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Identification of immunogenic
cell death-related signature on
prognosis and immunotherapy in
kidney renal clear cell carcinoma

Silin Jiang1†, Yuxiang Dong1†, Jun Wang2†, Xi Zhang3†, Wei Liu1,
Yong Wei1, Hai Zhou1, Luming Shen1*, Jian Yang1*

and Qingyi Zhu1*

1Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,
2Department of Urology, Nanjing University of Chinese Medicine, Nanjing, China, 3The State Key Lab
of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China
Background: Immunogenic cell death (ICD) is considered a particular cell death

modality of regulated cell death (RCD) and plays a significant role in various

cancers. The connection between kidney renal clear cell carcinoma (KIRC) and

ICD remains to be thoroughly explored.

Methods: We conducted a variety of bioinformatics analyses using R software,

including cluster analysis, prognostic analysis, enrichment analysis and immune

infiltration analysis. In addition, we performed Quantitative Real-time PCR to

evaluate RNA levels of specific ICD genes. The proliferation was measured

through Cell Counting Kit-8 (CCK-8) assay and colony-formation assay in RCC

cell lines.

Results: We determined two ICD subtypes through consensus clustering

analysis. The two subtypes showed significantly different clinical outcomes,

genomic alterations and tumor immune microenvironment. Moreover, we

constructed the ICD prognostic signature based on TF, FOXP3, LY96, SLC7A11,

HSP90AA1, UCN, IFNB1 and TLR3 and calculated the risk score for each patient.

Kaplan-Meier survival analysis and ROC curve demonstrated that patients in the

high-risk group had significantly poorer prognosis compared with the low-risk

group. We then validated the signature through external cohort and further

evaluated the relation between the signature and clinical features, tumor

immune microenvironment and immunotherapy response. Given its critical

role in ICD, we conducted further analysis on LY96. Our results indicated that

downregulation of LY96 inhibited the proliferation ability of RCC cells.

Conclusions: Our research revealed the underlying function of ICD in KIRC and

screened out a potential biomarker, which provided a novel insight into

individualized immunotherapy in KIRC.

KEYWORDS

immunogenic cell death, kidney renal clear cell carcinoma, tumor immune
microenvironment, prognostic signature, immunotherapy
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Introduction
Renal cancer is one of the most common malignant tumors

around the world (1). Renal cell carcinoma (RCC) accounts for 90%

of renal cancer and kidney renal clear cell carcinoma (KIRC)

accounts for the majority of RCC (2). Although surgical

operation brings a good prognosis to early-stage KIRC patients

(3), advanced and metastatic KIRC still have poor clinical prognosis

and outcome due to their insensitivity to radiotherapy or

chemotherapy regimens (4). With the improved awareness of the

role of immunological factor in tumor progression and prognosis,

immunotherapy, especially checkpoint inhibitors, has become an

important approach for unresectable KIRC (5, 6).

Immunogenic cell death (ICD) is a particular cell death

modality of regulated cell death (RCD) (7, 8). Previous researches

have indicated that ICD can induce adaptive immune response

against the antigens of dead or dying tumor cells through damage-

associated molecular patterns (DAMPs), which include ATP

release, calreticulin exposure, and HMGB1 (high mobility group

box 1) secretion (9, 10). The pivotal factor of cancer

immunotherapy is how to avoid the immune escape of cancer

(11). Specific immunogenic chemotherapy induces ICD to

transform immune cold tumors into hot ones and increase the

sensitivity of tumor cells to checkpoint inhibitors in several tumor

cell lines (12). However, evidence of the effectiveness of this

procedure is still lacking, which prompts us to explore the

possibility of using ICD in clinical application.

In this study, we categorized patients on the premise of their

expression of ICD genes and evaluated the difference in prognosis

and immunotherapy response. We further identified several ICD

biomarkers and constructed a scoring signature in which risk score

was prominently associated with clinical features and tumor

progression. Eventually, we predicted several drugs with high

sensitivity to high-risk patients. We furthermore speculated that

LY96 may serve as a potential novel therapeutic target and we

verified the findings by experiments. Our results provided new clues

for the development of tumor immunotherapy for KIRC.
Materials and methods

Retrieval of ICD genes

We obtained 1,736 ICD-related genes using the keyword

“immunogenic cell death” in the GeneCards database (https://

www.genecards.org/). At the same time, we summarized 171

ICD-related genes from relevant literature (13, 14). Then, the

intersection of two gene sets yielded 73 genes that were

considered as ICD key genes and included in our research.
Acquisition and preprocessing of data

The TPM transcriptome data that involved 541 tumor samples

and 72 normal samples and matched clinical data of KIRC were
Frontiers in Immunology 027
obtained from the TCGA database (https://portal.gdc.cancer.gov/).

The E-MTAB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-1980/) was selected as external validation

cohort, which comprised RNA sequencing data and clinical

information of 101 KIRC samples. Samples without survival data

were removed from the cohort.
Differentially expressed ICD genes and
protein–protein interaction network

Differentially expressed ICD genes (DEIGs) were identified by

the “limma” R package (15). The protein–protein interactions

(PPIs) among DEIGs were constructed using the Search Tool for

the Retrieval of Interacting Genes (STRING) database (https://

string-db.org/). Cytoscape v3.9.1 was used to draw the network

(16). MCODE was a plugin of Cytoscape, which we conducted to

identify highly interconnected functional cluster.
Construction of ICD-related subtypes and
functional enrichment analyses

The R package “ConsensusClusterPlus” was performed to

identify ICD molecular subtypes. The maximum subtypes were

set at nine and the maximum number of iterations was set to 1,000

to guarantee the reliability of statistical analysis. Samples were

clustered into two subtypes according to the result. Differentially

expressed genes (DEGs) between two ICD subtypes were identified

with cutoffs of |log2 fold change (FC)| > 1 and false discovery rate

(FDR)< 0.05 for functional enrichment analyses. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were implemented to predict proper biological functions

and pathways of DEGs between ICD subtypes through the

“ClusterProfile” package. Gene set enrichment analysis (GSEA)

was also performed to investigate proper mechanism of actions of

DEGs via GSEA version 4.1.0 (http://software.broadinstitute.org/

gsea/). KEGG, Hallmark, and Reactome gene sets were downloaded

from the Molecular Signature Database (MSigDB, https://

www.gsea-msigdb.org/gsea/downloads.jsp). The minimum gene

set was set as 5 and the maximum gene was set as 5,000 based on

the gene expression profile and phenotypic grouping. Each gene set

was repeatedly permutated 1,000 times for each analysis. p-

value< 0.05 was considered to be statistically significant.
Comparison of genomic alterations of
different ICD subtypes

Somatic mutation data of KIRC patients were downloaded from

the TCGA database in “maf” format. Waterfall plots were plotted by

the “Maftools” R package to visualize and summarize gene

mutation. We further downloaded the segmented copy number

variation (SCNV) data of KIRC from the GDC portal using the

“TCGAbiolinks” R package for somatic copy number analysis

according to a previous study (17). The alteration of gene copy
frontiersin.org
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number and GISTIC score for each sample were analyzed through

GISTIC 2.0 software (https://cloud.genepattern.org/). We also

calculated the burden of copy number loss or gain on the basis of

total number of genes with copy number changes at focal and arm

levels for further comparison between two ICD subtypes (18).
Tumor immune microenvironment
of ICD subtypes

The ESTIMATE algorithm was conducted to evaluate the

tumor immune microenvironment (TME) of KIRC patients (19).

The ESTIMATE algorithm calculated the stromal and immune

score to predict the infiltration of matrix and immune cells. The

CIBERSORT algorithm was applied to convert the gene expression

data into expression of 22 immune cell types (20). The immune cell

type with low expression was removed. By analyzing the correlation

and difference of immune cell types between two subtypes, we

mapped the correlation heatmap and multiple-group barplot to

visualize the results. Furthermore, we analyzed the difference of

HLA and checkpoint genes expression between the two subtypes.

The HLA and checkpoint genes were acquired from a previous

study (21).
Construction and validation of ICD
prognostic signature

Univariate Cox regression was performed to screen out

prognosis-related ICD genes with the criteria p< 0.05 of training

set. Dimension reduction was carried out through the supervised

regression random forest algorithm of the “randomForestSRC”

package (ntree = 1,000) (22). The top 10 significant genes were

selected for further multivariate Cox regression. ICD risk score was

calculated by the following formula:

Risk score =oN
i=1aixi

N, a, and x represent the number of selected genes, coefficient,

and expression value. Patients in the training and validation set

were divided into two groups according to ICD risk score. Kaplan–

Meier (KM) survival curve and ROC curve were used on both the

training set and validation set to assess the reliability of the ICD

Prognostic Signature. Area under the curve (AUC) was used to

quantify the ROC curve. We then visualized the clinical features of

two risk groups by a heatmap. Variation analyses of clinical factors

between different risk groups and correlation analyses focused on

ICD risk score and clinical factors were also conducted. Univariate

and multivariate Cox regression analyses were used to figure out

independent prognostic factors. A nomogram was plotted based on

the R package “NomogramEX” (23) and proportional hazards

assumption was examined. Calibration curves of 1, 3, and 5 years

were plotted to assess the nomogram.
Frontiers in Immunology 038
Immunotherapy response prediction

TIDE (Tumor Immune Dysfunction and Exclusion) was an

algorithm that integrated the characteristics of T-cell dysfunction and

T-cell exclusion to predict immunotherapy response in tumor patients.

The TIDE webserver (http://tide.dfci.harvard.edu/) was used to analyze

the normalized expression data, and assigned a TIDE score to each

patient where >0 was determined as no responder and<0 was

determined as responder. The Subclass Mapping (SubMap) method

was also put into use to predict the response of different groups to anti-

PD-1 and anti-CTLA4 immunotherapy. In this analysis, we compared

the expression profile of the two ICD risk groups we defined with

another published dataset containing 47 patients with melanoma that

responded to immunotherapies (24).
Connectivity map analysis

The Cmap website (https://clue.io/) provides a connectivity

map analysis to predict potential useful small molecular drugs

using the 150 most significant up- and downregulated DEGs

between two risk groups. All 300 DEGs included in our analysis

were identified using the “limma” R package and showed a

significant difference with the criterion of p< 0.05. The inclusion

criterion for determining potential useful small molecular drugs was

the absolute value of Cmap score greater than 90.
Cell culture and quantitative real-time PCR

Human RCC cell lines, including 786-O and 769-P, and the

human renal tubular epithelial immortalized cell line HK-2 were

obtained from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). 786-O and 769-P cells were cultured in Roswell

Park Memorial Institute medium (RPMI-1640; Gibco) and HK-2

was cultured in DMEM/F-12 (Gibco). All these cells were

maintained in medium supplemented with 10% fetal bovine

serum (Gibco) and 1% penicillin/streptomycin (Thermo Fisher)

at 37°C in a 5% humidified CO2 atmosphere.

A total of nine paired fresh-frozen KIRC tissues and normal

tissues were obtained from patients diagnosed with KIRC at The

Second Affiliated Hospital of Nanjing Medical University.

The total RNAs were isolated from tissues or cells using Trizol

reagent (Invitrogen Life Technologies) according to the manufacturer’s

instructions. The quantity and quality of the extracted total RNA were

assessed by using a NanoDrop 2000c spectrophotometer (Thermo

Scientific). The total RNA was reverse-transcribed using HiScript III

All-in-one RT SuperMix Perfect for qPCR (Vazyme; R333).

Quantitative real-time PCR (qRT-PCR) was performed with Taq Pro

Universal SYBR qPCRMaster Mix (Vazyme; Q712-02) using a CFX96

Touch Real-Time PCR Detection System (Bio-Rad). Beta-actin was

used as an internal control, and the relative expression level for genes

was calculated by the 2−DDCt method. The primers used for qRT-PCR

are listed in Table S3.
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Cell transfection

For transfection, cells were seeded in six-well plates and grown

to 40%–60% confluence by the time of transfection. Small

interfering RNA (siRNA) and its negative control reagents were

purchased from GenePharma Company. siRNAs were transfected

with Lipofectamine™ 3000 reagent (Invitrogen, USA) according to

the manufacturer’s instructions. Target sequences of the siRNAs are

shown in Table S4.

Cell Counting Kit-8 assay

Cell proliferation was measured by using the Cell Counting Kit-

8 (CCK-8) (Vazyme; A311-01) according to the manufacturer’s

instructions. Briefly, cells were seeded onto plastic 96-well plates at

an initial density of 2 × 103 cells/well. Then, CCK8 solution was

added to each well at the indicated times and incubated for an

additional 2 h at 37°C. Thereafter, OD450 values were measured.

Colony formation assay

The clonogenic potential of transfected or infected cells was

evaluated by plate colony formation assay. Cells were seeded onto

plastic six-well plates at an initial density of 1 × 103 cells/well in

appropriate growth media and incubated for 2 weeks. The cells were

fixed with 4% paraformaldehyde, and stained with Crystal Violet

Staining solution (Beyotime; C0121). The stained cell colonies were

counted and analyzed.

Statistical analysis

Statistical analysis and figures were performed using R software

v4.1.0 and GraphPad Prism 8 (San Diego, USA). Spearman analysis

was performed to calculate correlation coefficients. Chi-square test was

used for categorical data. The association between clinicopathologic

data and expression profile was estimated by the Wilcoxon rank test

and logistic regression. All results with p-value< 0.05 were considered

statistically significant. The pheatmap and ggplot2 R packages were

engaged for the mapping. KM survival and ROC curve based on

survival and timeROC packages were performed to assess survival

outcomes. Sangerbox (www.sangerbox.com) was used to improve the

quality offigure. *, **, ***, and **** represent p< 0.05, p< 0.01, p< 0.001,

and p< 0.0001, respectively.

Results

Identification of differentially expressed
ICD genes and the protein–protein
interaction network

From previous literatures and GeneCards database (25), 73

common genes were considered as ICD core gene (Table S1).

Subsequently, the R package “limma” was applied to identify

DEIGs (Figure 1A). A total of 61 DEIGs, namely, 52 upregulated

and 9 downregulated genes, were screened out. A heatmap was used
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for visualization of the expression (Figure 1E). The PPI network of

DEIGs was retrieved using the STRING database (Figure 1B) and

visualized by the Cytoscape software (Figure 1C). Functional key

subnetwork analysis was performed through the MCODE

algorithm, consisting of the following modules: LY96, TLR4,

IRF3, and RIPK1, which was considered as a significant module

with a high MCODE score (Figure 1D).
Generation of two ICD subtypes through
consensus clustering

To further reveal the relationship between expression of DEIGs

and KIRC, we utilized the “ConsensusClusterPlus” R package to

classify molecular subtype with KIRC patients according to the

expression levels of DEIGs. Samples were clustered into two clusters

after K-means clustering (Figures 2A, B). Then, KM survival

analysis indicated that patients in the ICD-low subtype showed

dismal prognosis compared with patients in the ICD-high subtype

(Figure 2C). Furthermore, as displayed in Figure 2D, the genomic

expression of ICD genes was compared in two clusters. Cluster C1

(n=383) was considered as ICD-high subtype for exhibiting a higher

expression of ICD genes while cluster C2 (n = 145) was considered

as ICD-low subtype. Differences of clinical features between the two

distinct subtypes were also plotted for visualization in Figure 2D.
Functional enrichment analyses

In order to investigate the potential molecular mechanism and

biological activity of ICD subtypes, subtype-related DEGs were figured

out for functional enrichment analysis for GO and KEGG analysis. GO

analysis demonstrated that DEGs were mainly involved in immune

response, regulation of immune system process, defense response, and

leukocyte activation (Figure 3A). KEGG analysis revealed that DEGs

were mainly enriched in cancer-associated pathways, including the

PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor

resistance, PD-L1 expression and the PD-1 checkpoint pathway in

cancer, and the chemokine signaling pathway (Figure 3B), implying

that immunogenic cell death acts as a crucial factor in the progression

of RCC. Moreover, GSEA based on KEGG, Hallmark, and Reactome

gene sets was used for further exploration. The results suggested that

immunity and cancer-related pathways were highly concentrated in the

ICD-high subtype, including the T- and B-cell receptor signaling

pathway, the p53 signaling pathway, IL2-STAT5 signaling, and

interleukin 1 and 17 signaling (Figures 3C–E).
Genomic alterations of different ICD
subtypes

The somatic mutation landscape was also analyzed in two subtypes

(Figures 4A, B). Although VHL, PBRM1, TTN, and SETD2 were the

most frequent mutations, the relative frequency varied among different

subtypes. We then analyzed the GISTIC scores and copy number gain/

loss percentage in the ICD-high and -low group. The result revealed

that the ICD-low subtype was more likely to have a higher GISTIC
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score (Figure 4C) and copy number gain/loss percentage (Figure 4D).

The burden of copy number gain and loss in the ICD-high group was

decreased compared with the ICD-low group at arm level while there

was no remarkable difference at focal level (Figures 4E, F). It appeared

that arm level copy number alterations mainly contributed to the

difference in ICD expression level.
Assessment of tumor immune
microenvironment and checkpoints in
distinct subtypes

Accumulating evidence revealed that ICD had significant

correlation with antitumor immunity. In our research, we

analyzed the tumor immune microenvironment of two subtypes
Frontiers in Immunology 0510
and discriminated immune-related characteristics between two

subtypes. We first calculated the TME status using the

ESTIMATE algorithm. As depicted in Figure 5A, the stromal

score, immune score, and ESTIMATE score (p< 0.05) were

significantly higher in the ICD-high subtype than those in the

ICD-low subtype while tumor purity was the opposite.

Then, we calculated the fraction of 22 kinds of tumor-

infiltrating immune cells (TIICs) through the CIBERSORT

algorithm and removed the low-expression cell line. Grouping

histogram showed the distribution of TIICs (Figure 5B).

Macrophages and T cells accounted the most for the total.

Pearson’s correlation was performed to analyze TIIC correlation

(Figure 5C). We next examined immune cell infiltration to assess

differences in the immune context of the tumor immune

microenvironment between two subtypes. The ICD-high subtype
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FIGURE 1

Acquisition of common ICD genes. (A) Venn diagram of the 73 common ICD genes. (B) Protein–protein interactions among the 73 common ICD
genes. (C) Visualization of the PPI network conducted on Cytoscape. (D) Visualization of the functional subnet module. (E) Heatmap of differentially
expressed ICD genes between normal and tumor samples in KIRC. * represents p< 0.05, ** represents p< 0.01, *** represents p< 0.001.
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showed high infiltration of CD8 T cells, activated CD4 memory T

cells, follicular helper T cells, regulatory T cells (Tregs), and M0

macrophages, while the ICD-high subtype was characterized by

high infiltration of resting CD memory T cells, monocytes, M1 and

M2 macrophages, and resting dendritic cells (Figure 5D).

Meanwhile, the expressions of HLA genes and immune

checkpoint genes were different among the distinct subtypes. The

result suggested that HLA genes (Figure 5E) and checkpoint genes

(Figure 5F) were markedly higher in the ICD-high subtype.
Construction and validation of the ICD
prognostic signature

For the purpose of predicting the prognosis accurately and

credibly, we constructed an ICD prognostic signature based on

supervised regression random forest algorithm. The top 10
Frontiers in Immunology 0611
significant genes—7 risk genes and 3 protect genes—were screened

out (Figures 6A-C). KM analysis were carried out on the 1,023

combinations of the top 10 genes (Table S2). We selected

the combination with the lowest p-value of KM analysis as ICD

prognostic signature containing TF, FOXP3, LY96, SLC7A11,

HSP90AA1, UCN, IFNB1, and TLR3. The ICD risk score was

calculated as follows: ICD score = (0.10917254 * TF) + (0.16458303

* FOXP3) + (0.90393805 * LY96) + (0.50920311 * SLC7A11) +

(−0.88020896 * HSP90AA1) + (0.99872821 * UCN) + (1.28833498 *

IFNB1) + (−0.78540411 * TLR3). We allocated patients into high-risk

and low-risk group according to their ICD risk score. KM survival

analysis was performed to determine the overall survival (OS) time

between different risk groups and ROC curve quantifying by AUC was

utilized to examine prognosis on the training set (TCGA cohort) and

validation set (E-MTAB-1980 cohort). According to our results,

patients with low ICD risk score demonstrated a prominent survival

benefit in both training set and validation set (Figures 6D, E). The AUC
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FIGURE 2

Construction of two ICD subtypes through consensus clustering. (A) Heatmap exhibits consensus clustering result for k = 2. (B) Consensus
clustering cumulative distribution function (CDF) and delta area under the CDF curve for k = 2 to k = 9. (C) Kaplan–Meier curves of OS in ICD-high
and ICD-low subtypes. (D) Heatmap of 73 ICD gene expression and clinical factors in different subtypes. Corresponding feature names are shown at
the right of the heatmap.
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curves showed that ICD risk score had an acceptable prognostic value

for KIRC patients. The AUC values for predicting 1-, 3- and 5-year OS

in the training set were 0.76, 0.72, and 0.76, respectively, and those in

the validation set were 0.68, 0.71, and 0.72 (Figures 6G, H).

Additionally, expressions of survival status and heatmap of each set

were also presented (Figures 6F, I).
Clinical features of the prognostic
ICD risk signature

After clinical information analysis, we first drew a heatmap to

illustrate the difference between two risk groups (Figure 7A). Then,

Chi-square test was performed to evaluate the clinical difference

between two risk groups. Grade, stage, T staging, and M staging

were considered to have a significant difference between the high-

and low-risk group whereas age and gender had no difference

(Figures 7B-G). Meanwhile, we further analyzed the correlation of

ICD risk score and four diverse clinical parameters. The boxplots

showed the substantially elevated ICD risk score in the higher grade,

stage, T staging, and M staging according to the p-value of

difference analysis between the groups (Figures 7H-K). Thus, it

was surprising that the value of ICD risk score had the capability to

assess tumor progression.
Frontiers in Immunology 0712
Establishment of nomogram to predict
patient prognosis

We applied univariate and multivariate Cox regression analyses to

explore independent prognostic factors. Clinicopathologic features

including age, gender, grade, and stage with ICD risk score were

displayed in the training set, which confirmed that ICD risk score was

an independent prognostic factor of KIRC (univariate Cox: HR: 2.758,

95% CI: 2.231–3.404, p-value< 0.001; multivariate Cox: HR: 2.095, 95%

CI: 1.671–2.827, p-value< 0.001, respectively) (Figures 8A, B). Owing to

the high correlation between ICD risk score and prognosis, clinical

parameters including age, N staging, and grade together with ICD risk

score were incorporated to construct a nomogram. All features in the

nomogram met the standard of p-value of proportional hazards

assumption greater than 0.05. The nomogram was utilized to

estimate 1-, 3-, and 5-year OS for KIRC patients (Figure 8C). As

shown in Figures 8D–F, calibration curves of 1, 3, and 5 years were

established to evaluate the performance of nomogram and presented

great accuracy between actual observations and predicted values.
Relation between ICD signature and tumor
immune microenvironment

Based on the findings above, we had confirmed the potential

role of ICD in antitumor immune response. The relation between
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FIGURE 3

Functional enrichment analysis of differentially expressed genes in different subtypes. (A, B) Lollipop plot of GO (A) and KEGG (B) signaling pathway
enrichment analysis. (C–E) GSEA analyses based on KEGG (C), Hallmark (D), and Reactome (E) gene sets.
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ICD risk score and TIICs was scrutinized. The results demonstrated

that patients with elevated ICD risk score exhibited a negative

correlation with CD8 T cells, follicular helper T cells, activated NK

cells, and a positive correlation with M0 macrophages (Figure 9A).

The validation cohort showed the same tendency (Figure 9B).

To investigate the role of ICD risk score on response to

immunotherapy, we used TIDE (http://tide.dfci.harvard.edu)

analysis to quantify the rate of response to TIDE score for each

patient. The results showed that the high-risk group had a higher

percent of non-responder patients (Figure 9C). Notably,

immunotherapy responder patients showed a lower ICD score

compared with non-responder patients (p-value< 0.05)

(Figure 9D). In addition to TIDE prediction, we also compared

the expression profile of two risk groups with a published dataset

containing 47 patients with melanoma that responded to

immunotherapies. As for our result, the high-risk group was

more conceivable to respond to anti-PD-1 therapy with the

Bonferroni-corrected p-value of 0.011 (Figure 9E).
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Prediction of small molecular drug

We employed the Connectivity Map (CMap) tool, which was

widely used to discover potential small molecular drugs, with 150

up- and downregulated DEGs between two risk groups. We finally

identified 12 candidate small molecular drugs with absolute CMap

score > 90, namely, fostamatinib, YC-1, NM-PP1, torin-2,

tipifarnib-P2, apigenin, SB-431542, cycloheximide, amonafide,

linifanib, piperacillin, and ochratoxin-a (Table 1).
LY96 promotes the proliferation of
KIRC in vitro

The eight ICD signature genes’ expression was analyzed by

qRT-PCR in nine pairs of KIRC and adjacent tissues (Figure S1).

We measured the mRNA expression of LY96 in human renal cortex

proximal convoluted tubular epithelial cell (HK-2) and two human
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FIGURE 4

Comparison of genomic alternations between different subtypes. (A, B) Oncoprint display of the 10 most frequently mutated genes in the ICD-high
subtype (A) and ICD-low subtype (B). (C, D) Comparison of GISTIC score (C) and gain/loss percentage (D) of copy number profiles between different
subtypes. (E) Focal level of CNV burden between two subtypes. (F) ICD-low subtype showed a higher arm level of CNV burden. *** represents p< 0.001.
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KIRC cell lines (786-0 and 769-P), and the highest expression was

found in 786-O (Figure 10A). To evaluate the biological roles of

LY96 in KIRC, small interfering RNA (siRNA) that specifically

target LY96 was designed. According to the expression of LY96 in

different cell lines, siRNA-LY96 was transfected into 786-O. The

knockdown efficiency was confirmed by qRT-PCR analyses, which
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showed that more than 50% LY96 was knockdown. As shown in

Figure 10B, the expression levels of LY96 were significantly

decreased in siRNA-infected 786-O cells compared to negative

control (NC) cells. CCK-8 and colony formation experiments

demonstrated that downregulation of LY96 inhibited the

proliferation ability of 786-O cells (Figures 10C, D).
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FIGURE 5

Immune landscape of different ICD subtypes. (A) Violin plots of ESTIMATE, immune, stromal scores, and tumor purity of ICD-high and -low
subtypes. (B) Relative proportion of immune infiltration. (C) Correlation heatmap of 21 immune cells. (D–F) Box plots of differential expression of 21
immune cells (D), HLA genes (E), and immune checkpoints (F) between ICD-high and -low subtypes. *, **, ***, and **** represent p< 0.05, p< 0.01,
p< 0.001, and p< 0.0001, respectively.
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Discussion

Cancer immunotherapy has made a revolution in cancer treatment

through establishing a connection between the human immune system

and cancer (26). Various types of immunotherapies, including cellular

or antibody therapy (27), immune checkpoint therapy (28), CAR T-cell

therapy (29), and cancer vaccination (30), have been applied to KIRC

patients (31). ICD is a kind of RCD and considered sufficient to activate

an adaptive immune response (32, 33). The mechanism of action

encompasses the release of DAMPs, which can be recognized by innate

pattern recognition receptors (PRRs) from dying tumor cells, which

results in tumor-specific immune response (34). In addition, numerous

drugs in other kinds of radiation therapy, chemotherapy, or

immunotherapy have the potential to augment ICD (35). Overall, we
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believed that ICD therapy together with other therapies will be greatly

beneficial for cancer treatment.

Our research identified 73 core ICD genes through searching

previous studies and public databases. Consensus clustering analysis

was applied to split patients into two subtypes based on ICD gene

expression. Our research revealed that the ICD-low subtype tended to

have a favorable clinical outcome.We then screened the DEGs between

high and low subtypes of ICD and used them in biological function and

pathway enrichment analyses. Based on the results of enrichment

analysis, DEGs were mainly enriched in biological functions such as

immune response, regulation of immune system process, defense

response and leukocyte activation, and pathways associated with

immunity and cancer-related signaling pathways, including the

PI3K-Akt signaling pathway, P53 pathway, IL2-STAT5 signaling
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FIGURE 6

Construction and validation of the ICD prognostic signature. (A) Volcano plot of prognosis-related ICD genes preliminarily identified by univariate
Cox analysis with the screening criteria p< 0.05. The red icons represent risk factors (HR > 1), and the blue icons represent protective factors (HR< 1).
(B) The top 10 important ICD genes based on the relative importance calculated by random forest algorithm. (C) Sankey diagram demonstrated the
prognosis effect of top 10 important ICD genes. (D-F) Kaplan–Meier curve of OS prognosis (D), timeROC plot (E), and risk plot including risk score
distribution, survival status, and heatmap of eight signature genes (F) in the training set. (G, I) Kaplan–Meier curve of OS prognosis (G), timeROC plot
(H), and risk plot including risk score distribution, survival status, and heatmap of eight signature genes (I) in the validation set.
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pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer,

and B-cell receptor signaling pathway. STAT5 is regulated by the IL-2

family and significantly contributes to tumor cell survival and

malignant progression of disease through influencing NK cell (36).

P53 plays a key role in cancer-cell-autonomous functions. The loss of

P53 can lead to the decrease of recruitment and activity of myeloid and

T cells, and eventually result in immune evasion (37). Alissa

Chackerian’s team suggested that ICD can be induced by dinaciclib

and enhance anti-PD1-mediated tumor suppression (38).

Furthermore, tumor immune infiltration landscape was

calculated by the ESTIMATE and CIBERSORT algorithms. The

score calculated by ESTIMATE for the two subtypes revealed that
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the ICD-high subtype was negatively correlated with tumor purity

and positively correlated with immune, stromal, and estimate

scores. Thus, HLA and checkpoint genes showed considerably

high expression in the ICD-high subtype.

The ICD prognostic signature was built with TF, FOXP3, LY96,

SLC7A11, HSP90AA1, UCN, IFNB1, and TLR3 to predict the

prognosis by quantification metric. Patients in the high-risk

group had significantly poorer prognosis compared with the low-

risk group according to the KM survival analysis and ROC curve,

and an external dataset was introduced for validation. We evaluated

and found a significant correlation between risk score and clinical

factors such as grade, stage, T staging, and M staging. Moreover,
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FIGURE 7

Clinical relevance of the ICD prognostic signature. (A) Heatmap of clinical factors in different risk groups. (B-G) Clinical differences between high and
low risk groups including age (B), gender (C), grade (D), stage (E), T staging (F), and M staging (G). (H-K) ICD score differences between groups of
grade (H), stage (I), T staging (J), and M staging (K). *** represents p< 0.001.
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CD8 T cells, follicular helper T cells (Tfh), and activated NK cells

showed a negative correlation with risk score whereas M0

macrophages showed a positive correlation. Tfh cells were

accepted as a distinct lineage of helper CD4 T cells. Tfh is

associated with the presence of tertiary lymphoid structures

(TLS), which were commonly linked to better outcome (39, 40).

It was reported by Timothy W. Hand and colleagues that Tfh cells

promote the formation of TLS and drive antitumor immunity in

colorectal cancer (41). In addition, Julie Niogret’s team revealed that

Tfh cells significantly contribute to CD8-dependent antitumor

immunity and anti-PD-L1 efficacy (42). Our findings indicated

that our signature was a good predictor of immunotherapy response

rate. We then validated these results through TIDE analysis. A

lower percentage of responders was observed in the high-risk group

compared with the low-risk group. The result of submap analysis
Frontiers in Immunology 1217
dramatically showed the better response of the high-risk group to

anti-PD-1 therapy. Subsequently, we predicted the potential useful

small molecular drugs through CMap analysis.

According to results of Cytoscape and supervised regression

random forest algorithm, we determined LY96 (Lymphocyte

antigen 96) as a hub gene to ICD in KIRC. LY96, also known

as myeloid differentiation 2 (MD2), is a co-receptor to TLR4.

LY96 is considered to play a key role in inflammation and

immune-related diseases such as rheumatoid arthritis, Crohn’s

disease, and inflammatory diabetic cardiomyopathy (43–45).

Several studies have shown that LY96 is correlated with

tumorigenesis and progression (46). The interaction of LY96

and TLR4 promotes the release of pro-inflammatory cytokines

and adhesive molecules, which accelerates colon cancer growth

and lung metastasis (47). In gastric cancer, LY96 can activate
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FIGURE 8

Independent prognostic factors and nomogram model. (A, B) Outcomes of univariate prognostic analysis (A) and multivariate prognostic analysis (B).
(C) Nomogram for evaluating the possibility of KIRC patients mortality at 1, 3, and 5 years. (D–F) Calibration for assessing the conformity between
nomogram OS and observed OS at 1 year (D), 3 years (E), and 5 years (F). ** represents p< 0.01, *** represents p< 0.001.
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FIGURE 9

Correlation of ICD prognostic signature with immune cells and immunotherapy responses. Scatter plots revealed the correlation between risk score
and infiltration of CD8 T cells, follicular helper T cells, activated NK cells, and M0 macrophages in the training set (A) and validation set (B). (C) The
immunotherapy responders had a higher percentage in the low risk group. (D) The immunotherapy responders had a lower risk score. (E) Submap
analysis manifested the sensitivity of patients in different risk groups to PD1 and CTLA4 therapy.
TABLE 1 Candidate small molecular drugs analyzed by CMap tools.

Name Score MOA Target

Fostamatinib 97.92 SYK inhibitor SYK, FLT3, RET

YC-1 96.26 Guanylyl cyclase activator HIF1A, GUCY1A2, GUCY1A3, GUCY1B3

NM-PP1 94.11 Mutant kinase inhibitor CAMK2A, LCK, MAPK8, PRKACA, RIPK2, SRC

Torin-2 93.59 MTOR inhibitor MTOR

Tipifarnib-P2 93.37 Farnesyltransferase inhibitor FNTA, FNTB

Apigenin 90.81 Casein kinase inhibitor, cell proliferation inhibitor, cytochrome
P450 inhibitor

AKR1B1, AR, CDK6, CFTR, CYP19A1, CYP1A2, CYP1B1, HSD17B1,
MAOA, ODC1, XDH

SB-431542 90.08 TGF beta receptor inhibitor TGFBR1, ACVR1C, ACVR1B

Cycloheximide −93.2 Protein synthesis inhibitor GSK3B, RPL3

Amonafide −95.98 Topoisomerase inhibitor TOP2A, TOP2B

Linifanib −96.26 PDGFR receptor inhibitor, VEGFR inhibitor CSF1R, KDR, PDGFRB, FLT1, FLT3, FLT4, CSF1, KIT, PDGFRA, RET,
TEK

Piperacillin −97.5 Bacterial cell wall synthesis inhibitor none

Ochratoxin-a −97.88 Phenylalanyl tRNA synthetase inhibitor SLC22A6
F
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macrophage-mediated NF-kB and STAT3 pathways to promote

tumor progression (48). The result of qRT-PCR validated the

upregulated expression of LY96 in RCC cell lines and clinical

samples . Addit ional ly , CCK-8 and colony formation

experiments demonstrated that downregulation of LY96

inhibited the proliferation ability of 786-O cells. We also

validated the different expression of all signature genes in tissues.

In conclusion, our research evaluated the associations of

prognosis, biological function and pathways, and immune

infiltration landscape with ICD subtypes in KIRC. Furthermore,

we constructed a prognosis-related ICD signature based on TF,

FOXP3, LY96, SLC7A11, HSP90AA1, UCN, IFNB1, and TLR3. The

signature was verified to have an independent prognostic value and

provided an exact survival prediction. In addition, we determined

LY96 as a potential biomarker. Based on previous studies, our

research might provide a theoretical basis for the development of a

novel immunotherapy for the treatment of KIRC. However, several

limitations remain to be addressed in our study. The cohort in

research mainly comprise Western samples, which may influence
Frontiers in Immunology 1419
the usability of the findings to other populations. Further clinical

trials were also required to verify our conclusion.
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FIGURE 10

LY96 promotes the proliferation of ccRCC in vitro. (A) qRT-PCR verified the expression level of LY96 in RCC cell lines. (B) qRT-PCR analysis of LY96
mRNA in 786-O cells treated with negative control (NC) or LY96 siRNA. (C) CCK-8 was performed to determine the proliferation abilities of 786-O
cells treated with negative control (NC) or LY96 siRNAs. (D) Colony formation was performed to determine the proliferation abilities of 786-O cells
treated with negative control (NC) or LY96 siRNAs. ** represents p< 0.01, *** represents p< 0.001.
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Peripheral blood CD3+HLADR+
cells and associated gut
microbiome species predict
response and overall survival to
immune checkpoint blockade

Joao Gorgulho1,2, Christoph Roderburg3,4, Fabian Beier4,5,
Carsten Bokemeyer1, Tim H. Brümmendorf4,5, Tom Luedde3,4*†

and Sven H. Loosen3,4*†

1Department of Oncology, Hematology and Bone Marrow Transplantation with Section of
Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany, 2Mildred Scheel
Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany, 3Department of Gastroenterology, Hepatology and Infectious
Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf,
Düsseldorf, Germany, 4Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf
(CIOABCD), Aachen, Germany, 5Department of Medicine IV, University Hospital Rheinisch Westfällisch
Technische Hochschule (RWTH) Aachen, Aachen, Germany
Background: The search for biomarkers to identify ideal candidates for immune

checkpoint inhibitor (ICI) therapy is fundamental. In this study, we analyze

peripheral blood CD3+HLADR+ cells (activated T-cells) as a novel biomarker

for ICI therapy and how its association to certain gut microbiome species can

indicate individual treatment outcomes.

