 50 miRNAs, and 7
prognostic DEGs was constructed to demonstrate the prognostic value of
novel biomarkers of LUSC-specific DEGs based on tumor progression,
stemindex, and immune infiltration. In vitro experimental models confirmed
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that LUSC-specific DEG FGG expression was significantly higher in tumor cells
and correlated with immune tumor progression, immune infiltration, and stem
index. In vitro experimental models confirmed that LUSC-specific DEG FGG
expression was significantly higher in tumor cells and correlated with immune
tumor progression, immune infiltration, and stem index.

Conclusion: Our study demonstrated the potential clinical implication of the 7-
DEGs signature for prognosis prediction of LUSC patients based on tumor
progression, immune infiltration, and stem index. And the FGG could be an
independent prognostic biomarker of LUSC promoting cell proliferation,
migration, invasion, THP-1 cell infiltration, and stem cell maintenance.
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LUSC, prognosis, biomarker, tumor microenvironment, cancer stem cell
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GRAPHICAL ABSTRACT

1 Introduction

and the outcome of antineoplaston drugs (2). Despite tremendous

. . advances in diagnosis and treatment, including molecular targeted
Lung cancer is heterogeneous and fatal, with non-small cell lung & & 8

cancer (NSCLC) as its main pathological subtype. Lung squamous therapeutics and immunotherapy, the clinical outcomes of LUSC

cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the remain unsatisfactory (3). Patients with LUSC are often diagnosed

primary subtypes of NSCLC (1); however, they differ in many in an advanced stage when existing therapy cannot be administered

. . .. . L . . in a timely manner (4). LUSC patients are also not as sensitive as
aspects, including the origin of cells, genetic variation, epigenetics, ] ]
LUAD patients to chemotherapy, radiotherapy, and tumor

Abbreviations: EMT, Epithelial-Mesenchymal Transition; NSCLC, Non-small immunotherapy. In addition, the prognosis of LUSC is poor, with
cell carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell ~ a1 estimated 5-year survival rate of <15% (5). Therefore,
carcinoma; mRNA, Message ribonucleic acid; FGG, Fibrinogen gamma; GO, distinguishing LUSC from LUAD is important to identify
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, effective prognostic biomarkers.

Protein-protein interaction; TCGA, The Cancer Genome Atlas; OS, Although studies based on the whole genome (6, 7), epigenetics
Overall survival. (8), cancer stem cells (CSCs) (9, 10), and tumor microenvironment
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(TME) (11) have analyzed differentially expressed genes (DEGs) in
LUSC and LUAD, research on the LUSC-specific prognosis genes is
lacking. A previous study (4), involving 178 LUSC cases, conducted
using the Cancer Genome Atlas (TCGA) Research Network
reported complex genomic alterations in LUSC, including
significant copy number alterations, which peaked for SOX2,
PDGFRA/KIT, EGFR, FGFR1, CCND1, and CDKN2A. In LUSC,
CDKN2A/RB1, NFE2L2/KEAPI, squamous differentiation genes,
and PI3K/Akt were significantly altered. TP53 is the most
commonly mutated gene with a mutation frequency of > 80% in
LUSC. The overexpression and amplification of genes, SOX2 and
TP63, are spectrum factors of LUSC (12). Despite progress in
research on biomarkers for LUSC, oncology targets are rare.
Recent studies on genetic biomarkers for LUSC have focused on a
single gene based on the cognitions of CSCs and the TME in cancer
progression, as well as drug resistance and response to immune
checkpoint blockade. Traditional methods use differential
expression detection to identify potential biomarkers but may
miss out on useful genes. As the occurrence and development of
malignant tumors is a long-term complex process involving
genomic changes, the interaction between tumor cells and their
immune microenvironment, and the participation of tumor stem
cells, the behavior cognition of malignant tumors warrants
extensive research.

Therefore, in this study, we aimed to compare DEGs of LUSC
with LUAD using biological information analytical methods based
on prognostic risk factors, including tumor invasion, metastasis,
survival, immune infiltration, and tumor stem cell-related genes.
DEGs in LUSC were employed to generate a risk model to evaluate
the prognostic value of characteristic genes for possible prognostic
indicators or therapeutic targets for LUSC. We further explored the
associations between the specific prognostic markers FGG and
tumor progression, immune invasion, and the tumor cell stem
index to identify potential LUSC-specific survival prognostic
biomarkers and therapeutic targets.

2 Methods
2.1 Data processing

We first retrieved LUSC (n=502) and LUAD (n=533) RNA
sequencing datasets, and the clinical information of corresponding
LUSC patients and 59 healthy volunteers from the TCGA database
(https://portal.gdc.cancer.gov/).

2.2 Differentially expressed genes

The “limma” package was selected for DEGs analysis in TCGA-
LUSC and TCGA-LUAD cohorts. For processing, a |log2 (fold
change)| > 0.5 and adjusted P-value < 0.05 were considered the cut-
off criteria for screening the DEGs between the tumor and normal
samples. The “heatmap” package of the R program was used to
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generate a heatmap of the top 100 DEGs. Additionally, we
employed a Venn diagram to indicate the specific DEGs in LUSC.

2.3 Functional enrichment analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses of LUSC-
specific DEGs were conducted with the “clusterProfiler” package of
the R software; P < 0.05 was the statistical significance threshold.
The bubble plot, circle graph, and heat map were plotted using R to
visualize the top enrichment GO terms and KEGG networks. To
explore the pathways and GO functions of unique differential genes
in LUSC, the R “clusterProfiler” package was used for enrichment
analysis based on KEGG and GO to search for common functions
among DEGs, as well as related pathways of several genes. Statistical
methods were used to calculate the cumulative hypergeometric
distribution to analyze, within a group of genes, whether
overpresentation occurs on a functional node, as follows:

ny(N-n
PX>Q=1-3 (X)((AA’?X
M

x=1
where ‘N’ is the total gene number within the annotation

system, ‘n’ is the gene number annotated by the node or pathway
itself to be examined, ‘M’ is the size of the DEGs set, and X is the
number of intersections between gene sets and nodes or pathways.

2.4 Protein—protein interaction axis for
LUSC DEGs

The association between LUSC-specific DEGs was predicted
using STRING (https://string-db.org). The PPI axis was visualized
with the Cytoscape software at a confidence of 0.9. In the PPI
network, the individual DEG’s adjacent node numbers were
computed, and the top 20 DEGs were displayed using a bar plot
according to the number of adjacent nodes. Weighted gene co-
expression network analysis (WGCNA) was conducted to screen
out relevant modules and hub genes, which were used to develop
the prognostic signature. TCGA and GTEx data based gene
expression profiling interactive analysis (GEPIA) was used to
predict gene interactive and customizable functions.

2.5 Construction and validation of
a gene signature constructed from
LUSC-specific DEGs

Based on the number of connections, the top 100 LUSC-specific
DEGs were selected for subsequent analyses. We extracted the
expression data of the 100 LUSC-specific genes from TCGA-
LUSC patients and combined them with the clinical information
of corresponding patients. The corresponding patients with TCGA-
LUSC were randomly divided into a training cohort (TC, n = 336)
and a validation cohort (VC, n = 145) in a 7:3 ratio. To identify
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prognostic genes in LUSC, we conducted a univariate Cox
regression analysis on 100 LUSC-specific DEGs. Those with a
P <0.05 were considered correlated with the LUSC prognosis.
Subsequently, we used the least absolute shrinkage and selection
operator (LASSO) and Cox regression analyses to obtain the genetic
profile with the most significant prognosis from the LUSC-specific
DEGs within the TCGA-LUSC patient population via the “glmnet”
package in R. Individual patient risk score (RS) was computed based
on the levels of the prognostic signature genes and the associated
coefficients obtained from the LASSO-Cox regression model. LUSC
patients were categorized into high risk (HR) and low risk (LR)
cohorts based on the median RS. The overall survival (OS) of the
different risk cohorts was analyzed using Kaplan-Meier analysis
with the log-rank test using the “Kaplan-Meier survival” package in
R. Moreover, the time dependent receiver operating characteristic
(ROC) curve was generated via the “survival ROC” package in R to
demonstrate the effectiveness of the genetic profile. To analyze the
relationship between predictive and response variables, we
employed the uni- and multivariate Cox regression analyses.

2.6 Single sample gene set
enrichment analysis

The relative tumor infiltration levels of 29 immune-linked gene
sets (16 immune cell types and 13 immune-linked pathways)
between HR and LR groups were quantified by ssGSEA. The
analysis was conducted using the “gsva” R package. Comparisons
between the HR and LR cohorts were carried out via the
Wilcoxon test.

2.7 Tumor stem cell index analysis

The mRNA expression based stemness index (mRNAsi) and
epigenetically regulated mRNAsi (EREG-mRNAsi) in LUSC
samples were computed using the OCLR algorithm for research
on gastric cancer (13) and NSCLC (14). Subsequently, the
differences in mRNAsi and EREG-mRNAsi between the HR and
LR cohorts were compared using the Wilcoxon test. The two
independent stemness indices range from 0 to 1, with a value
closer to 1 suggesting stronger characteristics of CSCs.

2.8 Generation of the ceRNA axis

Differentially expressed IncRNAs (DE-IncRNAs) between
tumor and healthy samples were recognized as follows: [log2 (fold
change)| > 1 and P-value < 0.05. The target miRNAs of IncRNAs
were estimated via the miRcode database (http://www.mircode.org/
)> and the target miRNAs of prognostic DEGs were estimated via the
miRanda database (http://www.microrna.org/microrna/home.do).
The common miRNAs predicted by the miRcode and miRanda
databases, as well as the corresponding IncRNA and prognostic
DEGs, were input into Cytoscape software to construct a
ceRNA network.
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2.9 Cell culture

LTEP-s, BEAS-2B, and NCI-H520 cells were purchased from
the American Type Culture Collection (ATCC) and cultured in
DMEM (HyClone, USA). NCI-H520 cells were cultured in RPMI-
1640 medium (Biological Industries, USA). All cells were
supplemented with 10% fetal bovine serum (FBS; Biological
Industries, USA) and 1% penicillin/streptomycin (Sigma, USA)
and cultured under standard culture conditions (37 °C, 5% CO,)
in culture medium recommended by the ATCC.

2.10 RNA extraction and real-time
polymerase chain reaction assay

Total RNA was extracted using TRIzol Reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instructions. cDNA
was synthesized using random primers and the PrimeScript RT
Reagent Kit (Takara, China). Real-time polymerase chain reaction
(qPCR) was performed using SYBR Premix Ex Tag (Takara, China).
The PCR conditions were as follows: 95°C for 15s followed by
40 cycles of 95 °C for 5s and 60 °C for 30 s. B-actin was used as the
internal control. The primer sequences for real-time PCR are listed
in Table 1.

2.11 Cell transfection

Small-interfering RNA (siRNA) oligonucleotides for FGG were
designed and synthesized by Jima Bio (Suzhou, China). The primer
sequences for the siRNAs are listed in Table 2. Transient transfection
was performed using Lipofectamine 2000 Reagent (Invitrogen, USA)
according to the manufacturer’s instructions. After transfection for

TABLE 1 Primer sequences for real-time PCR used in the study.

Primer name Primer sequences (5 -3 )

FGG Forward Primer TTATTGTCCAACTACCTGTGGC

Reverse Primer GACTTCAAAGTAGCAGCGTCTAT

FGA Forward Primer AGACATCAATCTGCCTGCAAA

Reverse Primer AGTGGTCAACGAATGAGAATCC

JUN Forward Primer TCCAAGTGCCGAAAAAGGAAG

Reverse Primer CGAGTTCTGAGCTTTCAAGGT

CPSF4 Forward Primer CATCGGGGTCATGCAGAGTC

Reverse Primer CTCGCCACACTTGTAACAGGT

HIST1H2BH-1F Forward Primer TCACCTCCAGGGAGATCCAG

Reverse Primer TTTGGGTTTGAACATGCGTCC

C3 Forward Primer GGGGAGTCCCATGTACTCTATC

Reverse Primer GGAAGTCGTGGACAGTAACAG

CST3 Forward Primer GTCGGCGAGTACAACAAAGC

Reverse Primer CACCCCAGCTACGATCTGC

frontiersin.org


http://www.mircode.org/
http://www.microrna.org/microrna/home.do
https://doi.org/10.3389/fimmu.2023.1236444
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

TABLE 2 Primer sequences for siRNA used in the study.

Primer name Primer sequences (5 —3)

FGG-homo-935 sense CCUACUGGCACAACAGAAUTT

antisense AUUCUGUUGUGCCAGUAGGTT

FGG-homo-768 sense GCGGGCUUUACUUUAUUAATT
antisense UUAAUAAAGUAAAGCCCGCTT

FGG-homo-1361 sense GGUUAUGAUAAUGGCAUUATT
antisense UAAUGCCAUUAUCAUAACCTT

48h, cells were used for functional assays, including migration,
invasion, RNA extraction, and Western blotting.

2.12 Cell proliferation assay

Cells were seeded in 96-well plates at 1 x 10° cells per well and
cultured in a final volume of 100 uL of culture medium
supplemented with 10% FBS. The cell proliferation was
determined using CCK-8. After incubation for 24, 48, 72, and
96 h, 20 uL of CCK-8 reagent was added for 3 h, and the
absorption at a wavelength of 490 nm was determined.