Methods: Flow cytometry analysis of peripheral mononuclear blood cells

(PBMCs) was performed on n=70 patients undergoing ICI therapy for solid

malignancies to quantify HLA-DR on circulating CD3+ cells. 16s-rRNA

sequencing of stool samples was performed on n=37 patients to assess

relative abundance of gut microbiota.

Results: Patients with a higher frequency of CD3+HLADR+ cells before

treatment initiation showed a significantly reduced tumor response and overall

survival (OS), a worst response and experienced less toxicities to ICI therapy. As

such, patients with a frequency of CD3+HLADR+ cells above an ideal cut-off

value of 18.55% had a median OS of only 132 days compared to 569 days for

patients below. Patients with increasing CD3+HLADR+ cell counts during

therapy had a significantly improved OS. An immune signature score

comprising CD3+HLADR+ cells and the neutrophil-lymphocyte ratio (NLR)

was highly significant for predicting OS before and during therapy. When allied

to the relative abundance of microbiota from the Burkholderiales order and the

species Bacteroides vulgatus, two immune-microbial scores revealed a

promising predictive and prognostic power.

Conclusion:We identify the frequencies and dynamics of CD3+HLADR+ cells as

an easily accessible prognostic marker to predict outcome to ICIs, and how these

could be associated with immune modulating microbiome species. Two
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unprecedented immune-microbial scores comprising CD3+HLADR+, NLR and

relative abundance of gut bacteria from the Burkhorderiales order or Bacteroides

vulgatus species could accurately predict OS to immune checkpoint blockade.
KEYWORDS

PD-1, HLA-DR, checkpoint inhibitors, microbiome, prognosis, biomarker
Introduction

Immune checkpoint inhibitors (ICI) contributed to a drastic

change in the landscape of cancer therapy, giving hope to many

advanced cancer patients, which are now able to achieve improved

response and overall survival (1–3). Currently, more than 8 different

such agents have been approved for a wide spectrum of cancer

entities (4). Nonetheless, many patients only experience toxicities

and/or fail to respond to ICI therapy. The question, which patients

would mostly benefit from immune checkpoint blockade, remains

yet unanswered, despite countless studies identifying different

biomarker candidates. Among these are peripheral blood-based

biomarkers such as specific lymphocyte subpopulations (5) and

the neutrophil-to-lymphocyte ratio (NLR) (6), as well as the relative

abundance of diverse taxa in the gut microbiome with a certain

heterogeneity across cohorts (7).

The human leukocyte antigen-DR isotype (HLA-DR) is a major-

histocompatibility complex class II (MHC-II) molecule present on the

surface of antigen presenting cells (APCs), which together with a

foreign peptide constitute a ligand for T-cells and engage T-cell

response. It is known as an immune stimulation and late activation

marker (8) for T-cells. CD3+HLADR+ cells are deemed as activated T

lymphocytes, which are upregulated in autoimmune diseases (9) and

HIV infection (10). In cancer patients they have had divergent results,

with high CD3+HLADR+ levels being associated with shorter relapse-

free survival in Hodgkin and non-Hodgkin lymphoma (11, 12), but

with better response to neoadjuvant therapy in breast cancer (13).

Studies assessing HLA-DR expression on lymphocytes as a potential

biomarker for ICI therapy are scarce and focus mainly on single tumor

entities (14).

The gut microbiome, which shows tremendous immune

modulatory effects, mediated through different species (7), has

recently emerged as another field of interest in terms of
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FMT, Fecal Microbiota
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jor Histocompatibility

OS, Overall Survival;

al Blood Mononuclear

Survival; PR, Partial

l Burden; UICC, Union

0223
predicting response to immune checkpoint blockade. An active

manipulation of the human microbiome through dietary

interventions (15) or fecal microbiota transplantation (FMT)

seems to increase efficacy to ICI therapy, and can even, in some

cases, overcome a prior resistance to PD-1 and CTLA-4 antibodies

(16). However, an association between activated T cells and specific

microbiome species have, to our knowledge, not been studied. In

the present analysis, we evaluate the prognostic role of CD3

+HLADR+ cell frequencies and its dynamics during ICI therapy

and analyze how they correlate with the relative abundance of

microbiome species that could influence HLA-DR expression.

Patients and methods

Study population

70 patients with advanced stage solid neoplasia were

prospectively recruited at the interdisciplinary cancer outpatient

clinic at the University Hospital RWTH Aachen from August 2017

to September 2019 (see Table 1 for patient characteristics) before

undergoing ICI therapy, as described before (17). The study was

conducted in accordance with the ethical standards laid down in the

1964 Declaration of Helsinki and its later amendments and the

protocol was approved by the ethics committee of the University

Hospital RWTH Aachen, Germany (EK 206/09) with all patients

delivering written informed consent.
Determination of response to ICI therapy

Patients were regularly consulted by a trained oncologist prior to

each therapy cycle. Determination of response to ICI therapy was based

on clinical and radiological evaluation by CT scan approximately every

three months, evaluated by at least two independent experienced

radiologists. Based on the assessment, patients were stratified into

two groups: patients with a complete response (CR), partial response

(PR) and stable disease (SD) were included in the “disease control”

(DC) group, while the ones who exhibited progressive disease (PD)

were enrolled in the “non-DC” group.
Assessment of peripheral PBMC subsets

One peripheral blood EDTA tube was drawn per patient (n=70)

prior to ICI therapy initiation, at an early (after one to two cycles,
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n=51) and late time-point (after three to five cycles, n=47) during

therapy. Freshly isolated cells were lysed using the Immunoprep

Reagent System (Beckman Coulter) and staining was performed

with two different flow cytometry panels. Panel 1 was stained with

the antibody mix CD45-FITC/CD56-PE/CD19-ECD/CD3-PC5, to

which the antibody CD-16 PE was added, and panel 2 was stained

with the antibody mix CD45-FITC/CD4-PE/CD8-ECD/CD3-PC5,

to which the antibody HLA-DR-PC7 was added (all antibodies from

Beckman Coulter, Krefeld, Germany), according to manufacturer´s
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instructions. Flow-cytometry analysis was carried out and analyzed

using NAVIOS cytometer and analysis software (Beckman Coulter).

These analyses were performed within the clinical routine

diagnostics of immune status by the hematological laboratory of

the department of medicine IV of the University Medical Center

Aachen, which includes standardized gating strategy to distinguish

B cells (CD19+), NK cells (CD3-CD56+CD16+), and T cell subsets

(CD3+CD4+, CD3+CD8+, CD3+CD56+CD16+, CD3+HLA-DR+)

(Supplementary Figures 1A–D).
TABLE 1 Patient characteristics.

Parameter Study cohort Subgroup of patients for microbiome analysis

Cancer patients n=70 n=37

Sex [%]:

male-female 70.0 - 30.0 64.9 – 35.1

Age [years, median and range] 67.0 [38-87] 67.4 [38-87]

BMI [kg/m2, median and range] 24.4 [15.9-42.3] 25.2 [15.9-40.0]

Tumor entity [%]

NSCLC
Melanoma
Urogenital tract
GIT
Head and neck
Other malignancies

34.2
20.0
12.9
14.3
10.0
8.6

29.7
29.7
13.5
10.8
5.4
10.8

Staging [%]

UICC III
UICC IV

10.0
90.0

13.5
86.5

ECOG PS [%]

ECOG 0
ECOG 1
ECOG 2
ECOG 3

7.1
54.2
37.2
1.5

13.5
59.5
27.0
0.0

Therapeutic agent [%]

Nivolumab monotherapy
Pembrolizumab monotherapy
Nivolumab/Ipilimumab
Other (Avelumab, Durvalumab)

61.4
22.9
8.6
7.1

59.5
16.2
13.5
10.8

Smoker status [%]

Never
Yes, ex
Yes, present
Unknown

10.0
41.4
14.3
34.3

13.5
37.8
10.8
37.8

Prior therapy [%]

Yes
No

67.1
32.9

56.9
43.2

Side effects [%]

Any
CTC G3 or higher

38.6
7.1

45.9
10.8
BMI, body mass index; ECOG PS, “Eastern Cooperative Oncology Group” performance status, NSCLC, non-small cell lung cancer; GIT, gastrointestinal tract; CTC, common toxicity criteria.
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16s rRNA sequencing of stool samples and
amplicon sequence analysis

Stool samples were obtained from n=37 patients before

initiation of therapy and from n=15 patients after three to five

cycles during therapy using a stool collection tube with 8ml DNA

stabilization Buffer (Stratec Molecular GmbH, Berlin, Germany)

and frozen aliquots were preserved at -80°C until further

processing. Samples were sequenced at the ZIEL Institute for

Food & Health Core Facility Mikrobiom/NGS (Freising,

Germany) according to methods described before (18). Shortly,

bead-beating and heat-treatment were used for cell lysis and gDNA

columns (Macherey-Nagel, Düren, Germany) were employed to

purify metagenomic DNA. The V3/V4 region of 16 S ribosomal

RNA (rRNA) genes was amplified (25 cycles) from 24 ng DNA

using primers 341F and 785R49. After purification using the

AMPure XP system (Beckmann Coulter Biomedical GmbH),

sequencing was carried out in paired-end mode (PE275) with

pooled samples using a MiSeq system (Illumina, Inc., San Diego,

California, USA) following the manufacturer’s instructions and a

final DNA concentration of 10 pM and 15% (v/v) PhiX standard

library. The generated raw read files were pre-processed using the

IMNGS platform (19), a pipeline based on the UPARSE approach

(20) to build sample-specific sequence databases and OTU-based

profiles. We then further analyzed generated data using the Rhea

pipeline in R studio version 1.2.5, a set of R scripts for analysis of

Operational Taxonomic Units (OTUs) (21). Only OTUs with a

relative abundance > 0.5% total sequences in at least one sample

were further analyzed. For precise identification of certain OTU

sequences, the EzBioCloud database was used (22).
Statistical analysis

Shapiro-Wilk-Test was used to check for normal distribution of

the data. By employing the Mann-Whitney-U-Test and Kruskal-

Wallis-H-Tests, non-parametric data were compared. The median,

quartiles and ranges of these data are displayed in box plot graphics.

Kaplan-Meier curves aided in demonstrating the influence of a

specific parameter on OS. The Log-rank test was used to evaluate

statistical differences between subgroups. Repeated measures

ANOVA was used for longitudinal analyses of CD3+HLADR+

frequencies at the three time-points (before ICI treatment, early

and late time-point), reporting the main F-test. For calculation of

the optimal cut-off of CD3+HLADR+ cell frequencies and counts,

NLR and relative abundances of specific microbiome taxa to

discriminate between short- and long-term survivors, the “Charité

cut-off finder” was applied, which fits Cox proportional hazard

models to the dichotomized survival status (deceased or alive) as

well as the survival time (duration between first ICI administration

and death/last follow-up) and defines the optimal cut-off as the

value with the most significant split in log-rank test (23). In

addition, uni- and multivariate Cox-regression was performed

with parameters with a p-value of <0.100 in univariate testing

being included into multivariate testing. The hazard ratio (HR) and
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the 95% confidence interval are displayed. Gut microbiome analysis

was performed using the Rhea pipeline (21), mainly the

normalization (to account for differences in sequence depth),

beta- (computed based on generalized UniFrac distances) (24)

and alpha-diversity (on the basis of species richness and Shannon

effective diversity) (25), as well as taxonomic binning steps (using

SILVA and RDP classifier) (26, 27). The Spearman correlation

coefficient was used for correlation analyses between flow cytometry

data and relative abundances of specific taxa in the gut microbiome.

All statistical analyses were performed using SPSS 23 and 25 (SPSS,

Chicago, IL, USA) and R studio version 1.2.5 (Posit PBC, Boston,

MA, USA). A p-value of < 0.05 was considered statistically

significant (* p < 0.05; ** p < 0.01; *** p < 0.001).
Results

Characteristics of the study population

70 patients with advanced solid malignancies receiving ICI

therapy were included (detailed characteristics are shown in

Table 1). The median age was 67.0 years (range 38 to 87 years).;

70.0% were males. The predominant cancer entity was NSCLC

(34.2%), followed by malignant melanoma (20.0%), urogenital

cancer (12.9%), GI-cancers (14.3%), head and neck tumors

(10.0%) and others (8.6%). Only patients in UICC stadium III

(10.0%) and IV (90.0%) were recruited. Immune related adverse

effects (IRAE) of any grade were experienced by 38.6% of patients

and 7.1% experienced IRAE graded ≥3. All patients were treated

with immune checkpoint inhibitors only. Of all 70 patients, a

subgroup of 37 and 16 patients were available for stool

microbiome analyses at baseline and at 3 months after treatment

initiation (see Table 1).
Baseline frequencies of peripheral blood
CD3+HLA-DR+ cells significantly predict
toxicity, response at 6 months and survival
at 6 months after initiation of immune
checkpoint blockade

First, we assessed differences between pretreatment CD3

+HLADR+ cell frequency between ICI-responders (DC) and non-

responders (non-DC) three and six months after therapy initiation.

In this case, only a non-significant trend towards a higher CD3

+HLADR+ cell frequency in non-responders compared to

responders could be observed after 3 months, however a clear

association between a better therapy response and lower

pretherapeutic CD3+HLA-DR+ cell frequencies (p3months=0.051,

p6months=0.008, Figures 1A, B) was observed. When looking at 3-

and 6-months-survival, patients who were still alive six months

after treatment initiation had a significantly lower initial CD3

+HLA-DR+ cell frequency compared to non-survivors (p=0.003,

mediansurvivor=6.65%, mediandeceased=11.15%), while a similar trend

towards lower CD3+HLADR+ cell frequency among patients who
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died within the first three months became apparent (p=0.067,

Figure 1C, D).

In a further step, we looked at differences in CD3+HLADR+ cell

frequencies with respect to treatment-related adverse events.

Interestingly, patients not experiencing IRAE of any grade had

s ign ificant ly h igher CD3+HLADR+ ce l l f r equenc ie s

(medianyes=6.60% vs. medianno=10.00%, p=0.043, Figure 1E).

Notably, in our cohort, patients who experienced IRAE of any

type showed an improved overall survival (p<0.001, Figure 1F).

However, the presence of HLA-DR expressing T cells before

treatment failed to predict iRAE graded 3 or higher among all

patients (p=0.595, Figure 1G).
Frequencies of peripheral blood CD3
+HLADR+ cells are comparable across
different clinical characteristics but
associated with the ECOG performance
status and can be influenced by the
ICI regimen

For further characterization of the predictive role of CD3

+HLADR+ values in ICI therapy, these were evaluated according

to different clinical characteristics. Regarding tumor entity, sex,

tumor stadium (UICC), smoking status and whether patients had

previous lines of systemic therapy, no significant differences could

be observed (Supplementary Figures 2A–E). Notably, there was a

significantly higher peripheral blood CD3+HLADR+ frequency in
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patients with a higher ECOG performance status compared to

patients with a lower ECOG performance status (p=0.026,

Supplementary Figure 2F). Despite observing no significant

difference between CD3+HLADR+ cell frequencies at baseline

with respect to the administered ICI agent (Supplementary

Figure 2G), HLADR+ cell frequencies were significantly higher at

the early time-point in patients receiving a combined anti-PD-1/

CTLA immune checkpoint blockade with Nivolumab and

Ipilimumab (p=0.036, Supplementary Figure 2H).
Pretreatment circulating CD3+HLADR+
frequencies are an independent predictor
of overall survival to ICI therapy

Based on the predictive power of activated T cells regarding 3-

and 6-months-survival, we next took a deeper look at the prognostic

role of these cells with respect to OS using Kaplan-Meier-curve

estimates. In a first step, patients were split into two groups based

on the median frequency of these cells. Interestingly, the median

CD3+HLADR+ frequency (9.1%) at baseline significantly

discriminated between short- and long-term survivors (p=0.035,

Figure 2A). Since the median is likely not ideal to discriminate

patients regarding OS, we then applied the Charité cut-off finder

(further described in Patients and Methods) to establish a

prognostically highly relevant cut-off value for CD3+HLADR+

cell frequencies (18.5%). Patients with a pretreatment CD3

+HLADR cell frequency below this ideal cut-off survived
B C D

E F G

A

FIGURE 1

CD3+HLADR+ cell frequencies before ICI therapy significantly predict OS, response and toxicity. (A, B) High CD3+HLADR+ cell frequencies in the
peripheral blood at baseline indicate a worse response to ICI therapy at 3 and 6 month (p3months=0.051, p6months=0.008). (C, D) High baseline CD3
+HLADR+ cell frequencies indicate poor 3 and 6 months survival under immune checkpoint blockade (p3months=0.067, p6months=0.003). (E) Baseline
CD3+HLADR+ cell frequencies are higher among patients who develop immune related adverse events (IRAE) under ICI therapy (p=0.043). (F)
Overall survival is lower in patients who do not develop any grade of IRAE (median OS: 151 days vs. “not reached”, p<0.001). (G) Baseline frequencies
of CD3+HLADR+ cells do not differ between patients experiencing IRAE ≥ grade 3 and patients who do not (p=0.595). *: significant (p<0.05); **:
highly significant (p<0.01); n.s.: not significant (p>0.05).
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significantly longer (median 569 days) than patients above this

threshold (median 132 days, p<0.001, Figure 2B).

For further characterization of the role of CD3+HLADR+ cell

frequencies as independent predictors of OS, we applied uni- and

multivariate Cox-regression analyses. Univariate Cox-regression

further sustained our hypothesis that the frequency of CD3

+HLADR+ cells acts as a potent prognostic predictor in patients

undergoing immune checkpoint blockade (HR: 1.068 [95%CI: 1.037

– 1.099], p<0.001, Table 2). Next, we included several prognostically

relevant parameters such as CD3+CD8+ cell frequencies at baseline,

ECOG PS, Hemoglobin, AST and ALT (p<0.110, Table 2) into

multivariate Cox-regression analysis, which revealed peripheral

blood CD3+HLADR+ cell frequencies as an independent

predictor for OS in patients before commencement of ICI therapy

(HR: 1.054 [95%CI: 1.007-1.103], p=0.024, Table 2).
Frequency of CD3+HLADR+ cells during
ICI treatment can predict overall survival

Consequently, we evaluated the relevance of circulating

activated T cells throughout therapy using two further time

points beyond the baseline: an early time-point (after only one or

two cycles of therapy, n=51) and a late time-point (after three to five

cycles of therapy, n=47). First, we looked at how ICI could influence

the abundance of these circulating cells during therapy. By

employing repeated measures ANOVA analysis comprising the

three time-points we could show that there was no significant
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effect across all time-points (F (1.35, 48.65) = 1.686, p=0.201,

Figure 2C), however a significant difference could be

demonstrated in the post hoc pairwise comparison using the

Bonferroni correction between the baseline and the early-time

point (p=0.015). As pretreatment frequencies of activated T cells

were strong predictors of OS, we next hypothesized that

longitudinal values could also be prognostically relevant and serve

to monitor therapy during its course. As before, we calculated

optimal cut-off frequencies of circulating CD3+HLADR+ cells at

the early and late-time points (frequency of CD3+HLADR+early:

18.0%, frequency of CD3+HLADR+late: 8.9%). As hypothesized,

patients with a frequency of activated T-cells above the ideal cut-off

survived significantly shorter than patients with frequencies below

(pearly=0.008, HRearly: 2.790 [95%CI: 1.261-6.177], p=0.011;

plate=0.024, HRlate: 2.714 [95%CI:1.104-6.667], p=0.030,

Figures 2D, E). Next, we looked at how the ICI-induced dynamics

of these frequencies (increasing/decreasing between baseline and

early/late time-point) predicted OS. Notably, patients with

increasing frequencies of CD3+HLADR+ cells between baseline

and the early as well as late time points showed a significantly

improved overall survival, with patients with increasing levels living

a median of 587 days (D baseline/early time-point) and for

Dbaseline/late time-point not reaching their median OS, while

patients with decreasing frequencies of activated T cells had a

median OS of only 162 and 292 days, respectively (pearly/

baseline=0.019, HRearly/baseline: 2.338 [95%CI: 1.126-4.854], p=0.023,

plate/baseline=0.032, HRlate/baseline: 2.423 [95%CI: 1.052-5.576],

p=0.018, Figures 2F, G).
B C

D E

F G

A

FIGURE 2

Baseline and longitudinal frequencies of circulating CD3+HLADR+ cells predict overall survival to immune checkpoint blockade. (A) Patients with
baseline CD3+HLADR+ cell frequencies above the median (9.1%) have a significantly impaired overall survival (OS, p=0.035). (B) A baseline CD3
+HLADR+ cell frequency above the ideal cut-off value (18.5%) indicate a significantly reduced median OS (132 vs. 569 days, p<0.001). (C)
Frequencies of CD3+HLADR+ cells significantly increase from baseline to the early-time point (p=0.015) but remain unaltered thereafter (error bars
indicate SEM). (D, E) Patients with CD3+HLADR+ cell frequencies above the ideal cut-off at the early and late time-point have a significantly
impaired OS (pearly=0.008, plate=0.024). (F, G) Increasing CD3+HLADR+ cell frequencies between baseline and the early or late time-point indicate a
better outcome (pbaseline/early=0.019, pbaseline/late=0.032). *: significant (p<0.05); **: highly significant (p<0.01); n.s.: not significant (p>0.05).
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Frequency of CD3+HLADR+ cells predict
toxicity, response and overall survival in
patients undergoing monotherapy with a
single ICI agent

Bearing in mind that, in our study, patients undergoing dual

blockade contribute majorly to the significant increase in CD3

+HLADR+ cell frequencies after the first cycle of therapy (Figure

2C, Supplementary Figure 2G–H), we have performed an analysis of

response, OS and toxicity in patients undergoing ICI monotherapy

(n=64) (Supplementary Table 2). As seen in the table, we could

show that the role of CD3+HLADR+ cell frequencies in the

peripheral blood towards predicting response (p3months=0.089,

p6months=0.016), and toxicity (p=0.109) and OS remains (Ideal cut

off: 18.5%, median OS 587 vs. 132 days, p<0.001, HR: 5.003 [95%CI:

2.308-10.845], p<0.001), even when regarding longitudinal values

and their dynamics (pearly<0.001, HRearly: 4.508 [95%CI:1.860-

10.925], plate=0.031, HRlate: 2.640 [95%CI:1.056-6.603]; pearly/

baseline=0.035, HRearly/baseline: 2.240 [95%CI: 1.038-4.830], p=0.040,

plate/baseline=0.038, HRlate/baseline: 2.410 [95%CI: 1.024-5.673],

p=0.044), despite the exclusion of patients undergoing dual

immune checkpoint blockade (n=6). The calculated ideal cut-offs

using the Charité cut-off finder are the same for both patient

populations (single agent vs. all). We then compared OS using
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Kaplan Meier estimates of monotherapy vs dual therapy patients,

showing no significant differences (p=0.677).
An immune signature score comprising
CD3+HLADR+ cell frequencies and the
neutrophil-to-lymphocyte ratio is a highly
significant OS predictor

The NLR, a well investigated biomarker for patients undergoing

ICI (6), was validated in our cohort as a predictor of OS for all three

time-points (baseline, early and late time-points), when using its

respective ideal cut-off value (NLRbaseline:4.37, pbaseline<0.001;

NLRearly:3.95, pearly=0.049; NLRlate:6.33, plate=0.001; Figure 3A–

C). Repeated measures ANOVA analysis demonstrated no

significant change in NLR across all three time-points (F (2, 92) =

1.053, p=0.353, Figure 3D), Based on these results and the findings

above related to CD3+HLADR+, we established an immune

signature score combining CD3+HLADR+ and NLR and how it

could predict OS. In this case, frequencies of CD3+HLADR+ and

NLR above the ideal cut-off were seen as risk factors. Patients

bearing e.g., two risk factors had a significantly shorter OS (median

OS 132 days) compared to patients with no risk factors (median OS

not reached) (p<0.001, HR: 12.454 [95%CI: 4.221-36.749], p<0.001,
TABLE 2 Uni- and multivariate Cox-regression analysis for the prediction of overall survival.

Parameter univariate Cox-regression multivariate Cox-regression

p-value Hazard-Ratio (95% CI) p-value Hazard-Ratio (95% CI)

CD3+HLADR+ frequency <0.001 1.068 (1.037-1.099) 0.024 1.054 (1.007-1.103)

CD3+CD8+ frequency 0.107 1.022 (0.995-1.050) 0.417 0.982 (0.940-1.026)

Age 0.679 1.006 (0.979-1.033)

Sex 0.796 0.971 (0.474-1.773)

UICC tumor stage 0.432 1.604 (0.494-5.213)

ECOG PS 0.012 1.977 (1.164-3.356) 0.059 1.953 (0.976-3.907)

Leukocyte count 0.521 1.020 (0.961-1.082)

Neutrophil count 0.440 1.000 (1.000-1.000)

Lymphocyte count 0.275 1.000 (0.999-1.000)

NLR 0.166 1.021 (0.992-1.051)

Hemoglobin 0.001 0.865 (0.794-0.943) 0.087 0.915 (0.826-1.013)

Sodium 0.379 0.969 (0.903-1.040)

Potassium 0.250 0.671 (0.341-1.323)

ALT 0.005 1.012 (1.004-1.020) 0.147 1.014 (0.995-1.033)

AST 0.023 1.012 (1.002-1.022) 0.801 0.997 (0.977-1.018)

Bilirubin 0.022 1.069 (1.010-1.131) 0.232 1.050 (0.969-1.138)

Creatinine 0.788 0.948 (0.643-1.397)

LDH 0.777 1.000 (0.998-1.002)
UICC, Union for International Cancer Control; ECOG PS, Eastern Cooperative Oncology Group performance status; NLR, neutrophil to lymphocyte ratio; ALT, alanin aminotransferase; AST,
aspartate aminotransferase; LDH, lactate dehydrogenase.
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Figure 3E). This score could also significantly predict OS at the early

and late-time points of therapy (pearly=0.002, HRearly: 2.000 [95%CI:

1.120-3.571], pearly=0.019; plate<0.001, HRlate: 2.143 [95%CI: 1.157-

3.970], plate=0.015, Figures 3F, G).
Correlation between CD3+HLADR+
frequencies, T cell subsets and gut
microbiome taxa

In a latter step, we took a glance at how the prognostically

highly relevant CD3+HLADR+ cell frequencies correlated with

other immune status parameters, clinical parameters and relative

abundance of taxa from the gut microbiome measured by 16s rRNA

sequencing. Figure 4 depicts an overview of gut microbiome

analyzes, with patients showing no significant different beta-

diversity related to time-point, response and survival at 6 months

therapy (Figure 4A–C). Furthermore, relative abundances of

specific taxa do not differ significantly between baseline and late-

time point, despite interesting shifts in the proportions that some

taxa represent within the gut microbiome. At the order level, the

proportion of Bacteroidales decreased from 40% before therapy to

about 25.5% at the late time point, while Clostridiales, which before

therapy represented 52.1% of all orders, increased to 65.0% at the

late time-point. At a family level, Lachnospiracae represented 38.9%

before therapy, a proportion which decreased to 29.3% after

treatment (Figure 4D–L).

Regarding the immune status, frequencies of CD3+HLADR+

cells significantly correlated with the frequency of CD3+CD8+ cells
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(p<0.001, rs=0.521, Supplementary Figure 3A), and the frequency of

CD3+CD4+ cells (p=0.002, rs=-0.360, Supplementary Figure 3B).

Concerning clinical parameters, CD3+HLADR+ cell frequencies

correlated with the ECOG performance status (p=0.005, rs=0.329,

Supplementary Figure 3C). Finally, with regards to the measured

microbiome taxa, the presence of activated T cells in the peripheral

blood correlated with the relative abundance of the order

Burkholderiales (p=0.006, rs=-0.474, Supplementary Figure 3D).

At a deeper taxa level inside this order, these frequencies showed

further correlations to the family Sutterellaceae (p=0.001, rs=-0.628,

Supplementary Figure 3E) and within it the genus Sutterella

(p=0.010, rs=-0.474 Supplementary Figure 3F). Furthermore, a

significant correlation could be established to the Genus

Bacteroides (p=0.029, rs=-0.365 Supplementary Figure 3G). More

detailed values on these taxa are depicted in Supplementary Table 1.
Baseline CD3+CD8+ cell frequencies also
play a role in toxicity, response and overall
survival prediction to ICI therapy, yet
inferior to CD3+HLA-DR+ cell frequency

Since CD3+HLA-DR+ cell frequencies positively correlate

significantly with CD3+CD8+ cell frequencies in our cohort,

while negatively correlating with CD3+CD4+ cell frequencies, we

postulate that most of these CD3+HLA-DR+ cells are indeed CD3

+CD8+HLA-DR+ cells. To further investigate this aspect, we

looked at the role that baseline CD3+CD8+ cells play regarding

response, toxicity and OS prediction for patients in our cohort
B C

D E

F G

A

FIGURE 3

Prognostic relevance of the neutrophil-to-lymphocyte ratio (NLR) and a prognostic immune signature score including CD3+HLADR+ cell
frequencies. (A-C) A NLR above the respective ideal cut-off value at baseline or the early/late time-point is associated with a significantly impaired
overall survival (OS). (D) The NLR remains unaltered over time (error bars indicate SEM). (E) A novel immune signature score comprising baseline
frequencies of CD3+HLADR+ cells and the NLR significantly predict OS. (F, G) The combined immune signature score shows a strong prognostic
relevance for the early and late time-points. n.s.: not significant (p>0.05).
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(Supplementary Table 3). CD3+CD8+ baseline cell frequencies

seem to play a role in predicting disease control at 3 and 6

months (p=0.044 and p=0.026 respectively), toxicity of all grades

(p=0.025), as is the case for CD3+HLA-DR+ cell frequencies. Also,

by calculating an ideal cut-off for CD3+CD8+ cell frequency

(23.65%) it is possible to discriminate between short- and long-

term survivors, with patients with cell frequency values above

23.65% at baseline surviving a median of only 170 days compared

to 658 days for patients below this value (HR: 2.323 [95%CI: 1.221-

4.418], p=0.010). However, when using univariate Cox regression

analysis, CD3+CD8+ cell frequencies at baseline do not pose as an

independent predictor of overall survival, contrarily to CD3+HLA-

DR+ cells (UVA: p=0.107). When adding CD3+CD8+ cells to the

multivariate analysis, the independent prognostic power of CD3

+HLA-DR+ cells is unaffected (HR: 1.054 [95%CI: 1.007-1.103],

p=0.024, Table 2). Notably, despite the fact that the strong positive

correlation between these two cell populations is not only present at

baseline (p<0.001, rs=0.521) but also at early (p=0.004, rs=0.397)

and late time-points (p=0.001, rs=0.484), contrarily to longitudinal

values of CD3+HLA-DR+ and their dynamics that pose as

predictors of overall survival through the course of therapy as

shown above, longitudinal values of CD3+CD8+ and their

dynamics don’t show any type of predictive value, even when

calculating an ideal-cut off (pearly=0.4, plate=0.056, pearly/

baseline=0.319, plate/baseline=0.995).
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Relative abundance of specific gut
microbiome taxa associated with CD3
+HLADR+ cell frequencies can significantly
predict overall survival

Here, we focused on four taxa that showed associations to the

frequencies of CD3+HLADR+ cells: the Burkholderiales order, the

Sutterellaceae family, Genus Sutterella and the Genus Bacteroides.

Patients with a relative abundance of bacteria from the

Burkholderiales order below the ideal cut-off of 0.422% lived

significantly shorter (median OS 129 days) than patients with

values above this cut-off (median OS not reached, p<0.001, HR:

6.219 [95%CI: 2.217-17.446], p=0.001, Figure 5A). Inside this order,

a similar effect could be demonstrated for bacteria from the

Sutterellaceae family related to an ideal cut-off of 0.405%

(p=0.029, Supplementary Figure 4A) and within it the Genus

Sutterella (Sutterellaideal:0.254%, p=0.032, Supplementary

Figure 4B) The Bacteroides genus failed to pose as a significant

predictor of OS (p=0.064, Supplementary Figure 4C), but within it,

we identified a prognostically significant OTU representing the

species Bacteroides (B.) vulgatus (OTU3). Patients with a relative

abundance of B. vulgatus above the ideal cut-off (7.146%) lived

significantly longer (p=0.015, HR: 5.153 [95%CI: 1.186-22.397],

p=0.029, Figure 5B) than patients below this value. When looking at

these prognostically relevant taxa in a follow-up stool sample after
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FIGURE 4

Overview of gut microbiota analyses in stool samples of patients before and after initiation of ICI treatment. (A-C) Beta-diversity across gut
microbioma samples did not significantly differ between (A) pretherapeutic (blue) and late time-point (red), (B) responders (blue) vs. non-responders
(red) and (C) patients who were still alive (blue) vs. deceased (red) at 6 months of ICI therapy. (D, E) Taxonomic binning at order (D) and family level
(E) shows comparable relative abundance of different taxa across all 37 pretherapeutic samples. (F-K) Comparison of baseline to late time-point
relative abundance of bacterial orders (F, I), families (G, J) and the most frequent genus (H, K) show non-significant shifts of bacterial composition
between both time points.
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three to five cycles, these showed no prognostic relevance, possibly

due to the low sample number (n=15). Nonetheless, patients with a

relative abundance of B. vulgatus below the median (4.63%) at the

late time-point showed a tendency towards better OS (p=0.092,

Supplementary Figure 4D). In addition, also a tendency towards

improved survival could be shown in patients with decreasing

relative abundance of B. vulgatus between baseline and the late

time-point (p=0.132, Supplementary Figure 4E).
A combined immune-microbial score
including activated T cells, NLR and the
relative abundance of Burkholderiales
order or Bacteroides vulgatus species has
an important prognostic role

We then proceeded to develop two immune-microbial scores

(IMS), one at the order level, involving the ideal cut-offs of the relative

abundance of Burkholderiales, the NLR and frequencies of CD3

+HLADR+ cells, and one at species level, involving the relative

abundance of B. vulgatus, NLR and CD3+HLADR+. Concerning

the first score (IMS-A), patients with at least 1 risk factor already had a

significantly impaired overall survival (p=0.011, HR: 8.914 [95%CI:

1.181-67.292], p=0.034, Figure 5C). An even more relevant

discrimination could be achieved for patients with 3 risk factors vs

patients with less (p<0.001, HR: 6.732 [95%CI: 2.352-19.272], p<0.001,

Figure 5D). Figure 5E shows a depiction of all 4 groups and how each

risk factor contributes to a further deterioration of OS (p=0.001, HR:

2.681 [95%CI: 1.513-4.750], p=0.001). For the second score (IMS-B),

patients with at least 1 risk factor did not live significantly shorter
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(p=0.075, Figure 5F). However, a significant difference could be seen

in patients with all 3 risk factors, which had an impaired median OS of

120 vs. 1009 days for less than 3 or no risk factors (p=0.001, HR: 4.853

[95%CI: 1.843-12.778], p=0.001, Figure 5G). Again, all 4 groups can be

significantly distinguished from each other (p=0.008, HR: 2.625 [95%

CI: 1.440-4.785], p=0.002, Figure 5H).
Discussion

To this day, extensive studies around possible biomarkers for

ICI therapy have been performed, from invasive tissue-based

approaches such as PD-L1 scoring and the study of the tumor

microenvironment via profiling of co-inhibitory or co-stimulatory

receptor expression in situ (28, 29), to minimally invasive ones

studying different immunomodulators such as cytokines and cell

frequencies such as the NLR in the peripheral blood (30), genetic

profiles including tumor mutational burden (TMB) and

microsatellite instability (MSI) (31) as well as a recently

acknowledged key player in the immune system, the gut

microbiome, whose manipulation through dietary interventions

and FMT might impact response to ICIs (7, 16). So far, despite

several candidates, only PD-L1 scoring and the TMB have found

regular clinical use, still bearing some limitations (32).