2.13 Cell cycle assay

The cell suspension was diluted to 5x10° cells/mL, the
supernatant was removed, and 70% 500 UL of cold ethanol was
added and placed in a refrigerator at 4°C for 2 h. The cell pellet was
mixed with 100 uL RNaseA (Solarbio, China) and placed in a 37°C
water bath for 30 min; PI staining buffer was added in the dark for
30 min at 4°C. Red fluorescence at 488 nm was detected using
flow cytometer.

2.14 Cell apoptosis assay

The cell culture medium was collected into a centrifuge tube.
The cells were digested with Edta-free pancreatic enzymes and
added into the cell culture medium, centrifuged, and precipitated.
The cells were then re-suspended with 1 mL PBS precooled at 4 °C
and the precipitated cells were centrifuged again. The cells were re-
suspended with 1x binding buffer and the concentration was
adjusted to 5 x 10°/mL; 100 L cell suspension was added to a 5
mL flow tube, mixed with 5 L Annexin V/FITC (Solarbio, China),
and incubated at room temperature for 5 min in the dark. A total of
5 uL propyl iodide solution (PI) and 400 UL PBS were added for
immediate flow detection.

2.15 Wound healing assay

Cells were placed in 12-well plates. When cells grew to 90-95%
confluence, cell monolayers were wounded by scratching with

Frontiers in Immunology

10.3389/fimmu.2023.1236444

plastic micropipette tips and washed twice with PBS. The cells
were rinsed with PBS and cultured in DMEM or RPMI 1640
supplemented with 1% FBS. Images of the different stages of
wound healing were obtained via microscopy at 0, 24, and 48 h.
Relative cell motility was quantified using Image-Pro Plus.

2.16 Transwell migration and
invasion assay

Cell migration and invasion assays were performed in 24-well
plates with 8-pm-pore size chamber inserts (Corning, USA). For the
migration assays, 5x 10* cells in 200 uL of serum-free culture
medium were seeded into each well of the upper chamber with
the noncoated membrane, and 800 uL of medium supplemented
with 10% FBS was added to the lower chamber. For invasion assays,
1 x 10° cells in 200 UL of serum-free culture medium were seeded
into each well of the upper chamber with the Matrigel-coated
membrane, while 800 uL of medium supplemented with 10% FBS
was added to the lower chamber. Cells that migrated through the
membrane were fixed with 100% methanol, stained with 0.1%
crystal violet for 30 min, imaged, and counted under a light
microscope (Olympus, Japan).

2.17 Western blot assay

Cells grown in 6-well plates were lysed on ice using RIPA buffer.
The lysis mixtures were centrifuged, and the supernatants were
collected. Total protein was separated using SDS-polyacrylamide gel
electrophoresis and transferred onto PVDF membranes (Millipore,
USA). After blocking the membranes with non-fat milk, the
membranes were incubated overnight with the following primary
antibodies: anti-N-cadherin (1:1,000), anti-E-cadherin (1:1,000),
anti-GAPDH (1:1,000) (Abcam, UK). The membranes were then
incubated with horseradish peroxidase-conjugated secondary
antibodies (1:2,000). The analysis was performed using an
enhanced chemiluminescence system (Bio-Rad, USA). Binding
was analyzed using Image J 6.0.

2.18 THP-1 cell infiltration

THP-1 cells were seeded at 1x10° per well in 6-well plates and
treated with PMA (100 nmol; Sigma-Aldrich, USA) for 48 h. M1
macrophages were polarized by incubation with INF-y (20 ng/mL;
R&D System, USA) and LPS (100 ng/mL; Sigma, USA) for 48 h.

After transfection with si-NC or si-FGG in the absence or
presence of coculture, a cell migration assay was conducted using
24-well Transwell plates (8.0 wm; Corning, NY, USA). The
macrophages or cancer cells (5><104, LTEPs-si-NC, LTEPs-si-
FGG) were planted into the upper chambers, while 600 pL RPMI
1640 containing 10% FBS were placed into the lower chambers.
Thereafter, the Transwell plates were incubated at 37 °C, 5% CO,
for 48 h, fixed in 4% formaldehyde for 30 min, and stained with
0.01% crystal violet. Non-migrating cells were carefully removed
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with a cotton swab, while cells that migrated to the lower chambers
were counted under a microscope.

2.19 Statistical analysis

All data analyses were conducted using the R language (version
3.5.1). The levels of immune checkpoint genes between the HR and
LR cohorts were compared using the Wilcoxon test. Uni- and
multivariate analyses were employed to screen for stand-alone
prognostic markers for LUSC survival. P < 0.05 was set as the
significance threshold.

3 Results
3.1 Identification of specific DEGs for LUSC

We analyzed DEGs between tumor and normal samples in
TCGA-LUSC and TCGA-LUAD cohorts. Overall, 2,878 DEGs
(1,466 upregulated and 1,412 downregulated) were identified in
LUSC, relative to normal samples (Figure 1A). In addition, 1,629
DEGs were identified in LUAD, among which, 714 were highly
expressed and 915 were scarcely expressed (Figure 1B). The top 100
DEGs in LUSC (Figure 1C) and LUAD (Figure 1D) are shown in the
heat maps. We further applied an online Venn diagram to identify
LUSC-specific DEGs (Figure 1E). Consequently, 1,604 specific DEGs
for LUSC were obtained, as shown in a heat map (Figure 1F).

3.2 FEA and PPI analysis of the novel
biomarkers in LUSC

To elucidate the physiological activities of these LUSC-specific
DEGs, GO and KEGG enrichment analyses were carried out. GO
terms revealed that these LUSC-specific DEGs were markedly
enriched in immune-linked biological systems such as T cell-
mediated immunity, immune response-related neutrophil
activation, neutrophil degranulation, neutrophil-based immunity,
and neutrophil activation (Figure 2A). KEGG analysis revealed that
the LUSC-specific DEGs were associated with melanogenesis,
small-cell lung cancer, the PI3K-Akt axis, viral myocarditis,
human papillomavirus infection, ECM-receptor association, the
Rapl signaling pathway, Staphylococcus aureus infection, and
glutathione metabolism (Figure 2B). PPI interaction networks
containing 1,604 nodes and 14,209 edges further revealed the
interactions between these LUSC-specific DEGs (Figure 2C). The
top 20 DEGs are displayed in a bar plot based on the quantity of
adjacent nodes (Figure 2D). The top 100 genes of connectedness
were obtained using a collateral analysis. The genes with the top 100
connectedness were single factors. Then, Cox and LASSO
regression analyses were employed for risk model construction.
WGCNA was used to analyze the hub genes’ biological behavior,
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and the correlation between alteration in hub gene expression and
clinical characteristics was confirmed via external data from the
GEPIA Database (http://gepia.cancer-pku.cn/). The results of
WGCNA and GEPIA for hub genes suggested that all hub genes
were significantly elevated in tumor tissues. Following the
adjustment of confounding factors, we developed a prognostic
profile using three genes with remarkable predictive ability.

3.3 Prognostic signature of
LUSC-specific DEGs

Based on the counts of connections, the top 100 LUSC-specific
DEGs in the PPI network were selected for further analysis. To
identify the prognostic genes in LUSC, we further employed a
univariate analysis of the 100 LUSC-specific DEGs. Eight were
associated with the prognosis of patients with LUSC (P < 0.05);
univariate Cox regression analysis results are shown in
Supplementary Table 1. FGG, C3, FGA, ORM1, JUN, and CST3
served as risk hazards (HR > 1), whereas CPSF4 and HIST1H2BH
served as a protective function (HR < 1) in LUSC (Figure 3A). LASSO
analysis was employed to improve the robustness of the eight LUSC-
specific DEGs. Eight genes carrying a P-value < 0.05 in the univariate
Cox analysis were used to construct a LASSO regression. To reduce
the feature dimension, we used the R software’s “glmnet” package, set
the parameter family as Cox, realized LASSO logistic regression,
selected strong correlation features, and obtained the two graphs
depicted in Figure 3; one is the graph of gene coefficient, and the other
is the error graph of cross-validation. As shown in Figure 3B, the
seven characteristic genes with a lambda.min of 0.0134 were FGG,
C3,FGA, JUN, CST3, CPSF4, and HISTIH2BH. The seven genes and
their corresponding coefficients were selected as the most prognostic
gene signatures in LUSC. We further calculated the RS for individual
patients with LUSC using the expression of the seven prognostic
genes and associated coefficients retrieved from the LASSO-Cox
analysis; LASSO analysis was then employed for characteristic
genes and coefficients screening, as shown in Supplementary
Table 2. Subsequently, the median of the RSs was utilized as a
standard to separate the LUSC patients into HR and LR cohorts in
both the TC and VC. The risk curve and distribution of OS status are
shown in Figure 3C. Moreover, the expression patterns of the seven
prognostic genes in the HR and LR cohorts verified the prognostic
value of the seven markers. Figure 3C consists of three parts: upper
(a), middle (b), and lower (b), all of which demonstrate that the HR
cohort exhibited an elevated survival RS. Notably, the Kaplan-Meier
analysis indicated that LR LUSC patients exhibited a markedly higher
survival probability, compared to the HR cohort (Figure 3D;
P <0.05). The results of ROC analysis further tested the TC, which
showed that this genetic profile could effectively estimate the OS of
LUSC (Figure 3E).

The VC was also tested, and the risk curve and distribution of
OS status are shown in Supplementary Figure 1. The survival and
ROC curves of VC are shown in Figures 3F, G.
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The heat map of the top 100 DEGs in LUSC. (D) The top 100 DEGs LUAD. The abscissa direction represents the DEGs, while the vertical direction
represents the samples. Colors indicate normalized differential expression; high and low expressions are shown in red and blue, respectively. (E) The
Venn diagram of 1,604 LUSC-specific DEGs calculated by subtraction of LUSC-DEGs and the cross-section of LUSC and LUAD DEGs. (F) The heat
map of LUSC-specific DEGs. The abscissa direction indicates the DEGs, while the vertical direction indicates the samples. Colors indicate normalized
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3.4 The seven-gene signature of LUSC
represents an independent stand-alone
prognostic value

To elucidate whether the prognostic gene profile was
independent of clinicopathological features such as age,
pathological stage, and TNM stage, univariate and multivariate
analyses were conducted. Univariate analysis revealed that age, as
well as pathologic, pathologic T, and pathologic M stages, were
strongly correlated with LUSC patients’ OS (Figure 4A).
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Multivariate analysis based on the above clinicopathological
characteristics further revealed that the RS was directly correlated
with OS (Figure 4B; P < 0.001). The predictive efficiency of these
clinicopathological characteristics was evaluated using ROC
analysis, and the RS was employed as a predictor stand-alone
indicator of LUSC outcome (Figure 4C). We observed marked
differences between T1 and T2 of the T stage, and N0 and N1 of the
N stage (Supplementary Figures 2, 3); however, there was no
significant difference in other periods (Supplementary Figures 4-
6). To explore the independent prognosis of risk models and
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expression. (D) The bar plot of the top 20 DEGs in LUSC-specific DEGs

clinicopathological factors, the Cox-independent prognostic
analysis of age, the T, M, and N staging, and the RS showed that
Pathologic_M and RiskScore were stand-alone prognostic
indicators for LUAD (P < 0.05). We next analyzed RSs and
various clinical features, including age, sex, tumor stage, T (size
or extent of the tumor itself), M (distant metastasis), and N (tumor
peripheral lymph node invasion and metastasis). A differential
expression heat map of the genes was drawn (Figure 4D).
Univariate and multivariate results were consistent, indicating

that the conclusions were stable and easy to interpret.

3.5 Characteristics of immune
infiltration in LUSC

Previous research has revealed a relationship between immune
cell invasion and clinical prognosis in cancers, which may be utilized
as drug targets to enhance the prognosis of patients (15, 16).
Therefore, we quantified the tumor infiltration levels of 29
immune-related gene sets in the HR and LR cohorts. Immune
checkpoint inhibitors were reported to be effective potent
therapeutic methods against various cancers (17-19); hence, we
assessed the levels of key immune checkpoint molecules in LUSC.
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The HR cohort was markedly correlated with elevated tumor
infiltration levels in LUSC (Figures 5A, B; all P-values < 0.05);
however, the tumor infiltration levels of NK cells showed no
significant differences between the HR and LR cohorts.
Importantly, the checkpoint scores between the HR and LR cohorts
were significantly different. ssGSEA was performed on the samples
from the HR and LR cohorts; we observed marked differences in the
levels of certain immune cell infiltrates between the HR and LR
cohorts. The infiltrating cells included aDCs, B cells, CD8" T cells,
DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper
cells, Tth, Thl cells, Th2 cells, TIL, and Tregs. There were also
significant differences in the levels of some immune-linked pathways
between the HR and LR cohorts, such as APC_co_inhibition,
APC_co_stimulation, CCR, Check-point, Cytolytic_activity, HLA,
Inflammation-promoting, MHC_class_I, Parainflammation,
T_cell_co-inhibition, T_cell_co-stimulation, Type_I_IFN_Reponse,
and Type_II_IFN_Reponse. Immune checkpoints refer to those
that inhibit cytotoxic T lymphocyte activation, or cytotoxicity, as
well as T lymphocyte (killer T cell) interaction. These findings suggest
that the prognostic model is related to the function of antigen-
presenting cells (APCs), cytotoxic T cells, immune checkpoints, and
major histocompatibility complex (MHC). Thus, the risk model
could also be an indicator of tumor immune response in LUSC.
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(A) The forest map of the eight risk genes (FGG, C3, FGA, CRM1, JUN, CST3, CPSF4, and HIST1H2BH) using univariate analysis. (B), (a) LASSO analysis,
where the screened characteristic gene ordinate is the gene coefficient; (b) the abscissa is the log(Lambda), and the ordinate denotes cross-
validation error. In the analysis, we identified the position with the minimum error of cross-validation. In (B), the dotted line on the left represents the
position with the minimum error of cross-validation. Based on the position (lambda.min), we determined the associated horizontal coordinate log
(Lambda) and the number of characteristic genes (shown above); we also found the optimal log(Lambda) value and the associated gene and its
coefficient in the left figure (A). (C) The risk curve and the distributions of OS status of the seven-gene TC (P <0.05). The risk score (RS) of the TC in
high- (HR) and low-risk (LR) cohorts (a), the OS status (b), and the heat map (c) are shown. The figure above (a) is consistent with the abscissa of the
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Immune checkpoint molecules for immune function are crucial
for TME and immunotherapy (20). To examine the potential
association between molecular levels and immune checkpoints,
we analyzed the expression of several key immune checkpoint
sites, including TNFRSF18, TNFRSF14, CD160, CD48, CD244,
TNESF18, TNFSF4, CD28, ICOS, PD-1 (PDCD1), CD47, BTLA,
TIGIT, CD80, CD86, TIM-3 (HAVCR2), PD-L1 (CD274), CD27,
LAG3, CD276, LGALS9, CD226, CD70, TNFSF14, CEACAM]1,
PVR, and CD40. As shown in Figure 5C, apart from TNFSF18,
TNFSF4, CD274, LAG3, and CD276, the levels of most immune
checkpoint genes were markedly different between the HR and LR
cohorts (Figure 5; all P-values < 0.05).