In the present study, we show how easily measurable peripheral

blood frequencies of CD3+HLADR+ (activated T) cells can serve as a

notable predictor of response, outcome and possibly toxicity in patients

undergoing immune checkpoint blockade in advanced solid

malignancies. Furthermore, we show an unprecedented liaison between

these cells and some microbial taxa residing in the gut of patients.
B
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FIGURE 5

Prognostic relevance of specific gut microbiome taxa associated with CD3+HLADR+ cell frequencies. (A, B) A relative abundance of bacteria from the
Burkholderiales order or Bacteroides vulgatus species below the ideal cut-off is associated with a significantly impaired outcome. (C–E) The immune-
microbial score A (comprising ideal cut-offs of the NLR, the frequency of CD3+HLADR+ cells and the rel. abundance of the Burkholderiales order) is a
strong predictor of survival in patients undergoing ICI therapy. (F–H) The immune-microbial score B (comprising ideal cut-offs of the NLR, the frequency
of CD3+HLADR+ cells and the rel. abundance of Bacteroides vulgatus) is a strong predictor of survival in patients undergoing ICI therapy.
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HLA-DR is an MHC-II class molecule expressed by APCs and is

seen as a late activation marker for T cells, that is upregulated 48

hours after mitogen stimulation (8). Several studies have shown the

role of high levels of HLA-DR+ T cells in HIV (33), autoimmune

disease (34) and transplant rejection (35). In cancer, the presence of

HLA-DR+ T cells in the peripheral blood has shown dichotomic

results. Higher pretreatment frequencies of CD8+HLADR+ in

breast cancer predicted better outcome to neoadjuvant

chemotherapy (13). In squamous cell carcinoma of the lung and

head and neck cancer, the same higher levels of circulating activated

T lymphocytes predicted impaired overall survival (36, 37). In the

ICI setting, little is known related to the biomarker role of

peripheral CD3+HLADR+ cells, but Carlisle et al. report how an

increase of a similar cell population after the first cycle of

immunotherapy with ICI predicts better progress free-survival

(PFS) and OS in RCC (14). In our cohort, we demonstrate how

the peripheral blood CD3+HLADR+ frequencies can represent

strong predictors of OS, with patients with higher pretreatment

levels of this molecule having an impaired response and OS to ICI

therapy. When frequencies of this cell population were above an

ideal cut-off, patients were at a 4.5-times higher risk of impaired

overall survival. We hypothesize that these high pretreatment levels

support the model of a dysregulated immune system and within the

CD3+HLADR+ population, some cells may have impaired

antitumor immunity as suggested before (38, 39), which possibly

cannot be reverted by immune checkpoint blockade. In addition,

patients with a higher frequency of these activated T cells before

therapy also have significantly less toxicity of any grade. Toxicity

and response have been shown to go hand in hand in immune

checkpoint blockade with patients with an immune system more

prone to successful antitumoral directed activation by ICI

demonstrating more side effects and an improved outcome (40),

as is the case in our cohort. Further sustaining our thesis of

dysregulated immune response and more erratic inflammation

symbolized by higher pretreatment frequencies of activated T

cells, ECOG status showed a strong correlation to pretreatment

CD3+HLADR+ and a significant effect on OS. Not only

pretreatment, but also sequentially assessed CD3+HLADR+ cell

frequencies predict OS. Rather than the static CD3+HLADR+

frequencies, that can also likely depict activated T cells with

impaired function unable to contribute to the antitumoral

response, we also demonstrate how the dynamics of these cells,

comparing early and late time-points to the baseline, can also

significantly predict OS. Patients with increasing levels of CD3

+HLADR+ levels as an immediate result of the first cycle(s) of

immunotherapy, showing an ICI-mediated activation of T cells in

the peripheral blood, which may consequently transit to the tumor

microenvironment and contribute to enhanced antitumoral

response, had a significantly prolonged OS, in line with prior

findings (14). Interestingly, this effect was most pronounced in

patients undergoing dual immune checkpoint blockade with

nivolumab and ipilimumab. However, analyses excluding patients

undergoing dual immune checkpoint blockade (n=6), using only

patients under monotherapy (n=64), show an unaltered predictive

and prognostic prediction power of CD3+HLA-DR+ cell

frequencies at baseline and during ICI therapy. We also
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hypothesize that our CD3+HLADR+ cells are mostly CD8+ cells,

since there is a significant positive correlation between both, while

CD3+HLADR+ cells in our cohort negatively correlate with CD4+

cell frequencies. Our analysis concerning the predictive and

prognostic prediction power of CD3+CD8+ cell frequencies

shows a role for this cell population in the baseline, which cannot

be verified with univariate analysis and when regarding longitudinal

frequencies. Furthermore, the inclusion of this cell population in the

multivariate analysis leaves the independent prognostic power of

CD3+HLA-DR+ cell frequencies at baseline unaltered. Thus it is

evident, that the prognostic relevance of CD3+HLA-DR+ is at least

partly specific for this cell population and does not only reflect the

CD8+ cell subset. Because of the complexity of the innumerous

players within the immune system and the even broader individual

cancer patient network (CPN), one single parameter is prone to

high fluctuation between cohorts. To tackle this issue, we further

analyzed a combined immune status score comprising frequencies

of CD3+HLADR+ cells and a well-studied biomarker within the ICI

framework, the NLR. The neutrophil to lymphocyte ratio has been

shown to act as a potent prognostic predictor in ICI therapy in

several cohorts, being a part of different immune signature scores

shown before such as the Gustave Roussy score (41). Neutrophils

have been described as facilitators of tumor growth and metastasis

and stimulators of tumor angiogenesis (42). Our presented score

can serve as an even better prognostic biomarker than the frequency

of activated T cells by itself, with patients with values above the ideal

cut-offs for both parameters before initiation of ICI treatment being

at a 12.5-times higher risk of death than patients with values below

the cut-offs for our cohort of patients. This immune status-based

score can also serve as a biomarker to monitor therapy, also

predicting OS of patients undergoing immune checkpoint

blockade at an early and a late-time point during therapy.

Another important aspect of our study is the gut microbiome.

We show how gut bacteria with significant correlations to the

frequency of activated T cells in the peripheral blood belonging to

the order Burkholderiales all the way to its genus Sutterella can

successfully predict better OS in patients undergoing ICI therapy.

Also, bacteria belonging to the species Bacteroides vulgatus were

identified as a potential biomarker for outcome prediction in this

setting, despite its genus Bacteroides only showing a trend towards

better OS in patients with higher relative abundance of these

bacteria. As already dissected by many reviews, the gut

microbiome, despite its irrefutable role in immune modulation

and its influence in cancer immunotherapy, is highly prone to

fluctuation with many different studies reporting different

prognostically relevant taxa, due to factors such as geography and

different enterotypes, lifestyle and diet, different techniques to

analyze samples and reference databases (43, 44). The relative

abundance of the Burkholderiales order has been shown to

impact relapse free survival (RFS) in lung tissue after resection of

stage II cancer (45). In the gut, some genus inside this order have

been shown in the past as successful predictors of OS, such as

Burkhorderiales spp., whose supplementation lead to recovery of

response to anti-CTLA4 treatment in melanoma mice by inducing

interleukin 12 (IL-12)–dependent TH1 immune responses (46),

whilst results concerning another genus within this order,
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Sutterella, are controversial, with one study showing how, contrarily

to our findings, higher relative abundances could predict worsened

OS in a NSCLC cohort undergoing ICI therapy (47), whilst

favorable manipulation of the microbiome by Diosgenin therapy

improved OS in patients with melanoma undergoing ICI therapy by

increasing the relative abundance of the Sutterella genus (48). Little

is known regarding the interaction of the Sutterella genus with the

immune system, however it seems to exercise a mild pro-

inflammatory activity, which we theorize could be beneficial

towards immune system activation within ICI therapy, and its

adhesion capacity to intestinal epithelial cells might suggest it has

a immunomodulatory role (49). Some Bacteroides species play an

anti-inflammatory role via recruitment of regulatory T-cells

(Tregs), suppression of IL-17 and increase of anti-inflammatory

IL-10 (50, 51). In addition, supplementation of Bacteroides spp. in

melanoma mice lead to enhanced antitumoral effects and improved

response to anti-CTLA-4 treatment (46). Here, we show how a

higher relative abundance of the genus Bacteroides, which

correlates negatively with CD3+HLADR+ cell frequencies, points

non-significantly towards better OS and show how a certain species,

Bacteroides vulgatus, can significantly predict OS. Interestingly, the

negative correlation between Bacteroides in the gut and HLADR+ T

cells in the peripheral blood can show how these possibly modulate

T cell function by contributing to Treg recruitment and

consequently to lesser activation of T cells. Since high levels of

CD3+HLADR+ cells in a pretreatment setting seem to be

unfavorable towards OS, it makes sense that high relative

abundances of Bacteroides vulgatus, which can control the

exaggerated presence of activated and somehow erratic T cells

and the immune dysregulation some of them might represent,

contribute to an improved OS in patients undergoing immune

checkpoint blockade for advanced solid cancer, as shown before in a

mouse model (52). Nevertheless, increasing CD3+HLADR+ cell

frequencies after commencement of ICI therapy led to improved

OS, since these most likely represent functional and active T cells

that can combat the tumor effectively and are recruited to the TME

as a result of checkpoint blockade. Simultaneously, a tendency

towards better OS could be shown for patients with decreasing

relative abundance of Bacteroides vulgatus after therapy initiation,

most likely due to decreasing Treg recruitment, cells that result in

impaired response to ICI therapy (53). In line with these findings, at

a late time-point (after five cycles), a lower relative abundance of

these bacteria also points towards improved outcomes. Finally, our

immune-microbial scores (IMS-A and B), taking into account

different factors of the complex interplay of the CPN such as

CD3+HLADR+ frequencies, the NLR and microbial taxa (A:

order Burkhorderiales, B: species Bacteroides vulgatus), serve as

highly effective, unprecedented biomarkers in the prediction of

outcome for patients with diverse advanced solid malignancies

under different ICI agents.

In terms of limitations, the lack of other therapies besides ICI

that our patient population is exposed to does not allow us to state

whether CD3+HLADR+ cells and the presented microbial taxa as

biomarkers are ICI specific or may also play a role in

chemotherapy, radiotherapy or resection. In addition, the

heterogeneity of our single-center patient cohort, where different
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cancer entities under different ICI agents are present, is one of our

main limitations. Nonetheless, this same heterogeneity deems our

patient population as a pan-cancer cohort, where the above

depicted biomarkers show significance across a wide spectrum of

malignancies and ICI drugs. Furthermore, the single-center design

allows a more comprehensive and valid comparison of different

demographic, clinical, radiological and laboratorial parameters

across different time-points. Nevertheless, it should be noted that

our analyses represent exploratory analyses only and the

established cut-off values need external validation before an

implementation into clinical routine could eventually be

considered. Additionally, it is important to mention that since

our flow cytometry data arise from a standardized and clinically

established analysis by the laboratory of the hematological

department of the University Medical Center Aachen, data are

extracted from patient files, CD3+CD8+HLA-DR+ cell frequencies

are beyond the scope of our manuscript, since their calculation

does not belong to the accredited “immune status panel”.

Nonetheless, we strongly believe that using the implemented

standardized workflow (including the clinically validated gating

strategy) from this accredited institution for these patient samples

has the invaluable benefit that the generation of these results is

highly comparable and any potential individual experimental bias

is greatly reduced. Finally, the divergent results concerning

different taxa as predictors of OS to ICI across different studies

show how the gut microbiome and the enterotype are highly

dynamic parameters dependent on individual characteristics such

as geography and ethnicity (54), an effect that should be further

explored in a multi-center design using the same sampling strategy

and 16s rRNA sequencing techniques.

In conclusion, despite its needed confirmation in a larger

validation cohort, this study shows the potential role of CD3

+HLADR+ cells as predictors of response and toxicity in patients

undergoing immune checkpoint blockade and its role in the

prediction of OS in these patients before and during therapy, an

effect independent of tumor entity or ICI agent. Furthermore, not

only its static values but also its dynamics during ICI therapy play a

significant predictive role. To better depict the complex interplay

between different host immune modulators within the cancer

patient network and their interaction, we present unprecedented

immune-microbial scores (IMS), which can accurately predict

outcome of patients with advanced solid malignancies undergoing

ICI therapy. Multicenter approaches, including different therapeutic

modalities (e.g. mono vs. dual immune checkpoint blockade) and

larger, independent cohorts should be performed to get a better

insight on the precise role of CD3+HLADR+ cells and the

combined parameters.
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Introduction: Programmed cell death ligand 1 (PD-L1) expression in tumor tissues

is measured as a predictor of the therapeutic efficacy of immune checkpoint

inhibitors (ICIs) in many cancer types. PD-L1 expression is evaluated by

immunohistochemical staining using 3,3´-diaminobenzidine (DAB)

chronogenesis (IHC-DAB); however, quantitative and reproducibility issues

remain. We focused on a highly sensitive quantitative immunohistochemical

method using phosphor-integrated dots (PIDs), which are fluorescent

nanoparticles, and evaluated PD-L1 expression between the PID method and

conventional DAB method.
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Methods: In total, 155 patients with metastatic or recurrent cancer treated with ICIs

were enrolled from four university hospitals. Tumor tissue specimens collected

before treatment were subjected to immunohistochemical staining with both the

PID and conventional DAB methods to evaluate PD-L1 protein expression.

Results: PD-L1 expression assessed using the PID and DAB methods was

positively correlated. We quantified PD-L1 expression using the PID method

and calculated PD-L1 PID scores. The PID score was significantly higher in the

responder group than in the non-responder group. Survival analysis

demonstrated that PD-L1 expression evaluated using the IHC-DAB method

was not associated with progression-free survival (PFS) or overall survival (OS).

Yet, PFS and OS were strikingly prolonged in the high PD-L1 PID score group.

Conclusion: Quantification of PD-L1 expression as a PID score was more

effective in predicting the treatment efficacy and prognosis of patients with

cancer treated with ICIs. The quantitative evaluation of PD-L1 expression using

the PID method is a novel strategy for protein detection. It is highly significant

that the PID method was able to identify a group of patients with a favorable

prognosis who could not be identified by the conventional DAB method.
KEYWORDS

phosphor-integrated dots, fluorescent nanoparticles, immunohistochemistry, imaging
pathology, quantitative evaluation, PD-L1, immune-checkpoint inhibitors, biomarker
1 Introduction

Immune checkpoint inhibitors (ICIs) have been developed as

antitumor agents with mechanisms completely different from those

of conventional cytotoxic chemotherapies for patients with cancer.

Immune checkpoint mechanisms were originally intended to

regulate excessive autoimmune responses. However, in the cancer

microenvironment, cancer cells use immune checkpoints to escape

antitumor immune responses, involving pathways mediated by

immune checkpoint molecules such as programmed death

protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), and various other factors. PD-1 and its ligand

programmed cell death ligand 1 (PD-L1) are fundamental factors

in the immune checkpoints that interfere with immune escape (1).

The clinical efficacy and safety profile of anti-PD-1 and anti-PD-L1

antibodies have been demonstrated in various cancer types (2).

CTLA-4 negatively regulates immune function through its

interaction with B7 (CD80/CD86) expressed on the surface of

cancer cells, and its competitive action with CD28, which

activates T cells (3, 4). Anti-CTLA-4 antibodies have shown

efficacy in multiple types of cancers as monotherapy or in

combination with other ICIs, especially the anti-PD-1 antibody.

The therapeutic effects of ICIs have had a strong impact on cancer

treatment, not only by improving response rates and prolonging

progression-free survival (PFS) but also by providing a “long-tail

effect,”which is characterized by the long-term overall survival (OS)

of patients with cancer. Thus, ICIs have become a significant
0237
breakthrough in cancer immunotherapy, showing remarkable

efficacy against various cancer types by suppressing checkpoint-

mediated immune escape (5). Table 1 summarizes the results of

representative phase III pivotal studies that evaluated the efficacy of

ICI treatment and served as the basis for approval (6–14). In

contrast, many clinical trials have reported that ICIs are

ineffective in all patients with cancer, especially ICI monotherapy,

with an efficacy rate of only 10–30% (15). Therefore, further

improvement in the efficacy of ICIs is necessary. The expression

of PD-L1 molecules, high-frequency microsatellite instability, and

tumor mutation burden have been identified as potential predictive

biomarkers of the therapeutic response to ICIs; however, no

definitive factors have been reported to correctly predict the

treatment response to ICIs (16). Therefore, superior predictive

biomarkers with high therapeutic efficacy and prognostic value

are urgently needed.

To date, most studies on the biomarkers of ICI treatment have

focused on the analysis of PD-L1 expression in tumor tissues using

immunohistochemistry (IHC). PD-L1 expression in tumor tissue

has been used as a biomarker in determining cancer treatment with

ICIs (17), but is not used universally in many types of cancers. PD-

L1 expression detected by IHC analysis has several limitations as a

predictive biomarker. Although treatment responses to anti-PD-1

or anti-PD-L1 antibody therapies are associated with the expression

of PD-L1 protein in tumor tissues, approximately 10–40% of PD-

L1-negative patients also respond to anti-PD-1 or anti-PD-L1

therapies (18, 19). Conversely, we often encounter cases where
frontiersin.org
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TABLE 1 Main results of the previous pivotal phase III trials of immune checkpoint inhibitors in advanced cancer.

en Treatment
line

PD-L1
expression

Median PFS,
months
(95% CI)

Median OS,
months
(95% CI)

Reference
no.

izumab, 200 mg q3w 1st TPS>50% 7.7
(6.1-10.2)

26.3
(18.3-40.4)

(6)

ab, 3 mg/kg q2w 2nd, 3rd All comers 2.5
(2.2-3.5)

11.1
(9.2-13.1)

(7)

mab, 1200 mg q3w 2nd, 3rd All comers 2.8
(2.6-3.0)

13.8
(11.8-15.7)

(8)

ab, 3 mg/kg q2w 3rd~ All comers 1.6
(1.5-2.3)

5.3
(4.6-6.4)

(9)

izumab, 200 mg q3w 2nd~ All comers 2.1
(1.9-2.1)

10.1
(8.0-12.3)

(10)

ab, 240 mg q2w 2nd~ All comers 2.1
(1.9-3.2)

7.7
(3.1-12.6)

(11)

ab, 3 mg/kg q2w 1st All comers 6.9
(5.1-10.2)

36.9
(28.2-NR)

(12)

ab, 1mg/kg q3w +
ab, 3mg/kg q3w

1st All comers 11.5
(8.7-19.3)

72.1
(38.2-NR)

(12)

izumab, 200 mg q3w +
doublet therapy, q3w

1st All comers 9.0
(8.1-10.4)

22.0
(19.5-24.5)

(13)

mab, 1200 mg q3w + CBDCA
nab-PTX(q1w)

1st All comers 7.0
(6.2-7.3)

18.6
(16.0-21.2)

(14)

all survival; TPS, Tumor Proportion Score; CI, confidence interval; no., number; q1w, once weekly; q2w, once every 2 weeks; q3w, every 3 weeks.
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1 KEYNOTE-024 Phase III 5y NSCLC Pembro

2 CheckMate 057 Phase III 5y Non-squamous
NSCLC

Nivolum

3 OAK Phase III – NSCLC Atezoliz

4 ATTRACTION-
2

Phase III 3y Gastric cancer
(adenocarcinoma)

Nivolum
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PD-L1-positive patients do not respond to ICIs. This contradiction

is considered to be caused by PD-L1 expression as determined by

IHC and visual inspection by pathologists, which limits the

objectivity of determining PD-L1 expression levels. In other

words, the evaluation of PD-L1 expression performed by

pathologists using IHC is limited because it does not provide a

quantitative evaluation and lacks objectivity. Another limitation of

the IHC method is that the immunohistochemical staining method

of the PD-L1 molecule is based on the intensity of the color

visualized by the chromogenic agent 3,3´-diaminobenzidine

(DAB). In the conventional IHC method generally used in the

clinical setting, tissue sections are incubated with primary

antibodies and biotin-labeled secondary antibodies, followed by a

reaction with streptavidin-labeled horseradish peroxidase (HRP)

and a secondary antibody, and then with HRP and DAB

chromogen. Therefore, in IHC-DAB, the staining intensity

depends on the enzymatic activity of HRP and is greatly affected

by the air temperature, reaction time, and HRP substrate

concentration (20). Consequently, the quantitative sensitivity and

dynamic range of conventional IHC methods using DAB for

pathological diagnosis are poor.

As described above, the scoring method of the former IHC is

dependent on the staining intensity, so it is not completely

quantifiable. To overcome these limitations of IHC-DAB, we

focused on the phosphor-integrated dot (PID) method using

fluorescent nanoparticles, a novel protein quantification method

developed by Konica Minolta, Inc. (Tokyo, Japan). Although

existing IHC-DAB coloration systems have quantitative problems

in low-expression groups, the PID system has a wide dynamic

range, enabling the detection of both low- and high-expression

groups (21). Fluorescent IHC can effectively improve the

quantitative sensitivity of conventional IHC-DAB; however, tissue

autofluorescence hinders sensitivity (22). To improve this

fluorescent IHC autofluorescence deficiency, the PID method is

further characterized by the 100-fold luminance of conventional

fluorescent nanoparticles and high lightfastness, which is >10 times

higher than those of existing fluorescent dyes (21). Given these

characteristics, the system is expected to measure protein

expression more quantitatively, including in a range undetectable

by existing IHC. Compared to conventional IHC-DAB, the PID

method provides more objective data on protein expression because

it is possible to count the number of PID particles that bind in a

one-to-one fashion with antibodies in each cell. Additionally, an

image processing method was developed to calculate the PID

particle counts for the acquired images. We compared the

characteristics of the PID schemas with those of conventional

IHC. We present a schema outlining the PID method (Figure 1A)

and a table comparing the features of each method (Table 2). Recent

studies have explored the application of fluorescent nanoparticles in

quantitative diagnostics because of their high photostability and

brightness; however, their clinical application has not yet been

achieved. Although two previous studies evaluated PD-L1

expression using the PID method (23, 24), it is unclear whether it
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can be a predictive biomarker for the therapeutic efficacy of ICIs,

such as anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibodies.

Application of the PID method is expected to overcome the

limitations of IHC-DAB in quantifying protein expression levels.

Furthermore, PD-L1 expression, which is used as a companion

diagnostic marker to determine indications for ICI treatment, is not

a definitive biomarker. Thus, there is a need to identify superior

biomarkers for predicting the efficacy of ICIs. In this study, we

compared the correlation between conventional IHC-DAB and a

novel PID method for detecting PD-L1 expression in patients with

cancer treated with several ICIs. We analyzed whether the

evaluation of PD-L1 protein expression using the PID method

predicted the therapeutic efficacy of ICIs more reliably than the

conventional DAB system.
2 Materials and methods

2.1 Ethics statement

The study was conducted in accordance with the guidelines of

the Declaration of Helsinki and approved by the Ethics Committees

of Showa University School of Medicine (approval number: 2772),

Fukushima Medical University (approval number: 2019-262),

Saitama Medical University (approval number: 2409), and

Gunma University (approval number: HS2020-201). Informed

consent was obtained from all patients involved in the study.
2.2 Patient selection

This study enrolled 155 patients with metastatic or recurrent

cancer who were treated with ICIs. The patient cohort included

patients with several types of cancer, including non-small cell lung

carcinoma (NSCLC), gastric cancer, urothelial carcinoma, head and

neck carcinoma, and malignant melanoma. This was a multicenter

retrospective cohort study, and patients were diagnosed and treated

at Showa University Hospital, Fukushima Medical University

Hospital, Saitama Medical Center, and Gunma University

Hospital from December 2015 to December 2022. All patients

were treated with treatment regimens, including ICIs shown in

Table 3, that were administered according to the clinical settings.
2.3 Assessment of the treatment response

Each patient’s treatment response was evaluated using

computed tomography scans as imaging assessments. The

treatment efficacy was evaluated according to the Response

Evaluation Criteria in Solid Tumors version 1.1 (25). Overall

survival (OS) was defined as the date from the start of the first

administration of treatment to the date of mortality due to any

cause or the last follow-up. Progression-free survival (PFS) was
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defined as the date from the start of treatment to the first

documented progressive disease, mortality due to any cause, or

the last follow-up, whichever occurred first. The cut-off date of

follow-up was set as December 2022.

The “median PFS” or “median OS,” based on the results obtained

from the phase III pivotal clinical trials (Table 1), were used to

uniformly evaluate the patient treatment efficacies of patient

populations with different types of cancer. The patient population

was divided into two groups (responder and non-responder) or three

groups (long responder, responder, and non-responder), according to

the treatment response prescribed above for each cancer type and

treatment regimen. We then performed an analysis to compare PD-L1

expression evaluated by the PID method in each group.
Frontiers in Immunology 0540
2.4 Evaluation of PD-L1 expression using
the IHC-DAB method

All tumor tissue specimens evaluated for PD-L1 expression

were obtained before each patient received ICI treatment. The

staining procedure for IHC using DAB and the evaluation

method for PD-L1 expression were performed according to

clinical routines, which have already been used for companion

diagnosis when ICIs are administered to patients with cancer. We

prepared formalin-fixed, paraffin-embedded tissue samples

obtained by biopsy or resection. To evaluate their PD-L1 IHC

assay, 155 slides were tested using Dako PD-L1 IHC 28-8 PharmDX

kits (anti-PD-L1 28-8 rabbit monoclonal primary antibody; Dako,
B

C

A

FIGURE 1

(A) Schematic explanation for the phosphor-integrated dot (PID) imaging of cancer tissues. The target protein, programmed cell death ligand 1 (PD-
L1) molecules in this study, in tumor tissue were immunostained with monomeric and biotinylated monoclonal primary and monoclonal secondary
antibodies. Then, the samples were stained with streptavidin-coated PID by biotin-streptavidin binding. (B) Immunohistochemistry of cancer tissue
using PID staining. Red spots on the tumor cells indicate PID particles. (C) The number of PID particles were quantified in whole regions of tumor
tissue specimen. The number of PD-L1-positive PID particles per 12 µm ×12 µm in the tumor cell nuclei were counted and shown as a heat map.
The “PD-L1 PID score” for each case was calculated as the mean value of the number of PID particles per 12 µm × 12 µm area within each tissue
specimen. px, pixel.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ohkuma et al. 10.3389/fimmu.2023.1260492

Frontiers in Immunology 0641
Glostrup, Denmark) for nivolumab, PD-L1 IHC 22C3 PharmDX

kits (anti-PD-L1 22C3 mouse monoclonal primary antibody;

Agilent Technologies, Santa Clara, CA, USA) for pembrolizumab,

and Ventana PD-L1 SP142 (anti-PD-L1 28-8 rabbit monoclonal

primary antibody; Ventana, Antwerp, Belgium) for atezolizumab,

according to the manufacturers’ instructions. Two independent

pathologists were experts in interpreting the clinical cut-off values

of the assays used in this study and independently evaluated all 155

immunostained slides. IHC tests were scored by pathologists in

accordance with a previous article (26). Missing or damaged tissue

cores were excluded from the analysis, as was the case with <100

total tumor cells for scoring. The 28-8, 22C3 assays were used to

evaluate PD-L1 expression in tumor cells, whereas the SP142 assay

was used to assess PD-L1 expression in both tumor and immune

cells (27). Two methods were used to evaluate PD-L1 expression.

The Tumor Proportion Score was evaluated as the percentage of

PD-L1-positive cells among the total tumor cells, and it is used as a

companion diagnostic tool for lung cancer. The Combined Positive

Score was evaluated as the ratio of the number of PD-L1-positive

tumor cells plus tumor-infiltrating immune cells, e.g., lymphocytes

and macrophages, to the total number of tumor cells, and it is used

to evaluate PD-L1 expression in other types of cancer (26).
2.5 Evaluation of PD-L1 expression with
the fluorescence properties of PIDs

We used the same tumor tissue specimens to evaluate PD-L1

expression as for the IHC-DABmethod. Tissues collected before the

patient received ICI treatment were used for analysis. The

quantitative immunohistochemical detection of proteins using

PID nanoparticles has been previously described (21). The

pathological sections were incubated with a primary antibody

against PD-L1 22C3 (Agilent Technologies, Santa Clara, CA,

USA). The sections were incubated with the secondary antibody,

which is Universal Secondary Antibody (Ventana, Antwerp,

Belgium), for 30 minutes at 25°C. Envision Flex Target Retrieval

Solution was activated at a low pH for 20 minutes at 95°C. The

sections were then treated with PID-conjugated streptavidin (0.06

nM) for 2 hours at 25°C. The negative control was prepared using

PID staining but without the primary antibody. Hematoxylin was
TABLE 2 Methodology for quantifying protein expression.

Method Advantage Disadvantage

FACS Suitable for measuring the total amount of protein present
in the cell.

Not possible to evaluate both cell morphology and protein expression-dependent
characteristics simultaneously.

IHC Both cell morphology and protein expression-dependent
characteristics can be evaluated simultaneously.

The intensity of DAB staining depends on the enzymatic activity of HRP and is greatly
affected by reaction time, temperature, and HRP substrate concentration; thus, the
quantitative sensitivity of IHC-DAB is low.

Fluorescent
IHC

Effectively increases the quantitative sensitivity of
conventional IHC.

Poor photostability and interference with tissue autofluorescence.

IHC with
PIDs

High fluorescence intensity and high photostability.
Newly developed image processing method enables
calculation and quantification of the number of PID
particles in the obtained images.

Requires specific equipment for PID analysis.
FACS, fluorescence-activated cell sorting; IHC, immunohistochemistry; PIDs, phosphor-integrated dots; DAB, 3,3´-diaminobenzidine; HRP, horseradish peroxidase.
TABLE 3 Clinicopathological characteristics of all patients.

Characteristic

Age (y) (mean ± SD) 67.5 ± 9.4

Sex (n)

Male 119

Female 36

Cancer type (n)

Non-small cell lung carcinoma 109

Gastric cancer (adenocarcinoma) 28

Urothelial carcinoma 11

Head and neck cancer (squamous carcinoma) 4

Malignant melanoma 3

Site of pathological specimen (n)

Primary tumor 129

Metastatic tumor 26

ICI Regimen (n)

Nivolumab monotherapy 101

Pembrolizumab monotherapy 45

Pembrolizumab + platinum-based chemotherapy 4

Atezolizumab + platinum-based chemotherapy 3

Nivolumab + ipilimumab 1

Atezolizumab monotherapy 1

PD-L1 PID score (mean (min - max)) 2043 (556-15757)

PD-L1 expression (IHC) (n)

≥50% 27

1-49% 59

<1% 60

Not evaluable 9
SD, standard deviation; ICI, immune checkpoint inhibitor; PID, phosphor-integrated dots;
IHC, immunohistochemistry.
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used for nuclear counterstaining. The sections were irradiated at

580 nm, and the fluorescence intensity was measured using a whole

slide scanner (NanoZoomer S60; Hamamatsu Photonics K. K.,

Shizuoka, Japan) and a CMOS camera (ORCA-Flash version 4.0

LTPlus; Hamamatsu Photonics K. K., Shizuoka, Japan). Image

capture, autofocusing, and shading correction were automated

using the NDP.scan software (version 3.2.17, Hamamatsu

Photonics K. K., Shizuoka, Japan) (Figure 1B). The number of

PID particles was quantified using an automated exclusive QUIK

software (version 1.0.1.0, Konica Minolta, Inc., Tokyo, Japan) in

whole regions of the tumor tissue specimen. The input fluorescence

images underwent high-pass filtering to eliminate background

autofluorescence and noise. Subsequently, the positive bright

spots resulting from the PIDs were accurately detected within

fluorescence microscopy images. A previous article delved into

examining the relationship between fluorescence intensity and

particle count within a bright spot (21). Gonda et al. established a

standard curve exhibiting a positive correlation between

fluorescence signals and PID particle count. Employing this

method, the fluorescence intensity of each positive bright spot

analyzed in this study was translated into the corresponding PID

particle count. The quantity of particles per 12 μm × 12 μm square

area was visualized as a heat map. The “PD-L1 PID score” for each

case was derived using the subsequent formula, computed as the

mean value of the number of PID particles per 12 μm × 12 μm

square area within each tissue specimen (Figure 1C). The unit of

PID score is expressed as/144 μm2.

PID   score   (=144  mm2) =
Sum   of   number   of  PID   particles   in  whole   regions   of   the   specimen

Number   of   square   areas   of   12  mm� 12  mm

Therefore, the resulting fluorescent images were captured,

processed, and homogenized using a computer image-processing

method that quantified the number of PID nanoparticles.
2.6 Statistical analysis

Statistical tests were performed, and figures were created using

GraphPad Prism 9.4.1 software (GraphPad Software Inc., San

Diego, CA, USA). Student’s t-test and Fisher’s exact test were

employed to compare the patient characteristics between the two

groups. The Spearman correlation coefficient was used to analyze

the associations between the variables. The comparison of PD-L1

expression values between the two groups was conducted using the

Mann–Whitney U test. For multiple comparisons of PID scores

between the three groups, statistical analyses were performed using

one-way analysis of variance with the Dann–Bonferroni multiple

comparison test. Statistical significance was defined at a p-

value <0.05.

Regarding survival analyses, the survival durations (PFS and

OS) of the patients were assessed using the Kaplan–Meier method

and statistically analyzed using the log-rank tests. All tests were

two-sided. When we compared between two groups using the log-

rank tests, a p-value <0.05 was considered statistically significant.

When performing comparisons among three groups with the

Kaplan–Meier analysis, log-rank tests were performed for each of
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the triplicate pairs. P-values judged to be significantly different had

to be adjusted and p-value <0.01667 (calculated 0.05 divided by 3)

was determined to be statistically significant for comparison among

three groups with Kaplan–Meier survival analysis.
3 Results

3.1 Clinicopathological characteristics

The clinicopathological characteristics of the patients are

summarized in Table 3. Detailed patient information and data are

presented in Supplementary Table S1. The median length of follow-

up periods for all enrolled patients was 13.6 months (range, 0.5–

69.1 months).
3.2 Correlation of PD-L1 expression
between the IHC-DAB and PID methods

We investigated the correlation between PD-L1 expression

measured by the IHC-DAB method and PD-L1 expression

analyzed by the PID method using the Spearman correlation

coefficient test. Nine patients were excluded from the IHC-DAB

test because of low tumor cell counts (<100 total tumor cells);

therefore, 146 patients were included in the analysis. A modest

positive correlation was observed between PD-L1 expression

measured using the IHC-DAB and PID methods (r=0.3272,

p<0.0001; Figure 2). In contrast, there were some cases in which

PD-L1 expression levels were not positively correlated between the
FIGURE 2

Correlation between programmed cell death ligand 1 (PD-L1)
expression measured by immunohistochemical staining using 3,3´-
diaminobenzidine chronogenesis (IHC-DAB) method and PD-L1
phosphor-integrated dot (PID) score. The Spearman correlation
coefficient was used to analyze the correlation. A modest positive
correlation is observed between PD-L1 expression measured by the
IHC-DAB and PID methods (r=0.3272, p<0.0001). *Statistically
significant: p<0.05.
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two methods, such as a low PD-L1 PID score, despite the high PD-

L1 expression measured using the IHC-DAB method. We show

several images comparing PD-L1 expression between the IHC-DAB

and PIDmethods in Figures 3A–D. Several patients exhibited a high

PD-L1 PID score, irrespective of the low PD-L1 expression level

assessed by IHC-DAB. We identified 7 patients with PD-L1 (IHC-
Frontiers in Immunology 0843
DAB) levels below 20% yet possessing a high PD-L1 PID score

(>4000). We conducted a comparative analysis between this patient

subgroup and the remaining patients to assess background

characteristics. The examination revealed no statistically

significant differences in patient background characteristics

between the two patient groups (Supplementary Table S2).
B

C

D

A

FIGURE 3

Representative images for visual comparison of programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3´-
diaminobenzidine chronogenesis (IHC-DAB) and phosphor-integrated dot (PID) methods. (A) The case of high expression in IHC-DAB and high PID
score: PD-L1 expression 90–100% (IHC-DAB), PD-L1 PID score 15757. (B) The case of low expression in IHC-DAB and high PID score: PD-L1
expression <1% (IHC-DAB), PD-L1 PID score 8487. (C) The case of high expression in IHC-DAB and low PID score: PD-L1 expression 90–100% (IHC-
DAB), PD-L1 PID score 2024. (D) The case of low expression in IHC-DAB and low PID score: PD-L1 expression <1% (IHC-DAB), PD-L1 PID score 762.
px, pixel.
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3.3 Correlation between the PD-L1 PID
score and patient survival

The correlation between the PD-L1 PID score and survival

duration (PFS and OS) was analyzed using the Spearman

correlation coefficient test (n=155). There were weak positive

correlations between the PID score and PFS in the overall cohort

of patients (r=0.2800, p<0.001, Figure 4A). Similar to PFS, a weak

positive correlation with the PID score was observed for OS in the

overall cohort (r=0.2712, p<0.001, Figure 4B). PD-L1 PID scores

before ICI treatment, as determined by the PID method, correlated

with prolonged PFS and OS in patients with cancer who received

ICI treatment.
3.4 Comparison of PD-L1 PID scores by
the treatment efficacy of patients

We verified whether PD-L1 expression levels obtained using the

PID method before treatment initiation predicted the efficacy of ICI

treatment in patients. The overall patient population was divided

into two groups, responder and non-responder, based on their

treatment response to ICIs, and PD-L1 PID scores were statistically

compared between the two groups using Mann–Whitney U test

(n=155). The duration of PFS for the responder group was defined

by four criteria: PFS of each patient was 1) longer than “median

PFS,” 2) “median PFS”+3 months, 3) “median PFS”+6 months, 4)

“median PFS”+12 months, based on “median PFS” data obtained

from previous reported phase III pivotal trials evaluating ICI

treatments (Table 1) (6–14). PD-L1 PID scores were not

significantly different in the analysis that distinguished non-

responders from responders according to the “median PFS”

described above (p=0.5596, Figure 5A). However, PD-L1 PID

scores were significantly higher in responders than in non-

responders in this analysis for each patient’s PFS: ≥”median

PFS”+3 months, ≥”median PFS”+6 months, and ≥”median
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PFS”+12 months were defined as responders (p=0.0242,

Figure 5B; p=0.0082, Figure 5C; and p=0.0323, Figure 5D,

respectively). Regarding OS, the duration of OS for the

responders was defined by the criteria in which each patient’s OS

was longer than the “median OS” reported in the previous pivotal

trials (Table 1) (6–14). PD-L1 PID scores were significantly higher

in responders than in non-responders according to prolonged OS

(p=0.0136, Figure 5E).

Additionally, the patient population was divided into three

groups: long responders, responders, and non-responders. PD-L1

expression as the PID score in each group was compared between

the three groups with the “median PFS” reported from the pivotal

trial as previously described (Table 1) (6–14). Multiple comparison

test results were statistically analyzed using the Dann–Bonferroni

multiple comparison test (n=155), and the PID scores were

significantly higher in long responders than in responders

(p=0.0498, Figure 6A; p=0.0190, Figure 6B), or non-responders

(p=0.0179, Figure 6C; p=0.0363, Figure 6D). Based on these

analyses of comparison between two and three groups, pre-ICI

treatment PD-L1 expression measured as PID score by the PID

method was associated with favorable PFS and OS in patients with

cancer who received cancer immunotherapy with ICIs. The results

regarding PFS suggest that PD-L1 PID scores might be predictive of

better prognosis, as PID scores were higher in responders with

longer PFS.
3.5 Kaplan–Meier survival analysis
according to PD-L1 expression by the IHC-
DAB method

Based on the cut-off values (50% and 1%) of PD-L1 expression

by the IHC-DAB method, which is clinically applied (26), the

patient cohort was divided into two groups, “high” and “low”

according to PD-L1 expression levels by the conventional IHC-

DABmethod. Then, we compared both groups using Kaplan–Meier
BA

FIGURE 4

Correlation between programmed cell death ligand 1 (PD-L1) expression as the phosphor-integrated dot (PID) score and progression-free survival
(PFS) and overall survival (OS). The Spearman correlation coefficient was used to analyze the correlation between the PD-L1 PID score and survival
durations of (A) PFS and (B) OS. (A) There are weak positive correlations between the PID score and PFS in the overall cohort of patients. Similar to
PFS, (B) a weak positive correlation with the PID score is observed for OS in the overall cohort. *Statistically significant: p<0.05.
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survival analyses with the log-rank tests for PFS and OS. In the

overall patient population (n=155), OS was significantly prolonged

in the PD-L1 high (PD-L1(IHC) ≥50%) group (p=0.0347,

Figure 7B), and a similar trend was observed with a cut-off value

of 1%, which was not statistically significant (p=0.0697, Figure 7D).

Regarding PFS, there were no significant differences between the
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high and low groups of PD-L1 expression by the IHC-DAB method

with cut-off values of 50% (p=0.1607, Figure 7A) and 1% (p=0.1153,

Figure 7C). We additionally performed sub-analyses for the NSCLC

patient cohort because of the large number of patients (n=109), but

the results were not statistically significant (Supplementary

Figures 1A–D).
B C D

E

A

FIGURE 5

Comparison of programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) scores by treatment efficacy, responders and non-
responders. Overall patient populations were divided into two groups, responders and non-responders, based on their treatment responses of
immune checkpoint inhibitors, and PD-L1 PID scores were statistically compared between both groups. (A) PD-L1 PID scores are not significantly
different in the analysis that distinguished non-responders from responders according to the “median PFS”. (B–D) However, PD-L1 PID scores are
significantly higher in responders than in non-responders in this analysis for each patient’s PFS: (B) ≥”median PFS”+3 months, (C) ≥”median PFS”+6
months, and (D) ≥”median PFS”+12 months were defined as the responders. (E) Regarding OS, PD-L1 PID scores were significantly higher in R than
in NR according to prolonged OS. R, responders; NR, non-responders; med, median. *Statistically significant: p<0.05.
B C DA

FIGURE 6

Comparison of programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) scores by treatment efficacy. The patient population was
divided into three groups: long-responders, responders, and non-responders. One-way analysis of variance with the Dann–Bonferroni multiple
comparison tests were performed to compare the three groups. (A, B) PID scores are significantly higher in long-responders than in responders
(p=0.0292, A; p=0.0190, B) and (C, D) non-responders (p=0.0179, C; p=0.0363, D). LR, long-responders; R, responders; NR, non-responders; med,
median. *Statistically significant: p<0.05.
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Furthermore, based on the PD-L1 cut-off values (50%, 1–49%,

and 1%) evaluated by the IHC-DAB method, the patient population

was divided into three groups according to PD-L1 expression levels,

“High,” “Medium,” and “Low” groups, and then we compared the

three groups using Kaplan–Meier survival analyses with the log-

rank tests for PFS and OS. In the overall patient population

(n=155), OS in the “High” (PD-L1(IHC) ≥50%) group was

statistically prolonged compared to that of the “Low” (PD-L1

(IHC) <1%) group (p=0.0146, Figure 8B). However, no significant

results were obtained for PFS (Figure 8A) when the three groups

were categorized based on PD-L1 expression by the IHC-DAB

method. Sub-analyses for the NSCLC patient cohort were also

performed (n=109), and there were no statistically significant

findings in the Kaplan–Meier survival analyses for both PFS

(Supplementary Figure 2A) and OS (Supplementary Figure 2B).

Therefore, these analyses indicated that the PD-L1 expression levels

defined by the conventionally used IHC-DAB method with PD-L1

cut-off values were not associated with favorable PFS and OS, except

for the “High” (PD-L1(IHC) ≥50%) group in OS.
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3.6 Determining the cut-off value of the
PD-L1 PID score

There are no criteria for defining high or low PD-L1 expression

using the proportional integral derivative method. To determine an

appropriate cut-off value for the PD-L1 PID score, we defined

“high” and “low” PD-L1 expression by the IHC-DAB method as the

outcomes and plotted receiver operating characteristic (ROC)

curves regarding the PID scores. The PID score with the highest

value, calculated by the formula [Sensitivity - (1 + Specificity)], was

defined as the most appropriate cut-off value by the Youden index

to distinguish between high and low PD-L1 expression groups (28).

Appropriate ROC curves with statistical significance were obtained

when PD-L1 IHC-DAB cut-off values of 50%, 20%, and 10% were

applied, and the most appropriate cut-off value of the PD-L1 PID

score was 1863 (Supplementary Figures 3A–H).

Moreover, we divided the PID scores into three groups for

analysis, as was done for the IHC-DAB method. The cut-off values

for dividing the patients into three groups were determined using
B

C D

A

FIGURE 7

Kaplan–Meier survival analysis according to programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3´-
diaminobenzidine chronogenesis (IHC-DAB) method in two groups. Based on the cut-off values (50% and 1%) of PD-L1 expression by the IHC-DAB
method, the patient cohort was divided into two groups, “High” and “Low” according to PD-L1 expression levels by conventional IHC-DAB. In the
overall patient population (n=155), we compared both groups using Kaplan–Meier survival analyses with log-rank tests for PFS and OS.
(A, C) Regarding PFS, there are also no significant differences between the “High” and “Low” groups of PD-L1 expression by the IHC-DAB method,
which were defined by the cut-offs of (A) 50% and (C) 1%. (B) OS is significantly prolonged in the “High” (PD-L1(IHC) ≥50%) group, (D) and there is a
similar trend with a cut-off value of 1%, which is not statistically significant. HR, hazard ratio; CI, confidence interval. *Statistically significant: p<0.05.
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percentile values: 1) PID score ≥2359 (75th percentile) for the

“High” group, 2) 948 (25th percentile)<PID score<2359 (75th

percentile) for the “Medium” group, 3) PID score <948 (25th

percentile) for the “Low” group (Supplementary Figure 4).
3.7 Kaplan–Meier survival analysis
according to the PD-L1 PID score

Based on the cut-off value (1863) of the PD-L1 PID score that

was obtained above, the patient cohort was divided into two groups,

“High” and “Low” according to the PD-L1 expression levels by the

PID method, and then we compared the two groups using Kaplan–
Frontiers in Immunology 1247
Meier survival analyses with log-rank tests for PFS and OS. In the

overall patient population (n=155), PFS and OS were significantly

prolonged in the “High” PD-L1 PID score group (p=0.0005,

Figure 9A and p=0.0011, Figure 9B, respectively). We further

performed sub-analyses of the NSCLC patient cohort (n=109).

PFS was significantly longer in the “High” PID score group than

in the “Low” PID score group (p=0.0325, Supplementary

Figure 5A), and a similar trend was observed for OS in the

NSCLC patient cohort (p=0.0575, Supplementary Figure 5B).

Based on the percentile values, the PID scores were divided into

three groups, “High,” “Med,” and “Low” groups, for survival

analysis. Then, we compared the three groups using Kaplan–

Meier survival analyses with the log-rank tests for PFS and OS.
BA

FIGURE 9

Kaplan–Meier survival analysis according to the programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) score in two groups. Based
on the cut-off value (1863) of the PD-L1 PID score, the patient cohort was divided into two groups, “High” and “Low” according to PD-L1 expression
levels by the PID method, and then we compared the two groups using Kaplan–Meier survival analyses with the log-rank tests for PFS and OS. In the
overall patient population (n=155), both (A) PFS and (B) OS are prolonged in the “High” PD-L1 PID score group with high statistical significance. HR,
hazard ratio; CI, confidence interval. *Statistically significant: p<0.05.
BA

FIGURE 8

Kaplan–Meier survival analysis according to programmed cell death ligand 1 (PD-L1) expression by the immunohistochemical staining using 3,3´-
diaminobenzidine chronogenesis (IHC-DAB) method between the three groups. Based on the PD-L1 cut-off values (50%, 1–49%, and 1%) evaluated
by the IHC-DAB method, the patient population was divided into three groups of PD-L1 expression levels, “High,” “Medium,” and “Low” groups, and
then we compared the three groups by performing Kaplan–Meier survival analyses with the log-rank tests for PFS and OS. (A) In the overall patient
population (n=155), no significant results were obtained for PFS. (B) OS in the PD-L1 “High” (PD-L1(IHC) ≥50%) group was statistically prolonged
compared to that of the PD-L1 “Low” (PD-L1(IHC) <1%) group (p=0.0146, B). HR, hazard ratio; CI, confidence interval; p, p-value; Med, medium.
*Statistically significant: p<0.01667.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ohkuma et al. 10.3389/fimmu.2023.1260492
Only in these analyses of comparison among the three groups, a p-

value <0.01667 was considered to be statistically significant. In the

overall patient population (n=155), PFS was significantly prolonged

in the “High” PD-L1 PID score group compared with the “Medium”

(p=0.0011, Figure 10A) and “Low” PD-L1 PID score groups

(p=0.0003, Figure 10A). Similar to PFS, the “High” PD-L1 PID

score group had more favorable OS than the “Medium” (p=0.0012,

Figure 10B) and “Low” PD-L1 PID score groups (p<0.0001,

Figure 10B). In the NSCLC cohort (n=109), PFS and OS were

longer in the “High” PD-L1 PID score group with strong statistical

significance than in the “Medium” (p=0.0098, Supplementary

Figure 6A; and p=0.0070, Supplementary Figure 6B, respectively)

and “Low” PD-L1 PID score groups (p=0.0059, Supplementary

Figure 6A; and p=0.0023, Supplementary Figure 6B, respectively).

Therefore, the results demonstrated that when the PID score was

used as the cut-off value for the PD-L1 expression level, the PID

score more clearly predicted the treatment efficacy and prognosis of

patients treated with ICIs.
4 Discussion

To evaluate whether quantitative detection of PD-L1 expression

predicts the clinical outcomes of patients with cancer treated with

ICIs, we demonstrated the expression of PD-L1 protein using two

different immunohistochemical detection methods, the

conventional IHC-DAB and PID system. From the results

obtained herein, the quantitative evaluation of PD-L1 expression

by the PID score appears to be more effective than the cut-off of PD-

L1 expression by the IHC-DAB method in predicting the treatment

efficacy and prognosis of patients with cancer treated with ICIs. PID
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scoring as a quantitative detection system is expected to resolve

some limitations of the IHC-DAB method for quantifying protein

expression levels.

Since the PID method was first reported in 2017 (21),

researchers have focused on this technology and its practical

applications. Gonda et al. published foundational articles on the

PID system and established a novel method for quantitative protein

evaluation by IHC using new fluorescent nanoparticles, called PIDs,

with high sensitivity and a wide dynamic range (21). The PID

method is strongly correlated with conventional human epidermal

growth factor receptor 2 (HER2) testing methods using IHC-DAB

(21, 29). In the present study, PD-L1 expression assessed using the

conventional IHC-DAB method was positively correlated with that

assessed using the PID method. Additionally, protein expression

assessed by the PID method has been reported to have a positive

linear correlation with that obtained by other methodologies such

as fluorescence activated cell sorting analysis (21, 29) or enzyme-

linked immunosorbent assay (ELISA) (24). Thus, the

reproducibility of the PID method was confirmed by comparison

with the other methods. It has also been verified whether protein

expression evaluated using the PID method can be used as a

biomarker for predicting treatment efficacy. The number of

HER2-positive PID particles in breast cancer tissue analyzed from

pretreatment biopsies have been shown to predict the therapeutic

efficacy of the anti-HER2 antibody (trastuzumab) (21). Guo et al.

showed that a high ratio of extranuclear-to-nuclear estrogen

receptor alpha (ERa) in patients with hormone receptor-positive

and HER2-negative breast cancer indicates a decreased likelihood of

benefiting from hormone therapy (30). Similar to our study, the

PID score for PD-L1 expression showed a higher prognostic value

than protein detection using IHC-DAB (23). Quantitative
BA

FIGURE 10

Kaplan–Meier survival analysis according to the programmed cell death ligand 1 (PD-L1) phosphor-integrated dot (PID) score between the three
groups. Based on the 25th and 75th percentile values, PID scores were also divided into three groups for the survival analysis. We compared the
three groups by performing Kaplan–Meier survival analyses with the log-rank tests for PFS and OS. In the overall patient population (n=155), both
(A) PFS and (B) OS are significantly prolonged in the “High” PD-L1 PID score group compared with the “Medium” (PFS, p=0.0011, A; OS, p=0.0012,
B) and “Low” PD-L1 PID score groups (PFS, p=0.0003, A; OS, p<0.0001, B). HR, hazard ratio; CI, confidence interval; p, p-value; Med, medium.
*Statistically significant: p<0.01667.
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evaluation of MYC protein expression using the PID method

stratified OS in patients with diffuse large B-cell lymphoma more

precisely than the conventional IHC-DAB method (31).

There have been limited studies on the quantitative evaluation

of PD-L1 molecules using the PID method. In a previous study, PD-

L1 expression in pancreatic ductal carcinoma was evaluated using

IHC with PID, which could detect PD-L1 expression with higher

sensitivity than conventional IHC-DAB. PD-L1 expression,

evaluated using the PID method, predicts poor prognosis (23).

Another study showed that digital immunostaining of PD-L1

expression was highly correlated with protein expression

measured by other methods, such as ELISA and quantitative

messenger RNA data generated by the nCounter system (24).

Both studies are valuable in that they evaluated PD-L1 expression

using the novel PID method, but they did not validate whether it

predicts the efficacy of ICI treatment. In our study, we not only

compared the PID method with the conventional IHC-DAB

method in assessing PD-L1 expression but also analyzed the

relationship between PD-L1 expression by IHC-DAB and

treatment response to ICIs using pre-ICI treatment tissue

specimens from 155 patients with cancer. When the patients were

classified into responder and non-responder groups based on the

duration of PFS and OS, the PD-L1 PID scores in the responder

group were higher than those in the non-responders. As our data

showed that PID scores tended to be higher in patients with a longer

PFS, it is possible that PID scores were better at predicting long

responders, which is a hallmark of ICI treatment. Furthermore,

when we performed survival analysis by dividing patients into high

and low PD-L1 PID score groups, PFS and OS were significantly

prolonged in patients with high PID scores. However, when the PD-

L1 expression level was evaluated using the conventional DAB

method, neither PFS nor OS was significant and could not predict

treatment response or prognosis. We found that the PD-L1

expression level evaluated using the PID method has the potential

to be a better biomarker than the IHC-DAB method. There are

several possible reasons why the two analysis methods gave different

results. The main limitation of the IHC-DAB method is the

dependence of the staining intensity on the enzymatic activity of

HRP, which in turn is influenced by factors such as temperature,

reaction time, and HRP substrate concentration. Furthermore, the

efficacy of the IHC-DAB method is curtailed by the subjective

selection of noteworthy fields of view by pathologists and their

subsequent visual assessment of PD-L1 expression, which prevents

quantitative evaluation and lacks objectivity. Conversely, the PID

method features brightness levels 100 times greater than

conventional fluorescent nanoparticles, along with 10 times

greater lightfastness compared to existing fluorescent dyes (21).

These distinctive attributes equip the PID method with the capacity

to assess protein expression assessments in a more quantitative and

accurate manner than the DABmethod. Additionally, the capability

of the PID method to comprehensively analyze entire regions of
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tumor tissue specimens permits the evaluation of PD-L1 expression

in whole areas that conventional visual inspection by pathologists

may not fully capture. These factors likely contribute to the

disparities in results observed between the DAB and PID methods.

Furthermore, the PID method has been applied to research

other than the search for predictive biomarkers of therapeutic

efficacy. Guo et al. performed PID analysis using the nearest

neighbor method, which takes advantage of the ability to analyze

the location of detected proteins in cells and tissues. ERa expression

in nuclear and extranuclear regions was detected and quantitatively

analyzed, resulting in higher sensitivity and specificity than

conventional IHC-DAB in patients with breast cancer (30).

Suzuki et al. applied PID imaging to study antibody drugs to

elucidate their mechanism of action. They evaluated the

intratumor pharmacokinetics using PID imaging analysis, which

can assess the distribution of proteins to tumor target sites at the

microlevel, to analyze the intratumor distribution of a novel HER2-

targeted antibody drug conjugate, trastuzumab deruxtecan (32).

PID imaging analysis is expected to be used not only to detect

biomarkers such as HER2 and PD-L1 expressed in tumor tissue but

also as an ideal tool for elucidating the mechanism of action of

antibody drugs in tumor tissue in the clinical setting. Moreover, as

Inamura et al. analyzed the expression of colony stimulating factor-

1 receptor-expressing tumor-associated macrophages in lung

cancer tumor tissue (33), PID imaging technology will be

increasingly applied to analyze the immune microenvironment in

tumor tissue.

We found no significant difference in PID scores between

responders and non-responders when using the “median PFS”

reported in the pivotal trial as the cut-off, but significant results

were obtained when patients were divided by “median PFS”+3

months, “median PFS”+6 months, and “median PFS”+12 months.

In clinical trials of ICIs, PFS can be attributed to tumor shrinkage

(pseudo-progression) following disease progression (PD) or to

longer survival after PD, both of which suggest a delayed effect of

ICIs. Previous studies have reported that excluding modified PFS,

which excludes early PD events up to 3 months after

randomization, is a more accurate surrogate endpoint for OS

than actual PFS (34). Thus, considering the early PD of

approximately 3 months, it is possible that a median PFS of 3

months or more would be reasonable to obtain significant results.

The present study has several limitations. It is a retrospective

analysis, and there lies the aspect that it solely served as an exploratory

investigation into the utility of PD-L1 expression through the PID

method. In terms of the study design, the enrolled patients exhibited

heterogeneity and encompassed various cancer types. The inclusion of

diverse cancer types in this study gives rise to discrepancies in the

approach to evaluating PD-L1 expression by the IHC-DAB method

between NSCLC and other cancer types. Our assessment of PD-L1

expression by the IHC-DABmethod aligns with the method employed

in clinical practice. TPS serves as a companion diagnostic tool for lung
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cancer, whereas CPS is utilized for assessing PD-L1 expression in other

cancer types within clinical settings. Furthermore, the determination of

the cut-off value of the PD-L1 PID score also remains a challenge.

Currently, no recommended or established cut-off values exist for

evaluating PD-L1 expression using the PID method. In this study, we

established our own cut-off values utilizing ROC curves and percentile

values. These cut-off values for PD-L1 PID scores may vary based on

patient background, such as different cancer types. To resolve these

issues and verify our results, conducting a prospective study with a

homogenized patient population is imperative.We are in the process of

planning a clinical trial to investigate PD-L1 expression through the

PID method in the future.
5 Conclusions

We evaluated PD-L1 expression using highly sensitive quantitative

immunohistochemistry with fluorescent nanoparticles (PIDs) in 155

patients with unresectable, recurrent, or metastatic cancer treated with

ICIs, and compared it with that using the conventional IHC-DAB

method. Evaluation of PD-L1 expression by the IHC-DAB and PID

methods showed a positive correlation. The quantitative assessment of

PD-L1 expression using the PID method predicted responders to ICI

treatment. Furthermore, PFS and OS were significantly prolonged in

the group with higher PD-L1 PID scores, suggesting that quantitative

evaluation of PD-L1 expression by the PID method could be a

biomarker for predicting treatment efficacy and patient prognosis of

ICI treatment. It is significant that the PID method was able to identify

the favorable prognosis group that could not be detected using

conventional DAB staining. We propose prospective studies and

further research on the quantitative evaluation of PD-L1 expression

using the innovative PID method with the aim of adapting this

methodology to clinical practice.
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a systematic review and
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Background: Accurate prediction of efficacy of programmed cell death 1 (PD-1)/

programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical

importance. To address this issue, a network meta-analysis (NMA) comparing

existing commonmeasurements for curative effect of PD-1/PD-L1 monotherapy

was conducted.

Methods: We searched PubMed, Embase, the Cochrane Library database, and

relevant clinical trials to find out studies published before Feb 22, 2023 that use

PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene

expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/

immunofluorescence (mIHC/IF), other immunohistochemistry and

hematoxylin-eosin staining (other IHC&HE) and combined assays to determine

objective response rates to anti–PD-1/PD-L1 monotherapy. Study-level data

were extracted from the published studies. The primary goal of this study was to

evaluate the predictive efficacy and rank these assays mainly by NMA, and the

second objective was to compare them in subgroup analyses. Heterogeneity,

quality assessment, and result validation were also conducted by meta-analysis.

Findings: 144 diagnostic index tests in 49 studies covering 5322 patients were

eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-

0.89), the second diagnostic odds ratio (DOR) (5.09, 95% CI: 1.35-13.90), and the

second superiority index (2.86). MSI had highest specificity (0.90, 95% CI: 0.85-

0.94), and DOR (6.79, 95% CI: 3.48-11.91), especially in gastrointestinal tumors.

Subgroup analyses by tumor types found that mIHC/IF, and other IHC&HE

demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC),

while PD-L1 IHC andMSI were highly efficacious in predicting the effectiveness in

gastrointestinal tumors. When PD-L1 IHCwas combined with TMB, the sensitivity

(0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in

all studies.
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Interpretation: Considering statistical results of NMA and clinical applicability,

mIHC/IF appeared to have superior performance in predicting response to anti

PD-1/PD-L1 therapy. Combined assays could further improve the predictive

efficacy. Prospective clinical trials involving a wider range of tumor types are

needed to establish a definitive gold standard in future.
KEYWORDS

anti-PD-1/PD-L1 inhibitors immunotherapy, biomarkers, predictive value of tests, solid
tumor, meta-analysis
1 Introduction

Since the approval of anti-PD-1/PD-L1 inhibitors in the

treatment of melanoma in 2014, the overall survival of patients

has improved significantly. However, anti-PD-1/PD-L1

immunotherapy still has many shortcomings, such as PD-1/L1-

induced immune-re lated adverse events ( irAEs) and

hyperprogression (1). It is important to predict patients’ response

to PD-1/PD-L1 immunotherapy based on the consideration of

medical economics.

Various testing assays have been approved to predict the

efficacy of anti-PD-1/PD-L1 immunotherapy response. Food and

Drug Administration (FDA) has approved PD-1/PD-L1 IHC, TMB,

proficient mismatch repair (pMMR) proteins, deficient mismatch

repair (dMMR), and MSI-high (MSI-H) for specific tumor types

and drugs as companion or complementary diagnostics (2).

Similarly, European Communities (CE) and National Medical

Products Administration (NMPA) have carried out their own

standards on companion diagnost ics and predict ion

assay applications.

PD-L1 IHC, the first approved companion diagnostic

biomarker, aims to detect PD-1/PD-L1 expression on tumor cells

or inflammatory cells. However, the efficacy of IHC may be

influenced by the experience of pathologists, tumor types

examined, and the used scoring methods. Researchers are now

exploring the optimal detecting assay and scoring methods for

specific tumors (3).

TMB has been found to increase neoantigens of major

histocompatibility complexes (MHC) in various cancers, which

leading to better immunotherapy response in patients. Increasing

evidence indicates that different tumor types own various

expression levels of TMB. TMB is usually assessed by next-

generation sequencing (NGS) platforms, though standards of

threshold and application methods need to be defined exactly to

enhance accuracy across different tumor types. This would entail

considerations such as genome coverage, workflow, and appropriate

cutoff values (4). MSI and GEP display the difference in gene

expression as well. MSI-H phenotype arises from numerous

frameshift mutations due to deficits of the MMR system (5).

Patients with MSI-H are more likely to suffer from various

cancers, including colorectal cancer. MMR proteins, which could

be detected by IHC, polymerase chain reaction (PCR), and gene
0254
sequencing, are now being used to identify MSI-H patients in

various cancer types.

Detection and evaluation of tumor microenvironment (TME)

have also been explored in recent years (6). For example,

researchers have found that the epithelial-mesenchymal transition

(EMT)- and stroma-related gene expression status is related to

patients’ tumorigenesis and drug resistance (7, 8). mIHC/IF and

gene sequencing technique could offer more chances to verify (9).

GEP could also allow the integrations of different gene signatures

and training models to predict prognosis and drug response based

on the results of DNA-microarray and RNA sequencing (RNA-Seq)

(10–12). Some researchers have also explored the combined

approaches, such as TMB+GEP or TMB+IHC, since such

predictors could work through different mechanisms or may be

positively correlated with each other. All biomarker assays

mentioned above present novel opportunities to predict the

response rate of PD-1/PD-L1 inhibitors.

Assessment and evaluation of diagnostic tests could also benefit

from the increasing diagnostic test accuracy (DTA) studies and the

continuous development of statistical methods. In the era of evidence-

based medicine, meta-analysis plays an important role in integrating of

different studies with pairs of intervention using various

methodological methods. To enable the comparison of different

assays with limited data and generate a whole scale ranking results,

NMA turned out to be a better tool to indirectly compare and jointly

analyze three or more DTA studies simultaneously.

In this study, we compared the diagnostic accuracy of seven

biomarker testing assays, including PD-L1 IHC, TMB, GEP, MSI,

mIHC/IF, other IHC&HE, as well as combined assays for predicting

anti-PD-1/PD-L1 immunotherapeutic response. Diagnostic

accuracy measures used in this study included sensitivity,

specificity, relative sensitivity, relative specificity, PPV, NPV,

relative predictive values, DOR, and superiority index (13). It is

believed that the NMA performed here could provide stronger

clinical evidence for current medical practice.
2 Methods

This NMA was performed according to the Preferred Reporting

Items for Systematic Reviews and Meta-analyses (PRISMA)

NMA checklist.
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2.1 Eligibility criteria

The included research articles in this study were based on real-

world data, and English translations were available. The studies were

required to conduct PD-1/PD-L1 monotherapies and utilize at least

two predictive biomarker testing assays on pre-treatment tissue

samples. These assays could include PD-L1 IHC, TMB, GEP, MSI,

mIHC/IF, HE for tumor-infiltrating lymphocytes (TIL), or other IHC

methods. Each biomarker testing assay should provide sufficient

information to determine the objective response rate (ORR) or

non-progression rate (NPR) and allow for the calculation of

sensitivity and specificity. If any testing assay had fewer than 15

tissue samples, it would not be considered. Hematologic cancers and

flow cytometry studies on tumor lysates were excluded.
2.2 Search strategy and data collection

We systematically searched PubMed, Embase, and the Cochrane

Library database for relevant studies and their errata (till February

2023). Additionally, we manually searched articles related to relevant

clinical trials. For example, the search formula of Embase included:

(“Immunohistochemistry “ OR “ Tumor mutational burden “ OR “

gene expression profiling “OR “multiplex immunofluorescence “OR

“ neoantigen load “ OR “ Immunofluorescence “)[Find articles with

these terms] AND (“Pembrolizumab “ OR “ Nivolumab “ OR “

Durvalumab “ OR “ Toripalimab “ OR “ Camrelizumab “ OR “

Atezolizumab “ OR “ Avelumab “ OR “ Avelumab “ OR “

Budigalimab “)[Title, abstract or author-specified keywords] AND

(Research articles)[Filter]. The intact search formula and results were

in the Supplementary material.

Necessary information from eligible studies was extracted by

three researchers independently and all inconsistencies were settled

by discussion. The trial name, first author, year of publication, sample

size, trial phase, tumor type, PD-1/PD-L1 antibody, and index test

assay was recorded. To calculate sensitivity and specificity for each

index test, we organized ORR-related information into a 2x2 table.

We used Youden’s index, which combines values for sensitivity and

specificity to indicate test accuracy, to select the best-performing

threshold among multiple thresholds. If a clinical trial has multiply

publications, the one with most complete information was adopted.
2.3 Statistical analysis and
quality assessment

The main outcomes were calculated by NMA. As for Bayesian

NMA, the ANOVA model made it possible to use the original data

and arm-based (AB) model (14). The latter shows superiority to

contrast-based (CB) models by accommodating more complex

variance-covariance structures. NMA was mainly performed with

the R package “Rstan” (R version 4.2.2). In order to improve

accuracy and compare diagnostic assays one by one, calculations

were repeated 7 times (model_code = model, chains = 2, iterations =

10000, warmup = 5000, thin = 5), and then, we draw league tables
Frontiers in Immunology 0355
for relative comparations. Given numerical variance, we chose the

median of sensitivity, specificity, PPV, NPV, SROC, and

superiority index.

The Midas module for DTA meta-analysis facilitated validation

of results and assessment of heterogeneity by forest plot and I2

analysis for every 7 biomarker modalities. Sensitivity, specificity,

DOR, and summary receiver operating characteristic (SROC)

curves and their associated area under the curve (AUC) were

analyzed by Midas, which employs a bivariate mixed-effects

logistic regression modeling framework and empirical Bayesian

predictions. Publication bias of studies was also evaluated by

Deeks’ funnel plot asymmetry test (p<0.05 indicating significant

asymmetry). The network graphs package on Stata were used to

draw the network graphs. Meta-analysis and drawing figures were

fulfilled in Stata (17.0 MP—Parallel Edition).

The QUADAS-C (Quality Assessment of Diagnostic Accuracy

Study) tool was used to assess the risk of bias and applicability in

each selected study. There were 4 sections for risk of bias: patient

selection, index test, reference standard, and flow and timing;

meanwhile, concerns regarding applicability were presented in 3

sections: patient selection, index test, and reference standard.
3 Results

3.1 Systematic review and characteristics of
the included studies

3652 articles from databases and an additional 304 articles

related to clinical trials were retrieved in total. After removing

duplicates and glancing at the abstracts and titles, 294 articles were

identified for full-text scrutiny. The literature search and study

selection flow were recorded in Figure 1. Ultimately, a total of 49

studies involving 5322 patients were included in our analysis. 144

diagnostic index tests were extracted across all 49 studies,

comprising PD-L1 IHC (n=46) (15–58), TMB (n=27) (15–33,

58–62), combined assays (n=22) (7, 16, 18, 20, 23, 31, 34–38, 61,

62), other IHC&HE (n=19) (7, 16–18, 21, 30, 33–35, 37–45), MSI

(n=13) (21, 39, 46-53, 58, 61), GEP (n=13) (7, 16, 20, 23, 51, 53–

56, 60, 62) and mIHC/IF (n=4)(36, 37, 43, 57). HE staining was

used to score TIL. The situation where testing assays had been

directly compared was represented by a network plot (Figure 2).

15 types of tumors accounted for the majority of the studies, while

7 studies (18, 20, 27, 31, 42, 60, 61) involved several solid tumors. 8

of 13 MSI tests (39, 46, 47, 50–53, 58) detected gastrointestinal

cancer. The summary of included articles and details of studies

can be found in Supplementary Tables 1, 2.
3.2 Sensitivity, specificity, PPV and NPV

The sensitivity and specificity of NMA were summarized in

Table 1. Among the diagnostic index tests, mIHC/IF (0.76, 95% CI:

0.57-0.89) exhibited the highest sensitivity, whereas GEP (0.52, 95%

CI: 0.42-0.63), multi-assay (0.46, 95% CI: 0.39-0.52) and MSI (0.42,
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95% CI: 0.30-0.53) have low efficacy. Other IHC&HE (0.66, 95% CI:

0.57-0.73), PD-L1 IHC (0.63, 95% CI: 0.59-0.67), and TMB (0.62,

95% CI: 0.56-0.68) presented similar sensitivities to rule out stable

disease and progressive disease. As for specificity, MSI (0.90, 95%

CI: 0.85-0.94) and combined assays (0.84, 95% CI: 0.79-0.87)

performed better than the others. The specificities of the

remaining testing assays were quite close, with TMB, other

IHC&HE, PD-L1 IHC, GEP, and mIHC/IF having specificities of

0.65 (95% CI: 0.60-0.70), 0.63 (95% CI: 0.55-0.69), 0.61 (95% CI:
Frontiers in Immunology 0456
0.58-0.64), 0.61 (95% CI: 0.52-0.69) and 0.57 (95% CI: 0.39-

0.73), respectively.

Table 1 also revealed that the PPV for each assay was below

0.60, indicating that positive results may not correctly predict the

response to PD-1/PD-L1 checkpoint inhibitors. MSI (0.56, 95% CI:

0.45-0.67) had the highest PPV, while GEP (0.33, 95% CI: 0.28-0.38)

was the lowest. However, all assays provided relatively good

performance in NPV, with even the lowest being near 0.80 (GEP:

0.8, 95% CI: 0.77-0.83). This suggested that these assays were useful

in providing evidence to refuse immunologic therapy due to the

accuracy of figuring out non-responsive patients.
3.3 Rankings, DOR and superiority index

Relative sensitivity, relative specificity, relative PPV, and relative

NPV were shown in the league table (Table 2). From the league

table for relative sensitivity (lower triangle of Table 2 (A), we can see

that mIHC/IF, other IHC&HE, and PD-L1 IHC had similar efficacy

and performed better than TMB, GEP, combined assays, and MSI

according to the relative risk (RR) values. The upper triangle of

Table 2(A) represented the relative specificity, MSI and multi-assay

showed superiority to the other, meanwhile, the remaining tests

exhibited comparable efficacy. Similarly, MSI and combined assays

demonstrated higher relative PPVs among assays, as shown in the

lower triangle of Table 2(B). There was no difference among relative

NPVs (upper triangle of Table 2(B).

Table 1 presented the odds of responsive patients in test

positives versus the odds of responsive patients in test negatives

as measured by the DOR. MSI (6.79, 95% CI: 3.48-11.91) has the

highest DOR as its high specificity, followed by mIHC/IF (4.44, 95%

CI: 3.19-5.93), largely driven by its high sensitivity. In contrast, the

DOR for gene expression profiling (GEP) was noticeably lower at
FIGURE 2

Network Plot. Both nodes and lines are weighted according to the
number of studies involved in each treatment and direct comparison,
respectively. PD-L1 IHC, Programmed cell death ligand 1
immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene
expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other
Immunohistochemistry and hematoxylin-eosin staining.
FIGURE 1

Flowchart Showing Literature Search and Study Selection. The study process followed the PRISMA guidelines. NMA, network meta-analysis.
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1.81 (95% CI: 1.31-2.40). The high superiority index indicated

biomarkers modality performs comparatively well in both

sensitivity and specificity. In contrast, the low superiority index

represents biomarkers that had a poor performance of at least one

assessment measure. As Table 1 summarized, the ranks of

superiority index from highest to lowest were TMB, mIHC/IF,

other IHC&HE, MSI, PD-L1 IHC, combined assays, and GEP.
3.4 Heterogeneity and quality assessment

To further validate these present results, a meta-analysis was

conducted and revealed the same ranks of sensitivity, specificity,

and DOR as NMA (Table 3). The value of sensitivity and specificity

were very similar, indicating reliable results from the ANOVA

model used in the NMA. SROC generated through meta-analysis

displayed the AUC for each biomarker testing assay. mIHC/IF had

the largest AUC (0.80), while GEP exhibited the smallest (0.61) and

AUC of all others were close to 0.70 (Figure 3). Ranking trends for

AUC and DOR were similar, indicating the reliability of our ranking

results for NMA.