3.6 Cancer stem cell characteristics
of the risk model

Cancer stem cells serve essential functions in tumor survival,
metastasis, proliferation, and recurrence, owing to their self-renewal
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ability and production of heterogeneous tumor cells (21). MRNAsi
reflects the gene expression characteristics of stem cells. We used
mRNAsi as the stemness index to investigate the similarities
between cancer and stem cells. The index ranged from 0 to 1; the
value of mRNAsi close to 1 indicated enhanced stem cell features of
the tumor cells. Thus, the mRNAsi and EREG-mRNAsi of LUSC
samples were further computed using the OCLR algorithm and
then compared between the HR and LR cohorts. Figures 6A, B)
shows significant differences in the mRNAsi and EREG-mRNAsi
between the two cohorts (P < 0.05).

3.7 Establishment of a ceRNA
network for LUSC

LncRNAs and circRNAs are generally perceived as competing
endogenous RNAs (ceRNAs) that bind to miRNAs. ceRNA analysis
refers to the analysis of the entire ceRNA regulatory network;
usually circRNA-miRNA-mRNA analysis or IncRNA-miRNA-
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mRNA analysis is perceived as the core of the ceRNA regulatory
network. With competitive binding of ceRNAs, such as IncRNA or
circRNA with miRNA, the transcription level of the genes regulated
by miRNAs will increase. To further elucidate the potential
regulatory mechanism of these seven prognostic DEGs in LUSC
prognosis, we generated a ceRNA network using the DE-IncRNAs
and prognostic DEGs. The target miRNAs of DE-IncRNAs were
predicted using the miRcode database, and the target miRNAs of
prognostic DEGs were predicted using the miRanda database. A
ceRNA network containing 19 IncRNAs, 50 miRNAs, and 7
prognostic DEGs demonstrated the molecular mechanism of
LUSC-specific DEGs in LUSC prognosis (Figure 7).

3.8 FGG and Clinical Parameters in
patients with LUSC

The prognostic values of FGG, C3, FGA, JUN, CST3, CPSF4, and
HIST1IH2BH?7 genes in LUSC in the TCGA database suggest that
they may play a role as key risk factors in tumors (Supplementary
Figure 7). The expressions of seven prognostic genes in human LUSC
cell lines NCI-H520 and LTEP-s were detected using q-PCR; FGG
was significantly highly expressed in both LUSC cell lines
(Supplementary Figure 8). We also examined the expression of
FGG in surgically collected, paired, LUSC samples, and adjacent
normal tissues from 6 patients. Remarkably, all LUSC specimens had
markedly increased FGG protein levels compared with matched
adjacent normal tissues (Figure 8). Our clinical observations reveal
that FGG is significantly hyper-expressive in LUSC patient samples,
further demonstrating the clinical value of FGG in LUSC.
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3.9 FGG correlates with tumor
progression, immune infiltration,
and stem index in LUSC

Immunofluorescence showed that FGG was expressed in the
nucleus of LUSC (Figures 9A, B). To demonstrate the biological
function of FGG in LUSC cells, NCI-H520 (Figures 9C, E) and
LTEP-s cell lines (Figures 9D, G) with FGG knockdown were
successfully constructed.

Our results suggest that FGG can affect the tumor process of LUSC
cells, as shown by the proliferation (Figures 9F, H), cloning (Figures 91,
]), invasion (Figures 9K, L), and migration (Figures 9M, N) of NCI-
H520 and LTEP-s being significantly inhibited following FGG
knockdown. In addition, the result of western blot showed that the
expression of E-cadherin was increased while that of N-cadherin and
VIMENTIN were decreased following FGG knockdown, which also
corresponded to the inhibition of migration and invasion (Figures 90,
P). Subsequently, we evaluated the scores of 22 kinds of tumor immune
cell infiltration in LUSC patients according to the expression of FGG
and found that FGG was significantly correlated with 10 kinds of
immune cell infiltration, including M1 macrophages (Figures 10A, B).
In vitro Transwell experiments showed that the ability of NCI-H520
(Figure 10C) and LTEP-s cell lines (Figure 10D) with low FGG to
recruit M1 mononuclear macrophages was significantly down-
regulated. After FGG knockdown, KLF4, Nanog, CD44, and SOX2
in NCI-H520 cells were significantly decreased, while CD133 showed
no significant changes (Figures 10E, F). After FGG knockdown, KLF4,
Nanog, CD44, and SOX2 in NCI-H520 cells were significantly
decreased, while CD133 showed no significant changes (Figure 10E).
After FGG downregulation, the expressions of CD44 and CD133 in
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FIGURE 5

(A) Box plot of immune infiltrating cells in the high- (HR) and low-risk (LR) cohorts. The HR cohort was strongly associated with elevated tumor
infiltration levels in LUSC (P < 0.05). (B) Box plot of tumor infiltrated pathway. (C) Box plot of immunoassay sites in the HR and LR cohorts. The levels
of the remaining immune checkpoint genes were markedly different between the HR and LR cohorts (P-values < 0.05); ns, not significant. (*P<0.05,

**P<0.01, ***P<0.001, ****P<0.0001).

LTEP-s cells were significantly decreased, while no significant changes
in KLF4, Nanog, and SOX2 were observed (Figure 10F). These results
indicate that FGG affected the tumor progression, immune infiltration,
and stem index of LUSC cells.

4 Discussion

LUSC is a subtype of NSCLC and accounts for nearly 40% of all
lung cancers. Early detection and the prognostic assessment of
LUSC remain challenging, hence the poor 5-year survival rate of
patients (22). Recent studies have improved the prognosis
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prediction for LUSC patients, focusing on biomarkers. For
example, Shi et al. investigated DNA methylation profiling and
proposed potential diagnostic biomarkers for LUSC (23). Chen
et al. investigated the roles of IRGs in the deterioration of lung
cancer and indicated the distinction between LUAD and LUSC
from the perspective of the immune response (24). Liao et al.
identified biomarkers with cancer stem cell characteristics in LUSC
(14). To date, the prognostic gene signatures for prognostic
prediction of LUSC are scarce and warrant further investigations.
Several studies have proposed prognostic markers for survival
prediction in patients with LUSC. Zhang et al. suggested that
IRGPI could be used as a prognostic marker (25), while Li et al.
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constructed an mRNA signature to predict the outcomes of patients
with LUSC (26). Liu et al. have identified an miRNA signature with
potential clinical implications in the outcome prediction of LUSC
(27). Indeed, several IncRNAs, such as VPS9D1-AS1 and MALAT-
1, are correlated with the survival of LUSC patients (28, 29). Huang
et al. reported a nine-long non-coding RNA signature for prognosis
prediction of patients with LUSC (7). However, no prognostic
indicators of LUSC have been established based on tumor
progression, immune infiltration, and stem index analysis.

Recent studies have found that LUSC differs from LUAD in
terms of genomic, epigenetic, CSC stemness, and TME
characteristics. According to previous research, CSCs may lead to

cancer recurrence and drug resistance (30, 31). The TME is a
mutually adaptive environment in which tumor cells escape
immunological surveillance. Tumor progression involves crosstalk
between CSCs and the TME (32, 33), such as the induction of CSCs
in EMT (34) and the interaction of angiogenesis and components of
the TME (35). Herein, we adopted a comprehensive perspective of
cancer biology based on tumor progression, TME, and CSC index
for a better understanding of LUSC as an independent NSCLC from
different dimensions. We recognized the importance of the
particularly expressed genes in LUSC based on the TCGA
database and DEGs in HR and LR cohorts; from this, we
recognized the functions of independent genes as potential

oz s
hsalmiR 2123
hsa-miR-76 1 ‘hsa-miR-4295
hsa-miR-27a-3p hsa-miR-146b-5p
heamiR-507 hsa:miR10a-5p
HLAGEED s hsa-miR-1352-5p hsa-miR-4500 MiREZHG
hsa-miR-455-5p hsa-miR=3619-5p
hsamR-1244 hsalmiR-128-5p
hsEMRATSp hsalmiR4903p
hsalmiR-363.3p hs&miR245p
- W.|
hsa-miR-216b-5p A hsa:miR-126-3p
hsamiR4319 heamiR613
hsa-miR-508-3p ' hsa-miR-429
SNHGT hsa-miR-301b-3p ; hsalmiR-20b-5p SHANK3
hsalmiR-876-3p : hsalmiR-142-3p
hsa-miR-4735-3p A hsa-miR-4782-3p
hsalmiR 139 5p ‘ hsamiR4262
heamiR-184 hsalmiR-33a3p
hsaMR-3666 hsa miR448¢.5p
hsa-miR-125a-5p hea-miR-206
hsamiR 22:3p hsa-miRA07 =
Pa@BiERs2 hsa-miR-4458 hsa:miR-590-5p
hsa-miR-518a-3p hsa-miR-23b-3p
hsa-miR-193a-3p hsa TR-125b-5p
B s hsalfmiR425-5p A mRNA
hsa-miR5617 ;
hsa:miR4770"saiMIR-140-5p RNA
S SRS
@ Rha

@

FIGURE 7

ceRNA network. Rectangles, ellipses, and triangles represent the miRNAs, IncRNAs, and mRNAs of the risk model genes, respectively

Frontiers in Immunology

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1236444
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

10.3389/fimmu.2023.1236444

FIGURE 8

Representative images from immunohistochemical staining of FGG in lung cancers (

predictors of tumor invasion, metastasis, tumor stem cell
characteristics, and immune cell infiltration. Seven prognostic
genes were varied in LUSC and were associated with the TNM
stage and prognosis; these genes were FGG, C3, FGA, JUN, CST3,
CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were
associated with poor outcomes in LUSC patients, whereas CPSF4
and HIST1H2BH served as positive prognostic markers in
LUSC patients.

In terms of clinicopathological features, the seven-gene
biomarkers showed differences in tumor metastasis and invasion,
and the significant differences between T1 and T2 of the T stage and
NO and N1 of the N stage suggested that the modification occurred
during the early stage of tumor disease; however, the factors of
dabbling were limited, such as the lack of the status of smoking
status, driver factors, ORR of the various chemotherapy, and
immune checkpoint blockade subgroups. Kaplan-Meier analysis
showed that LUSC patients in the LR group exhibited significantly
higher OS than those in the HR group, while ROC curve analysis
results showed that this gene profile could effectively predict the OS
of LUSC. Subsequently, our independent prognostic value analysis
showed that protective genes were highly expressed in the low-risk
group, while the risk genes were highly expressed in the high-risk
group, indicating stable results. Moreover, the ROC curve showed
that RS could be used as an independent prognostic factor
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n = 6) and normal tissues (n

= 6). Scale bars: 100 um and 50 um.

effectively predicting LUSC outcomes. We also analyzed the
relationships between HR and LR cohorts, immunoinfiltrating
cells, and immune pathways, and showed that HR patients
exhibited significantly elevated levels of tumor cell immune
infiltration and that the molecular expression of immune
checkpoint genes significantly differed between HR and LR patients.
Next, we analyzed the stem cell characteristics of the model and
showed that mRNA was associated with prognosis and relevance;
significant differences were noted in mRNAsi and EREG-mRNAsi
between HR and LR patients, providing new insights into the
clinical features, immune response, and TME of tumors based on
the dry index. Finally, we constructed a ceRNA network containing
19 IncRNAs, 50 miRNAs, and 7 prognostic DEGs, demonstrating
the prognostic value of novel biomarkers for Lusc-specific DEGs.
The prediction of the risk prognostic model constructed can
potentially provide more reliable theoretical support for clinical
application. However, bioinformatics is only a short practical
perspective to this goal; therefore, we conducted specific
molecular studies on prognostic genes. Based on the risk model
constructed above, combined with RT-qPCR assay and survival
analysis of the TCGA database, we screened LUSC-specific
prognostic genes and found that FGG was closely correlated with
LUSC results in univariate Cox analysis (P=0.000427708), and
mRNA levels of FGG were stably expressed in NCI-H520 and
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H520 and (P) LTEP-s cells. The significant differences were analyzed using
****P<(0.0001).