However, the heterogeneity for each biomarker was high due to

the absence of testing standards and various tumor types and

thresholds. Although we chose the best performance threshold, I2

was higher than 50% (Supplementary Figure 1). Nonetheless,

publication bias wasn ’t obvious (p>0.1), according to

Supplementary Figure 2. QUADAS-C tools allowed us to evaluate

the quality (Supplementary Table 3).
3.5 Subgroup analysis

We conducted NMA for two subgroups of studies: 10 studies

focused on non-small cell lung cancer (NSCLC) (7, 23, 32–34, 45,

54, 58) and 12 studies centered around gastrointestinal tumors (19,

33, 39, 46, 47, 50–53, 58, 59) as reported in Table 4 and Table 5. For

NSCLC, mIHC/IF and multi-assay had high sensitivity (0.90, 95%

CI: 0.44-1.00) and specificity (0.90, 95% CI: 0.84-0.95) separately.

mIHC/IF, with only one study available, exhibited both high

sensitivity and specificity (0.89, 95% CI: 0.69-0.98), suggesting its

potential as a reliable biomarker modality. Further analysis based

on the ranks of DOR and superiority index suggested mIHC/IF,

multi-assay and other IHC&HE were better among the 6 testing

assays investigated.

In the case of gastrointestinal cancers, MSI had high specificity

(0.89, 95% CI: 0.82-0.92) and low sensitivity (0.40, 95% CI: 0.27-

0.54). PD-L1 IHC along with other IHC&HE demonstrated

relatively high DOR and superiority index, besides MSI.

Concerning that the majority of combined assays contained 3

models, namely, TMB+GEP (n=6) (16, 20, 23), TMB+PD-L1 IHC

(n=6) (18, 20, 30), and PD-L1 IHC+other IHC&HE (n=5) (34–38).

A meta-analysis was performed to explore sensitivity, specificity,

DOR, and AUC (Supplementary Figure 3) in these models.

TMB+PD-L1 IHC showed the best balance between sensitivity

(0.89, 95% CI: 0.82-0.94) and specificity (0.68, 95% CI: 0.53-0.81)

with high DOR (18, 95% CI: 9-37) and AUC (0.87, 95% CI: 0.84-
T
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TABLE 3 Result validation by meta-analysis.

Ranks Test Sensitivity Test Specificity Test DOR

1 mIHC/IF 0.83 (0.14-0.99) MSI 0.96 (0.88-0.99) MSI 13 (6-9)

2 other IHC&HE 0.66 (0.55-0.75) combined assays 0.85 (0.79-0.89) mIHC/IF 12 (1-243)

3 PD-L1 IHC 0.63 (0.55,0.70) TMB 0.68 (0.60-0.74) multi-assay 5 (4-7)

4 TMB 0.63 (0.56-0.70) other IHC&HE 0.63 (0.57-0.69) other IHC&HE 3 (2-5)

5 GEP 0.58 (0.38-0.76) PD-L1 IHC 0.63 (0.57.0.69) TMB 4 (3,5)

6 combined assays 0.47 (0.39-0.55) GEP 0.61 (0.51-0.69) PD-L1 IHC 3 (2,4)

7 MSI 0.36 (0.23-0.52) mIHC/IF 0.71 (0.45-0.88) GEP 2 (1,4)
F
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DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
TABLE 2 Relative sensitivity, relative specificity, relative PPV, and relative NPV by network meta-analysis.

(A)

mIHC/IF 0.92 (0.69,1.21) 0.96 (0.83,1.17) 0.85 (0.62,1.19) 0.87 (0.60,1.15) 0.67 (0.46,0.90) 0.63 (0.43,0.83)

RANK7 GEP 1.03 (0.99,1.11) 1.00 (0.83,1.17) 0.94 (0.79,1.08) 0.73 (0.62,0.83) 0.68 (0.57,0.78)

RANK6 PD-L1 IHC 0.99 (0.88,1.12) 0.94 (0.86,1.04) 0.73 (0.68,0.79) 0.68 (0.63,0.73)

RANK1 RANK5 other IHC&HE 0.95 (0.82,1.10) 0.74 (0.65,0.84) 0.69 (0.60,0.78)

mIHC/IF RANK2 RANK4 TMB 0.78 (0.71,0.85) 0.72 (0.65,0.79)

0.90 (0.70,1.21) other IHC&HE RANK3 RANK3 combined assays 0.93 (0.87,0.99)

0.86 (0.69,1.14) 1.00 (0.85,1.10) PD-L1 IHC RANK4 RANK2 MSI

0.85 (0.66,1.15) 0.96 (0.81,1.11) 1.01 (0.95,1.12) TMB RANK5 RANK1

0.72 (0.53,0.97) 0.78 (0.64,0.99) 0.79 (0.69,0.91) 0.85 (0.68,1.04) GEP RANK6

0.63 (0.48,0.85) 0.73 (0.58,0.84) 0.70 (0.65,0.83) 0.74 (0.61,0.90) 0.80 (0.67,1.08) combined assays RANK7

0.57 (0.38,0.81) 0.63 (0.46,0.82) 0.74 (0.68,0.81) 0.67 (0.48,0.88) 0.78 (0.56,1.05) 0.89 (0.61,1.21) MSI

(B)

GEP 0.99 (0.94,1.03) 0.97 (0.91,1.04) 0.96 (0.92,1.00) 0.96 (0.91,1.00) 0.94 (0.89,0.99) 0.94 (0.87,1.03)

RANK7 combined assays 0.99 (0.93,1.05) 0.98 (0.94,1.01) 0.97 (0.94,1.00) 0.96 (0.92,10.0) 0.96 (0.90,1.04)

RANK6 MSI 0.99 (0.93,1.04) 0.98 (0.93,1.03) 0.97 (0.91,1.03) 0.97 (0.89,1.06)

RANK1 RANK5 PD-L1 IHC 1.00 (0.97,1.03) 0.98 (0.94,1.02) 0.98 (0.92,1.07)

MSI RANK2 RANK4 TMB 0.99 (0.94,1.03) 0.99 (0.92,1.08)

0.86 (0.70,1.09) combined assays RANK3 RANK3 other IHC&HE 1.00 (0.93,1.09)

0.68 (0.54,0.85) 0.79 (0.68,0.90) TMB RANK4 RANK2 mIHC/IF

0.64 (0.50,0.81) 0.74 (0.62,0.88) 0.95 (0.78,1.12) other IHC&HE RANK5 RANK1

0.61 (0.50,0.77) 0.72 (0.62,0.81) 0.91 (0.81,1.03) 0.97 (0.82,1.14) PD-L1 IHC RANK6

0.60 (0.38,0.86) 0.70 (0.46,0.96) 0.89 (0.59,1.22) 0.94 (0.64,1.31) 0.97 (0.65,1.32) mIHC/IF RANK7

0.59 (0.46,0.76) 0.69 (0.58,0.81) 0.88 (0.74,1.05) 0.94 (0.75,1.15) 0.96 (0.80,1.13) 1.02 (0.69,1.50) GEP
(A) Relative risk (RR) values and 95% CIs for sensitivity (lower triangle) and specificity (upper triangle) were in Table 2.
(B) Relative risk (RR) values and 95% CIs for PPV (lower triangle) and NPV (upper triangle) were in Table 2.
The values highlighted in bold indicated a significant difference between the two compared assays. Relative risk (RR) values <1.00 provided better predictive efficacy.
PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite instability; mIHC/IF, Multiplex
immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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0.90). Conversely, the other models yielded higher sensitivity but

lower specificity compared to a single assay in the meta-analysis

(Supplementary Figure 3).
4 Discussion

In this article, we compared 7 common biomarker testing assays

to assess their efficacy in predicting response to PD-1/PD-L1

checkpoint inhibitors. mIHC/IF had the highest sensitivity (0.76,

95% CI: 0.57-0.89) and AUC (0.80), the second highest DOR (5.09,

95% CI: 1.35-13.90) and superiority index (2.86), but relative lower

specificity (0.57, 95% CI: 0.39-0.73). Although MSI exhibited the

highest DOR (6.79, 95% CI: 3.48-11.91), its application is mainly

limited to gastrointestinal tumors. Despite being the most

commonly used method in clinical practice, PD-L1 IHC had not

demonstrated obvious advantages in terms of sensitivity, specificity,

DOR, as well as superiority index. Yet, when PD-L1 IHC is

combined with TMB, a notable increase in sensitivity (0.89, 95%

CI: 0.82-0.94) was observed.

Our conclusion is in alignment with those from a previous

meta-analyses that had addressed similar topics (63, 64), which

indicated that mIHC/IF was superior to PD-L1 IHC, TMB and GEP

in predicting response to PD-1/PD-L1 checkpoint inhibitors and

that combinatorial assays could improve predictive efficacy. Yet, to

our best of knowledge, our study was the first to use NMA to

demonstrate the objective benefits of mIHC/IF in predicting
Frontiers in Immunology 0759
patients’ response to PD-1/PD-L1 checkpoint inhibitors. Upon

stratifying by tumor types, we also observed that mIHC/IF had

both remarkable sensitivity and specificity in NSCLC. PD-L1,

mIHC/IF and IHC also manifested relatively high DOR and

superiority index in gastrointestinal cancers, which further

substantiated the strengths of mIHC/IF.

To address the challenge of ranking multiple diagnostic tests

simultaneously, statistical scientists have developed several new

models based on the Bayesian setting for NMA of DTA studies

(65), since traditional meta-analysis and NMA of intervention were

not efficient enough to handle this issue. Multivariate extensions of

meta-analysis models of DTA had been applied to NMA. In

addition, the ANOVA model used in this NMA could facilitate

ORR to be compared indirectly and rank testing assays directly (14).

Researchers could also compare multiple thresholds per testing

assay using certain models (66).

High sensitivity, DOR, and AUC of mIHC/IF collectively

indicated its superiority in identification of potential patients who

may benefit most from immunotherapy. mIHC/IF facilitates the

acquisition of quantitative multiplexed data, which plays a pivotal

role in deciphering the intricate relationship between tumor cells,

their microenvironment, and antigen expressions at the single-cell

level. This capability assumes paramount importance in

understanding tumorigenesis, cancer progression, and

immunotherapy responses. In all instances of mIHC/IF index

testing, CD8 was included, and T cell antigen expression was

examined. Various studies have established a link between T cells’

cytotoxicity and pro-inflammatory activity with patients prognosis

through its regulation of inherent immunological function by

tumor antigens like CD8 or PD-1 (67–70), which further

supports the potency of antigens on tumor-infiltrating

lymphocytes (TILs). However, false negative results obtained from

mIHC/IF screening may exclude some patients who may could

benefit from immunotherapy, suggesting the need to explore

additional proteins and combined assays to improve specificity.

To enhance the precision in scoring staining, many researchers have

incorporated artificial intelligence with mIHC/IF, rendering it a

relatively convenient and cost-effective method when compared to

combined assays (71). Thus, our study has concluded that mIHC/IF

had the best performance and a broad range of applications.

PD-L1 IHC, the most widely used assay, exhibited suboptimal

performance in sensitivity, specificity, and DOR. As previously

mentioned, TME is excessively intricate and heterogeneous to be

comprehensively elucidated by a singular mechanism. Furthermore,

expressions of PD-1 and PD-L1 exhibit considerable interpatient

variability. These two factors collectively contribute to the

suboptimal performance of PD-L1 IHC as a predictive marker.

The possible reasons for such unsatisfactory results varied,

including the lack of experience for pathologists, sample type

examined, and IHC assays used (72). A meta-analysis that

scrutinized and compared different IHC assays using tumor

proportion score (TPS) revealed that the sensitivity and specificity

values were similar except SP142 with lower sensitivity (73). The

quantification and assessment of PD-1 protein expression through
FIGURE 3

SROC Plot of “mIHC/IF” “combined assays” “MSI “ “TMB” “other
IHC&HE” “PDL1 IHC” and “GEP” by Meta-analysis. SROC, Summary
receiver operating characteristic curves; AUC, Area under the curve;
PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry;
TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI,
Microsatellite instability; mIHC/IF, Multiplex immunohistochemistry/
immunofluorescence; other IHC&HE, Other Immunohistochemistry
and hematoxylin-eosin staining.
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TABLE 5 Subgroup analysis of gastrointestinal tumors by network meta-analysis.

Rank Test Sensitivity Rank Test Relative Sensitivity Rank Test DOR

1 other IHC&HE 0.72 (0.35,0.95) 1 other IHC&HE 1.00 (1.00,1.00) 1 other IHC&HE 7.24 (0.35,37.15)

2 PD-L1 IHC 0.56 (0.44,0.68) 2 PD-L1 IHC 0.84 (0.52,1.61) 2 MSI 5.73 (2.49,10.59)

3 TMB 0.55 (0.33,0.76) 3 TMB 0.82 (0.41,1.64) 3 PD-L1 IHC 2.73 (1.45,4.76)

4 MSI 0.40 (0.27,0.54) 4 MSI 0.60 (0.33,1.20) 4 mIHC/IF 1.92 (0.03,11.96)

5 mIHC/IF 0.37 (0.04,0.84) 5 mIHC/IF 0.55 (0.06,1.48) 5 TMB 1.62 (0.39,4.56)

6 GEP 0.06 (0.00,0.39) 6 GEP 0.10 (0.00,0.64) 6 GEP 0.45 (0,30,0.86)

Rank Test Specificity Rank Test Relative Sensitivity Rank Test Superiority Index

1 MSI 0.89 (0.82,0.92) 1 MSI 1.91 (1.09,4.19) 1 MSI 4.17 (1.00,7.00)

2 GEP 0.70 (0.28,0.96) 2 GEP 1.50 (0.49,3.52) 2 PD-L1 IHC 3.44 (0.33,7.00)

3 PD-L1 IHC 0.67 (0.60,0.73) 3 PD-L1 IHC 1.44 (0.81,3.14) 3 other IHC&HE 3.09 (0.14,9.00)

4 mIHC/IF 0.56 (0.17,0.91) 4 mIHC/IF 1.19 (0.32,2.88) 4 TMB 1.30 (0.14,7.00)

5 TMB 0.52 (0.32,0.71) 5 TMB 1.13 (0.50,2.65) 5 mIHC/IF 1.17 (0.11,7.00)

6 other IHC&HE 0.52 (0.21,0.82) 6 other IHC&HE 1.00 (1.00,1.00) 6 GEP 0.47 (0.09,3.00)
F
rontiers in
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DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
TABLE 4 Subgroup analysis of NSCLC by network meta-analysis.

Rank Test Sensitivity Rank Test Relative Sensitivity Rank Test DOR

1 mIHC/IF
0.90
(0.44,1.00)

1 mIHC/IF 1.42 (0.68,1.74) 1 mIHC/IF
1607584.12
(5.95,833493.27)

2 PD-L1 IHC
0.64
(0.56,0.72)

2 PD-L1 IHC 1.00 (1.00,1.00) 2
combined
assays

6.55 (2.96,12.88)

3 TMB
0.59
(0.48,0.69)

3 TMB 0.92 (0.73,1.11) 3 other IHC&HE 6.20 (2.67,12.45)

4 other IHC&HE
0.55
(0.42,0.69)

4 other IHC&HE 0.87 (0.63,1.11) 4 PD-L1 IHC 3.30 (2.10,4.96)

5 GEP
0.44
(0.31,0.56)

5 GEP 0.68 (0.48,0.89) 5 TMB 2.88 (1.57,5.15)

6
combined
assays

0.39
(0.27,0.50)

6
combined
assays

0.61 (0.43,0.80) 6 GEP 1.68 (0.79,3.13)

Rank Test Specificity Rank Test
Relative Specific-
ity

Rank Test Superiority Index

1
combined
assays

0.90
(0.84,0.95)

1
combined
assays

1.41 (1.25,1.59) 1 mIHC/IF 9.02 (1.00,11.00)

2 mIHC/IF
0.89
(0.69,0.98)

2 mIHC/IF 1.38 (1.06,1.61) 2 other IHC&HE 1.90 (0.33,7.00)

3 other IHC&HE
0.82
(0.71,0.89)

3 other IHC&HE 1.27 (1.08,1.47) 3
combined
assays

1.07 (0.20,3.00)

4 GEP
0.67
(0.55,0.78)

4 GEP 1.04 (0.84,1.25) 4 PD-L1 IHC 0.83 (0.20,3.00)

5 TMB
0.66
(0.55,0.75)

5 TMB 1.02 (0.84,1.22) 5 TMB 0.65 (0.14,3.00)

6 PD-L1 IHC
0.64
(0.58,0.70)

6 PD-L1 IHC 1.00 (1.00,1.00) 6 GEP 0.18 (0.09,0.33)
DOR, Diagnostic odds ratio; PD-L1 IHC, Programmed cell death ligand 1 immunohistochemistry; TMB, Tumor mutational burden; GEP, Gene expression profiling; MSI, Microsatellite
instability; mIHC/IF, Multiplex immunohistochemistry/immunofluorescence; other IHC&HE, Other Immunohistochemistry and hematoxylin-eosin staining.
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scoring methods varied among different assays, such as TPS,

combined positivity score (CPS), and immune cell (IC) score (3).

Gastrointestinal tumors were characterized by their most extensive

proportions of MSI-H/dMMR, therefore, MSI status detection

could be a reasonable approach to predict the response to

immunotherapy. Subgroup analysis of gastrointestinal tumors

indicated that MSI detection offered a valuable method for ruling

out non-responsive patients due to its high specificity performance.

MSI detection was also conducted in other solid tumors, including

endometrial cancer, adrenocortical carcinomas, and multiple

endocrine neoplasias (MENs). High specificity, DOR, and AUC of

MSI suggested its potential applications in some other tumor types.

Regrettably, generalization of MSI detections to a wider range of

tumors may be prevented by the fact that most tumors in fact

exhibit microsatellite stability (MSS) status.

Our efficacy rankings placed TMB and other IHC&HE in the

middle, while GEP was ranked last, although they are closely related

to crucial aspects of tumor immunology such as neoantigen, TME,

and inflammatory gene signature. Nevertheless, it is important to

note that the MSI status, TMB, and GEP serve as indicators of the

gene phenotype, which is not directly associated with the primary

mechanism of PD-1/PD-L1 immunotherapy compared to protein

expression. The measurements obtained through MSI, TMB, and

GEP reflect events upstream of gene expression, which may

potentially diminish their predictive efficacy. Uncovering specific

and precise gene pathways solely through these indicators can prove

to be challenging. Whereas thresholds for TMB and GEP were

mainly determined by proportions, other IHC&HE methods

typically detected CD8 and TILs with different methods. This

highlights the potential impossibility that some immature tests

could have covered all types of tumors.

Combined assays provided more chances to improve the

prediction accuracy in current challenging scenario. When TMB

was combined with PD-L1 IHC, the performance of sensitivity was

improved noticeably without sacrificing specificity. Ricciuti, B. et al.

have explored the association of high TMB with other biomarkers

and found that high TMB was related to higher proportions of

tumor-infiltrating CD8+, PD1+ T cells, and high PD-L1 expression in

cancer cells (74). Fumet, J.-D. et al. reported that tumors displaying

high PD-L1/low CD8 TILs developed microenvironments conducive

to tumor proliferation and exhibited poor outcomes (75). This may

explain the enhanced efficacy of combined assays. Yet,

the shortcomings of combined assays were high cost and

technical complexity.

Despite nearly a decade of research on companion or

complementary diagnostics for prediction purposes, the most

effective indicators for PD-1/PD-L1 inhibitors have not yet been

established for most tumors. While some testing assays such as

mIHC/IF and combined tests hold potential values, there was still

no perfect test with satisfactory sensitivity and specificity

simultaneously in our analysis. Consequently, clinicians should

exert appropriate caution when detecting predictive biomarkers

and interpreting associated results. Additionally, it is believed that

our NMA could provide supporting evidence to researchers and

clinicians for amelioration of predictive tests in future.
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5 Limitations

It is crucial to note that a high ORR doesn’t necessarily translate

into a high OS. It is essential to take care when interpreting results

based on studies that relied solely on ORR which may not take into

account of OS or progressive rate. To mitigate bias, it is worth

noting that the threshold we chose with Youden’s index may favor

higher sensitivity and specificity. An article with two or more

biomarker tests was selected, which may cause bias by giving up

some robust data in each test. Moreover, there was a significant

disparity between the number of studies conducted in PD-L1 IHC

versus mIHC/IF. Last but not least, although our study mainly

covered 15 types of tumors, the generalization of the conclusion still

requires deliberation.
6 Conclusion

Various large prospective and retrospective studies have

investigated biomarkers for the prediction of PD-1/PD-L1

checkpoint inhibitors response. According to our network meta-

analysis, mIHC/IF had the best performance and a large range of

applications. Given the diverse employment of mIHC/IF with

different biomarkers across various studies, further investigations

involving precise combinations are warranted to enhance

prognostic prediction. When considering the selection of specific

markers, it is crucial to take into account not only their efficiency

and cost-effectiveness but also rely on substantiation from evidence

derived from molecular mechanisms. Further exploration was

required in combined assays of the high efficacy of TMB+PD-L1

IHC. Currently, there is a lack of studies or consensus regarding the

workflow of companion or complementary diagnostics in this

context. The existing approach is primarily based on clinicians’

acknowledgment, and we anticipate that future research will

provide more foundational evidence to support these practices.

What’ more, more evidence based medicine are needed to

determine detailed testing modalities and thresholds for all types

of tumors, e.g. advanced ovarian cancer. Clinicians should be

cautious that the prognostic accuracy of each index test should be

interpreted in a particular situation.
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28. Gogas H, Dréno B, Larkin J, Demidov L, Stroyakovskiy D, Eroglu Z, et al.
Cobimetinib plus atezolizumab in BRAFV600 wild-type melanoma: primary results
from the randomized phase III IMspire170 study. Ann Oncol (2021) 32(3):384–94.
doi: 10.1016/j.annonc.2020.12.004

29. Stratigos AJ, Sekulic A, Peris K, Bechter O, Prey S, Kaatz M, et al. Cemiplimab in
locally advanced basal cell carcinoma after hedgehog inhibitor therapy: an open-label,
multi-centre, single-arm, phase 2 trial. Lancet Oncol (2021) 22(6):848–57. doi: 10.1016/
S1470-2045(21)00126-1

30. D’Angelo SP, Bhatia S, Brohl AS, Hamid O, Mehnert JM, Terheyden P, et al.
Avelumab in patients with previously treated metastatic merkel cell carcinoma: long-
term data and biomarker analyses from the single-arm phase 2 JAVELIN merkel 200
trial. J Immunother Cancer (2020) 8(1):e000674. doi: 10.1136/jitc-2020-000674

31. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al.
Association of tumour mutational burden with outcomes in patients with advanced
solid tumours treated with pembrolizumab: prospective biomarker analysis of the
multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol (2020) 21
(10):1353–65. doi: 10.1016/S1470-2045(20)30445-9

32. Hayashi H, Sugawara S, Fukuda Y, Fujimoto D, Miura S, Ota K, et al. A
randomized phase II study comparing nivolumab with carboplatin-pemetrexed for
EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors
(WJOG8515L). Clin Cancer Res (2022) 28(5):893–902. doi: 10.1158/1078-0432.CCR-
21-3194

33. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in
non-small cell lung cancer. Science (2015) 348(6230):124–8. doi: 10.1126/
science.aaa1348

34. Shimoda Y, Shibaki R, Yoshida T, Murakami S, Shirasawa M, Torasawa M, et al.
Concurrent high PD-L1 expression and CD8+ immune cell infiltration predict PD-1
blockade efficacy in advanced EGFR-mutant NSCLC patients. Clin Lung Cancer (2022)
23(6):477–86. doi: 10.1016/j.cllc.2022.04.001

35. Raghav KP, Stephen B, Karp DD, Piha-Paul SA, Hong DS, Jain D, et al. Efficacy
of pembrolizumab in patients with advanced cancer of unknown primary (CUP): a
phase 2 non-randomized clinical trial. J Immunother Cancer (2022) 10(5):e004822.
doi: 10.1136/jitc-2022-004822

36. Ficial M, Jegede OA, Sant’Angelo M, Hou Y, Flaifel A, Pignon JC, et al.
Expression of t-cell exhaustion molecules and human endogenous retroviruses as
predictive biomarkers for response to nivolumab in metastatic clear cell renal cell
carcinoma. Clin Cancer Res (2021) 27:1371–80. doi: 10.1158/1078-0432.CCR-20-3084

37. Pignon JC, Jegede O, Shukla SA, Braun DA, Horak CE, Wind-Rotolo M, et al.
irRECIST for the evaluation of candidate biomarkers of response to nivolumab in
metastatic clear cell renal cell carcinoma: Analysis of a phase II prospective clinical trial.
Clin Cancer Res (2019) 25(7):2174–84. doi: 10.1158/1078-0432.CCR-18-3206

38. Takada K, Takamori S, Yoneshima Y, Tanaka K, Okamoto I, Shimokawa M,
et al. Serum markers associated with treatment response and survival in non-small cell
lung cancer patients treated with anti-PD-1 therapy. Lung Cancer (2020) 145:18–26.
doi: 10.1016/j.lungcan.2020.04.034

39. Pedersen KS, Foster NR, OvermanMJ, Boland PM, Kim SS, Arrambide KA, et al.
ZEBRA: A multicenter phase II study of pembrolizumab in patients with advanced
small-bowel adenocarcinoma. Clin Cancer Res (2021) 27(13):3641–8. doi: 10.1158/
1078-0432.CCR-21-0159

40. Miyama Y, Morikawa T, Miyakawa J, Koyama Y, Kawai T, Kume H, et al.
Squamous differentiation is a potential biomarker predicting tumor progression in
patients treated with pembrolizumab for urothelial carcinoma. Pathol Res Pract (2021)
219:153364. doi: 10.1016/j.prp.2021.153364

41. Ahmadzada T, Cooper WA, Holmes M, Mahar A, Westman H, Gill AJ, et al.
Retrospective evaluation of the use of pembrolizumab in malignant mesothelioma in a
real-world australian population. JTO Clin Res Rep (2020) 1(4):100075. doi: 10.1016/
j.jtocrr.2020.100075

42. Naing A, Meric-Bernstam F, Stephen B, Karp DD, Hajjar J, Rodon Ahnert J, et al.
Phase 2 study of pembrolizumab in patients with advanced rare cancers. J Immunother
Cancer (2020) 8(1):e000347. doi: 10.1136/jitc-2019-000347

43. Kato K, Doki Y, Ura T, Hamamoto Y, Kojima T, Tsushima T, et al. Long-term
efficacy and predictive correlates of response to nivolumab in japanese patients with
esophageal cancer. Cancer Sci (2020) 111(5):1676–84. doi: 10.1111/cas.14380

44. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, et al. Long-term
clinical outcomes and biomarker analyses of atezolizumab therapy for patients with
metastatic triple-negative breast cancer: A phase 1 study. JAMA Oncol (2019) 5(1):74–
82. doi: 10.1001/jamaoncol.2018.4224

45. Lambert SL, Zhang C, Guo C, Turan T, Masica DL, Englert S, et al. Association
of baseline and pharmacodynamic biomarkers with outcomes in patients treated with
the PD-1 inhibitor budigalimab. J Immunother (2022) 45(3):167–79. doi: 10.1097/
CJI.0000000000000408
Frontiers in Immunology 1163
46. Kelly RJ, Lee J, Bang YJ, Almhanna K, Blum-Murphy M, Catenacci DVT, et al.
Safety and efficacy of durvalumab and tremelimumab alone or in combination in
patients with advanced gastric and gastroesophageal junction adenocarcinoma. Clin
Cancer Res (2020) 26(4):846–54. doi: 10.1158/1078-0432.CCR-19-2443

47. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and
efficacy of pembrolizumab monotherapy in patients with previously treated advanced
gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial.
JAMA Oncol (2018) 4(5):e180013. doi: 10.1001/jamaoncol.2018.0013

48. Konstantinopoulos PA, Luo W, Liu JF, Gulhan DC, Krasner C, Ishizuka JJ, et al.
Phase II study of avelumab in patients with mismatch repair deficient and mismatch
repair proficient Recurrent/Persistent endometrial cancer. J Clin Oncol (2019) 37
(30):2786–94. doi: 10.1200/JCO.19.01021

49. Raj N, Zheng Y, Kelly V, Katz SS, Chou J, Do RKG, et al. PD-1 blockade in
advanced adrenocortical carcinoma. J Clin Oncol (2020) 38(1):71–80. doi: 10.1200/
JCO.19.01586

50. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al.
Nivolumab in patients with metastatic DNA mismatch repair-deficient or
microsatellite instability-high colorectal cancer (CheckMate 142): an open-label,
multicentre, phase 2. Lancet Oncol (2017) 18(9):1182–91. doi: 10.1016/S1470-2045
(17)30422-9

51. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al.
Comprehensive molecular characterization of clinical responses to PD-1 inhibition
in metastatic gastric cancer. Nat Med (2018) 24(9):1449–58. doi: 10.1038/s41591-018-
0101-z

52. Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC, Di Bartolomeo M, et al.
Atezolizumab with or without cobimetinib versus regorafenib in previously treated
metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3,
randomised, controlled trial. Lancet Oncol (2019) 20(6):849–61. doi: 10.1016/S1470-
2045(19)30027-0

53. Kwon M, Hong JY, Kim ST, Kim KM, Lee J. Association of serine/threonine
kinase 11 mutations and response to programmed cell death 1 inhibitors in metastatic
gastric cancer. Pathol Res Pract (2020) 216(6):152947. doi: 10.1016/j.prp.2020.152947

54. Higgs BW, Morehouse CA, Streicher K, Brohawn PZ, Pilataxi F, Gupta A, et al.
Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in
patients with non-small cell lung carcinoma or urothelial cancer treated with
durvalumab. Clin Cancer Res (2018) 24(16):3857–66. doi: 10.1158/1078-0432.CCR-
17-3451

55. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al.
Clinical activity and molecular correlates of response to atezolizumab alone or in
combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med
(2018) 24(6):749–57. doi: 10.1038/s41591-018-0053-3

56. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al.
Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate
275): a multicentre, single-arm, phase 2 trial. Lancet Oncol (2017) 18(3):312–22.
doi: 10.1016/S1470-2045(17)30065-7

57. Yeong J, Suteja L, Simoni Y, Lau KW, Tan AC, Li HH, et al. Intratumoral CD39
+CD8+ t cells predict response to programmed cell death protein-1 or programmed
death ligand-1 blockade in patients with NSCLC. J Thorac Oncol (2021) 16(8):1349–58.
doi: 10.1016/j.jtho.2021.04.016

58. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, et al. Safety, efficacy
and tumor mutational burden as a biomarker of overall survival benefit in
chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in
phase Ib/II clinical trial NCT02915432. Ann Oncol (2019) 30(9):1479–86.
doi: 10.1093/annonc/mdz197

59. Zeng D, Wu J, Luo H, Li Y, Xiao J, Peng J, et al. Tumor microenvironment
evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J
Immunother Cancer (2021) 9(8):e002467. doi: 10.1136/jitc-2021-002467

60. Cindy Yang SY, Lien SC, Wang BX, Clouthier DL, Hanna Y, Cirlan I, et al. Pan-
cancer analysis of longitudinal metastatic tumors reveals genomic alterations and
immune landscape dynamics associated with pembrolizumab sensitivity. Nat Commun
(2021) 12(1):5137. doi: 10.1038/s41467-021-25432-7

61. Friedman CF, Hainsworth JD, Kurzrock R, Spigel DR, Burris HA, Sweeney CJ,
et al. Atezolizumab treatment of tumors with high tumor mutational burden from
MyPathway, a multicenter, open-label, phase IIa multiple basket study. Cancer
Discovery (2022) 12(3):654–69. doi: 10.1158/2159-8290.CD-21-0450

62. Cuppens K, Baas P, Geerdens E, Cruys B, Froyen G, Decoster L, et al. HLA-i
diversity and tumor mutational burden by comprehensive next-generation
sequencing as predictive biomarkers for the treatment of non-small cell lung
cancer with PD-(L)1 inhibitors. Lung Cancer (2022) 170:1–10. doi: 10.1016/
j.lungcan.2022.05.019

63. Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of
biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: A
systematic review and meta-analysis. JAMA Oncol (2019) 5(8):1195–204. doi: 10.1001/
jamaoncol.2019.1549

64. YarchoanM, Albacker LA, Hopkins AC,MontesionM,Murugesan K, Vithayathil
TT, et al. PD-L1 expression and tumor mutational burden are independent biomarkers
in most cancers. JCI Insight (2019) 4(6):e126908. doi: 10.1172/jci.insight.126908

65. Veroniki AA, Tsokani S, Rücker G, Mavridis D, Takwoingi Y. Challenges in
comparative meta-analysis of the accuracy of multiple diagnostic tests. Methods Mol
Biol (2022) 2345:299–316. doi: 10.1007/978-1-0716-1566-9_18
frontiersin.org

https://doi.org/10.1158/1078-0432.CCR-19-4000
https://doi.org/10.1158/1078-0432.CCR-19-4000
https://doi.org/10.1016/j.ejca.2021.01.020
https://doi.org/10.1016/j.annonc.2020.12.004
https://doi.org/10.1016/S1470-2045(21)00126-1
https://doi.org/10.1016/S1470-2045(21)00126-1
https://doi.org/10.1136/jitc-2020-000674
https://doi.org/10.1016/S1470-2045(20)30445-9
https://doi.org/10.1158/1078-0432.CCR-21-3194
https://doi.org/10.1158/1078-0432.CCR-21-3194
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/j.cllc.2022.04.001
https://doi.org/10.1136/jitc-2022-004822
https://doi.org/10.1158/1078-0432.CCR-20-3084
https://doi.org/10.1158/1078-0432.CCR-18-3206
https://doi.org/10.1016/j.lungcan.2020.04.034
https://doi.org/10.1158/1078-0432.CCR-21-0159
https://doi.org/10.1158/1078-0432.CCR-21-0159
https://doi.org/10.1016/j.prp.2021.153364
https://doi.org/10.1016/j.jtocrr.2020.100075
https://doi.org/10.1016/j.jtocrr.2020.100075
https://doi.org/10.1136/jitc-2019-000347
https://doi.org/10.1111/cas.14380
https://doi.org/10.1001/jamaoncol.2018.4224
https://doi.org/10.1097/CJI.0000000000000408
https://doi.org/10.1097/CJI.0000000000000408
https://doi.org/10.1158/1078-0432.CCR-19-2443
https://doi.org/10.1001/jamaoncol.2018.0013
https://doi.org/10.1200/JCO.19.01021
https://doi.org/10.1200/JCO.19.01586
https://doi.org/10.1200/JCO.19.01586
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1038/s41591-018-0101-z
https://doi.org/10.1038/s41591-018-0101-z
https://doi.org/10.1016/S1470-2045(19)30027-0
https://doi.org/10.1016/S1470-2045(19)30027-0
https://doi.org/10.1016/j.prp.2020.152947
https://doi.org/10.1158/1078-0432.CCR-17-3451
https://doi.org/10.1158/1078-0432.CCR-17-3451
https://doi.org/10.1038/s41591-018-0053-3
https://doi.org/10.1016/S1470-2045(17)30065-7
https://doi.org/10.1016/j.jtho.2021.04.016
https://doi.org/10.1093/annonc/mdz197
https://doi.org/10.1136/jitc-2021-002467
https://doi.org/10.1038/s41467-021-25432-7
https://doi.org/10.1158/2159-8290.CD-21-0450
https://doi.org/10.1016/j.lungcan.2022.05.019
https://doi.org/10.1016/j.lungcan.2022.05.019
https://doi.org/10.1001/jamaoncol.2019.1549
https://doi.org/10.1001/jamaoncol.2019.1549
https://doi.org/10.1172/jci.insight.126908
https://doi.org/10.1007/978-1-0716-1566-9_18
https://doi.org/10.3389/fimmu.2023.1265202
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1265202
66. Owen RK, Cooper NJ, Quinn TJ, Lees R, Sutton AJ. Network meta-analysis of
diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and
thresholds for health care policy and decision-making. J Clin Epidemiol (2018) 99:64–
74. doi: 10.1016/j.jclinepi.2018.03.005

67. Banchereau R, Chitre AS, Scherl A, Wu TD, Patil NS, de Almeida P, et al.
Intratumoral CD103+ CD8+ t cells predict response to PD-L1 blockade. J Immunother
Cancer (2021) 9(4):e002231. doi: 10.1136/jitc-2020-002231

68. Corgnac S, Malenica I, Mezquita L, Auclin E, Voilin E, Kacher J, et al. CD103
+CD8+ TRM cells accumulate in tumors of anti-PD-1-Responder lung cancer patients
and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep Med (2020) 1
(7):100127. doi: 10.1016/j.xcrm.2020.100127

69. Oja AE, Piet B, van der Zwan D, Blaauwgeers H, Mensink M, de Kivit S, et al.
Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory
phenotype in NSCLC. Front Immunol (2018) 9:2654. doi: 10.3389/fimmu.2018.02654

70. Li Z, Zheng B, Qiu X, Wu R, Wu T, Yang S, et al. The identification and
functional analysis of CD8+PD-1+CD161+ t cells in hepatocellular carcinoma. NPJ
Precis Oncol (2020) 4:28–8. doi: 10.1038/s41698-020-00133-4
Frontiers in Immunology 1264
71. Berry S, Giraldo NA, Green BF, Cottrell TR, Stein JE, Engle EL, et al. Analysis of
multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade.
Science (2021) 372(6547):eaba2609. doi: 10.1126/science.aba2609

72. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1
as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol
(2021) 18(6):345–62. doi: 10.1038/s41571-021-00473-5

73. Torlakovic E, Lim HJ, Adam J, Barnes P, Bigras G, Chan AWH, et al.
"Interchangeability" of PD-L1 immunohistochemistry assays: a meta-analysis of
diagnostic accuracy. Mod Pathol (2020) 33(1):4–17. doi: 10.1038/s41379-019-0327-4

74. Ricciuti B, Wang X, Alessi JV, Rizvi H, Mahadevan NR, Li YY, et al. Association
of high tumor mutation burden in non-small cell lung cancers with increased immune
infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1
expression. JAMA Oncol (2022) 8(8):1160–8. doi: 10.1001/jamaoncol.2022.1981

75. Fumet JD, Richard C, Ledys F, Klopfenstein Q, Joubert P, Routy B, et al.
Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of
patients under anti-PD-1 therapy. Br J Cancer (2018) 119(8):950–60. doi: 10.1038/
s41416-018-0220-9
frontiersin.org

https://doi.org/10.1016/j.jclinepi.2018.03.005
https://doi.org/10.1136/jitc-2020-002231
https://doi.org/10.1016/j.xcrm.2020.100127
https://doi.org/10.3389/fimmu.2018.02654
https://doi.org/10.1038/s41698-020-00133-4
https://doi.org/10.1126/science.aba2609
https://doi.org/10.1038/s41571-021-00473-5
https://doi.org/10.1038/s41379-019-0327-4
https://doi.org/10.1001/jamaoncol.2022.1981
https://doi.org/10.1038/s41416-018-0220-9
https://doi.org/10.1038/s41416-018-0220-9
https://doi.org/10.3389/fimmu.2023.1265202
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Eyad Elkord,
University of Salford, United Kingdom

REVIEWED BY

Galal Metwally,
Zagazig University, Egypt
Minglei Zhuo,
Peking University, China

*CORRESPONDENCE

Pengxia Liu

liupengxia@imu.edu.cn

Changshan Wang

changshanwang@imu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 07 June 2023

ACCEPTED 12 September 2023
PUBLISHED 29 September 2023

CITATION

Wu R, Ma R, Duan X, Zhang J, Li K, Yu L,
Zhang M, Liu P and Wang C (2023)
Identification of specific prognostic
markers for lung squamous cell carcinoma
based on tumor progression, immune
infiltration, and stem index.
Front. Immunol. 14:1236444.
doi: 10.3389/fimmu.2023.1236444

COPYRIGHT

© 2023 Wu, Ma, Duan, Zhang, Li, Yu, Zhang,
Liu and Wang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 29 September 2023

DOI 10.3389/fimmu.2023.1236444
Identification of specific
prognostic markers for lung
squamous cell carcinoma based
on tumor progression, immune
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Introduction: Lung squamous cell carcinoma (LUSC) is a unique subform of

nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as

therapeutic targets leads to worse prognoses in patients with LUSC, even with

chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore,

research on the LUSC-specific prognosis genes is lacking. This study aimed to

develop a comprehensive LUSC-specific differentially expressed genes (DEGs)

signature for prognosis correlated with tumor progression, immune infiltration,

and stem index.

Methods: RNA sequencing data for LUSC and lung adenocarcinoma (LUAD)

were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs

analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify

specific DEGs associated with LUSC. Functional analysis and protein–protein

interaction network were performed to annotate the roles of LUSC-specific

DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and

least absolute shrinkage and selection operator regression analyses were

performed to select prognosis-related DEGs.

Results: Overall, 1,604 LUSC-specific DEGs were obtained, and a validated

seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3,

CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with

poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive

prognosis markers in patients with LUSC. Receiver operating characteristic

analysis further confirmed that the genetic profile could accurately estimate

the overall survival of LUSC patients. Analysis of immune infiltration

demonstrated that the high risk (HR) LUSC patients exhibited accelerated

tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions

of immune checkpoint genes differed significantly between the HR and LR

cohorts. A ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7

prognostic DEGs was constructed to demonstrate the prognostic value of

novel biomarkers of LUSC-specific DEGs based on tumor progression,

stemindex, and immune infiltration. In vitro experimental models confirmed
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that LUSC-specific DEG FGG expression was significantly higher in tumor cells

and correlated with immune tumor progression, immune infiltration, and stem

index. In vitro experimental models confirmed that LUSC-specific DEG FGG

expression was significantly higher in tumor cells and correlated with immune

tumor progression, immune infiltration, and stem index.

Conclusion: Our study demonstrated the potential clinical implication of the 7-

DEGs signature for prognosis prediction of LUSC patients based on tumor

progression, immune infiltration, and stem index. And the FGG could be an

independent prognostic biomarker of LUSC promoting cell proliferation,

migration, invasion, THP-1 cell infiltration, and stem cell maintenance.
KEYWORDS

LUSC, prognosis, biomarker, tumor microenvironment, cancer stem cell
GRAPHICAL ABSTRACT
1 Introduction

Lung cancer is heterogeneous and fatal, with non-small cell lung

cancer (NSCLC) as its main pathological subtype. Lung squamous

cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the

primary subtypes of NSCLC (1); however, they differ in many

aspects, including the origin of cells, genetic variation, epigenetics,
n; NSCLC, Non-small

, Lung squamous cell

brinogen gamma; GO,

s and Genomes; PPI,

Genome Atlas; OS,

0266
and the outcome of antineoplaston drugs (2). Despite tremendous

advances in diagnosis and treatment, including molecular targeted

therapeutics and immunotherapy, the clinical outcomes of LUSC

remain unsatisfactory (3). Patients with LUSC are often diagnosed

in an advanced stage when existing therapy cannot be administered

in a timely manner (4). LUSC patients are also not as sensitive as

LUAD patients to chemotherapy, radiotherapy, and tumor

immunotherapy. In addition, the prognosis of LUSC is poor, with

an estimated 5-year survival rate of <15% (5). Therefore,

distinguishing LUSC from LUAD is important to identify

effective prognostic biomarkers.

Although studies based on the whole genome (6, 7), epigenetics

(8), cancer stem cells (CSCs) (9, 10), and tumor microenvironment
frontiersin.org
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(TME) (11) have analyzed differentially expressed genes (DEGs) in

LUSC and LUAD, research on the LUSC-specific prognosis genes is

lacking. A previous study (4), involving 178 LUSC cases, conducted

using the Cancer Genome Atlas (TCGA) Research Network

reported complex genomic alterations in LUSC, including

significant copy number alterations, which peaked for SOX2,

PDGFRA/KIT, EGFR, FGFR1, CCND1, and CDKN2A. In LUSC,

CDKN2A/RB1, NFE2L2/KEAP1, squamous differentiation genes,

and PI3K/Akt were significantly altered. TP53 is the most

commonly mutated gene with a mutation frequency of > 80% in

LUSC. The overexpression and amplification of genes, SOX2 and

TP63, are spectrum factors of LUSC (12). Despite progress in

research on biomarkers for LUSC, oncology targets are rare.

Recent studies on genetic biomarkers for LUSC have focused on a

single gene based on the cognitions of CSCs and the TME in cancer

progression, as well as drug resistance and response to immune

checkpoint blockade. Traditional methods use differential

expression detection to identify potential biomarkers but may

miss out on useful genes. As the occurrence and development of

malignant tumors is a long-term complex process involving

genomic changes, the interaction between tumor cells and their

immune microenvironment, and the participation of tumor stem

cells, the behavior cognition of malignant tumors warrants

extensive research.

Therefore, in this study, we aimed to compare DEGs of LUSC

with LUAD using biological information analytical methods based

on prognostic risk factors, including tumor invasion, metastasis,

survival, immune infiltration, and tumor stem cell-related genes.

DEGs in LUSC were employed to generate a risk model to evaluate

the prognostic value of characteristic genes for possible prognostic

indicators or therapeutic targets for LUSC. We further explored the

associations between the specific prognostic markers FGG and

tumor progression, immune invasion, and the tumor cell stem

index to identify potential LUSC-specific survival prognostic

biomarkers and therapeutic targets.
2 Methods

2.1 Data processing

We first retrieved LUSC (n=502) and LUAD (n=533) RNA

sequencing datasets, and the clinical information of corresponding

LUSC patients and 59 healthy volunteers from the TCGA database

(https://portal.gdc.cancer.gov/).
2.2 Differentially expressed genes

The “limma” package was selected for DEGs analysis in TCGA-

LUSC and TCGA-LUAD cohorts. For processing, a |log2 (fold

change)| > 0.5 and adjusted P-value < 0.05 were considered the cut-

off criteria for screening the DEGs between the tumor and normal

samples. The “heatmap” package of the R program was used to
Frontiers in Immunology 0367
generate a heatmap of the top 100 DEGs. Additionally, we

employed a Venn diagram to indicate the specific DEGs in LUSC.
2.3 Functional enrichment analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses of LUSC-

specific DEGs were conducted with the “clusterProfiler” package of

the R software; P < 0.05 was the statistical significance threshold.

The bubble plot, circle graph, and heat map were plotted using R to

visualize the top enrichment GO terms and KEGG networks. To

explore the pathways and GO functions of unique differential genes

in LUSC, the R “clusterProfiler” package was used for enrichment

analysis based on KEGG and GO to search for common functions

among DEGs, as well as related pathways of several genes. Statistical

methods were used to calculate the cumulative hypergeometric

distribution to analyze, within a group of genes, whether

overpresentation occurs on a functional node, as follows:

P(X > q) = 1 −o
q

x=1

(nx)(
N−n
M−x)

(NM)

where ‘N’ is the total gene number within the annotation

system, ‘n’ is the gene number annotated by the node or pathway

itself to be examined, ‘M’ is the size of the DEGs set, and ‘x’ is the

number of intersections between gene sets and nodes or pathways.
2.4 Protein–protein interaction axis for
LUSC DEGs

The association between LUSC-specific DEGs was predicted

using STRING (https://string-db.org). The PPI axis was visualized

with the Cytoscape software at a confidence of 0.9. In the PPI

network, the individual DEG’s adjacent node numbers were

computed, and the top 20 DEGs were displayed using a bar plot

according to the number of adjacent nodes. Weighted gene co-

expression network analysis (WGCNA) was conducted to screen

out relevant modules and hub genes, which were used to develop

the prognostic signature. TCGA and GTEx data based gene

expression profiling interactive analysis (GEPIA) was used to

predict gene interactive and customizable functions.
2.5 Construction and validation of
a gene signature constructed from
LUSC-specific DEGs

Based on the number of connections, the top 100 LUSC-specific

DEGs were selected for subsequent analyses. We extracted the

expression data of the 100 LUSC-specific genes from TCGA-

LUSC patients and combined them with the clinical information

of corresponding patients. The corresponding patients with TCGA-

LUSC were randomly divided into a training cohort (TC, n = 336)

and a validation cohort (VC, n = 145) in a 7:3 ratio. To identify
frontiersin.org
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prognostic genes in LUSC, we conducted a univariate Cox

regression analysis on 100 LUSC-specific DEGs. Those with a

P < 0.05 were considered correlated with the LUSC prognosis.

Subsequently, we used the least absolute shrinkage and selection

operator (LASSO) and Cox regression analyses to obtain the genetic

profile with the most significant prognosis from the LUSC-specific

DEGs within the TCGA-LUSC patient population via the “glmnet”

package in R. Individual patient risk score (RS) was computed based

on the levels of the prognostic signature genes and the associated

coefficients obtained from the LASSO-Cox regression model. LUSC

patients were categorized into high risk (HR) and low risk (LR)

cohorts based on the median RS. The overall survival (OS) of the

different risk cohorts was analyzed using Kaplan–Meier analysis

with the log-rank test using the “Kaplan–Meier survival” package in

R. Moreover, the time dependent receiver operating characteristic

(ROC) curve was generated via the “survival ROC” package in R to

demonstrate the effectiveness of the genetic profile. To analyze the

relationship between predictive and response variables, we

employed the uni- and multivariate Cox regression analyses.
2.6 Single sample gene set
enrichment analysis

The relative tumor infiltration levels of 29 immune-linked gene

sets (16 immune cell types and 13 immune-linked pathways)

between HR and LR groups were quantified by ssGSEA. The

analysis was conducted using the “gsva” R package. Comparisons

between the HR and LR cohorts were carried out via the

Wilcoxon test.
2.7 Tumor stem cell index analysis

The mRNA expression based stemness index (mRNAsi) and

epigenetically regulated mRNAsi (EREG-mRNAsi) in LUSC

samples were computed using the OCLR algorithm for research

on gastric cancer (13) and NSCLC (14). Subsequently, the

differences in mRNAsi and EREG-mRNAsi between the HR and

LR cohorts were compared using the Wilcoxon test. The two

independent stemness indices range from 0 to 1, with a value

closer to 1 suggesting stronger characteristics of CSCs.
2.8 Generation of the ceRNA axis

Differentially expressed lncRNAs (DE-lncRNAs) between

tumor and healthy samples were recognized as follows: |log2 (fold

change)| > 1 and P-value < 0.05. The target miRNAs of lncRNAs

were estimated via the miRcode database (http://www.mircode.org/

), and the target miRNAs of prognostic DEGs were estimated via the

miRanda database (http://www.microrna.org/microrna/home.do).

The common miRNAs predicted by the miRcode and miRanda

databases, as well as the corresponding lncRNA and prognostic

DEGs, were input into Cytoscape software to construct a

ceRNA network.
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2.9 Cell culture

LTEP-s, BEAS-2B, and NCI-H520 cells were purchased from

the American Type Culture Collection (ATCC) and cultured in

DMEM (HyClone, USA). NCI-H520 cells were cultured in RPMI-

1640 medium (Biological Industries, USA). All cells were

supplemented with 10% fetal bovine serum (FBS; Biological

Industries, USA) and 1% penicillin/streptomycin (Sigma, USA)

and cultured under standard culture conditions (37 °C, 5% CO2)

in culture medium recommended by the ATCC.
2.10 RNA extraction and real-time
polymerase chain reaction assay

Total RNA was extracted using TRIzol Reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions. cDNA

was synthesized using random primers and the PrimeScript RT

Reagent Kit (Takara, China). Real-time polymerase chain reaction

(qPCR) was performed using SYBR Premix Ex Tag (Takara, China).

The PCR conditions were as follows: 95 °C for 15 s followed by

40 cycles of 95 °C for 5 s and 60 °C for 30 s. b-actin was used as the

internal control. The primer sequences for real-time PCR are listed

in Table 1.
2.11 Cell transfection

Small-interfering RNA (siRNA) oligonucleotides for FGG were

designed and synthesized by Jima Bio (Suzhou, China). The primer

sequences for the siRNAs are listed in Table 2. Transient transfection

was performed using Lipofectamine 2000 Reagent (Invitrogen, USA)

according to the manufacturer’s instructions. After transfection for
TABLE 1 Primer sequences for real-time PCR used in the study.

Primer name Primer sequences (5`–3`)

FGG Forward Primer TTATTGTCCAACTACCTGTGGC

Reverse Primer GACTTCAAAGTAGCAGCGTCTAT

FGA Forward Primer AGACATCAATCTGCCTGCAAA

Reverse Primer AGTGGTCAACGAATGAGAATCC

JUN Forward Primer TCCAAGTGCCGAAAAAGGAAG

Reverse Primer CGAGTTCTGAGCTTTCAAGGT

CPSF4 Forward Primer CATCGGGGTCATGCAGAGTC

Reverse Primer CTCGCCACACTTGTAACAGGT

HIST1H2BH-1F Forward Primer TCACCTCCAGGGAGATCCAG

Reverse Primer TTTGGGTTTGAACATGCGTCC

C3 Forward Primer GGGGAGTCCCATGTACTCTATC

Reverse Primer GGAAGTCGTGGACAGTAACAG

CST3 Forward Primer GTCGGCGAGTACAACAAAGC

Reverse Primer CACCCCAGCTACGATCTGC
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48 h, cells were used for functional assays, including migration,

invasion, RNA extraction, and Western blotting.
2.12 Cell proliferation assay

Cells were seeded in 96-well plates at 1 × 103 cells per well and

cultured in a final volume of 100 mL of culture medium

supplemented with 10% FBS. The cell proliferation was

determined using CCK-8. After incubation for 24, 48, 72, and

96 h, 20 uL of CCK-8 reagent was added for 3 h, and the

absorption at a wavelength of 490 nm was determined.
2.13 Cell cycle assay

The cell suspension was diluted to 5×106 cells/mL, the

supernatant was removed, and 70% 500 mL of cold ethanol was

added and placed in a refrigerator at 4°C for 2 h. The cell pellet was

mixed with 100 mL RNaseA (Solarbio, China) and placed in a 37°C

water bath for 30 min; PI staining buffer was added in the dark for

30 min at 4°C. Red fluorescence at 488 nm was detected using

flow cytometer.
2.14 Cell apoptosis assay

The cell culture medium was collected into a centrifuge tube.

The cells were digested with Edta-free pancreatic enzymes and

added into the cell culture medium, centrifuged, and precipitated.

The cells were then re-suspended with 1 mL PBS precooled at 4 °C

and the precipitated cells were centrifuged again. The cells were re-

suspended with 1x binding buffer and the concentration was

adjusted to 5 × 106/mL; 100 mL cell suspension was added to a 5

mL flow tube, mixed with 5 mL Annexin V/FITC (Solarbio, China),

and incubated at room temperature for 5 min in the dark. A total of

5 mL propyl iodide solution (PI) and 400 mL PBS were added for

immediate flow detection.
2.15 Wound healing assay

Cells were placed in 12-well plates. When cells grew to 90–95%

confluence, cell monolayers were wounded by scratching with
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plastic micropipette tips and washed twice with PBS. The cells

were rinsed with PBS and cultured in DMEM or RPMI 1640

supplemented with 1% FBS. Images of the different stages of

wound healing were obtained via microscopy at 0, 24, and 48 h.

Relative cell motility was quantified using Image-Pro Plus.
2.16 Transwell migration and
invasion assay

Cell migration and invasion assays were performed in 24-well

plates with 8-mm-pore size chamber inserts (Corning, USA). For the

migration assays, 5 × 104 cells in 200 mL of serum-free culture

medium were seeded into each well of the upper chamber with

the noncoated membrane, and 800 mL of medium supplemented

with 10% FBS was added to the lower chamber. For invasion assays,

1 × 105 cells in 200 mL of serum-free culture medium were seeded

into each well of the upper chamber with the Matrigel-coated

membrane, while 800 mL of medium supplemented with 10% FBS

was added to the lower chamber. Cells that migrated through the

membrane were fixed with 100% methanol, stained with 0.1%

crystal violet for 30 min, imaged, and counted under a light

microscope (Olympus, Japan).
2.17 Western blot assay

Cells grown in 6-well plates were lysed on ice using RIPA buffer.

The lysis mixtures were centrifuged, and the supernatants were

collected. Total protein was separated using SDS-polyacrylamide gel

electrophoresis and transferred onto PVDF membranes (Millipore,

USA). After blocking the membranes with non-fat milk, the

membranes were incubated overnight with the following primary

antibodies: anti-N-cadherin (1:1,000), anti-E-cadherin (1:1,000),

anti-GAPDH (1:1,000) (Abcam, UK). The membranes were then

incubated with horseradish peroxidase-conjugated secondary

antibodies (1:2,000). The analysis was performed using an

enhanced chemiluminescence system (Bio-Rad, USA). Binding

was analyzed using Image J 6.0.
2.18 THP-1 cell infiltration

THP-1 cells were seeded at 1×106 per well in 6-well plates and

treated with PMA (100 nmol; Sigma-Aldrich, USA) for 48 h. M1

macrophages were polarized by incubation with INF-g (20 ng/mL;

R&D System, USA) and LPS (100 ng/mL; Sigma, USA) for 48 h.

After transfection with si-NC or si-FGG in the absence or

presence of coculture, a cell migration assay was conducted using

24-well Transwell plates (8.0 mm; Corning, NY, USA). The

macrophages or cancer cells (5×104, LTEPs-si-NC, LTEPs-si-

FGG) were planted into the upper chambers, while 600 µL RPMI

1640 containing 10% FBS were placed into the lower chambers.

Thereafter, the Transwell plates were incubated at 37 °C, 5% CO2

for 48 h, fixed in 4% formaldehyde for 30 min, and stained with

0.01% crystal violet. Non-migrating cells were carefully removed
TABLE 2 Primer sequences for siRNA used in the study.

Primer name Primer sequences (5`–3`)

FGG-homo-935 sense CCUACUGGCACAACAGAAUTT

antisense AUUCUGUUGUGCCAGUAGGTT

FGG-homo-768 sense GCGGGCUUUACUUUAUUAATT

antisense UUAAUAAAGUAAAGCCCGCTT

FGG-homo-1361 sense GGUUAUGAUAAUGGCAUUATT

antisense UAAUGCCAUUAUCAUAACCTT
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with a cotton swab, while cells that migrated to the lower chambers

were counted under a microscope.
2.19 Statistical analysis

All data analyses were conducted using the R language (version

3.5.1). The levels of immune checkpoint genes between the HR and

LR cohorts were compared using the Wilcoxon test. Uni- and

multivariate analyses were employed to screen for stand-alone

prognostic markers for LUSC survival. P < 0.05 was set as the

significance threshold.
3 Results

3.1 Identification of specific DEGs for LUSC

We analyzed DEGs between tumor and normal samples in

TCGA-LUSC and TCGA-LUAD cohorts. Overall, 2,878 DEGs

(1,466 upregulated and 1,412 downregulated) were identified in

LUSC, relative to normal samples (Figure 1A). In addition, 1,629

DEGs were identified in LUAD, among which, 714 were highly

expressed and 915 were scarcely expressed (Figure 1B). The top 100

DEGs in LUSC (Figure 1C) and LUAD (Figure 1D) are shown in the

heat maps. We further applied an online Venn diagram to identify

LUSC-specific DEGs (Figure 1E). Consequently, 1,604 specific DEGs

for LUSC were obtained, as shown in a heat map (Figure 1F).
3.2 FEA and PPI analysis of the novel
biomarkers in LUSC

To elucidate the physiological activities of these LUSC-specific

DEGs, GO and KEGG enrichment analyses were carried out. GO

terms revealed that these LUSC-specific DEGs were markedly

enriched in immune-linked biological systems such as T cell-

mediated immunity, immune response-related neutrophil

activation, neutrophil degranulation, neutrophil-based immunity,

and neutrophil activation (Figure 2A). KEGG analysis revealed that

the LUSC-specific DEGs were associated with melanogenesis,

small-cell lung cancer, the PI3K-Akt axis, viral myocarditis,

human papillomavirus infection, ECM-receptor association, the

Rap1 signaling pathway, Staphylococcus aureus infection, and

glutathione metabolism (Figure 2B). PPI interaction networks

containing 1,604 nodes and 14,209 edges further revealed the

interactions between these LUSC-specific DEGs (Figure 2C). The

top 20 DEGs are displayed in a bar plot based on the quantity of

adjacent nodes (Figure 2D). The top 100 genes of connectedness

were obtained using a collateral analysis. The genes with the top 100

connectedness were single factors. Then, Cox and LASSO

regression analyses were employed for risk model construction.

WGCNA was used to analyze the hub genes’ biological behavior,
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and the correlation between alteration in hub gene expression and

clinical characteristics was confirmed via external data from the

GEPIA Database (http://gepia.cancer-pku.cn/). The results of

WGCNA and GEPIA for hub genes suggested that all hub genes

were significantly elevated in tumor tissues. Following the

adjustment of confounding factors, we developed a prognostic

profile using three genes with remarkable predictive ability.
3.3 Prognostic signature of
LUSC-specific DEGs

Based on the counts of connections, the top 100 LUSC-specific

DEGs in the PPI network were selected for further analysis. To

identify the prognostic genes in LUSC, we further employed a

univariate analysis of the 100 LUSC-specific DEGs. Eight were

associated with the prognosis of patients with LUSC (P < 0.05);

univariate Cox regression analysis results are shown in

Supplementary Table 1. FGG, C3, FGA, ORM1, JUN, and CST3

served as risk hazards (HR > 1), whereas CPSF4 and HIST1H2BH

served as a protective function (HR < 1) in LUSC (Figure 3A). LASSO

analysis was employed to improve the robustness of the eight LUSC-

specific DEGs. Eight genes carrying a P-value < 0.05 in the univariate

Cox analysis were used to construct a LASSO regression. To reduce

the feature dimension, we used the R software’s “glmnet” package, set

the parameter family as Cox, realized LASSO logistic regression,

selected strong correlation features, and obtained the two graphs

depicted in Figure 3; one is the graph of gene coefficient, and the other

is the error graph of cross-validation. As shown in Figure 3B, the

seven characteristic genes with a lambda.min of 0.0134 were FGG,

C3, FGA, JUN, CST3, CPSF4, and HIST1H2BH. The seven genes and

their corresponding coefficients were selected as the most prognostic

gene signatures in LUSC. We further calculated the RS for individual

patients with LUSC using the expression of the seven prognostic

genes and associated coefficients retrieved from the LASSO-Cox

analysis; LASSO analysis was then employed for characteristic

genes and coefficients screening, as shown in Supplementary

Table 2. Subsequently, the median of the RSs was utilized as a

standard to separate the LUSC patients into HR and LR cohorts in

both the TC and VC. The risk curve and distribution of OS status are

shown in Figure 3C. Moreover, the expression patterns of the seven

prognostic genes in the HR and LR cohorts verified the prognostic

value of the seven markers. Figure 3C consists of three parts: upper

(a), middle (b), and lower (b), all of which demonstrate that the HR

cohort exhibited an elevated survival RS. Notably, the Kaplan–Meier

analysis indicated that LR LUSC patients exhibited a markedly higher

survival probability, compared to the HR cohort (Figure 3D;

P < 0.05). The results of ROC analysis further tested the TC, which

showed that this genetic profile could effectively estimate the OS of

LUSC (Figure 3E).

The VC was also tested, and the risk curve and distribution of

OS status are shown in Supplementary Figure 1. The survival and

ROC curves of VC are shown in Figures 3F, G.
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3.4 The seven-gene signature of LUSC
represents an independent stand-alone
prognostic value

To elucidate whether the prognostic gene profile was

independent of clinicopathological features such as age,

pathological stage, and TNM stage, univariate and multivariate

analyses were conducted. Univariate analysis revealed that age, as

well as pathologic, pathologic T, and pathologic M stages, were

strongly correlated with LUSC patients’ OS (Figure 4A).
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Multivariate analysis based on the above clinicopathological

characteristics further revealed that the RS was directly correlated

with OS (Figure 4B; P < 0.001). The predictive efficiency of these

clinicopathological characteristics was evaluated using ROC

analysis, and the RS was employed as a predictor stand-alone

indicator of LUSC outcome (Figure 4C). We observed marked

differences between T1 and T2 of the T stage, and N0 and N1 of the

N stage (Supplementary Figures 2, 3); however, there was no

significant difference in other periods (Supplementary Figures 4–

6). To explore the independent prognosis of risk models and
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FIGURE 1

(A) Volcano Plots of 2,878 LUSC-DEGs. (B) Volcano Plots of 1,629 LUAD-DEGs. Multiples of the abscissa difference (Tumor/Normal) taken the
logarithm of 2 and the ordinate representation of -log10(adj.P.Val). Each dot represents a gene. Red dots indicate gene upregulation (Tumor vs.
Normal samples), blue dots indicate downregulation (Tumor vs. Normal samples), and gray dots indicate no significant differences in expression. (C)
The heat map of the top 100 DEGs in LUSC. (D) The top 100 DEGs LUAD. The abscissa direction represents the DEGs, while the vertical direction
represents the samples. Colors indicate normalized differential expression; high and low expressions are shown in red and blue, respectively. (E) The
Venn diagram of 1,604 LUSC-specific DEGs calculated by subtraction of LUSC-DEGs and the cross-section of LUSC and LUAD DEGs. (F) The heat
map of LUSC-specific DEGs. The abscissa direction indicates the DEGs, while the vertical direction indicates the samples. Colors indicate normalized
differential expression; red represents elevated levels, and blue represents reduced levels.
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clinicopathological factors, the Cox-independent prognostic

analysis of age, the T, M, and N staging, and the RS showed that

Pathologic_M and RiskScore were stand-alone prognostic

indicators for LUAD (P < 0.05). We next analyzed RSs and

various clinical features, including age, sex, tumor stage, T (size

or extent of the tumor itself), M (distant metastasis), and N (tumor

peripheral lymph node invasion and metastasis). A differential

expression heat map of the genes was drawn (Figure 4D).

Univariate and multivariate results were consistent, indicating

that the conclusions were stable and easy to interpret.
3.5 Characteristics of immune
infiltration in LUSC

Previous research has revealed a relationship between immune

cell invasion and clinical prognosis in cancers, which may be utilized

as drug targets to enhance the prognosis of patients (15, 16).

Therefore, we quantified the tumor infiltration levels of 29

immune-related gene sets in the HR and LR cohorts. Immune

checkpoint inhibitors were reported to be effective potent

therapeutic methods against various cancers (17–19); hence, we

assessed the levels of key immune checkpoint molecules in LUSC.
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The HR cohort was markedly correlated with elevated tumor

infiltration levels in LUSC (Figures 5A, B; all P-values < 0.05);

however, the tumor infiltration levels of NK cells showed no

significant differences between the HR and LR cohorts.

Importantly, the checkpoint scores between the HR and LR cohorts

were significantly different. ssGSEA was performed on the samples

from the HR and LR cohorts; we observed marked differences in the

levels of certain immune cell infiltrates between the HR and LR

cohorts. The infiltrating cells included aDCs, B cells, CD8+ T cells,

DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper

cells, Tfh, Th1 cells, Th2 cells, TIL, and Tregs. There were also

significant differences in the levels of some immune-linked pathways

between the HR and LR cohorts, such as APC_co_inhibition,

APC_co_stimulation, CCR, Check-point, Cytolytic_activity, HLA,

Inflammation-promoting, MHC_class_I, Parainflammation,

T_cell_co-inhibition, T_cell_co-stimulation, Type_I_IFN_Reponse,

and Type_II_IFN_Reponse. Immune checkpoints refer to those

that inhibit cytotoxic T lymphocyte activation, or cytotoxicity, as

well as T lymphocyte (killer T cell) interaction. These findings suggest

that the prognostic model is related to the function of antigen-

presenting cells (APCs), cytotoxic T cells, immune checkpoints, and

major histocompatibility complex (MHC). Thus, the risk model

could also be an indicator of tumor immune response in LUSC.
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FIGURE 2

(A) GO enrichment analysis of the LUSC-specific DEGs. (B) The KEGG analysis of LUSC-specific DEGs. The ordinate and abscissa are the GO
pathway sorted by the P-value and gene proportion. The shades of color denote the P-value, while the dot sizes represent the number of
participating genes. (C) A PPI network containing 1,604 nodes and 14,209 edges further revealed the interactions of these LUSC-specific DEGs,
where lines represent the interactions between them, red nodes refer to elevated gene expression, and blue nodes refer to diminished gene
expression. (D) The bar plot of the top 20 DEGs in LUSC-specific DEGs.
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Immune checkpoint molecules for immune function are crucial

for TME and immunotherapy (20). To examine the potential

association between molecular levels and immune checkpoints,

we analyzed the expression of several key immune checkpoint

sites, including TNFRSF18, TNFRSF14, CD160, CD48, CD244,

TNFSF18, TNFSF4, CD28, ICOS, PD-1 (PDCD1), CD47, BTLA,

TIGIT, CD80, CD86, TIM-3 (HAVCR2), PD-L1 (CD274), CD27,

LAG3, CD276, LGALS9, CD226, CD70, TNFSF14, CEACAM1,

PVR, and CD40. As shown in Figure 5C, apart from TNFSF18,

TNFSF4, CD274, LAG3, and CD276, the levels of most immune

checkpoint genes were markedly different between the HR and LR

cohorts (Figure 5; all P-values < 0.05).
3.6 Cancer stem cell characteristics
of the risk model

Cancer stem cells serve essential functions in tumor survival,

metastasis, proliferation, and recurrence, owing to their self-renewal
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ability and production of heterogeneous tumor cells (21). MRNAsi

reflects the gene expression characteristics of stem cells. We used

mRNAsi as the stemness index to investigate the similarities

between cancer and stem cells. The index ranged from 0 to 1; the

value of mRNAsi close to 1 indicated enhanced stem cell features of

the tumor cells. Thus, the mRNAsi and EREG-mRNAsi of LUSC

samples were further computed using the OCLR algorithm and

then compared between the HR and LR cohorts. Figures 6A, B)

shows significant differences in the mRNAsi and EREG-mRNAsi

between the two cohorts (P < 0.05).
3.7 Establishment of a ceRNA
network for LUSC

LncRNAs and circRNAs are generally perceived as competing

endogenous RNAs (ceRNAs) that bind to miRNAs. ceRNA analysis

refers to the analysis of the entire ceRNA regulatory network;

usually circRNA-miRNA-mRNA analysis or lncRNA-miRNA-
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FIGURE 3

(A) The forest map of the eight risk genes (FGG, C3, FGA, CRM1, JUN, CST3, CPSF4, and HIST1H2BH) using univariate analysis. (B), (a) LASSO analysis,
where the screened characteristic gene ordinate is the gene coefficient; (b) the abscissa is the log(Lambda), and the ordinate denotes cross-
validation error. In the analysis, we identified the position with the minimum error of cross-validation. In (B), the dotted line on the left represents the
position with the minimum error of cross-validation. Based on the position (lambda.min), we determined the associated horizontal coordinate log
(Lambda) and the number of characteristic genes (shown above); we also found the optimal log(Lambda) value and the associated gene and its
coefficient in the left figure (A). (C) The risk curve and the distributions of OS status of the seven-gene TC (P < 0.05). The risk score (RS) of the TC in
high- (HR) and low-risk (LR) cohorts (a), the OS status (b), and the heat map (c) are shown. The figure above (a) is consistent with the abscissa of the
middle figure (b), indicating that RSs rose from left to right. The ordinate represents the RS and survival time, while the dotted line represents the
median RS and the corresponding number of patients. Below (c) is the gene expression heat maps in the HR and LR cohorts. (D) The OS curve
based on the HR and LR cohorts. (E) ROC curve of the seven-gene set in TCGA-LUSC training cohort (TC) 1-3-5-years OS. (F) TCGA-LUSC
validation of survival curves for concentrated HR and LR cohorts. (G) ROC curves for 1-3-5-years OS in TCGA-LUSC validation cohort (VC).
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mRNA analysis is perceived as the core of the ceRNA regulatory

network. With competitive binding of ceRNAs, such as lncRNA or

circRNA with miRNA, the transcription level of the genes regulated

by miRNAs will increase. To further elucidate the potential

regulatory mechanism of these seven prognostic DEGs in LUSC

prognosis, we generated a ceRNA network using the DE-lncRNAs

and prognostic DEGs. The target miRNAs of DE-lncRNAs were

predicted using the miRcode database, and the target miRNAs of

prognostic DEGs were predicted using the miRanda database. A

ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7

prognostic DEGs demonstrated the molecular mechanism of

LUSC-specific DEGs in LUSC prognosis (Figure 7).
3.8 FGG and Clinical Parameters in
patients with LUSC

The prognostic values of FGG, C3, FGA, JUN, CST3, CPSF4, and

HIST1H2BH7 genes in LUSC in the TCGA database suggest that

they may play a role as key risk factors in tumors (Supplementary

Figure 7). The expressions of seven prognostic genes in human LUSC

cell lines NCI-H520 and LTEP-s were detected using q-PCR; FGG

was significantly highly expressed in both LUSC cell lines

(Supplementary Figure 8). We also examined the expression of

FGG in surgically collected, paired, LUSC samples, and adjacent

normal tissues from 6 patients. Remarkably, all LUSC specimens had

markedly increased FGG protein levels compared with matched

adjacent normal tissues (Figure 8). Our clinical observations reveal

that FGG is significantly hyper-expressive in LUSC patient samples,

further demonstrating the clinical value of FGG in LUSC.
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3.9 FGG correlates with tumor
progression, immune infiltration,
and stem index in LUSC

Immunofluorescence showed that FGG was expressed in the

nucleus of LUSC (Figures 9A, B). To demonstrate the biological

function of FGG in LUSC cells, NCI-H520 (Figures 9C, E) and

LTEP-s cell lines (Figures 9D, G) with FGG knockdown were

successfully constructed.

Our results suggest that FGG can affect the tumor process of LUSC

cells, as shown by the proliferation (Figures 9F, H), cloning (Figures 9I,

J), invasion (Figures 9K, L), and migration (Figures 9M, N) of NCI-

H520 and LTEP-s being significantly inhibited following FGG

knockdown. In addition, the result of western blot showed that the

expression of E-cadherin was increased while that of N-cadherin and

VIMENTIN were decreased following FGG knockdown, which also

corresponded to the inhibition of migration and invasion (Figures 9O,

P). Subsequently, we evaluated the scores of 22 kinds of tumor immune

cell infiltration in LUSC patients according to the expression of FGG

and found that FGG was significantly correlated with 10 kinds of

immune cell infiltration, including M1 macrophages (Figures 10A, B).