LTEP-s cells and significantly up-regulated compared with normal
airway epithelial cells. Therefore, their roles in tumor progression,
immunoinfiltration, and dry characteristics were further analyzed.

FGG is the y-chain of fibrinogen, a large, complex glycoprotein
with a total molecular mass of approximately 340 kDa, comprising
three pairs of polypeptide chains: Ao (encoded by the FGA gene), Bf3
(FGB), and v (36). FGG has a conserved globular domain, YC, at the
COOH terminus, which is a major integrin binding site for
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GraphPad Prism t-test, n=3 (*P<0.05, **P<0.01, ***P<0.001,

fibrinogen. Yokoyama et al. found that the C-terminal region of
FGG, as the primary integrin binding site of fibrinogen, participated
in the process of thrombosis, angiogenesis, and inflammation (37,
38). Nobuaki Akakura et al. found that isolated YC and its mutant
YC399tr induce endothelial cell apoptosis, and recombinant soluble
yC399tr inhibited tumor growth, intratumoral vascular
development, and metastasis in vivo (39). Previous studies have
shown that fibrinogenemia, as a prognostic factor (40-42), is often
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(A) Pearson'’s correlation coefficient of FGG with 22 immune cell infiltration scores in LUSC was calculated using the corr.test function of the R
package psych (version 2.1.6), and 10 significantly correlated immune infiltration scores, including macrophages, were identified, (B) for further
individual correlations plotted for FGG with MO, M1, and M2 macrophages, respectively (p=0.04, r=0.09, p=1.1e-03, r=0.15, p=0.07, r=0.09).
Tranwell shows the infiltration of THP-1of (C) NCI-H520 cells and (D) LTEP-s cells. Western blotting assay showing the expression of stemness
marker genes SOX2, Nanog, CD133, CD44, KLF4 following FGG knockdown in (E) NCI-H520 and (F) LTEP-s cells. "ns" No Significant.

observed in patients with malignant tumors and is closely related to
tumor invasion, metastasis (43-45), angiogenesis (46), and tumor
growth processes (47); further, its degradation products with
carcinogenesis have been reported in tumors (41). However,
Nagata et al. found that frameshift mutations in FGG led to
hypofibrinemia, indicating that FGG was involved in the
regulation of fibrinogen secretion (48). In addition, FGG inhibits
platelet adhesion to fibrinogen by interacting with hepatitis B
splicing protein (49). Dysregulation of FGG has also been reported
in many malignant tumor types, such as liver cancer (50), stomach
cancer (40), and prostate cancer (51), underscoring its potential
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relevance as a tumor marker. FGG is an important adverse
prognostic factor for gastric cancer (35). Another study showed
that serum FGG levels predicted the progression of prostate cancer
(51). Additionally, FGG is thought to distinguish cancer from
normal sera as a potential tumor marker in pancreatic cancer (52).
Additional data show the possibility of urine FGG levels as a
potential diagnostic marker for NSCLC (53). These findings
suggest that FGG could hold diagnostic, prognostic, and
therapeutic implications in cancer.

Our bioinformatics modeling demonstrated that FGG as a risk
prognosticator is of significant research value in LUSC, and the
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results of subsequent in vitro experiments are consistent with
reports of abnormal expression of FGG mRNA in various
cancers. Knockdown of FGG caused functional changes in LUSC
tumor progression at the tumor cell level, significantly inhibited the
proliferation and clonogenesis ability of NCI-H520 and LTEP-s
cells, and blocked the cell cycle in the S phase (Supplementary
Figure 9). It also inhibited the invasion and migration ability of
tumor cells, by reducing the EMT process and promoting the early
apoptosis of tumor cells. In terms of dry characteristics, FGG down-
regulation decreased the expressions of KLF4, Nanog, CD44, and
SOX2 in NCI-H520 cells, and the expressions of CD44, Nanog, and
CD133 in LTEP-s cells. In terms of immune cell infiltration, the
expression of FGG in LUSC tissues was significantly correlated with
MO0 and M1 type macrophages, while knockdown of FGG in LUSC
cells significantly affected the degree of immune infiltration of M1
type macrophages (Supplementary Figure 10) formed by
polarization of THP-1 cells, suggesting that FGG plays a specific
role in the immune infiltration of LUSC.

In summary, our study successfully constructed a LUSC-specific
DEGs based risk and prognosis model and verified the reliability of
the risk model from the data model. According to the prognostic
risk factors, including tumor invasion, metastasis, survival, immune
infiltration, and tumor stem cell-related genes, DEGs in LUSC were
used to determine associations between functional genes and tumor
progression, immune invasion, and dry index. However, this
prognostic model has some limitations, such as the relatively
simple database and limited factors analyzed (such as lack of
smoking status, drivers, ORRs of various chemotherapy
treatments, and subsets of immune checkpoint blocking).
Subsequently, in vitro studies of the LUSC-specific prognostic
marker FGG will provide deeper insights into LUSC. As a risk
factor in this prognostic model, FGG significantly inhibited the
progression of LUSC tumor cells after knockdown and reduced the
expression of dry marker genes and the infiltration level of M1 type
macrophages, suggesting that FGG is a potential biomarker for
independent poor prognosis of LUSC to identify LUSC patients
with poor clinical outcomes and that it may play specific roles in dry
maintenance and immune infiltration. However, the specific
mechanism underlying the changes in tumor progression
warrants further study.

5 Conclusion

This study established a seven-gene profile (FGG, C3, FGA,
JUN, CST3, CPSF4, and HIST1H2BH) prognostic stratification
system demonstrated in LUSC based on Tumor Progression,
Immune Infiltration, and Stem Index. In vitro experiments
confirmed that DEGs FGG could be independent prognostic
biomarkers of LUSC promoting cell proliferation, migration,
invasion, THP-1 cell infiltration, and stem cell maintenance.
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Introduction: Immune-checkpoint inhibitors (ICls) have emerged as a core pillar
of cancer therapy as single agents or in combination regimens both in adults and
children. Unfortunately, ICls provide a long-lasting therapeutic effect in only one
third of the patients. Thus, the search for predictive biomarkers of responsiveness
to ICls remains an urgent clinical need. The efficacy of ICls treatments is strongly
affected not only by the specific characteristics of cancer cells and the levels of
immune checkpoint ligands, but also by other components of the tumor
microenvironment, among which the extracellular matrix (ECM) is emerging as
key player. With the aim to comprehensively describe the relation between ECM
and ICIs" efficacy in cancer patients, the present review systematically evaluated
the current literature regarding ECM remodeling in association with
immunotherapeutic approaches.

Methods: This review followed the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines and was registered at the
International Prospective Register of Systematic Reviews (PROSPERO,
CRD42022351180). PubMed, Web of Science, and Scopus databases were
comprehensively searched from inception to January 2023. Titles, abstracts
and full text screening was performed to exclude non eligible articles. The risk of
bias was assessed using the QUADAS-2 tool.

Results: After employing relevant MeSH and key terms, we identified a total of
5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries
were found and excluded. Following title and abstract screening, the full text was
analyzed, and 47 studies meeting the eligibility criteria were retained. The studies
included in this systematic review comprehensively recapitulate the latest
observations associating changes of the ECM composition following
remodeling with the traits of the tumor immune cell infiltration. The present
study provides for the first time a broad view of the tight association between
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ECM molecules and ICls efficacy in different tumor types, highlighting the
importance of ECM-derived proteolytic products as promising liquid biopsy-
based biomarkers to predict the efficacy of ICls.

Conclusion: ECM remodeling has an important impact on the immune traits of
different tumor types. Increasing evidence pinpoint at ECM-derived molecules as
putative biomarkers to identify the patients that would most likely benefit from
ICls treatments.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022351180, identifier CRD42022351180.

KEYWORDS

extracellular matrix, cancer, immune checkpoint inhibitors, pediatric cancer,
gynecological cancer, gastrointestinal cancer, melanoma, breast cancer

1 Introduction

The development of immunotherapy represents a revolution in
the treatment of cancer and the use of immune checkpoint inhibitors
(ICIs) exerts a prominent anti-tumor activity in a broad range of
tumor types. Nearly half of all patients with metastatic cancer are
eligible to receive ICIs, with an increasing use of these agents seen in
several (neo)adjuvant and maintenance settings (1-3). ICIs are often
used in combination regimens, including those involving other
classes of ICI, chemotherapy, anti-angiogenic and/or targeted
therapies (4). Nonetheless, despite a portion of patients display
remarkable and long-lasting disease regression in response to IClIs,
two thirds of the patients do not benefit from these therapies (5). This
is partially due to the occurrence of primary or acquired resistance,
but also to the toxicity deriving from ICs blockade, that can be severe
and even life-threatening. For these reasons, it is crucial to identify the
patients that could benefit of ICIs and the search for predictive
biomarkers of responsiveness to ICIs remains an active area of
research and an urgent clinical need.

Immune checkpoint (IC) pathways are physiologic mechanisms
aimed at attenuating T cell responses to prevent autoimmunity and
maintain immune homeostasis. Tumors can viciously take advantage
of the immune-inhibitory pathways to limit the extent of T cell
activation and maintain immune tolerance. Indeed, ICs and their
ligands are frequently upregulated in the tumor microenvironment
(TME) of various cancer types, thus hindering the anti-tumor
immune responses (1). Hence, with the aim to revitalize the anti-
tumor immune response, ICIs have been developed as promising
therapeutic agents. Most of the ICIs target the cytotoxic-T-
lymphocyte-associated protein 4 (CTLA-4 or CDI152), the
programmed cell death 1 (PD-1 or CD279) or its ligand
programmed cell death ligand 1 (PD-L1 or CD274 or B7 homolog
1) (1). Many drugs inhibiting these two checkpoint axes, i.e.
ipilimumab for CTLA4, nivolumab and pembrolizumab for PD-1
and atezolizumab, avelumab, and durvalumab for PD-L1, have shown
clinical activity and are currently used in the clinical practice (4). In the
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last few years, other checkpoint molecules have been identified and an
increasing number of immunotherapies is under clinical development
(e.g., blockade of LAG3, CD276, TIGIT and TIM3) (4, 6).

It is now well established that the efficacy of ICIs in cancer
treatment is strongly affected not only by the specific characteristics
of cancer cells and the expression levels of the immune checkpoint
ligands, but also by other components of the TME. Indeed, the
response to ICIs highly relies on the innate immune TME
constituents, e.g. macrophages and natural killer cells (NK), on
the tumor hypoxic levels, as well as on the efficiency of tumor-
associated vasculature (7). A key cell type that strongly shapes the
TME are cancer associate fibroblasts (CAFs), that represent the
most abundant stromal cells within the tumor. CAFs exert multiple
functions as modulating tumor angiogenesis and metabolism,
secreting growth factors and immunomodulatory cytokines and
driving the remodeling of the extracellular matrix (ECM). The
tumor-associated ECM displays peculiar features, such as an altered
composition and stiffness, and it has been shown to educate all the
cells of the TME leading to the establishment of a pro-tumoral
environment. Importantly, as detailed in the present systematic
review, emerging evidence are pointing at the ECM as key
constituent of the TME actively modulating the efficacy of ICIs.

The ECM is a complex network of molecules which, thanks to
its mechanical as well as biochemical properties, strongly impacts
on all the cellular TME components, thus affecting tissue
homeostasis (8, 9). The ECM is composed of fibrillar proteins
(such as collagens, laminins, fibronectin, elastin), proteoglycans
and several glycoproteins. For their structural features, the ECM
components can interact with a variety of proteins, receptors and
soluble factors, influencing the behavior of tumor cells, as well as
other tumor-associated cell types such as infiltrating immune cells,
stromal cells, blood vascular and lymphatic endothelial cells and
pericytes (10-15). As a consequence, the ECM profoundly
influences important processes driving tumor growth and
progression, such as epithelial-mesenchymal transition (EMT),
immune response, angiogenesis and lymphangiogenesis (16-19).
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Contrary to what previously thought, the ECM is not a mere
static TME component, rather it undergoes continuous dynamic
remodeling as well (20, 21). ECM remodeling is mainly due to three
mechanisms: 1) altered expression of the components, as reported for
collagens and Tenascin-C (22); 2) increased activity of lysis oxidase
(LOX) enzymes, which leads to the formation of intermolecular
cross-links between collagen I fibers themselves as well as with
other molecules such as collagen III and IV and fibronectin (FN),
thus resulting in increased tissue stiffness; 3) high protein degradation
due to the activation of proteases, among which metalloproteases
(MMPs) and ADAMs are the major players (23). These processes are
exacerbated in the TME, leading to the formation of an abnormal
ECM which utterly differs for composition and rigidity from the
healthy tissues (8). Interestingly, a mounting amount of evidence
indicate that the extent of ECM remodeling and its mechanical
features strongly impact on the tumor immune response (24-26).

In the light of these findings, some ECM molecules, as well as
fragments deriving from their proteolytic remodeling, are emerging
as putative biomarkers to delineate the immune traits of the tumors,
as well as the efficacy of immunotherapies. The aim of this
systematic review is to identify and summarize all the published
human research studies in this context. In particular, we aim to
address the following questions: Can ECM remodeling regulate the
tumor immune response? Is the ECM composition impacting on
the efficacy of immune checkpoint inhibitors? Can ECM molecules/
fragments represent a valuable biomarker to predict the outcome of
cancer patients treated with immune checkpoint inhibitors?