In vitro Transwell experiments showed that the ability of NCI-H520

(Figure 10C) and LTEP-s cell lines (Figure 10D) with low FGG to

recruit M1 mononuclear macrophages was significantly down-

regulated. After FGG knockdown, KLF4, Nanog, CD44, and SOX2

in NCI-H520 cells were significantly decreased, while CD133 showed

no significant changes (Figures 10E, F). After FGG knockdown, KLF4,

Nanog, CD44, and SOX2 in NCI-H520 cells were significantly

decreased, while CD133 showed no significant changes (Figure 10E).

After FGG downregulation, the expressions of CD44 and CD133 in
B

C D

A

FIGURE 4

(A) Univariate analysis. (B) Multivariate analysis. (C) ROC curves of multiple indicators. (D) Heat maps of different clinicopathological features of
TCGA-LUSC.
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LTEP-s cells were significantly decreased, while no significant changes

in KLF4, Nanog, and SOX2 were observed (Figure 10F). These results

indicate that FGG affected the tumor progression, immune infiltration,

and stem index of LUSC cells.
4 Discussion

LUSC is a subtype of NSCLC and accounts for nearly 40% of all

lung cancers. Early detection and the prognostic assessment of

LUSC remain challenging, hence the poor 5-year survival rate of

patients (22). Recent studies have improved the prognosis
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prediction for LUSC patients, focusing on biomarkers. For

example, Shi et al. investigated DNA methylation profiling and

proposed potential diagnostic biomarkers for LUSC (23). Chen

et al. investigated the roles of IRGs in the deterioration of lung

cancer and indicated the distinction between LUAD and LUSC

from the perspective of the immune response (24). Liao et al.

identified biomarkers with cancer stem cell characteristics in LUSC

(14). To date, the prognostic gene signatures for prognostic

prediction of LUSC are scarce and warrant further investigations.

Several studies have proposed prognostic markers for survival

prediction in patients with LUSC. Zhang et al. suggested that

IRGPI could be used as a prognostic marker (25), while Li et al.
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FIGURE 5

(A) Box plot of immune infiltrating cells in the high- (HR) and low-risk (LR) cohorts. The HR cohort was strongly associated with elevated tumor
infiltration levels in LUSC (P < 0.05). (B) Box plot of tumor infiltrated pathway. (C) Box plot of immunoassay sites in the HR and LR cohorts. The levels
of the remaining immune checkpoint genes were markedly different between the HR and LR cohorts (P-values < 0.05); ns, not significant. (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001).
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constructed an mRNA signature to predict the outcomes of patients

with LUSC (26). Liu et al. have identified an miRNA signature with

potential clinical implications in the outcome prediction of LUSC

(27). Indeed, several lncRNAs, such as VPS9D1-AS1 and MALAT-

1, are correlated with the survival of LUSC patients (28, 29). Huang

et al. reported a nine-long non-coding RNA signature for prognosis

prediction of patients with LUSC (7). However, no prognostic

indicators of LUSC have been established based on tumor

progression, immune infiltration, and stem index analysis.

Recent studies have found that LUSC differs from LUAD in

terms of genomic, epigenetic, CSC stemness, and TME

characteristics. According to previous research, CSCs may lead to
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cancer recurrence and drug resistance (30, 31). The TME is a

mutually adaptive environment in which tumor cells escape

immunological surveillance. Tumor progression involves crosstalk

between CSCs and the TME (32, 33), such as the induction of CSCs

in EMT (34) and the interaction of angiogenesis and components of

the TME (35). Herein, we adopted a comprehensive perspective of

cancer biology based on tumor progression, TME, and CSC index

for a better understanding of LUSC as an independent NSCLC from

different dimensions. We recognized the importance of the

particularly expressed genes in LUSC based on the TCGA

database and DEGs in HR and LR cohorts; from this, we

recognized the functions of independent genes as potential
FIGURE 7

ceRNA network. Rectangles, ellipses, and triangles represent the miRNAs, lncRNAs, and mRNAs of the risk model genes, respectively.
BA

FIGURE 6

(A) Boxplots of mRNAsi in the high- (HR) and low-risk (LR) LUSC patients. (B) Boxplots of EREG-mRNAsi in the HR and LR LUSC patients. (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001).
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predictors of tumor invasion, metastasis, tumor stem cell

characteristics, and immune cell infiltration. Seven prognostic

genes were varied in LUSC and were associated with the TNM

stage and prognosis; these genes were FGG, C3, FGA, JUN, CST3,

CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were

associated with poor outcomes in LUSC patients, whereas CPSF4

and HIST1H2BH served as positive prognostic markers in

LUSC patients.

In terms of clinicopathological features, the seven-gene

biomarkers showed differences in tumor metastasis and invasion,

and the significant differences between T1 and T2 of the T stage and

N0 and N1 of the N stage suggested that the modification occurred

during the early stage of tumor disease; however, the factors of

dabbling were limited, such as the lack of the status of smoking

status, driver factors, ORR of the various chemotherapy, and

immune checkpoint blockade subgroups. Kaplan–Meier analysis

showed that LUSC patients in the LR group exhibited significantly

higher OS than those in the HR group, while ROC curve analysis

results showed that this gene profile could effectively predict the OS

of LUSC. Subsequently, our independent prognostic value analysis

showed that protective genes were highly expressed in the low-risk

group, while the risk genes were highly expressed in the high-risk

group, indicating stable results. Moreover, the ROC curve showed

that RS could be used as an independent prognostic factor
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effectively predicting LUSC outcomes. We also analyzed the

relationships between HR and LR cohorts, immunoinfiltrating

cells, and immune pathways, and showed that HR patients

exhibited significantly elevated levels of tumor cell immune

infiltration and that the molecular expression of immune

checkpoint genes significantly differed between HR and LR patients.

Next, we analyzed the stem cell characteristics of the model and

showed that mRNA was associated with prognosis and relevance;

significant differences were noted in mRNAsi and EREG-mRNAsi

between HR and LR patients, providing new insights into the

clinical features, immune response, and TME of tumors based on

the dry index. Finally, we constructed a ceRNA network containing

19 lncRNAs, 50 miRNAs, and 7 prognostic DEGs, demonstrating

the prognostic value of novel biomarkers for Lusc-specific DEGs.

The prediction of the risk prognostic model constructed can

potentially provide more reliable theoretical support for clinical

application. However, bioinformatics is only a short practical

perspective to this goal; therefore, we conducted specific

molecular studies on prognostic genes. Based on the risk model

constructed above, combined with RT-qPCR assay and survival

analysis of the TCGA database, we screened LUSC-specific

prognostic genes and found that FGG was closely correlated with

LUSC results in univariate Cox analysis (P=0.000427708), and

mRNA levels of FGG were stably expressed in NCI-H520 and
FIGURE 8

Representative images from immunohistochemical staining of FGG in lung cancers (n = 6) and normal tissues (n = 6). Scale bars: 100 mm and 50 mm.
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LTEP-s cells and significantly up-regulated compared with normal

airway epithelial cells. Therefore, their roles in tumor progression,

immunoinfiltration, and dry characteristics were further analyzed.

FGG is the g-chain of fibrinogen, a large, complex glycoprotein

with a total molecular mass of approximately 340 kDa, comprising

three pairs of polypeptide chains: Aa (encoded by the FGA gene), Bb
(FGB), and g (36). FGG has a conserved globular domain, gC, at the
COOH terminus, which is a major integrin binding site for
Frontiers in Immunology 1478
fibrinogen. Yokoyama et al. found that the C-terminal region of

FGG, as the primary integrin binding site of fibrinogen, participated

in the process of thrombosis, angiogenesis, and inflammation (37,

38). Nobuaki Akakura et al. found that isolated gC and its mutant

gC399tr induce endothelial cell apoptosis, and recombinant soluble

gC399tr inhibited tumor growth, intratumoral vascular

development, and metastasis in vivo (39). Previous studies have

shown that fibrinogenemia, as a prognostic factor (40–42), is often
B
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FIGURE 9

Expression locations of FGG detected using immunofluorescence in (A) NCI-H520 and (B) LTEP-s. FGG knockdown was determined using western
blotting in (C) NCI-H520 and (D) LTEP-s cells. FGG knockdown was determined using Q-PCR in (E) NCI-H520 and (G) LTEP-s cells. CCK-8 assay
was used to detect the proliferation of (F) NCI-H520 and (H) LTEP-s cells Viability line graph (I) NCI-H520 and (J) LTEP-s cell colony formation
result. The result of the invasion of (K) NCI-H520 and (L) LTEP-s cells. The results of Wound Healing and migration of (M) NCI-H520 cells and (N)
LTEP-s cells. Western blotting assay showing EMT markers N-cadherin, Vimentin, and E-cadherin expression following FGG knockdown in (O) NCI-
H520 and (P) LTEP-s cells. The significant differences were analyzed using GraphPad Prism t-test, n=3 (*P<0.05, **P<0.01, ***P<0.001,
****P<0.0001).
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observed in patients with malignant tumors and is closely related to

tumor invasion, metastasis (43–45), angiogenesis (46), and tumor

growth processes (47); further, its degradation products with

carcinogenesis have been reported in tumors (41). However,

Nagata et al. found that frameshift mutations in FGG led to

hypofibrinemia, indicating that FGG was involved in the

regulation of fibrinogen secretion (48). In addition, FGG inhibits

platelet adhesion to fibrinogen by interacting with hepatitis B

splicing protein (49). Dysregulation of FGG has also been reported

in many malignant tumor types, such as liver cancer (50), stomach

cancer (40), and prostate cancer (51), underscoring its potential
Frontiers in Immunology 1579
relevance as a tumor marker. FGG is an important adverse

prognostic factor for gastric cancer (35). Another study showed

that serum FGG levels predicted the progression of prostate cancer

(51). Additionally, FGG is thought to distinguish cancer from

normal sera as a potential tumor marker in pancreatic cancer (52).

Additional data show the possibility of urine FGG levels as a

potential diagnostic marker for NSCLC (53). These findings

suggest that FGG could hold diagnostic, prognostic, and

therapeutic implications in cancer.

Our bioinformatics modeling demonstrated that FGG as a risk

prognosticator is of significant research value in LUSC, and the
B
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F

A

FIGURE 10

(A) Pearson’s correlation coefficient of FGG with 22 immune cell infiltration scores in LUSC was calculated using the corr.test function of the R
package psych (version 2.1.6), and 10 significantly correlated immune infiltration scores, including macrophages, were identified, (B) for further
individual correlations plotted for FGG with M0, M1, and M2 macrophages, respectively (p=0.04, r=0.09, p=1.1e-03, r=0.15, p=0.07, r=0.09).
Tranwell shows the infiltration of THP-1of (C) NCI-H520 cells and (D) LTEP-s cells. Western blotting assay showing the expression of stemness
marker genes SOX2, Nanog, CD133, CD44, KLF4 following FGG knockdown in (E) NCI-H520 and (F) LTEP-s cells. "ns" No Significant.
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results of subsequent in vitro experiments are consistent with

reports of abnormal expression of FGG mRNA in various

cancers. Knockdown of FGG caused functional changes in LUSC

tumor progression at the tumor cell level, significantly inhibited the

proliferation and clonogenesis ability of NCI-H520 and LTEP-s

cells, and blocked the cell cycle in the S phase (Supplementary

Figure 9). It also inhibited the invasion and migration ability of

tumor cells, by reducing the EMT process and promoting the early

apoptosis of tumor cells. In terms of dry characteristics, FGG down-

regulation decreased the expressions of KLF4, Nanog, CD44, and

SOX2 in NCI-H520 cells, and the expressions of CD44, Nanog, and

CD133 in LTEP-s cells. In terms of immune cell infiltration, the

expression of FGG in LUSC tissues was significantly correlated with

M0 and M1 type macrophages, while knockdown of FGG in LUSC

cells significantly affected the degree of immune infiltration of M1

type macrophages (Supplementary Figure 10) formed by

polarization of THP-1 cells, suggesting that FGG plays a specific

role in the immune infiltration of LUSC.

In summary, our study successfully constructed a LUSC-specific

DEGs based risk and prognosis model and verified the reliability of

the risk model from the data model. According to the prognostic

risk factors, including tumor invasion, metastasis, survival, immune

infiltration, and tumor stem cell-related genes, DEGs in LUSC were

used to determine associations between functional genes and tumor

progression, immune invasion, and dry index. However, this

prognostic model has some limitations, such as the relatively

simple database and limited factors analyzed (such as lack of

smoking status, drivers, ORRs of various chemotherapy

treatments, and subsets of immune checkpoint blocking).

Subsequently, in vitro studies of the LUSC-specific prognostic

marker FGG will provide deeper insights into LUSC. As a risk

factor in this prognostic model, FGG significantly inhibited the

progression of LUSC tumor cells after knockdown and reduced the

expression of dry marker genes and the infiltration level of M1 type

macrophages, suggesting that FGG is a potential biomarker for

independent poor prognosis of LUSC to identify LUSC patients

with poor clinical outcomes and that it may play specific roles in dry

maintenance and immune infiltration. However, the specific

mechanism underlying the changes in tumor progression

warrants further study.
5 Conclusion
This study established a seven-gene profile (FGG, C3, FGA,

JUN, CST3, CPSF4, and HIST1H2BH) prognostic stratification

system demonstrated in LUSC based on Tumor Progression,

Immune Infiltration, and Stem Index. In vitro experiments

confirmed that DEGs FGG could be independent prognostic

biomarkers of LUSC promoting cell proliferation, migration,

invasion, THP-1 cell infiltration, and stem cell maintenance.
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Introduction: Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar

of cancer therapy as single agents or in combination regimens both in adults and

children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one

third of the patients. Thus, the search for predictive biomarkers of responsiveness

to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly

affected not only by the specific characteristics of cancer cells and the levels of

immune checkpoint ligands, but also by other components of the tumor

microenvironment, among which the extracellular matrix (ECM) is emerging as

key player. With the aim to comprehensively describe the relation between ECM

and ICIs’ efficacy in cancer patients, the present review systematically evaluated

the current literature regarding ECM remodeling in association with

immunotherapeutic approaches.

Methods: This review followed the Preferred Reporting Items for Systematic

Reviews and Meta-analyses (PRISMA) guidelines and was registered at the

International Prospective Register of Systematic Reviews (PROSPERO,

CRD42022351180). PubMed, Web of Science, and Scopus databases were

comprehensively searched from inception to January 2023. Titles, abstracts

and full text screening was performed to exclude non eligible articles. The risk of

bias was assessed using the QUADAS-2 tool.

Results: After employing relevant MeSH and key terms, we identified a total of

5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries

were found and excluded. Following title and abstract screening, the full text was

analyzed, and 47 studies meeting the eligibility criteria were retained. The studies

included in this systematic review comprehensively recapitulate the latest

observations associating changes of the ECM composition following

remodeling with the traits of the tumor immune cell infiltration. The present

study provides for the first time a broad view of the tight association between
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ECM molecules and ICIs efficacy in different tumor types, highlighting the

importance of ECM-derived proteolytic products as promising liquid biopsy-

based biomarkers to predict the efficacy of ICIs.

Conclusion: ECM remodeling has an important impact on the immune traits of

different tumor types. Increasing evidence pinpoint at ECM-derived molecules as

putative biomarkers to identify the patients that would most likely benefit from

ICIs treatments.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022351180, identifier CRD42022351180.
KEYWORDS

extracellular matrix, cancer, immune checkpoint inhibitors, pediatric cancer,
gynecological cancer, gastrointestinal cancer, melanoma, breast cancer
1 Introduction

The development of immunotherapy represents a revolution in

the treatment of cancer and the use of immune checkpoint inhibitors

(ICIs) exerts a prominent anti-tumor activity in a broad range of

tumor types. Nearly half of all patients with metastatic cancer are

eligible to receive ICIs, with an increasing use of these agents seen in

several (neo)adjuvant and maintenance settings (1–3). ICIs are often

used in combination regimens, including those involving other

classes of ICI, chemotherapy, anti-angiogenic and/or targeted

therapies (4). Nonetheless, despite a portion of patients display

remarkable and long-lasting disease regression in response to ICIs,

two thirds of the patients do not benefit from these therapies (5). This

is partially due to the occurrence of primary or acquired resistance,

but also to the toxicity deriving from ICs blockade, that can be severe

and even life-threatening. For these reasons, it is crucial to identify the

patients that could benefit of ICIs and the search for predictive

biomarkers of responsiveness to ICIs remains an active area of

research and an urgent clinical need.

Immune checkpoint (IC) pathways are physiologic mechanisms

aimed at attenuating T cell responses to prevent autoimmunity and

maintain immune homeostasis. Tumors can viciously take advantage

of the immune-inhibitory pathways to limit the extent of T cell

activation and maintain immune tolerance. Indeed, ICs and their

ligands are frequently upregulated in the tumor microenvironment

(TME) of various cancer types, thus hindering the anti-tumor

immune responses (1). Hence, with the aim to revitalize the anti-

tumor immune response, ICIs have been developed as promising

therapeutic agents. Most of the ICIs target the cytotoxic-T-

lymphocyte-associated protein 4 (CTLA-4 or CD152), the

programmed cell death 1 (PD-1 or CD279) or its ligand

programmed cell death ligand 1 (PD-L1 or CD274 or B7 homolog

1) (1). Many drugs inhibiting these two checkpoint axes, i.e.

ipilimumab for CTLA4, nivolumab and pembrolizumab for PD-1

and atezolizumab, avelumab, and durvalumab for PD-L1, have shown

clinical activity and are currently used in the clinical practice (4). In the
0284
last few years, other checkpoint molecules have been identified and an

increasing number of immunotherapies is under clinical development

(e.g., blockade of LAG3, CD276, TIGIT and TIM3) (4, 6).

It is now well established that the efficacy of ICIs in cancer

treatment is strongly affected not only by the specific characteristics

of cancer cells and the expression levels of the immune checkpoint

ligands, but also by other components of the TME. Indeed, the

response to ICIs highly relies on the innate immune TME

constituents, e.g. macrophages and natural killer cells (NK), on

the tumor hypoxic levels, as well as on the efficiency of tumor-

associated vasculature (7). A key cell type that strongly shapes the

TME are cancer associate fibroblasts (CAFs), that represent the

most abundant stromal cells within the tumor. CAFs exert multiple

functions as modulating tumor angiogenesis and metabolism,

secreting growth factors and immunomodulatory cytokines and

driving the remodeling of the extracellular matrix (ECM). The

tumor-associated ECM displays peculiar features, such as an altered

composition and stiffness, and it has been shown to educate all the

cells of the TME leading to the establishment of a pro-tumoral

environment. Importantly, as detailed in the present systematic

review, emerging evidence are pointing at the ECM as key

constituent of the TME actively modulating the efficacy of ICIs.

The ECM is a complex network of molecules which, thanks to

its mechanical as well as biochemical properties, strongly impacts

on all the cellular TME components, thus affecting tissue

homeostasis (8, 9). The ECM is composed of fibrillar proteins

(such as collagens, laminins, fibronectin, elastin), proteoglycans

and several glycoproteins. For their structural features, the ECM

components can interact with a variety of proteins, receptors and

soluble factors, influencing the behavior of tumor cells, as well as

other tumor-associated cell types such as infiltrating immune cells,

stromal cells, blood vascular and lymphatic endothelial cells and

pericytes (10–15). As a consequence, the ECM profoundly

influences important processes driving tumor growth and

progression, such as epithelial-mesenchymal transition (EMT),

immune response, angiogenesis and lymphangiogenesis (16–19).
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Contrary to what previously thought, the ECM is not a mere

static TME component, rather it undergoes continuous dynamic

remodeling as well (20, 21). ECM remodeling is mainly due to three

mechanisms: 1) altered expression of the components, as reported for

collagens and Tenascin-C (22); 2) increased activity of lysis oxidase

(LOX) enzymes, which leads to the formation of intermolecular

cross-links between collagen I fibers themselves as well as with

other molecules such as collagen III and IV and fibronectin (FN),

thus resulting in increased tissue stiffness; 3) high protein degradation

due to the activation of proteases, among which metalloproteases

(MMPs) and ADAMs are the major players (23). These processes are

exacerbated in the TME, leading to the formation of an abnormal

ECM which utterly differs for composition and rigidity from the

healthy tissues (8). Interestingly, a mounting amount of evidence

indicate that the extent of ECM remodeling and its mechanical

features strongly impact on the tumor immune response (24–26).

In the light of these findings, some ECM molecules, as well as

fragments deriving from their proteolytic remodeling, are emerging

as putative biomarkers to delineate the immune traits of the tumors,

as well as the efficacy of immunotherapies. The aim of this

systematic review is to identify and summarize all the published

human research studies in this context. In particular, we aim to

address the following questions: Can ECM remodeling regulate the

tumor immune response? Is the ECM composition impacting on

the efficacy of immune checkpoint inhibitors? Can ECMmolecules/

fragments represent a valuable biomarker to predict the outcome of

cancer patients treated with immune checkpoint inhibitors?

2 Methods

2.1 Protocol and registration

The systematic review was designed based on the Preferred

Reporting Ideas for Systematic Review and Meta-analyses [PRISMA

(27)] systematic review checklist and was registered on PROSPERO, (ID:

CRD42022351180, review protocol link: https://www.crd.york.ac.uk/

PROSPERO/display_record.php?RecordID=351180).
2.2 Search strategy—eligibility criteria,
information sources and search terms

Original research articles written in English and published

before 20 January 2023 were eligible for inclusion. We included

studies reporting any relation between ECM molecules and the

immune traits of the tumors, as well as the response to immune

checkpoint inhibition. We included studies regarding patients

diagnosed with cancer, regardless of the cancer type, disease

staging and PD-L1 expression status. Our inclusion criteria did

not involve any age restrictions, since we wished to comprise both

young and older patients. Articles not published in English, whose

full text was not available, letters to the editor, case reports, and

poster presentations were excluded.

To ensure a comprehensive retrieval of all the studies relative to

ECM and ICIs efficacy, we chose to exploit three relevant and
Frontiers in Immunology 0385
reliable databases: PubMed (MEDLINE), Scopus and Web of

Science. The combination of mesh terms searched in the

databases were “extracellular matrix molecules” or “extracellular

matrix remodeling” and “immune checkpoint inhibitors” or

“immunotherapy”. Searches have also been performed using the

names of the specific immune checkpoint inhibitors (Nivolumab,

Pembrolizumab, Atezolizumab, Avelamab, Durvalumab,

Ip i l imumab, and Tremel imumab) and some spec ific

ECM molecules (i.e. fibronectin, collagen, Emilin, tenascin-

C, proteoglycans).
2.3 Study selection and data extraction

Duplicate articles were removed from the results of the

literature search. Two independent authors screened the titles and

abstracts of the remaining articles to ensure that the eligibility

criteria were met. Any discrepancies between the authors were

identified and discussed (with inputs from a third author if

required). The remaining included articles assessed by full-text

screening by two independent authors, using the same

eligibility criteria.
2.4 Critical appraisal

Study quality and risk of bias were assessed by using the

QUADAS-2 tool. The risk of bias in the studies was categorized

based on the “yes” scores in the QUADAS-2 checklist. In particular,

papers with all “yes” or maximum one “unclear or no” responses

were classified as low risk. Instead, if two or more responses on the

checklist were “unclear” or “no”, papers were attributed as unclear

or high risk, respectively. If two or more responses were “unclear”

and at least one response as “no” the paper was attributed as high

risk. Finally, we considered the last question of the QUADAS-2

checklist (“Were all patients included in the analysis?”) as an

important key factor for the evaluation of the study quality,

therefore papers in which the response was “no” were classified as

high risk papers.
3 Results

3.1 Literature selection

The systematic search identified a total of 5,070 articles: 1,501

articles were available in PubMed, 2,491 studies in Scopus, and

1,078 in Web of Science. Among those, 2540 were duplicates and

1521 articles were excluded since the publication type did not meet

the eligibility criteria (reviews, non-English articles, editorials/

commentaries, book chapters, conference abstracts). Two

independent authors screened a total of 1,009 articles for their

relevance in the topic by assessing the title, abstract or full-text.

Among the 1,009 articles, 971 studies were excluded since unrelated

to ECMs, relative to immunotherapy employed to treat other
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https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=351180
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=351180
https://doi.org/10.3389/fimmu.2023.1270981
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fejza et al. 10.3389/fimmu.2023.1270981
diseases, and in vitro/in vivo only studies. During the screening

process, nine articles not identified by the database searches but

relevant for the present review were added manually to the list. As a

result, 47 articles were included and analyzed in this systematic

review (Figure 1). These studies provide a clear overview of the

importance of the tumor associated ECM in determining an

immunosuppressive environment within the lesions. Moreover,

they highlight the association between increased ECM stiffness

and remodeling processes with the response to ICIs in different

tumor types, further strengthening the value of ECM-derived

molecules as predictive biomarkers. A summary of the main

findings of each of the 47 retained studies is provided in the

following sections and in Tables 1, 2.

The qualitative analysis of the selected papers indicated that

three points were mainly exposed to considerable bias: the design of

case-control studies, the definition of a threshold and the inclusion

of all the patients in the analysis. Anyway, the overall risk of bias of

the included studies assessed by QUADAS-2 was low for 62% of the

papers, unclear for 23% and high for 17% (Figure 2).

The literature search spanned from inception to 2023, however

most of the papers included in the present systematic review dated

from the last five years. All tumor types in adult as well as in

pediatric patients were included in the search, however none of

these papers dealt with pediatric cancer. Among the tumor types,
Frontiers in Immunology 0486
the majority of the papers were related to melanoma (7/47, 14.9%),

breast cancer (BC) (6/47, 12.8%), colorectal cancer (CRC) (5/47,

10.6%) and hepatocellular carcinoma (HCC) (4/47, 8.5%). Half of

the identified studies were carried out exploiting the patients’

cohorts available to the research teams, whereas the other half

was exclusively based on bioinformatic analyses.
3.2 ECM remodeling as a driver of the
tumor immune environment

The ECM undergoes radical remodeling during tumor growth

and progression, thereby replacing normal ECM with tumor-

associated ECM (9, 75, 76). Several studies report a significant

association between the altered ECM composition and the patient

outcome in various cancer types, however the mechanisms

underlying these changes remain elusive (10, 14, 23, 77–82). Most

of these studies are focused on the effect of ECM alterations in

modulating cancer cell behavior, whereas less attention has been

given to their possible immunomodulatory roles. However, as

described in the following paragraphs, the prominent role of

some ECM components in affecting the immune cell infiltration

and activity has been recently well documented.
FIGURE 1

PRISMA flow diagram of the studies’ screening and selection.
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3.2.1 Altered expression of ECM components
associating with the immune cell infiltration
and IC expression
3.2.1.1 Collagens

Among the ECM components that have been associated with

the traits of the tumor immune microenvironment, collagens are

the most represented (Tables 1, 2).

The association between collagen deposition and the infiltration

of immune cells has been well described in different cancer types. In

triple negative breast cancer, high Th1 infiltration has been related

to low collagen I content, whereas high Th2 and regulatory T cells

(Treg) infiltration has been observed in collagen-rich lesions (38).

Similar results were obtained by Yaegashi et al. in non-small cell

lung carcinoma (NSCLC) (39). Yaegashi and colleagues identified

three types of ECM barriers in NSCLC: the first represented by a

low deposition of collagen V, the second showing an increase of

collagen III and collagen I, and the third characterized by a high

amount of collagen I fibers perpendicularly aligned to the tumor

border. The diverse barriers were shown to be differentially

permissive to immune cell infiltrates, with high density collagen

V negatively correlating with NK infiltration and collagen I and III

associating with decreased Treg infiltration (Yaegashi et al., 2021).

A broad bioinformatic analysis showed that the collagen V gene

(COL5A1) was overexpressed in a variety of tumor types including

lung, breast, colorectal and gastric cancers, melanoma, liver

hepatocellular carcinoma and prostate adenocarcinoma (34). The

authors evidenced that COL5A1 expression increases during tumor

progression, and it correlates with poor patient’s outcome in some

types of cancer. Importantly, COL5A1 levels significantly correlated

with the presence of a plethora of different B and T cell
Frontiers in Immunology 0587
subpopulations. Interestingly, heterogeneity was observed among

the different cancer types, allowing to conclude that the effect of

COL5A1 expression is strongly dependent on the specific TME.

In other studies, some interesting associations between ECM

molecules and immune checkpoints molecules have been

highlighted. This is the case for renal cell carcinoma, in which the

presence of COL6A1 perfectly correlates with PD-1 staining (35).

Comparable results have been obtained in PDAC, in which

COL6A3, SPARC and fibrillin1 (FBN1) have been correlated not

only with the presence of six different immune cell types (CD4+ T

cells, CD8+ T cells, B cells, neutrophils, macrophages, and dendritic

cells), but also with the expression level of the checkpoint molecules

CTL4, PD-1, PD-L1 and PD-L2 (36). Similarly, in pancreatic

adenocarcinoma (PAAD) the presence of CD8+ T cells, M1 and

M2 macrophages, Tregs and dendritic cells has been associated with

COL10A1 expression, which seems to exert an immunosuppressive

function within the TME (33). Indeed, COL10A1 also positively

correlated with PD-L1 and CTLA-4, as well as with the newly

identified immune checkpoints CD73 (83) and the human

leukocyte antigen (HLA)-E (84). Possibly due to its involvement

in the immune escape, COL10A1 associates with a poor PAAD

patient prognosis (33).

Overall, this evidence has the potential to open the road towards

the development of new predictive markers and novel strategies for

targeted immunotherapy. In line with this hypothesis, the increased

expression of COL1A2, together with other ECM-related molecules

such as metalloprotease-2 (MMP2) and procollagen C-

endopeptidase enhancer (PCOLCE), were shown to correlate with

the survival of patients with advanced melanoma treated with

neoadjuvant immunotherapy combining high-dose interferon a-
FIGURE 2

Risk of bias summary of the included papers, based on QUADAS-2 tool. NA, not applicable.
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TABLE 1 Characteristic and main findings of the included papers that show an association between ECM remodeling and tumor immune traits.

Ref Molecule Tumor
type

Year Enrolled
Patient

Queried Databases Association with immune traits

(28) ABI3BP LUAD 2023 / TIMER, GEPIA, TCGA, HPA
(n=504)

correlation with B and CD4+ T memory cells, Tregs, B cells, T
cells, CD4+ T, DC activation, and Ecs

(29) ADAM12 CRC 2021 / Oncomine, UALCAN, TCGA,
GEPIA, TIMER, TISIDB (n=86733)

correlation with CD4+ T, B, CD8+ T cells, neutrophils,
macrophages, DC

(30) ADAMs PAAD 2020 / TCGA (n=18313) positive correlation with DC, B cells, neutrophils, CD8+ T cells,
macrophages

(31) BGN TNBC 2022 / TCGA, GEO (n=116) negative correlation with CD8 + T cells

(32) GC 2022 / TCGA, GTEx (n=407) positive correlation with NK cells and macrophages; negative
correlation with Th17 cells

(33) COL10A1 PAAD 2022 / TCGA, GEO, GEPIA (n=182) positive association with CD8+ T cells, M1 and M2 Mac;
positive correlation with PD-L1, CTLA-4, CD73, HLA-E

(34) COL5A1 pan-
cancer

2022 / Oncomine, TCGA, CCLE, HPA,
DNMIVD,cBioPortal

association with naive B cells, memory B cells, monocytes,
macrophages, CD8+ and CD4+ T cells

(35) COL6A1 RCC 2020 161 / association with PD-L1 expression

(36) COL6A3 PDAC 2020 / TCGA, GEO (n=30) association with CD4+ and CD8+ T, B cells, neutrophils, Mac
and CD; association with CTLA-4, PD-1, PD-L1, PD-L2

(37) Collagen
alignment

BC 2021 / TCGA, GEO negative correlation with anti-tumor T cells

(38) Collagen I BC 2022 30 TCGA, GEO (n=1161) positive association with Th1 and Tregs, negative association
with Th1

(39) Collagen I,
III, V

NSCLC 2021 120 / negative association of Coll I and III with Tregs and of Coll V
with NK

(40) Collagen,
Elastin

BCC 2022 22 / association with TILs counts

(41) CTHRC1 CRC 2022 / TCGA, GEO (n=242) correlation with TAMs, M2 macrophages, Tregs, T cell
exhaustion, and MDSCs

(42) GC 2022 / TCGA, GEO, GSA (n=375) correlation with M2 Mac, NK cells, Th1 cells and DC

(43) EMILIN2 CRC 2022 23 TCGA (n=844) negative association with M2 Mac; positive association with M1
Mac

(44) LLG 2021 97 CGGA, TCGA (n=1018) positive correlation with B cells, CD8+ T and CD4+ T cells,
DC, Mac and neutrophils

(45) CCC 2022 / TCGA, UCSC Xena (n=531) positive correlation with CTLA-2, PD-1, LAG3, and TIGIT

(46) LOXL3 HCC 2021 / TCGA, TIMER, GTEx (n=52) positive correlation with CD4+ T and CD8+ T cells, B cells,
DC, neutrophils, Mac, B cells

(47) LOXL4 HCC 2021 90 / association with PD-L1 expression

(48) MMP1 HCC 2022 / TCGA, TIMER, GEO (n=11104) association with activated DC, Mac, CD4+ T cells and MDSC

(49) MMP9 pan-
cancer

2022 / TCGA, GTEx (n=33) positively correlates with T cells, macrophages, Th1 cells, and T
cell exhaustion

(50) PCOLCE BC 2021 / METABRIC (n=273) association with PD-1/PD-L1 expression level

(51) pan-
cancer

2022 / TCGA, CPTAC, GEO (n=33) positive correlation with CD4+ and CD8+ memory cells, CD4+

T, CD8+ T, NK cells

(52) PLOD2 pan-
cancer

2022 / GTEx, CCLE (n=21) negative correlation with memory B cells, activated NK cells,
CD8+ T cells,Treg; positive correlation with Mac

(53) SPP1 LUAD 2021 / TCGA, CPTAC (n=551) correlation with low CD8+ Tcell infiltration and high M2-type
macrophages

(54) TNC BC 2020 160 / negative correlation with LC3B and CD8+ T cells

(Continued)
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TABLE 1 Continued

Ref Molecule Tumor
type

Year Enrolled
Patient

Queried Databases Association with immune traits

(55) BC 2021 219 GEO negative association with macrophages and CD8+ T cells

(56) OSCC 2020 68 GEO positive correlation with CD11+ cells and Tregs

(57) LGG 2022 62 / positive association with MDSC; negative association with
effector T cells

(58) Versican NSCLC 2022 / GEO positive association with DC, negative correlation with CD8+ T
cells

(59) MPM 2022 / TGCA (n=12) association with PD-1 overexpression and downregulation of
CD127

(60) CCa 2010 149 / negative association with CD8+ T cells

(61) MM 2016 19 / negative association with CD8+ T cells

(62) CRC 2017 122 / negative association with CD8+ T cells
F
rontiers
 in Immunology
 0789
BC, breast cancer; MM, myeloma; CCa, cervical cancer; MPM, pleural mesothelioma; CCC, clear cell carcinoma; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; LGG, low grade
glioma; OSCC, oral squamous cell carcinoma; LUAD, lung adenocarcinoma; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; PAAD, pancreatic adenocarcinoma.
TABLE 2 Characteristic and main findings of the included papers that show an association between ECM remodeling and ICIs efficacy.

Ref Molecule Tumor
type

Year Enrolled
patients

Queried
Databases

IC
target

Sample
type

Method Main findings

(63) BGN CRC 2022 144 GEO, TCGA
(N=435)

/ biopsy RNA seq, IHC positive association with M2
macrophages and Tregs; association
with the prediction of the response

to ICIs

(64) COL6A1 BLCa 2023 58 TCGA
(n=414)

PD-1 biopsy RNA seq, IHC predictive of poor response to anti-
PD-1 treatment

(65) Collagen
fragments
(C4G, PRO-

C3)

CM 2020 54 / CTLA-4 serum ELISA High C4G combined with low PRO-
C3 predict improved OS

(66) Collagen
fragments
(PRO-C3,
C1M, C3M,
C4M, VICM)

CM 2018 67 / CTLA-4 serum ELISA High PRO-C3 and C4M
independently predictive of worse
OS ad PFS; high C3M/PRO-C3 and
VICM independently associate with

longer OS

(67) Collagen
fragments
(PRO-C3,

PC3X, C3M,
C4M, VICM)

CM 2020 107 / PD-1 serum ELISA High PRO-C3 and PC3X
independently predictive of worse
OS ad PFS; high C3M/PRO-C3 and
VICM independently associate with

improved OS

(68) Collagen I, III LUAD,
LUSC

2020 451 TCGA
(n=1580)

PD-1 biopsy RNAseq, IHC negative association with CD8+ T
cells; predictive of poor survival and

response to anti-PD-1

(69) CTHRC1 GBM,
LGG

2021 / CGGA,
TCGA, GDC
(n=1711)

PD-1 biopsy RNA seq predictive value for anti-PD-1
therapy efficacy

(70) EMILIN2 CM 2021 / TCGA
(n=477)

PD-L1 biopsy RNA seq negative association with the
response to anti PD-L1 therapy

(71) HAPLN3 CM 2021 / TCGA, GEO,
dbGap
(n=727)

CTLA-4 biopsy RNA seq part of TIR signature predictive of
response to anti-CTLA-4 and

patients’ survival

(Continued)
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2b with the anti-CTLA-4 antibody ipilimumab (73). Similarly,

COL6A1 expression has been indicated as a prognostic risk gene

in bladder cancer, where high COL6A1 levels being predictive of a

poor response to the PD-1 inhibitor tislelizumab (64).