2 Methods
2.1 Protocol and registration

The systematic review was designed based on the Preferred
Reporting Ideas for Systematic Review and Meta-analyses [PRISMA
(27)] systematic review checklist and was registered on PROSPERO, (ID:
CRD42022351180, review protocol link: https://www.crd.york.ac.uk/
PROSPERO/display_record.php?RecordID=351180).

2.2 Search strategy—eligibility criteria,
information sources and search terms

Original research articles written in English and published
before 20 January 2023 were eligible for inclusion. We included
studies reporting any relation between ECM molecules and the
immune traits of the tumors, as well as the response to immune
checkpoint inhibition. We included studies regarding patients
diagnosed with cancer, regardless of the cancer type, disease
staging and PD-L1 expression status. Our inclusion criteria did
not involve any age restrictions, since we wished to comprise both
young and older patients. Articles not published in English, whose
full text was not available, letters to the editor, case reports, and
poster presentations were excluded.

To ensure a comprehensive retrieval of all the studies relative to
ECM and ICIs efficacy, we chose to exploit three relevant and
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reliable databases: PubMed (MEDLINE), Scopus and Web of
Science. The combination of mesh terms searched in the
databases were “extracellular matrix molecules” or “extracellular
matrix remodeling” and “immune checkpoint inhibitors” or
“immunotherapy”. Searches have also been performed using the
names of the specific immune checkpoint inhibitors (Nivolumab,
Pembrolizumab, Atezolizumab, Avelamab, Durvalumab,
Ipilimumab, and Tremelimumab) and some specific
ECM molecules (i.e. fibronectin, collagen, Emilin, tenascin-
C, proteoglycans).

2.3 Study selection and data extraction

Duplicate articles were removed from the results of the
literature search. Two independent authors screened the titles and
abstracts of the remaining articles to ensure that the eligibility
criteria were met. Any discrepancies between the authors were
identified and discussed (with inputs from a third author if
required). The remaining included articles assessed by full-text
screening by two independent authors, using the same
eligibility criteria.

2.4 Critical appraisal

Study quality and risk of bias were assessed by using the
QUADAS-2 tool. The risk of bias in the studies was categorized
based on the “yes” scores in the QUADAS-2 checklist. In particular,
papers with all “yes” or maximum one “unclear or no” responses
were classified as low risk. Instead, if two or more responses on the
checklist were “unclear” or “no”, papers were attributed as unclear
or high risk, respectively. If two or more responses were “unclear”
and at least one response as “no” the paper was attributed as high
risk. Finally, we considered the last question of the QUADAS-2
checklist (“Were all patients included in the analysis?”) as an
important key factor for the evaluation of the study quality,
therefore papers in which the response was “no” were classified as
high risk papers.

3 Results
3.1 Literature selection

The systematic search identified a total of 5,070 articles: 1,501
articles were available in PubMed, 2,491 studies in Scopus, and
1,078 in Web of Science. Among those, 2540 were duplicates and
1521 articles were excluded since the publication type did not meet
the eligibility criteria (reviews, non-English articles, editorials/
commentaries, book chapters, conference abstracts). Two
independent authors screened a total of 1,009 articles for their
relevance in the topic by assessing the title, abstract or full-text.
Among the 1,009 articles, 971 studies were excluded since unrelated
to ECMs, relative to immunotherapy employed to treat other
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FIGURE 1

PRISMA flow diagram of the studies’ screening and selection

diseases, and in vitro/in vivo only studies. During the screening
process, nine articles not identified by the database searches but
relevant for the present review were added manually to the list. As a
result, 47 articles were included and analyzed in this systematic
review (Figure 1). These studies provide a clear overview of the
importance of the tumor associated ECM in determining an
immunosuppressive environment within the lesions. Moreover,
they highlight the association between increased ECM stiffness
and remodeling processes with the response to ICIs in different
tumor types, further strengthening the value of ECM-derived
molecules as predictive biomarkers. A summary of the main
findings of each of the 47 retained studies is provided in the
following sections and in Tables 1, 2.

The qualitative analysis of the selected papers indicated that
three points were mainly exposed to considerable bias: the design of
case-control studies, the definition of a threshold and the inclusion
of all the patients in the analysis. Anyway, the overall risk of bias of
the included studies assessed by QUADAS-2 was low for 62% of the
papers, unclear for 23% and high for 17% (Figure 2).

The literature search spanned from inception to 2023, however
most of the papers included in the present systematic review dated
from the last five years. All tumor types in adult as well as in
pediatric patients were included in the search, however none of
these papers dealt with pediatric cancer. Among the tumor types,
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the majority of the papers were related to melanoma (7/47, 14.9%),
breast cancer (BC) (6/47, 12.8%), colorectal cancer (CRC) (5/47,
10.6%) and hepatocellular carcinoma (HCC) (4/47, 8.5%). Half of
the identified studies were carried out exploiting the patients’
cohorts available to the research teams, whereas the other half
was exclusively based on bioinformatic analyses.

3.2 ECM remodeling as a driver of the
tumor immune environment

The ECM undergoes radical remodeling during tumor growth
and progression, thereby replacing normal ECM with tumor-
associated ECM (9, 75, 76). Several studies report a significant
association between the altered ECM composition and the patient
outcome in various cancer types, however the mechanisms
underlying these changes remain elusive (10, 14, 23, 77-82). Most
of these studies are focused on the effect of ECM alterations in
modulating cancer cell behavior, whereas less attention has been
given to their possible immunomodulatory roles. However, as
described in the following paragraphs, the prominent role of
some ECM components in affecting the immune cell infiltration
and activity has been recently well documented.

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1270981
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fejza et al. 10.3389/fimmu.2023.1270981
[ Low Risk [_] Unclear [ ] High Risk ~ NA
Overall risk of bias —| 28 | S | 11 |
Was a consecutive or random
sample of patients enrolled? ]| 46 |l|
Was a case-control design avoided? _| 41 | 6 |
Were the index test results interpreted without
knowledge of the results of the reference standard? | 33 | 14 |
Did the study avoid inappropriate exclusions? — 43 | 4 |
If a threshold was used, was it pre-specified? — “ 27
Is the reference standard likely to 46 |
correctly classify the target condition? | | |
Were the reference standard results interpreted 45 2|
without knowledge of the results of the index test? |
‘Was there an appropriate interval | 47 |
between index test and reference standard?
Did all patients receive the same reference standard? — 47 |
Were all patients included in the analysis? — 31 | 4 | 12 |
T [ I [ 1
10 20 30 40 50
Nr of papers
FIGURE 2

Risk of bias summary of the included papers, based on QUADAS-2 tool. NA, not applicable.

3.2.1 Altered expression of ECM components
associating with the immune cell infiltration
and IC expression

3.2.1.1 Collagens

Among the ECM components that have been associated with
the traits of the tumor immune microenvironment, collagens are
the most represented (Tables 1, 2).

The association between collagen deposition and the infiltration
of immune cells has been well described in different cancer types. In
triple negative breast cancer, high Thl infiltration has been related
to low collagen I content, whereas high Th2 and regulatory T cells
(Treg) infiltration has been observed in collagen-rich lesions (38).
Similar results were obtained by Yaegashi et al. in non-small cell
lung carcinoma (NSCLC) (39). Yaegashi and colleagues identified
three types of ECM barriers in NSCLC: the first represented by a
low deposition of collagen V, the second showing an increase of
collagen III and collagen I, and the third characterized by a high
amount of collagen I fibers perpendicularly aligned to the tumor
border. The diverse barriers were shown to be differentially
permissive to immune cell infiltrates, with high density collagen
V negatively correlating with NK infiltration and collagen I and III
associating with decreased Treg infiltration (Yaegashi et al., 2021).
A broad bioinformatic analysis showed that the collagen V gene
(COL5AL1) was overexpressed in a variety of tumor types including
lung, breast, colorectal and gastric cancers, melanoma, liver
hepatocellular carcinoma and prostate adenocarcinoma (34). The
authors evidenced that COL5A1 expression increases during tumor
progression, and it correlates with poor patient’s outcome in some
types of cancer. Importantly, COL5A1 levels significantly correlated
with the presence of a plethora of different B and T cell
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subpopulations. Interestingly, heterogeneity was observed among
the different cancer types, allowing to conclude that the effect of
COL5AL1 expression is strongly dependent on the specific TME.

In other studies, some interesting associations between ECM
molecules and immune checkpoints molecules have been
highlighted. This is the case for renal cell carcinoma, in which the
presence of COL6A1 perfectly correlates with PD-1 staining (35).
Comparable results have been obtained in PDAC, in which
COL6A3, SPARC and fibrillinl (FBN1) have been correlated not
only with the presence of six different immune cell types (CD4" T
cells, CD8" T cells, B cells, neutrophils, macrophages, and dendritic
cells), but also with the expression level of the checkpoint molecules
CTL4, PD-1, PD-L1 and PD-L2 (36). Similarly, in pancreatic
adenocarcinoma (PAAD) the presence of CD8" T cells, M1 and
M2 macrophages, Tregs and dendritic cells has been associated with
COLI10A1 expression, which seems to exert an immunosuppressive
function within the TME (33). Indeed, COL10A1 also positively
correlated with PD-L1 and CTLA-4, as well as with the newly
identified immune checkpoints CD73 (83) and the human
leukocyte antigen (HLA)-E (84). Possibly due to its involvement
in the immune escape, COLI10A1 associates with a poor PAAD
patient prognosis (33).

Opverall, this evidence has the potential to open the road towards
the development of new predictive markers and novel strategies for
targeted immunotherapy. In line with this hypothesis, the increased
expression of COL1A2, together with other ECM-related molecules
such as metalloprotease-2 (MMP2) and procollagen C-
endopeptidase enhancer (PCOLCE), were shown to correlate with
the survival of patients with advanced melanoma treated with
neoadjuvant immunotherapy combining high-dose interferon -
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TABLE 1 Characteristic and main findings of the included papers that show an association between ECM remodeling and tumor immune traits.

Ref Molecule Tumor Year Enrolled Queried Databases Association with immune traits
type Patient

(28) ABI3BP LUAD 2023 / TIMER, GEPIA, TCGA, HPA correlation with B and CD4" T memory cells, Tregs, B cells, T
(n=504) cells, CD4" T, DC activation, and Ecs

(29) ADAMI12 CRC 2021 / Oncomine, UALCAN, TCGA, correlation with CD4" T, B, CD8" T cells, neutrophils,

GEPIA, TIMER, TISIDB (n=86733) macrophages, DC
(30) ADAMs PAAD 2020 / TCGA (n=18313) positive correlation with DC, B cells, neutrophils, CD8" T cells,
macrophages
(31) BGN TNBC 2022 / TCGA, GEO (n=116) negative correlation with CD8 * T cells
(32) GC 2022 / TCGA, GTEx (n=407) positive correlation with NK cells and macrophages; negative

correlation with Th17 cells

(33) COL10A1 PAAD 2022 / TCGA, GEO, GEPIA (n=182) positive association with CD8" T cells, M1 and M2 Mac;
positive correlation with PD-L1, CTLA-4, CD73, HLA-E

(34) COL5A1 pan- 2022 / Oncomine, TCGA, CCLE, HPA, association with naive B cells, memory B cells, monocytes,
cancer DNMIVD,cBioPortal macrophages, CD8" and CD4" T cells
(35) COL6A1 RCC 2020 161 / association with PD-L1 expression
(36) COL6A3 PDAC 2020 / TCGA, GEO (n=30) association with CD4" and CD8" T, B cells, neutrophils, Mac
and CD; association with CTLA-4, PD-1, PD-L1, PD-L2
(37) Collagen BC 2021 / TCGA, GEO negative correlation with anti-tumor T cells
alignment
(38) Collagen T BC 2022 30 TCGA, GEO (n=1161) positive association with Th1 and Tregs, negative association
with Thl
(39) Collagen I, NSCLC 2021 120 / negative association of Coll I and III with Tregs and of Coll V
I, vV with NK
(40) Collagen, BCC 2022 22 / association with TILs counts
Elastin
(41) CTHRC1 CRC 2022 / TCGA, GEO (n=242) correlation with TAMs, M2 macrophages, Tregs, T cell
exhaustion, and MDSCs
(42) GC 2022 / TCGA, GEO, GSA (n=375) correlation with M2 Mac, NK cells, Th1 cells and DC
(43) EMILIN2 CRC 2022 23 TCGA (n=844) negative association with M2 Mac; positive association with M1
Mac
(44) LLG 2021 97 CGGA, TCGA (n=1018) positive correlation with B cells, CD8" T and CD4" T cells,

DC, Mac and neutrophils

(45) CCC 2022 / TCGA, UCSC Xena (n=531) positive correlation with CTLA-2, PD-1, LAG3, and TIGIT

(46) LOXL3 HCC 2021 / TCGA, TIMER, GTEx (n=52) positive correlation with CD4" T and CD8" T cells, B cells,
DC, neutrophils, Mac, B cells

(47) LOXL4 HCC 2021 90 / association with PD-L1 expression

(48) MMP1 HCC 2022 / TCGA, TIMER, GEO (n=11104) association with activated DC, Mac, CD4" T cells and MDSC

(49) MMP9 pan- 2022 / TCGA, GTEx (n=33) positively correlates with T cells, macrophages, Thl cells, and T
cancer cell exhaustion

(50) PCOLCE BC 2021 / METABRIC (n=273) association with PD-1/PD-L1 expression level

(51) pan- 2022 / TCGA, CPTAC, GEO (n=33) positive correlation with CD4" and CD8" memory cells, CD4*
cancer T, CD8" T, NK cells

(52) PLOD2 pan- 2022 / GTEx, CCLE (n=21) negative correlation with memory B cells, activated NK cells,
cancer CD8" T cells,Treg; positive correlation with Mac

(53) SPP1 LUAD 2021 / TCGA, CPTAC (n=551) correlation with low CD8" Tcell infiltration and high M2-type

macrophages
(54) TNC BC 2020 160 / negative correlation with LC3B and CD8" T cells

(Continued)
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TABLE 1 Continued

Ref Molecule Tumor Year Enrolled Queried Databases Association with immune traits
type Patient

(55) BC 2021 219 GEO negative association with macrophages and CD8" T cells

(56) OsCC 2020 68 GEO positive correlation with CD11" cells and Tregs

(57) LGG 2022 62 / positive association with MDSC; negative association with

effector T cells

(58) Versican NSCLC 2022 / GEO positive association with DC, negative correlation with CD8" T
cells
(59) MPM 2022 / TGCA (n=12) association with PD-1 overexpression and downregulation of
CD127
(60) CCa 2010 149 / negative association with CD8" T cells
(61) MM 2016 19 / negative association with CD8" T cells
(62) CRC 2017 122 / negative association with CD8" T cells

BC, breast cancer; MM, myeloma; CCa, cervical cancer; MPM, pleural mesothelioma; CCC, clear cell carcinoma; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; LGG, low grade
glioma; OSCC, oral squamous cell carcinoma; LUAD, lung adenocarcinoma; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; PAAD, pancreatic adenocarcinoma.

TABLE 2 Characteristic and main findings of the included papers that show an association between ECM remodeling and ICls efficacy.

Molecule Tumor Year Enrolled Queried IC Sample Method Main findings
type patients = Databases target type
(63) BGN CRC 2022 144 GEO, TCGA / biopsy RNA seq, IHC positive association with M2
(N=435) macrophages and Tregs; association
with the prediction of the response
to ICIs
(64) COL6A1 BLCa 2023 58 TCGA PD-1 biopsy RNA seq, IHC predictive of poor response to anti-
(n=414) PD-1 treatment
(65) Collagen CM 2020 54 / CTLA-4 serum ELISA High C4G combined with low PRO-
fragments C3 predict improved OS
(C4G, PRO-
C3)
(66) Collagen CM 2018 67 / CTLA-4 serum ELISA High PRO-C3 and C4M
fragments independently predictive of worse
(PRO-C3, OS ad PFS; high C3M/PRO-C3 and
C1M, C3M, VICM independently associate with
C4M, VICM) longer OS
(67) Collagen CM 2020 107 / PD-1 serum ELISA High PRO-C3 and PC3X
fragments independently predictive of worse
(PRO-C3, OS ad PFS; high C3M/PRO-C3 and
PC3X, C3M, VICM independently associate with
C4M, VICM) improved OS
(68) Collagen I, ITT LUAD, 2020 451 TCGA PD-1 biopsy RNAseq, IHC negative association with CcD8" T
LUSC (n=1580) cells; predictive of poor survival and
response to anti-PD-1
(69) CTHRC1 GBM, 2021 / CGGA, PD-1 biopsy RNA seq predictive value for anti-PD-1
LGG TCGA, GDC therapy efficacy
(n=1711)
(70) EMILIN2 CM 2021 / TCGA PD-L1 biopsy RNA seq negative association with the
(n=477) response to anti PD-L1 therapy
(71) HAPLN3 CM 2021 / TCGA, GEO, CTLA-4 biopsy RNA seq part of TIR signature predictive of
dbGap response to anti-CTLA-4 and
(n=727) patients’ survival
(Continued)
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TABLE 2 Continued

10.3389/fimmu.2023.1270981

Molecule @ Tumor @ Year Enrolled Queried IC Sample Method Main findings
type patients Databases target type
(72) MMP12 HCC 2021 8 TCGA, GEO / biopsy RNA seq, WB, positive correlation with CTLA-4
(n=467) PCR and PD-L1; negative association
with predicted ICIs efficacy
(73) MMP2, CM 2021 30 / CTLA-4 biopsy transcriptomic positive association with longer OS
COL1A2 Nanostring and RFS for patients treated with
analysis anti-CTLA-4
(74) MMP9, LOX GBM 2023 27 TCGA, PD-1, biopsy RNA seq, IHC, part of a high risk signature
CGGA, GEO PD-L1 qPCR correlated with poor prognosis and
(n=1876) higher response to anti-PD1/L1
therapy

BC, breast cancer; CM, cutaneous melanoma; CCa, cervical cancer; BLCa, bladder cancer; GBM, glioblastoma; LGG, low-grade glioma; CRC, colorectal cancer; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; HCC, hepatocellular carcinoma; OS, overall survival; PFS, progression-free survival.

2b with the anti-CTLA-4 antibody ipilimumab (73). Similarly,
COL6A1 expression has been indicated as a prognostic risk gene
in bladder cancer, where high COL6A1 levels being predictive of a
poor response to the PD-1 inhibitor tislelizumab (64).

An important association between collagen deposition and the
efficacy of ICIs has been highlighted also in lung cancer. Taking
advantage of a preclinical mouse model, Peng and colleagues (68)
demonstrated that collagen induces CD8" T cell exhaustion through
the binding with the leukocyte-associated immunoglobulin-like
receptor 1 (LAIR1) acting as an immune checkpoint molecule
(85). Notably, the inhibition of LOXL2 activity, which leads to the
blockage of collagen deposition, sensitizes the lung tumors to anti-
PD-L1 therapy. Consistently, in lung cancer patients, higher
collagen 1 and III deposition associates with decreased CD8" T
cells as well as increased levels of the exhaustion markers LAIR1 and
TIM-3. Of note, collagen expression was shown to predict the
response to anti-PD-1 therapy and the overall survival of these
patients (68).

3.2.1.2 Versican

The ECM proteoglycan Versican (VCAN) exerts multiple
functions by interacting with other ECM components and cell
types impacting on tissue development, wound healing and
cancer. Increased VCAN expression has been shown in solid
tumors including ovarian, pancreatic, breast, lung, esophageal,
bladder and colorectal cancer and to associate with patient’s
prognosis (86, 87). Many in vitro and in vivo studies have
highlighted the role of VCAN in the modulation of inflammation.
Moreover, some investigations have recently shown its association
with the tumor immune environment in different cancer types (88).
In 2022, Yang and colleagues reported that, in pleural
mesothelioma, the expression of VCAN, in association with the
other ECM molecules collagen I, fibulin and NG2, identifies
patients characterized by immunosuppression and resistance to
chemotherapy (59). In accordance with these evidences, the
presence of VCAN and the rate of its proteolytic cleavage by the
specific ADAMTSI in lung cancer has been shown to play a pivotal
role in dendritic cell activation (58). In detail, VCAN is located in
the peritumoral stroma of NSCLC, where the VCAN-derived
proteolytic fragment versikine induces dendritic cell (DC)
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accumulation and activation. This, in turn, allows the interaction
of DC with transiting effector CD8" T cells, inducing their
activation and infiltration within the tumor nest. Therefore, an
active VCAN proteolysis and low total VCAN in the stroma
associates with CD8" T cell infiltration in NSCLC (58), myeloma
(MM) (61), CRC (62) and in cervical cancer (CCa) (60). These data
suggest that VCAN remodeling may be exploited as a novel
immune biomarker as well as a therapeutic target to promote
antitumor CD8" T cell responses.

3.2.1.3 Tenascin-C

The third most represented molecule in the papers analyzed in
this review is tenascin-C (TNC), a highly expressed glycoprotein in
malignant solid tumors, including breast cancer and oral squamous
cell carcinoma (OSCC) (9, 89, 90). The functions of TNC in
modulating cancer cell migration, proliferation, invasion and
angiogenesis have been extensively described (91-93), however
only in recent years TNC has been associated with the immune
response. Analyses of TNC deposition in breast cancer, low grade
glioma (LGG) and OSCC indicated that a TNC-rich stroma
associates with leukocyte infiltration in the tumor nest (55-57).
Murdamoothoo and colleagues demonstrated that TNC can retain
T cells within the stroma by inducing and directly binding CXCL2,
an important T cell chemoattractant, thus preventing their
infiltration and cytotoxic activity in the tumor nest (55). A
similar function was observed in OSCC, in which, through the
induction of CCL21, TNC has the capability to promote the
retainment of CD11c¢" myeloid cells in the stroma leading to a
more immune-suppressive environment within the tumor nest (56).
In accordance with this evidence, Li and colleagues showed that, in
triple-negative breast cancer (TNBC), TNC inversely correlates with
CD8" T-cell tumor infiltration and positively correlates with poor
patient prognosis (54). Furthermore, they assessed that the
expression of TNC associates with the occurrence of autophagic
defects in TNBC cells, defects known to counteract T cell-mediated
tumor killing. The authors demonstrated that TNC blockage can
sensitize TNBC cells to the cytotoxic effect of T lymphocytes,
indicating that TNC may be explored as a new potential target
for TNBC treatment (54).
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3.2.1.4 Collagen triple helix repeat containing-1

Collagen triple helix repeat containing-1 (CTHRCI) is a
secreted ECM protein transiently expressed during the repair
process of injured arteries (94) and skin wound healing (95). In
several solid tumors, CTHRCI is upregulated and its expression has
been associated with tumorigenesis and metastatic dissemination
(96). In breast cancer, non-small cell lung cancer and oral cancer,
CTHRCI exerts a pro-tumorigenic effect by modulating the Wnt/(3-
catenin pathway (96). The association between CTHRCI1 and the
tumor immune environment has been described for the first time in
a preclinical model of CRC, in which CTHRC1 was shown to
promote liver metastasis by shaping the infiltrated macrophages
towards a M2 phenotype through the direct interaction with the
TGF-B receptors (97). This observation has been confirmed by
Zhao et al., who evaluated CTHRCI1 expression in gastric cancer
(GC) through the integration of different datasets (42). Not only did
the authors show that high CTHRCI expression associates with
worse patients’ prognosis, but they also found that it correlates with
the abundance of subtypes of immune infiltrating cells. In detail,
elevated CTHRCI expression was significantly correlated with the
infiltration of M2 macrophages, as well as other innate immune
cells, such as NK, Thl and DC cells. Further analyses allowed to
determine that CTHRCI is highly expressed by cancer-associated
fibroblasts (CAFs) and it is present in the vascular tissue
surrounding the gastric lesions, where it may favor macrophage
infiltration though the interaction with CAFs via the GRN/
TNFRSF1A and AnxA1/FPR1 pathways (42). CAFs are likely the
major source of CTHRCI also in CRC, in which CTHRCI
expression is upregulated and it takes part in a gene-based
signature with prognostic value (41). Indeed, the upregulation of
CTHRCI, together with that of the Placental Derived Growth
Factor C (PDGFC), PDZ and LIM Domain 3 (PDLIM3),
Neurotrimin (NTM), and Solute Carrier Family 16 Member 3
(SLC16A3) genes, positively correlates with M2 macrophages,
regulatory T cells (Tregs), and myeloid-derived suppressor cells
(MDSCs) infiltration, as well as T cell exhaustion and associates
with poor CRC patient survival (41). Taken together, these two
papers confirm the immunosuppressive role of CTHRCI in
gastrointestinal cancers. However, the association between CAF-
derived CTHRC1 and the tumor immune microenvironment
characteristics do not seem to be tumor type-specific. Indeed, the
expression of CTHRCI, together with ATP Binding Cassette
Subfamily C Member 3 (ABCC3), macrophage scavenger receptor
1 (MSR1), PDZ and LIM domain protein 1 (PDLIMI1), TNF
Receptor Superfamily Member 12A (TNFRSF12A), and
Chitinase-3-Like Protein 2 (CHI3L2), has been identified as a
CAF-related gene signature with prognostic and predictive value
for glioma patients treated with anti PD-1 therapy (69).

3.2.1.5 ABI family member 3 bind protein

ABI family member 3 binding protein (ABI3BP) is an ECM
protein expressed in multiple organs, including the heart, kidney,
lung, pancreas, and placenta, with low or variable expression in the
spleen, liver, brain, bone, and skeletal muscle (98). ABI3BP expression
has been associated with many physiological and pathological
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processes (99), and it is well known for its role in multiple cancer
types, acting as a tumor suppressor by inhibiting cancer cell
proliferation and migration and promoting cellular senescence (100-
104). The role of ABI3BP in lung cancer has been investigated only
recently and it has been indicated that this molecule is downregulated
in the lesions compared to normal lung tissue and it gradually
decreases as lung cancer progresses (28). Interestingly, in the same
work, it has been demonstrated for the first time the association
between ABI3BP expression and immune cell infiltration. Indeed, in
lung cancer, ABI3BP expression positively correlates with B memory
cells, CD4" T memory cell rest, Tregs, CD8" T cells, CD4" T cells, and
CD activation. Even if the molecular mechanisms affecting the immune
response are still unknown, these data suggest that increased ABI3BP
expression may impact on tumor progression also by modulating the
tumor immune microenvironment. In accordance with this hypothesis,
the expression of ABI3BP in lung cancer correlates with patient’s
prognosis, with low expressing patients having a poorer outcome (28).

3.2.1.6 EMILIN-2

Elastin microfibril interfacer 2 (EMILIN-2) belongs to the EDEN
protein family (105-107) and is often downregulated in epithelial
tumors, in which it exerts a tumor suppressive function through
multiple mechanisms (11, 77, 108, 109). EMILIN-2 directly acts on
the survival and proliferation of cancer cells and, like other members
of the EDEN family, such as Multimerin-2 (12, 13, 110-112), it also
influences angiogenesis (109). Increasing evidence pinpoint this
molecule as an important immunomodulator in the TME.
Recently, EMILIN-2 has been shown to affect macrophage
polarization through the engagement of TLR-4 (43). Indeed, in
colorectal cancer low EMILIN-2 protein levels were shown to
correlate with a low M1/M2 macrophage ratio and, consistently,
with poor patient prognosis. A similar observation has been made in
melanoma, in which the levels of EMILIN-2 are reduced compared to
the healthy tissue, and patients displaying low EMILIN2 expression
are characterized by poor overall survival (70). Importantly, in these
patients EMILIN-2 has been shown to associate with the efficacy of
PD-L1 blockage (70), suggesting that the evaluation of EMILIN2 in
the tumor tissue may entail a possible predictive value.

Contrasting results have been found in other tumor types, as in
low grade glioma (44) and clear cell renal cell carcinoma (ccRCC)
(45), where the upregulation of EMILIN-2 associated with poor
prognosis. This evidence was supported by the positive correlation
of EMILIN-2 with macrophage subsets, T reg and T cell exhaustion,
overall indicating an immunosuppressive effect of EMILIN-2 in these
cancer types (44). In line with these findings, in ccRCC EMILIN-2
was shown to positively associate with the levels of several checkpoint
molecules including CTLA-2, PD-1, LAG3, and TIGIT (45).

3.2.1.7 Biglycan

Biglycan (BGN) is an ECM proteoglycan with an essential role
in mediating morphology, growth, differentiation and migration of
epithelial cells and it is a well-known player in tumor development
and progression (113-115). Several studies reported an up-
regulation of BGN in a variety of solid tumors suggesting its
potential diagnostic and prognostic value in ovarian, prostate,
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head and neck, gastric and colorectal cancer (116-118). However,
the function of BGN in tumor immunity has just recently been
assessed. He and colleagues were the first to investigate the
association between BGN and immune cell infiltration (63). These
authors showed that, in CRC samples, elevated levels of BGN were
correlated with immunosuppressive traits and an unfavorable
patients’ outcome. Indeed, BGN expression within CRC lesions
positively corresponds to M2 macrophage and Treg infiltration. A
bioinformatic model was applied to the same datasets indicating
that CRC patients with high BGN expression levels were
characterized by a higher expression of immune checkpoint
molecules, as PD-L1, and were predicted to have a better
response to ICIs. A similar immunosuppressive function of BGN
has been found in GC (32) and in TNBC, in which high BGN levels
have been negatively correlated with increased infiltration of CD8"
T cells and associate with poor prognosis (31).

3.2.1.8 Osteopontin

Osteopontin (OPN), encoded by the SPP1 gene, is a non-
collagenous bone matrix protein involved in the development of
different organs (119). Many studies have assessed its role in the
growth and metastatic dissemination of various solid tumors, such
as breast and prostate cancer, squamous cell carcinoma, melanoma,
osteosarcoma and glioblastoma, where OPN is often upregulated
and correlates with a poor prognosis (120). In vitro and in vivo
studies highlighted the role of OPN in determining the immune
phenotype of the TME, since SPP1 expression directly correlated
with CD8" T cell activation and M2 macrophage polarization (121~
123). However, thus far the putative association of OPN with the
immune traits of the TME in human tumors has been investigated
only in lung cancer. SPP1 expression was demonstrated to be higher
in lung adenocarcinoma (LUAD) compared with normal lung
tissue, potentially impacting on the resistance to ICIs (53). The
same study indicated that a high SPP1 expression associates with
poor patient prognosis and, consistently with the in vivo
observations, SPP1 expression correlates negatively with CD8" T
cells and positively with M2 macrophage infiltration. Interestingly,
the levels of SPP1 expression also positively correlated with the
immune checkpoint CD276, particularly in patients displaying
EGFR mutations (53).

3.2.1.9 Hyaluronan and proteoglycan link protein 3
Hyaluronan and proteoglycan link protein 3 (HAPLN3) is an
ECM linker protein involved in the binding of proteoglycans to
hyaluronic acid (124). HAPLNS3 is expressed in most of the tissues
and it is essential for generating hyaluronic acid-dependent ECM.
Some studies have reported that HAPLN3 is overexpressed in breast
cancer and in CRC and its high expression is linked to cancer
occurrence and metastasis (125, 126). Interestingly, the analysis on
circulating tumor DNA indicated that the methylation of HAPLN3
is significantly increased in metastatic prostate cancer and serves as
a post-treatment risk predictor (127). Recently, HAPLN3 together
with SEL1L Family Member 3 (SEL1L3), Bone Marrow Stromal Cell
Antigen 2 (BST2), and Interferon Induced Transmembrane Protein
1 (IFITM1) have been included in a four-gene signature named TIR,
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which highly associates with the activation of CD8" T cells and
immune cell infiltration in melanoma patients (71). When applied
to a cohort of melanoma patients treated with the anti-CTLA-4
antibody ipilimumab, the TIR signature predicted the response to
the therapy and the clinical outcome better than other known
biomarkers as PD-L1 and IFN-y, thus suggesting the potential use of
the TIR signature as a predictive marker for those patients (71).

3.2.2 Tumor-associated ECM as a physical barrier
for immune cell infiltration

The ECM properties, due to post-translational modifications
such as the bio-physical structure and the stiffness, not only affects
the recruitment/activation of immune, but also per se profoundly
shape the tumor immune microenvironment (128). The major
ECM components involved in these two properties are collagens.
These molecules are synthesized as pro-procollagens and undergo
several post-translational modifications that alter their traits (23).
Modifications include glycosylation, pro-peptide alignment,
disulphide bond formation and hydroxylation. Importantly, lysine
hydroxylation of the pro-collagen chains by lysyl hydroxylases
(PLODs) allows for spontaneous triple helix formation within the
cell and secretion into the extracellular space. Once secreted, the
pro-peptides on the C- and N-terminus are cleaved by proteases
(such as the procollagen C-endopeptidase enhancer PCOLCE)
leading to the formation of collagen fibrils. For further collagen
fibers assembly, lysyl oxidases (LOX) catalyses the cross-linking of
collagens as well as elastin, thus modulating the ECM stiffness.
Finally, collagen fibers interact with integrins and other cell surface
receptors (such as RHAMM and DDRI1) that apply forces leading to
the alignment of the fibers (23).

In cancer, the alteration of this complex and multistep process
leads to abnormal mechanical and physical properties of the ECM.
The higher stiffness and density of tumor-associated ECM
constitute a mechanical barrier which protects the tumor from
immune cell infiltration and immune-mediated destruction. Overall
the TME is less permissive to leukocyte invasion, favoring the
establishment of a more tolerant immune environment and also
impairing the efficacy of ICIs (129).

This aspect is well represented in the study from Byers et al, in
which the authors measured the stromal fibrillar morphology
within the ECM in basal cell carcinomas (BCC) (40). The authors
evaluated collagen, elastin, and reticulin and defined the presence of
“gaps” between the fibers as lacunarity. A higher lacunarity
represents a more permissive environment and directly correlates
with the infiltration of tumor-associated T lymphocytes (TIL), as
assessed in BCC.

In the same view, Xu et al. showed that PLOD2 (Procollagen-
Lysine,2-Oxoglutarate 5-Dioxygenase 2), a member of PLOD family
which mediates the formation of stabilized collagen cross-links
generating a stiffer ECM, is overexpressed in a variety of tumors
including gastric, bladder, lung, breast, and head and neck
squamous cell cancer (52). Notably, in GC, PLOD2 expression
was negatively correlated with the presence of memory B cells,
activated NK cells, plasma cells, CD8" T cells, follicular helper T
cells and Tregs; on the other hand, it was positively correlated with
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macrophages, activated mast cells, resting NK cells, CD4 memory
activated T cells and CD4 memory resting T cells. Overall, PLOD2
was shown to be significantly associated with the tumor immune
infiltration and with a poor patients’ outcome.

Another enzyme driving collagen rearrangements and recently
associated with immune infiltrating cells is PCOLCE, which
localizes in the TME of several cancer types. Bioinformatic
analyses highlighted that PCOLCE is a prognostic predictor for
PAAD, thymoma and CES (51). Even if the molecular mechanisms
behind this observation are still unknown, PCOLCE expression
correlates with the extent of CD4" T, CD8" T, NK cell infiltration.
As well, Lecchi et al. developed a gene expression signature to
identify high-grade breast cancer patients with poor prognosis (50).
PCOLCE is one of the genes taking part in the ECM3"/IFN~
signature, together with other ECM genes such as Secreted
Protein Acidic And Cysteine Rich (SPARC), Biglycan, EGF
Containing Fibulin Extracellular Matrix Protein 2 (EFEMP2) and
the basal membrane component Nidogen 2 (NID2). In breast
cancer, the ECM3"/IFN™ signature was associated with low
tumor-infiltrating lymphocytes, high levels of CD33™ cells,
absence of PD-1 expression or low expression of PD-LI.

As mentioned before, ECM stiffness and structural organization
are strongly regulated by the activity of LOX enzyme family, which
includes LOX and LOX-like (LOXL) 1-4 (23). Due to their
involvement in different processes, as linking bi-directionally the
ECM and acting directly on the activation of signaling pathways
regulating cancer cell survival, proliferation and differentiation, LOXs
have been identified as pivotal factors in the formation and
progression of different tumor types as glioma, gastric and
endometrial carcinoma (130-133). Among the LOX family of
enzymes, LOXL3 has also been shown to play immunomodulatory
functions in the TME. A detailed bioinformatic analysis highlighted
that LOXL3 is upregulated in HCC compared with normal tissues
and correlates with poor prognosis (46). In the same study, for the
first time LOXL3 expression has been positively correlated with the
infiltration extent of multiple immune cells, among which CD8" and
CD4" T cells and macrophages, as well as with the expression of
immune checkpoint molecules such as PD-L1 and CTLA-4. A
functional enrichment analysis demonstrated that this effect was
mainly based on ECM organization and regulation of cell-cell
adhesion (46). However, in some cases, the immunomodulatory
effect of the collagen modifying enzymes is not only related to
ECM remodeling but also to different mechanisms that act in a
synergic fashion. As an example, the lysyl oxidase 4 (LOXL4),
whose upregulation induces higher ECM stiffness, during
hepatocarcinogenesis was shown to be overexpressed by
macrophages and to induce an autocrine expression of PD-L1, thus
contributing to maintain T-cell exhaustion and supporting tumor
progression (47). In accordance with this dual role of LOXL4 in HCC,
a high expression of LOXL4 by macrophages and a low expression of
the CD8" T cell marker CD8A can cooperatively predict poor
survival of cancer patients.

Importantly, not only the density and stiffness of the collagen
matrix, but also the fiber alignment represents a barrier for immune
cell infiltration. This aspect has been described in breast cancer by
Sun et al. Their study reported for the first time the implication of
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discoidin domain receptor 1 (DDRI1), a tyrosine kinase collagen
receptor, in shaping the immune infiltrate of breast cancer (37).
DDRI1 induces immune cell exclusion through its extracellular
domain by promoting the alignment of collagen fibers. In
agreement with this hypothesis, in TNBC, the expression of
DDRI negatively correlates with the intratumoral abundance of
anti-tumor T cells (37).

3.2.3 ECM fragments as a reservoir of novel
biomarkers for ICls efficacy

ECM remodeling occurs on one side through the altered
expression of the molecules, on the other side through their
degradation mediated by the activation of target-specific proteases
such as MMPs, disintegrins and ADAMs (23). Cancer cells and
tumor associated cells express higher levels of proteases which
contribute to the establishment of a pro-tumorigenic environment
by multiple mechanisms (9, 23, 134). The proteolytic degradation of
the ECM components allows the replacement of the normal ECM
with tumor-derived ECM. This process favors the migration of
cancer cells through the interstitial matrix by unlocking migratory
tracks. Simultaneously, the enzymatic activity of MMPs and
ADAMs induces the release of ECM-bond growth factors and
proteolytic fragments, some of which exert a new biological
activity respect to the molecule of origin. Some of these fragments
are released in the blood stream and may be exploited to develop a
liquid biopsy-based biomarkers. The association of proteolytic
enzymes and ECM-derived fragments with the immune TME are
described in the following paragraphs.

3.2.3.1 Proteolytic enzymes

MMP-9, together with MMP-2, are the most common
progression markers correlated to cancer invasion and metastasis
and, recently, MMP-9 levels have been associated with the presence
of immune cell infiltration, particularly with M1 and M2
macrophages, in 33 tumor types (49). In accordance, Yu and
colleagues included MMP-9, together with LOX and TIMP1 in a
gene-based signature, which significantly correlates with the
response to anti-PD1 and anti-PD-L1 immunotherapy and overall
survival of glioma patients (74). Despite contradictory results that
needed further analysis, the cancer immunomodulatory function of
other MMPs has also been investigated. Such is the case for MMP-1,
which is known to have a role in cancer invasion and epithelial-
mesenchymal transition in HCC and other tumor types (135).
MMP-1 expression has been associated with the presence of anti-
tumor immune cells, such as activated DC, macrophages, T helper
cells and CD4" T cells, as well as with the presence of MDSC cells,
which, on the contrary, suppress the immune response (48). This
suggests that MMP-1 functions and regulations in the TME are
extremely complex and involve a number of yet elusive
mechanisms. Always in the context of HCC, also MMP12 was
found to be significantly increased and to associate with the CTLA-
4 expression levels and with a poor ICI efficacy (72).

Like MMPs, ADAM:s are often upregulated in tumors and high
levels associate with a worse prognosis for the patients (136-141).
Only recently, ADAMs have been linked to the immune cell

infiltration and immune checkpoint molecule expression. In
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detail, in HCC, the expression of nine components of the ADAMs
family (ADAMS,9,10,12,19,28,TS2,TS12) was shown to increase
along with tumor progression and to correlate with the presence
of dendritic cells, B cells, neutrophils, CD8" T cells, and
macrophages (30). Importantly, the same study showed that
ADAM12, 19, TS2 and TS12 were positively correlated with the
expression of the immune checkpoint molecules PD-1, PD-L1, PD-
L2 and CTLA-4. In line with this evidence, in colorectal
adenocarcinoma (COAD), one of the CRC subtypes, high
ADAMI2 expression associated with an altered immune cell
infiltration and with a poor patients’ outcome (29). In particular,
ADAMI12 expression positively correlated with the presence of
CD8" T cells, CD4" T cells, macrophages, neutrophils, and DC;
on the contrary, the correlation between ADAM]12 expression and
presence of B cells was not significant.

3.2.3.2 ECM-derived liquid biopsy biomarkers

The ECM remodeling by post-transcriptional modification
enzymes and proteases generates fragments and peptides that can
be detected in the peripheral blood and could be used as serological
markers directly reflecting the disease and cancer progression (23,
142-144). The possibility to detect these fragments in the
circulation represents an advantage compared to the analysis of
tumor biopsies, considering the easy access through poorly invasive
procedures, thus allowing to monitor the disease progression
over time.

During collagen fibrillogenesis, the N-terminal propeptide of
immature collagen is cleaved by specific proteases leading to the
incorporation of the mature molecule in the ECM. The cleavage of
the N-terminal region of pro-collagen III generates a fragment,
named PRO-C3, which is released in the blood circulation and
reflects the extent of collagen deposition, with high levels indicating
an excessive collagen deposition (145). In accordance with this
observation, and with the fact that collagen deposition is
upregulated in immune-excluded tumors (23, 40, 129), high
serum levels of PRO-C3 have been associated with poor outcome
in CRC and metastatic breast cancer patients (146, 147). In
melanoma, a high PRO-C3 levels correlated with low efficacy of
the anti-PD-1 antibodies pembrolizumab or nivolumab (67).

The proteolytic cleavage of collagens produces the fragments
C1M (collagen I), C3M (collagen IIT) and C4M (collagen IV) which
were shown to be increased in cancer patients compared to healthy
individuals (147, 148), and to associate with a poor response to anti-
CTLA-4 blockage in melanoma patients (66). The same trend has
been observed for PRO-C3, that together with C4M also correlated
with shorter overall survival (66). In retrospective analyses, Jensen
and colleagues calculated the C3M/PRO-C3 ratio as a parameter to
evaluate the balance between collagen degradation and deposition,
finding that a high C3M/PRO-C3 ratio was predictive of a better
response to ipilimumab (66). The same observation has been
observed in a prospective cohort of melanoma patients subjected
to anti-PD-1 treatment, further strengthening the notion that a
higher collagen degradation versus deposition favors a better
outcome and response to ICIs (67).

Frontiers in Immunology

10.3389/fimmu.2023.1270981

The degradation of collagen IV by granzyme B generates a
fragment distinct from C4M named C4G (149). In metastatic
melanoma patients, high C4G levels at baseline corresponded to a
good clinical response to anti-CTLA-4 therapy, in terms of both
objective response rate and overall survival (65). Interestingly, and
in line with the studies from Jensen (66) and Hurkmans (67),
patients characterized by a combination of high C4G (indicating
basal membrane degradation) and low PRO-C3 (suggestive of low
collagen deposition) were characterized by a better chance to
respond to ipilimumab compared to the patients displaying only
high C4G levels (65).

Circulating fragments are generated not only by the degradation
of collagen but also other ECM molecules. For example,
extracellular vimentin is citrullinated and cleaved by MMPs
giving rise to a fragment known as VICM (citrullinated and
MMP-degraded vimentin) (150). VICM is released by tumor
associated macrophages and has been detected in the serum of
lung cancer patients (151, 152). In melanoma patients treated with
ICIs, such as ipilimumab, nivolumab and prembolizumab, high
levels of VICM before immunotherapy were linked to a survival
benefit (66, 67). This finding fits well with the higher frequency of
macrophages infiltrating the tumors of patients responding to
ipilimumab compared with the non-responders (153).

Taken together, these studies highlight a prominent role of the
ECM in affecting the immune response. From the evaluation of the
47 papers taken into account, we can infer that collagens are
the most studied ECM components in this context, impacting on
the infiltration and activation of immune cells by constituting a
physical barrier to effector cells’ infiltration and by influencing
immune cells phenotype. Moreover, collagen remodeling represents
a crossing-edge process among different tumor types and provides
promising valuable biomarkers for ICIs efficacy. Nonetheless, from
this study we can also conclude that other ECM components as
glycoproteins and proteoglycans exert a prominent role in shaping
the tumor immune response despite their effect is tumor-
type specific.

4 Discussion

As a key component of the TME, the ECM is becoming a crucial
source of novel diagnostic and prognostic biomarkers (75). Due to its
intrinsic complexity and multimodular structure of its components,
and thanks to the integration of inside-in and inside-out signals, the
ECM takes part in a plethora of different processes within the tumor,
being involved in a dynamic reciprocity with cancer cells, as well as
tumor-associated cell types. The matrix signals affect gene expression
programs shaping the phenotype of cancer cells, which in turn
tightly control the ECM composition and its mechano-tensile
properties. The changes in ECM composition, due to the altered
expression of its components and to their overt post-transcriptional
modifications, lead to the replacement of the normal ECM with a
tumor-educated ECM, which supports tumor growth and
progression. Only recently the abnormal ECM has also been
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shown to impact on the susceptibility of tumor cells to immune cell-
mediated killing (154). Indeed, increasing evidence suggest that the
tumor-associated ECM as well as the ECM remodeling enzymes play
a vital role in the modulation of the immune response, thus
impacting not only on cancer progression but also on the
susceptibility to ICIs therapy. Due to the extremely complex
nature of the ECM, the literature regarding this topic is intricate,
spanning several matrix molecules and processes, and covering a
number of different tumor types. With the aim to comprehensively
describe the relation between ECM and the efficacy of ICIs in cancer
patients, the present review systematically evaluated the current
literature regarding this topic, highlighting the value of ECM and
ECM-derived molecules as predictive biomarkers for ICIs therapy
efficacy (Figure 3).

The literature search strategy was intended to retrieve studies
dealing with both adult and pediatric patients. However, none of the
papers were related to pediatric cancers, likely because, in terms of
absolute numbers, pediatric cancers are relatively rare and the use of
ICISs is still under evaluation for these patients (155). Also, the TME
of solid pediatric tumors has not been well investigated yet, despite
it is known to be characterized by low mutational burdens and by a
small number of TILs compared to adult malignancies (156). In
accordance with these observations, the efficacy of checkpoint
inhibition is poorer compared to that observed in the adults.
Unlike pediatric patients, adult patients have been treated with
immunotherapy for more than a decade, with the first ICI (anti-
CTLA-4) being approved for the treatment of advanced-stage
melanoma in 2011. Since then, the use of ICIs as single agents or
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in combinatorial approaches has greatly improved tumor regression
rates and long-term cancer control for melanoma patients (157).
More recently, the use of ICIs in breast and colorectal cancer has
been explored, however promising results have been observed only
in restricted subgroups of patients (158, 159). The use of ICIs to
treat these three cancer types offered the possibility to analyze
numerous patients’ cohorts and to deeply investigate the
characteristic of the ECM in relation to the therapy efficacy, as
suggested by the fact that most of the papers included in the present
systematic review regard melanoma, breast cancer and
colorectal cancer.

Overall, the main processes and changes driving ECM
remodeling in cancer have been well documented. However, it
has become clear that each cancer type displays an unique ensemble
of ECM molecules, ECM-remodeling enzymes and ECM-associated
growth factors, collectively referred to as matrisome (160). This was
confirmed also by the papers included in this study, with some
mechanisms being strongly associated with a specific tumor type.
The main ECM feature common to different tumor types is ECM
stiffness, which highly impacts on immune cell infiltration
representing a structural and physical barrier to the recruitment
of effector T cells. An extreme matrix density and rigidity is also
known to associate with impaired drug delivery to the tumors, thus
pinpointing ECM stiftness as a double-edge sword deeply impaction
on the efficacy of ICI (25).

On the other side, the activity of some ECM components is
strongly tumor-type dependent. This can be at least partially
explained by the fact that ECM molecules display multimodular

ECM evaluation

fragments|

ECM degradation

Schematic representation of the suitable approaches aimed at evaluating ECM remodeling as a tool to predict the efficacy of ICls and to help the

clinical decision-making process. Created with BioRender.com.
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structures able to simultaneously modulate various biological
functions and cell types, such as CAFS, immune cells and
vascular cells. Thus, the overall association between the
abundance of specific ECM proteins and the tumor immune traits
are the result of a tight and complex molecular crosstalk between
these cell types, through mechanisms that in part still remain elusive
and need further investigation. In recent years, the crosstalk
between immune and endothelial cells has been investigated to
assess the impact of tumor associated vascularization on ICIs
efficacy. These studies highlighted the synergic beneficial effect
due to the simultaneous blockage of IC and the normalization of
the vascular bed, leading to the design of novel therapeutic
approaches based on the combination of ICIs and angiogenic
drugs. On these grounds, it would be interesting to evaluate if the
levels of ECM molecules exerting a role in both immunomodulation
and angiogenesis may function as valuable biomarkers to stratify
and identify the patients who benefit from the combination of anti-
angiogenic therapy and ICIs.

The identification of tumor-specific matrisomes suggests that
tumor ECM might not only represent a valuable reservoir of
predictive biomarkers but also a new therapeutic target to improve
ICIs treatments. The ECM components, indeed, may be exploited as
new druggable targets to act on the bio-physical properties of the
matrix and, in turn to synergize with ICIs therapy. The tumor-
associated ECM may be therapeutically modulated in several ways,
including the targeting of single ECM molecules or ECM-remodeling
enzymes. For example, the administration of recombinant
hyaluronidase to reduce hyaluronan accumulation has been used in
phase I and II clinical trials in combination with pembrolizumab and
atezolizumab for the treatment of stomach, lung and pancreatic
cancer (161, 162). These trials will open the road for the clinical
evaluation of other ECM/ICIs-based combinatorial therapy, as
suggested by the promising data regarding the targeting of TNC
and versican, which improved T cell mediated cancer cell killing in
preclinical models (54). In addition, the ECM is under evaluation as a
putative mean to improve drug delivery to the tumors. The use of
tumor ECM-specific antibodies fused with cytokines (i.e. IL-2 and IL-
12) or compounds (i.e. sunitinib) have in fact been shown to lead to
increased concentrations of the drugs within the tumors, reduced
severity of the side effects, and enhanced therapy efficacy (163-167).
In the future, it is conceivable that similar approaches may be
exploited also for the delivery of IClIs.

The potential weakness of the present systematic review resided
in the fact that many of the studies are based on bioinformatic
analyses. This represents a major limit since the altered mRNA
levels not always coincide with the same alterations in the protein
content. And this is particularly true when dealing with ECM
molecules, which are extensively regulated not only at the
transcriptional, but also post-translational level and undergo
continuous remodeling. Nonetheless, we chose to comprise these
studies since they were based on solid and strong results and
provided deeper insights in the association between ECM and
immune response, building the grounds for the development of
new putative markers. Studies base on proteomic databases would
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certainly serve better this purpose, however these databases are
limited compared to the RNAseq-based datasets. On these bases, we
consider that more efforts should be put to attain a comprehensive
proteomic profiling of the TME.

The use of ICIs represents an important therapeutic option for
cancer treatment, with subgroups of patients gaining major and
long-term benefits. Nonetheless, a large number of patients showing
scarce response to ICIs and some experiencing unwanted side
effects. For these reasons, the identification of the patients that
would better benefit from immunotherapies is key to avoid over-
treatments and unnecessary side effects. In addition, this approach
would allow the National Health Systems to optimize more
efficiently the resources. Indeed, many investigations aimed at
identifying reliable predictive biomarkers for ICIs efficacy are
ongoing (168). These approaches span from the analysis of cancer
cell intrinsic features, such as the presence of specific gene
mutations and their metabolic status, to the characterization of
tumor associated stroma cells (169-172). Indeed, CAFs represent
not only a promising prognostic biomarker (173, 174), but may also
grant the possibility to predict ICIs efficacy, as highlighted in the
present work. In this scenario, the ECM and its remodeling are
entangled with the CAFs function and represent a passepartout to
unravel the traits of the tumor immune environment. Indeed, the
present systematic review indicates that ECM remodeling and
ECM-derived fragments can represent a widow’s cruse for the
development of valuable biomarkers to predict the clinical
outcome and to help identifying the patients that will better
benefit from ICIs therapies. Importantly, the identification of
circulating ECM fragments with predictive value would provide a
fast and easily accessible liquid-biopsy based test to help clinicians
to determine the most appropriate therapy for each patient.
Nonetheless, further validations are needed, and it will be crucial
to identify a threshold to successfully apply patient-tailored
therapies. Given the complex network of ECM molecules, most of
which have still not been evaluated in this context, we envision that
the ECM will be extensively exploited for the development of new
biomarkers to predict immunotherapy efficacy.
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