An important association between collagen deposition and the

efficacy of ICIs has been highlighted also in lung cancer. Taking

advantage of a preclinical mouse model, Peng and colleagues (68)

demonstrated that collagen induces CD8+ T cell exhaustion through

the binding with the leukocyte-associated immunoglobulin-like

receptor 1 (LAIR1) acting as an immune checkpoint molecule

(85). Notably, the inhibition of LOXL2 activity, which leads to the

blockage of collagen deposition, sensitizes the lung tumors to anti-

PD-L1 therapy. Consistently, in lung cancer patients, higher

collagen I and III deposition associates with decreased CD8+ T

cells as well as increased levels of the exhaustion markers LAIR1 and

TIM-3. Of note, collagen expression was shown to predict the

response to anti-PD-1 therapy and the overall survival of these

patients (68).

3.2.1.2 Versican

The ECM proteoglycan Versican (VCAN) exerts multiple

functions by interacting with other ECM components and cell

types impacting on tissue development, wound healing and

cancer. Increased VCAN expression has been shown in solid

tumors including ovarian, pancreatic, breast, lung, esophageal,

bladder and colorectal cancer and to associate with patient’s

prognosis (86, 87). Many in vitro and in vivo studies have

highlighted the role of VCAN in the modulation of inflammation.

Moreover, some investigations have recently shown its association

with the tumor immune environment in different cancer types (88).

In 2022, Yang and colleagues reported that, in pleural

mesothelioma, the expression of VCAN, in association with the

other ECM molecules collagen I, fibulin and NG2, identifies

patients characterized by immunosuppression and resistance to

chemotherapy (59). In accordance with these evidences, the

presence of VCAN and the rate of its proteolytic cleavage by the

specific ADAMTS1 in lung cancer has been shown to play a pivotal

role in dendritic cell activation (58). In detail, VCAN is located in

the peritumoral stroma of NSCLC, where the VCAN-derived

proteolytic fragment versikine induces dendritic cell (DC)
Frontiers in Immunology 0890
accumulation and activation. This, in turn, allows the interaction

of DC with transiting effector CD8+ T cells, inducing their

activation and infiltration within the tumor nest. Therefore, an

active VCAN proteolysis and low total VCAN in the stroma

associates with CD8+ T cell infiltration in NSCLC (58), myeloma

(MM) (61), CRC (62) and in cervical cancer (CCa) (60). These data

suggest that VCAN remodeling may be exploited as a novel

immune biomarker as well as a therapeutic target to promote

antitumor CD8+ T cell responses.
3.2.1.3 Tenascin-C

The third most represented molecule in the papers analyzed in

this review is tenascin-C (TNC), a highly expressed glycoprotein in

malignant solid tumors, including breast cancer and oral squamous

cell carcinoma (OSCC) (9, 89, 90). The functions of TNC in

modulating cancer cell migration, proliferation, invasion and

angiogenesis have been extensively described (91–93), however

only in recent years TNC has been associated with the immune

response. Analyses of TNC deposition in breast cancer, low grade

glioma (LGG) and OSCC indicated that a TNC-rich stroma

associates with leukocyte infiltration in the tumor nest (55–57).

Murdamoothoo and colleagues demonstrated that TNC can retain

T cells within the stroma by inducing and directly binding CXCL2,

an important T cell chemoattractant, thus preventing their

infiltration and cytotoxic activity in the tumor nest (55). A

similar function was observed in OSCC, in which, through the

induction of CCL21, TNC has the capability to promote the

retainment of CD11c+ myeloid cells in the stroma leading to a

more immune-suppressive environment within the tumor nest (56).

In accordance with this evidence, Li and colleagues showed that, in

triple-negative breast cancer (TNBC), TNC inversely correlates with

CD8+ T-cell tumor infiltration and positively correlates with poor

patient prognosis (54). Furthermore, they assessed that the

expression of TNC associates with the occurrence of autophagic

defects in TNBC cells, defects known to counteract T cell-mediated

tumor killing. The authors demonstrated that TNC blockage can

sensitize TNBC cells to the cytotoxic effect of T lymphocytes,

indicating that TNC may be explored as a new potential target

for TNBC treatment (54).
TABLE 2 Continued

Ref Molecule Tumor
type

Year Enrolled
patients

Queried
Databases

IC
target

Sample
type

Method Main findings

(72) MMP12 HCC 2021 8 TCGA, GEO
(n=467)

/ biopsy RNA seq, WB,
PCR

positive correlation with CTLA-4
and PD-L1; negative association
with predicted ICIs efficacy

(73) MMP2,
COL1A2

CM 2021 30 / CTLA-4 biopsy transcriptomic
Nanostring
analysis

positive association with longer OS
and RFS for patients treated with

anti-CTLA-4

(74) MMP9, LOX GBM 2023 27 TCGA,
CGGA, GEO
(n=1876)

PD-1,
PD-L1

biopsy RNA seq, IHC,
qPCR

part of a high risk signature
correlated with poor prognosis and
higher response to anti-PD1/L1

therapy
BC, breast cancer; CM, cutaneous melanoma; CCa, cervical cancer; BLCa, bladder cancer; GBM, glioblastoma; LGG, low-grade glioma; CRC, colorectal cancer; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; HCC, hepatocellular carcinoma; OS, overall survival; PFS, progression-free survival.
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3.2.1.4 Collagen triple helix repeat containing-1

Collagen triple helix repeat containing-1 (CTHRC1) is a

secreted ECM protein transiently expressed during the repair

process of injured arteries (94) and skin wound healing (95). In

several solid tumors, CTHRC1 is upregulated and its expression has

been associated with tumorigenesis and metastatic dissemination

(96). In breast cancer, non-small cell lung cancer and oral cancer,

CTHRC1 exerts a pro-tumorigenic effect by modulating the Wnt/b-
catenin pathway (96). The association between CTHRC1 and the

tumor immune environment has been described for the first time in

a preclinical model of CRC, in which CTHRC1 was shown to

promote liver metastasis by shaping the infiltrated macrophages

towards a M2 phenotype through the direct interaction with the

TGF-b receptors (97). This observation has been confirmed by

Zhao et al., who evaluated CTHRC1 expression in gastric cancer

(GC) through the integration of different datasets (42). Not only did

the authors show that high CTHRC1 expression associates with

worse patients’ prognosis, but they also found that it correlates with

the abundance of subtypes of immune infiltrating cells. In detail,

elevated CTHRC1 expression was significantly correlated with the

infiltration of M2 macrophages, as well as other innate immune

cells, such as NK, Th1 and DC cells. Further analyses allowed to

determine that CTHRC1 is highly expressed by cancer-associated

fibroblasts (CAFs) and it is present in the vascular tissue

surrounding the gastric lesions, where it may favor macrophage

infiltration though the interaction with CAFs via the GRN/

TNFRSF1A and AnxA1/FPR1 pathways (42). CAFs are likely the

major source of CTHRC1 also in CRC, in which CTHRC1

expression is upregulated and it takes part in a gene-based

signature with prognostic value (41). Indeed, the upregulation of

CTHRC1, together with that of the Placental Derived Growth

Factor C (PDGFC), PDZ and LIM Domain 3 (PDLIM3),

Neurotrimin (NTM), and Solute Carrier Family 16 Member 3

(SLC16A3) genes, positively correlates with M2 macrophages,

regulatory T cells (Tregs), and myeloid-derived suppressor cells

(MDSCs) infiltration, as well as T cell exhaustion and associates

with poor CRC patient survival (41). Taken together, these two

papers confirm the immunosuppressive role of CTHRC1 in

gastrointestinal cancers. However, the association between CAF-

derived CTHRC1 and the tumor immune microenvironment

characteristics do not seem to be tumor type-specific. Indeed, the

expression of CTHRC1, together with ATP Binding Cassette

Subfamily C Member 3 (ABCC3), macrophage scavenger receptor

1 (MSR1), PDZ and LIM domain protein 1 (PDLIM1), TNF

Receptor Superfamily Member 12A (TNFRSF12A), and

Chitinase-3-Like Protein 2 (CHI3L2), has been identified as a

CAF-related gene signature with prognostic and predictive value

for glioma patients treated with anti PD-1 therapy (69).

3.2.1.5 ABI family member 3 bind protein

ABI family member 3 binding protein (ABI3BP) is an ECM

protein expressed in multiple organs, including the heart, kidney,

lung, pancreas, and placenta, with low or variable expression in the

spleen, liver, brain, bone, and skeletal muscle (98). ABI3BP expression

has been associated with many physiological and pathological
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processes (99), and it is well known for its role in multiple cancer

types, acting as a tumor suppressor by inhibiting cancer cell

proliferation and migration and promoting cellular senescence (100–

104). The role of ABI3BP in lung cancer has been investigated only

recently and it has been indicated that this molecule is downregulated

in the lesions compared to normal lung tissue and it gradually

decreases as lung cancer progresses (28). Interestingly, in the same

work, it has been demonstrated for the first time the association

between ABI3BP expression and immune cell infiltration. Indeed, in

lung cancer, ABI3BP expression positively correlates with B memory

cells, CD4+ T memory cell rest, Tregs, CD8+ T cells, CD4+ T cells, and

CD activation. Even if themolecular mechanisms affecting the immune

response are still unknown, these data suggest that increased ABI3BP

expression may impact on tumor progression also by modulating the

tumor immunemicroenvironment. In accordance with this hypothesis,

the expression of ABI3BP in lung cancer correlates with patient’s

prognosis, with low expressing patients having a poorer outcome (28).

3.2.1.6 EMILIN-2

Elastin microfibril interfacer 2 (EMILIN-2) belongs to the EDEN

protein family (105–107) and is often downregulated in epithelial

tumors, in which it exerts a tumor suppressive function through

multiple mechanisms (11, 77, 108, 109). EMILIN-2 directly acts on

the survival and proliferation of cancer cells and, like other members

of the EDEN family, such as Multimerin-2 (12, 13, 110–112), it also

influences angiogenesis (109). Increasing evidence pinpoint this

molecule as an important immunomodulator in the TME.

Recently, EMILIN-2 has been shown to affect macrophage

polarization through the engagement of TLR-4 (43). Indeed, in

colorectal cancer low EMILIN-2 protein levels were shown to

correlate with a low M1/M2 macrophage ratio and, consistently,

with poor patient prognosis. A similar observation has been made in

melanoma, in which the levels of EMILIN-2 are reduced compared to

the healthy tissue, and patients displaying low EMILIN2 expression

are characterized by poor overall survival (70). Importantly, in these

patients EMILIN-2 has been shown to associate with the efficacy of

PD-L1 blockage (70), suggesting that the evaluation of EMILIN2 in

the tumor tissue may entail a possible predictive value.

Contrasting results have been found in other tumor types, as in

low grade glioma (44) and clear cell renal cell carcinoma (ccRCC)

(45), where the upregulation of EMILIN-2 associated with poor

prognosis. This evidence was supported by the positive correlation

of EMILIN-2 with macrophage subsets, T reg and T cell exhaustion,

overall indicating an immunosuppressive effect of EMILIN-2 in these

cancer types (44). In line with these findings, in ccRCC EMILIN-2

was shown to positively associate with the levels of several checkpoint

molecules including CTLA-2, PD-1, LAG3, and TIGIT (45).

3.2.1.7 Biglycan

Biglycan (BGN) is an ECM proteoglycan with an essential role

in mediating morphology, growth, differentiation and migration of

epithelial cells and it is a well-known player in tumor development

and progression (113–115). Several studies reported an up-

regulation of BGN in a variety of solid tumors suggesting its

potential diagnostic and prognostic value in ovarian, prostate,
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head and neck, gastric and colorectal cancer (116–118). However,

the function of BGN in tumor immunity has just recently been

assessed. He and colleagues were the first to investigate the

association between BGN and immune cell infiltration (63). These

authors showed that, in CRC samples, elevated levels of BGN were

correlated with immunosuppressive traits and an unfavorable

patients’ outcome. Indeed, BGN expression within CRC lesions

positively corresponds to M2 macrophage and Treg infiltration. A

bioinformatic model was applied to the same datasets indicating

that CRC patients with high BGN expression levels were

characterized by a higher expression of immune checkpoint

molecules, as PD-L1, and were predicted to have a better

response to ICIs. A similar immunosuppressive function of BGN

has been found in GC (32) and in TNBC, in which high BGN levels

have been negatively correlated with increased infiltration of CD8+

T cells and associate with poor prognosis (31).

3.2.1.8 Osteopontin

Osteopontin (OPN), encoded by the SPP1 gene, is a non-

collagenous bone matrix protein involved in the development of

different organs (119). Many studies have assessed its role in the

growth and metastatic dissemination of various solid tumors, such

as breast and prostate cancer, squamous cell carcinoma, melanoma,

osteosarcoma and glioblastoma, where OPN is often upregulated

and correlates with a poor prognosis (120). In vitro and in vivo

studies highlighted the role of OPN in determining the immune

phenotype of the TME, since SPP1 expression directly correlated

with CD8+ T cell activation and M2 macrophage polarization (121–

123). However, thus far the putative association of OPN with the

immune traits of the TME in human tumors has been investigated

only in lung cancer. SPP1 expression was demonstrated to be higher

in lung adenocarcinoma (LUAD) compared with normal lung

tissue, potentially impacting on the resistance to ICIs (53). The

same study indicated that a high SPP1 expression associates with

poor patient prognosis and, consistently with the in vivo

observations, SPP1 expression correlates negatively with CD8+ T

cells and positively with M2 macrophage infiltration. Interestingly,

the levels of SPP1 expression also positively correlated with the

immune checkpoint CD276, particularly in patients displaying

EGFR mutations (53).

3.2.1.9 Hyaluronan and proteoglycan link protein 3

Hyaluronan and proteoglycan link protein 3 (HAPLN3) is an

ECM linker protein involved in the binding of proteoglycans to

hyaluronic acid (124). HAPLN3 is expressed in most of the tissues

and it is essential for generating hyaluronic acid-dependent ECM.

Some studies have reported that HAPLN3 is overexpressed in breast

cancer and in CRC and its high expression is linked to cancer

occurrence and metastasis (125, 126). Interestingly, the analysis on

circulating tumor DNA indicated that the methylation of HAPLN3

is significantly increased in metastatic prostate cancer and serves as

a post-treatment risk predictor (127). Recently, HAPLN3 together

with SEL1L Family Member 3 (SEL1L3), Bone Marrow Stromal Cell

Antigen 2 (BST2), and Interferon Induced Transmembrane Protein

1 (IFITM1) have been included in a four-gene signature named TIR,
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which highly associates with the activation of CD8+ T cells and

immune cell infiltration in melanoma patients (71). When applied

to a cohort of melanoma patients treated with the anti-CTLA-4

antibody ipilimumab, the TIR signature predicted the response to

the therapy and the clinical outcome better than other known

biomarkers as PD-L1 and IFN-g, thus suggesting the potential use of
the TIR signature as a predictive marker for those patients (71).

3.2.2 Tumor-associated ECM as a physical barrier
for immune cell infiltration

The ECM properties, due to post-translational modifications

such as the bio-physical structure and the stiffness, not only affects

the recruitment/activation of immune, but also per se profoundly

shape the tumor immune microenvironment (128). The major

ECM components involved in these two properties are collagens.

These molecules are synthesized as pro-procollagens and undergo

several post-translational modifications that alter their traits (23).

Modifications include glycosylation, pro-peptide alignment,

disulphide bond formation and hydroxylation. Importantly, lysine

hydroxylation of the pro-collagen chains by lysyl hydroxylases

(PLODs) allows for spontaneous triple helix formation within the

cell and secretion into the extracellular space. Once secreted, the

pro-peptides on the C- and N-terminus are cleaved by proteases

(such as the procollagen C-endopeptidase enhancer PCOLCE)

leading to the formation of collagen fibrils. For further collagen

fibers assembly, lysyl oxidases (LOX) catalyses the cross-linking of

collagens as well as elastin, thus modulating the ECM stiffness.

Finally, collagen fibers interact with integrins and other cell surface

receptors (such as RHAMM and DDR1) that apply forces leading to

the alignment of the fibers (23).

In cancer, the alteration of this complex and multistep process

leads to abnormal mechanical and physical properties of the ECM.

The higher stiffness and density of tumor-associated ECM

constitute a mechanical barrier which protects the tumor from

immune cell infiltration and immune-mediated destruction. Overall

the TME is less permissive to leukocyte invasion, favoring the

establishment of a more tolerant immune environment and also

impairing the efficacy of ICIs (129).

This aspect is well represented in the study from Byers et al, in

which the authors measured the stromal fibrillar morphology

within the ECM in basal cell carcinomas (BCC) (40). The authors

evaluated collagen, elastin, and reticulin and defined the presence of

“gaps” between the fibers as lacunarity. A higher lacunarity

represents a more permissive environment and directly correlates

with the infiltration of tumor-associated T lymphocytes (TIL), as

assessed in BCC.

In the same view, Xu et al. showed that PLOD2 (Procollagen-

Lysine,2-Oxoglutarate 5-Dioxygenase 2), a member of PLOD family

which mediates the formation of stabilized collagen cross-links

generating a stiffer ECM, is overexpressed in a variety of tumors

including gastric, bladder, lung, breast, and head and neck

squamous cell cancer (52). Notably, in GC, PLOD2 expression

was negatively correlated with the presence of memory B cells,

activated NK cells, plasma cells, CD8+ T cells, follicular helper T

cells and Tregs; on the other hand, it was positively correlated with
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macrophages, activated mast cells, resting NK cells, CD4 memory

activated T cells and CD4 memory resting T cells. Overall, PLOD2

was shown to be significantly associated with the tumor immune

infiltration and with a poor patients’ outcome.

Another enzyme driving collagen rearrangements and recently

associated with immune infiltrating cells is PCOLCE, which

localizes in the TME of several cancer types. Bioinformatic

analyses highlighted that PCOLCE is a prognostic predictor for

PAAD, thymoma and CES (51). Even if the molecular mechanisms

behind this observation are still unknown, PCOLCE expression

correlates with the extent of CD4+ T, CD8+ T, NK cell infiltration.

As well, Lecchi et al. developed a gene expression signature to

identify high‐grade breast cancer patients with poor prognosis (50).

PCOLCE is one of the genes taking part in the ECM3+/IFN−

signature, together with other ECM genes such as Secreted

Protein Acidic And Cysteine Rich (SPARC), Biglycan, EGF

Containing Fibulin Extracellular Matrix Protein 2 (EFEMP2) and

the basal membrane component Nidogen 2 (NID2). In breast

cancer, the ECM3+/IFN− signature was associated with low

tumor‐infiltrating lymphocytes, high levels of CD33+ cells,

absence of PD‐1 expression or low expression of PD‐L1.

As mentioned before, ECM stiffness and structural organization

are strongly regulated by the activity of LOX enzyme family, which

includes LOX and LOX-like (LOXL) 1-4 (23). Due to their

involvement in different processes, as linking bi-directionally the

ECM and acting directly on the activation of signaling pathways

regulating cancer cell survival, proliferation and differentiation, LOXs

have been identified as pivotal factors in the formation and

progression of different tumor types as glioma, gastric and

endometrial carcinoma (130–133). Among the LOX family of

enzymes, LOXL3 has also been shown to play immunomodulatory

functions in the TME. A detailed bioinformatic analysis highlighted

that LOXL3 is upregulated in HCC compared with normal tissues

and correlates with poor prognosis (46). In the same study, for the

first time LOXL3 expression has been positively correlated with the

infiltration extent of multiple immune cells, among which CD8+ and

CD4+ T cells and macrophages, as well as with the expression of

immune checkpoint molecules such as PD-L1 and CTLA-4. A

functional enrichment analysis demonstrated that this effect was

mainly based on ECM organization and regulation of cell−cell

adhesion (46). However, in some cases, the immunomodulatory

effect of the collagen modifying enzymes is not only related to

ECM remodeling but also to different mechanisms that act in a

synergic fashion. As an example, the lysyl oxidase 4 (LOXL4),

whose upregulation induces higher ECM stiffness, during

hepatocarcinogenesis was shown to be overexpressed by

macrophages and to induce an autocrine expression of PD-L1, thus

contributing to maintain T‐cell exhaustion and supporting tumor

progression (47). In accordance with this dual role of LOXL4 in HCC,

a high expression of LOXL4 by macrophages and a low expression of

the CD8+ T cell marker CD8A can cooperatively predict poor

survival of cancer patients.

Importantly, not only the density and stiffness of the collagen

matrix, but also the fiber alignment represents a barrier for immune

cell infiltration. This aspect has been described in breast cancer by

Sun et al. Their study reported for the first time the implication of
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discoidin domain receptor 1 (DDR1), a tyrosine kinase collagen

receptor, in shaping the immune infiltrate of breast cancer (37).

DDR1 induces immune cell exclusion through its extracellular

domain by promoting the alignment of collagen fibers. In

agreement with this hypothesis, in TNBC, the expression of

DDR1 negatively correlates with the intratumoral abundance of

anti-tumor T cells (37).

3.2.3 ECM fragments as a reservoir of novel
biomarkers for ICIs efficacy

ECM remodeling occurs on one side through the altered

expression of the molecules, on the other side through their

degradation mediated by the activation of target-specific proteases

such as MMPs, disintegrins and ADAMs (23). Cancer cells and

tumor associated cells express higher levels of proteases which

contribute to the establishment of a pro-tumorigenic environment

by multiple mechanisms (9, 23, 134). The proteolytic degradation of

the ECM components allows the replacement of the normal ECM

with tumor-derived ECM. This process favors the migration of

cancer cells through the interstitial matrix by unlocking migratory

tracks. Simultaneously, the enzymatic activity of MMPs and

ADAMs induces the release of ECM-bond growth factors and

proteolytic fragments, some of which exert a new biological

activity respect to the molecule of origin. Some of these fragments

are released in the blood stream and may be exploited to develop a

liquid biopsy-based biomarkers. The association of proteolytic

enzymes and ECM-derived fragments with the immune TME are

described in the following paragraphs.

3.2.3.1 Proteolytic enzymes

MMP-9, together with MMP-2, are the most common

progression markers correlated to cancer invasion and metastasis

and, recently, MMP-9 levels have been associated with the presence

of immune cell infiltration, particularly with M1 and M2

macrophages, in 33 tumor types (49). In accordance, Yu and

colleagues included MMP-9, together with LOX and TIMP1 in a

gene-based signature, which significantly correlates with the

response to anti-PD1 and anti-PD-L1 immunotherapy and overall

survival of glioma patients (74). Despite contradictory results that

needed further analysis, the cancer immunomodulatory function of

other MMPs has also been investigated. Such is the case for MMP-1,

which is known to have a role in cancer invasion and epithelial-

mesenchymal transition in HCC and other tumor types (135).

MMP-1 expression has been associated with the presence of anti-

tumor immune cells, such as activated DC, macrophages, T helper

cells and CD4+ T cells, as well as with the presence of MDSC cells,

which, on the contrary, suppress the immune response (48). This

suggests that MMP-1 functions and regulations in the TME are

extremely complex and involve a number of yet elusive

mechanisms. Always in the context of HCC, also MMP12 was

found to be significantly increased and to associate with the CTLA-

4 expression levels and with a poor ICI efficacy (72).

Like MMPs, ADAMs are often upregulated in tumors and high

levels associate with a worse prognosis for the patients (136–141).

Only recently, ADAMs have been linked to the immune cell

infiltration and immune checkpoint molecule expression. In
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detail, in HCC, the expression of nine components of the ADAMs

family (ADAM8,9,10,12,19,28,TS2,TS12) was shown to increase

along with tumor progression and to correlate with the presence

of dendritic cells, B cells, neutrophils, CD8+ T cells, and

macrophages (30). Importantly, the same study showed that

ADAM12, 19, TS2 and TS12 were positively correlated with the

expression of the immune checkpoint molecules PD-1, PD-L1, PD-

L2 and CTLA-4. In line with this evidence, in colorectal

adenocarcinoma (COAD), one of the CRC subtypes, high

ADAM12 expression associated with an altered immune cell

infiltration and with a poor patients’ outcome (29). In particular,

ADAM12 expression positively correlated with the presence of

CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DC;

on the contrary, the correlation between ADAM12 expression and

presence of B cells was not significant.

3.2.3.2 ECM-derived liquid biopsy biomarkers

The ECM remodeling by post-transcriptional modification

enzymes and proteases generates fragments and peptides that can

be detected in the peripheral blood and could be used as serological

markers directly reflecting the disease and cancer progression (23,

142–144). The possibility to detect these fragments in the

circulation represents an advantage compared to the analysis of

tumor biopsies, considering the easy access through poorly invasive

procedures, thus allowing to monitor the disease progression

over time.

During collagen fibrillogenesis, the N-terminal propeptide of

immature collagen is cleaved by specific proteases leading to the

incorporation of the mature molecule in the ECM. The cleavage of

the N-terminal region of pro-collagen III generates a fragment,

named PRO-C3, which is released in the blood circulation and

reflects the extent of collagen deposition, with high levels indicating

an excessive collagen deposition (145). In accordance with this

observation, and with the fact that collagen deposition is

upregulated in immune-excluded tumors (23, 40, 129), high

serum levels of PRO-C3 have been associated with poor outcome

in CRC and metastatic breast cancer patients (146, 147). In

melanoma, a high PRO-C3 levels correlated with low efficacy of

the anti-PD-1 antibodies pembrolizumab or nivolumab (67).

The proteolytic cleavage of collagens produces the fragments

C1M (collagen I), C3M (collagen III) and C4M (collagen IV) which

were shown to be increased in cancer patients compared to healthy

individuals (147, 148), and to associate with a poor response to anti-

CTLA-4 blockage in melanoma patients (66). The same trend has

been observed for PRO-C3, that together with C4M also correlated

with shorter overall survival (66). In retrospective analyses, Jensen

and colleagues calculated the C3M/PRO-C3 ratio as a parameter to

evaluate the balance between collagen degradation and deposition,

finding that a high C3M/PRO-C3 ratio was predictive of a better

response to ipilimumab (66). The same observation has been

observed in a prospective cohort of melanoma patients subjected

to anti-PD-1 treatment, further strengthening the notion that a

higher collagen degradation versus deposition favors a better

outcome and response to ICIs (67).
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The degradation of collagen IV by granzyme B generates a

fragment distinct from C4M named C4G (149). In metastatic

melanoma patients, high C4G levels at baseline corresponded to a

good clinical response to anti-CTLA-4 therapy, in terms of both

objective response rate and overall survival (65). Interestingly, and

in line with the studies from Jensen (66) and Hurkmans (67),

patients characterized by a combination of high C4G (indicating

basal membrane degradation) and low PRO-C3 (suggestive of low

collagen deposition) were characterized by a better chance to

respond to ipilimumab compared to the patients displaying only

high C4G levels (65).

Circulating fragments are generated not only by the degradation

of collagen but also other ECM molecules. For example,

extracellular vimentin is citrullinated and cleaved by MMPs

giving rise to a fragment known as VICM (citrullinated and

MMP-degraded vimentin) (150). VICM is released by tumor

associated macrophages and has been detected in the serum of

lung cancer patients (151, 152). In melanoma patients treated with

ICIs, such as ipilimumab, nivolumab and prembolizumab, high

levels of VICM before immunotherapy were linked to a survival

benefit (66, 67). This finding fits well with the higher frequency of

macrophages infiltrating the tumors of patients responding to

ipilimumab compared with the non-responders (153).

Taken together, these studies highlight a prominent role of the

ECM in affecting the immune response. From the evaluation of the

47 papers taken into account, we can infer that collagens are

the most studied ECM components in this context, impacting on

the infiltration and activation of immune cells by constituting a

physical barrier to effector cells’ infiltration and by influencing

immune cells phenotype. Moreover, collagen remodeling represents

a crossing-edge process among different tumor types and provides

promising valuable biomarkers for ICIs efficacy. Nonetheless, from

this study we can also conclude that other ECM components as

glycoproteins and proteoglycans exert a prominent role in shaping

the tumor immune response despite their effect is tumor-

type specific.
4 Discussion

As a key component of the TME, the ECM is becoming a crucial

source of novel diagnostic and prognostic biomarkers (75). Due to its

intrinsic complexity and multimodular structure of its components,

and thanks to the integration of inside-in and inside-out signals, the

ECM takes part in a plethora of different processes within the tumor,

being involved in a dynamic reciprocity with cancer cells, as well as

tumor-associated cell types. Thematrix signals affect gene expression

programs shaping the phenotype of cancer cells, which in turn

tightly control the ECM composition and its mechano-tensile

properties. The changes in ECM composition, due to the altered

expression of its components and to their overt post-transcriptional

modifications, lead to the replacement of the normal ECM with a

tumor-educated ECM, which supports tumor growth and

progression. Only recently the abnormal ECM has also been
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shown to impact on the susceptibility of tumor cells to immune cell-

mediated killing (154). Indeed, increasing evidence suggest that the

tumor-associated ECM as well as the ECM remodeling enzymes play

a vital role in the modulation of the immune response, thus

impacting not only on cancer progression but also on the

susceptibility to ICIs therapy. Due to the extremely complex

nature of the ECM, the literature regarding this topic is intricate,

spanning several matrix molecules and processes, and covering a

number of different tumor types. With the aim to comprehensively

describe the relation between ECM and the efficacy of ICIs in cancer

patients, the present review systematically evaluated the current

literature regarding this topic, highlighting the value of ECM and

ECM-derived molecules as predictive biomarkers for ICIs therapy

efficacy (Figure 3).

The literature search strategy was intended to retrieve studies

dealing with both adult and pediatric patients. However, none of the

papers were related to pediatric cancers, likely because, in terms of

absolute numbers, pediatric cancers are relatively rare and the use of

ICIs is still under evaluation for these patients (155). Also, the TME

of solid pediatric tumors has not been well investigated yet, despite

it is known to be characterized by low mutational burdens and by a

small number of TILs compared to adult malignancies (156). In

accordance with these observations, the efficacy of checkpoint

inhibition is poorer compared to that observed in the adults.

Unlike pediatric patients, adult patients have been treated with

immunotherapy for more than a decade, with the first ICI (anti-

CTLA-4) being approved for the treatment of advanced-stage

melanoma in 2011. Since then, the use of ICIs as single agents or
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in combinatorial approaches has greatly improved tumor regression

rates and long-term cancer control for melanoma patients (157).

More recently, the use of ICIs in breast and colorectal cancer has

been explored, however promising results have been observed only

in restricted subgroups of patients (158, 159). The use of ICIs to

treat these three cancer types offered the possibility to analyze

numerous patients’ cohorts and to deeply investigate the

characteristic of the ECM in relation to the therapy efficacy, as

suggested by the fact that most of the papers included in the present

systematic review regard melanoma, breast cancer and

colorectal cancer.

Overall, the main processes and changes driving ECM

remodeling in cancer have been well documented. However, it

has become clear that each cancer type displays an unique ensemble

of ECMmolecules, ECM-remodeling enzymes and ECM-associated

growth factors, collectively referred to as matrisome (160). This was

confirmed also by the papers included in this study, with some

mechanisms being strongly associated with a specific tumor type.

The main ECM feature common to different tumor types is ECM

stiffness, which highly impacts on immune cell infiltration

representing a structural and physical barrier to the recruitment

of effector T cells. An extreme matrix density and rigidity is also

known to associate with impaired drug delivery to the tumors, thus

pinpointing ECM stiffness as a double-edge sword deeply impaction

on the efficacy of ICI (25).

On the other side, the activity of some ECM components is

strongly tumor-type dependent. This can be at least partially

explained by the fact that ECM molecules display multimodular
FIGURE 3

Schematic representation of the suitable approaches aimed at evaluating ECM remodeling as a tool to predict the efficacy of ICIs and to help the
clinical decision-making process. Created with BioRender.com.
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structures able to simultaneously modulate various biological

functions and cell types, such as CAFS, immune cells and

vascular cells. Thus, the overall association between the

abundance of specific ECM proteins and the tumor immune traits

are the result of a tight and complex molecular crosstalk between

these cell types, through mechanisms that in part still remain elusive

and need further investigation. In recent years, the crosstalk

between immune and endothelial cells has been investigated to

assess the impact of tumor associated vascularization on ICIs

efficacy. These studies highlighted the synergic beneficial effect

due to the simultaneous blockage of IC and the normalization of

the vascular bed, leading to the design of novel therapeutic

approaches based on the combination of ICIs and angiogenic

drugs. On these grounds, it would be interesting to evaluate if the

levels of ECMmolecules exerting a role in both immunomodulation

and angiogenesis may function as valuable biomarkers to stratify

and identify the patients who benefit from the combination of anti-

angiogenic therapy and ICIs.

The identification of tumor-specific matrisomes suggests that

tumor ECM might not only represent a valuable reservoir of

predictive biomarkers but also a new therapeutic target to improve

ICIs treatments. The ECM components, indeed, may be exploited as

new druggable targets to act on the bio-physical properties of the

matrix and, in turn to synergize with ICIs therapy. The tumor-

associated ECM may be therapeutically modulated in several ways,

including the targeting of single ECMmolecules or ECM-remodeling

enzymes. For example, the administration of recombinant

hyaluronidase to reduce hyaluronan accumulation has been used in

phase I and II clinical trials in combination with pembrolizumab and

atezolizumab for the treatment of stomach, lung and pancreatic

cancer (161, 162). These trials will open the road for the clinical

evaluation of other ECM/ICIs-based combinatorial therapy, as

suggested by the promising data regarding the targeting of TNC

and versican, which improved T cell mediated cancer cell killing in

preclinical models (54). In addition, the ECM is under evaluation as a

putative mean to improve drug delivery to the tumors. The use of

tumor ECM-specific antibodies fused with cytokines (i.e. IL-2 and IL-

12) or compounds (i.e. sunitinib) have in fact been shown to lead to

increased concentrations of the drugs within the tumors, reduced

severity of the side effects, and enhanced therapy efficacy (163–167).

In the future, it is conceivable that similar approaches may be

exploited also for the delivery of ICIs.

The potential weakness of the present systematic review resided

in the fact that many of the studies are based on bioinformatic

analyses. This represents a major limit since the altered mRNA

levels not always coincide with the same alterations in the protein

content. And this is particularly true when dealing with ECM

molecules, which are extensively regulated not only at the

transcriptional, but also post-translational level and undergo

continuous remodeling. Nonetheless, we chose to comprise these

studies since they were based on solid and strong results and

provided deeper insights in the association between ECM and

immune response, building the grounds for the development of

new putative markers. Studies base on proteomic databases would
Frontiers in Immunology 1496
certainly serve better this purpose, however these databases are

limited compared to the RNAseq-based datasets. On these bases, we

consider that more efforts should be put to attain a comprehensive

proteomic profiling of the TME.

The use of ICIs represents an important therapeutic option for

cancer treatment, with subgroups of patients gaining major and

long-term benefits. Nonetheless, a large number of patients showing

scarce response to ICIs and some experiencing unwanted side

effects. For these reasons, the identification of the patients that

would better benefit from immunotherapies is key to avoid over-

treatments and unnecessary side effects. In addition, this approach

would allow the National Health Systems to optimize more

efficiently the resources. Indeed, many investigations aimed at

identifying reliable predictive biomarkers for ICIs efficacy are

ongoing (168). These approaches span from the analysis of cancer

cell intrinsic features, such as the presence of specific gene

mutations and their metabolic status, to the characterization of

tumor associated stroma cells (169–172). Indeed, CAFs represent

not only a promising prognostic biomarker (173, 174), but may also

grant the possibility to predict ICIs efficacy, as highlighted in the

present work. In this scenario, the ECM and its remodeling are

entangled with the CAFs function and represent a passepartout to

unravel the traits of the tumor immune environment. Indeed, the

present systematic review indicates that ECM remodeling and

ECM-derived fragments can represent a widow’s cruse for the

development of valuable biomarkers to predict the clinical

outcome and to help identifying the patients that will better

benefit from ICIs therapies. Importantly, the identification of

circulating ECM fragments with predictive value would provide a

fast and easily accessible liquid-biopsy based test to help clinicians

to determine the most appropriate therapy for each patient.

Nonetheless, further validations are needed, and it will be crucial

to identify a threshold to successfully apply patient-tailored

therapies. Given the complex network of ECM molecules, most of

which have still not been evaluated in this context, we envision that

the ECM will be extensively exploited for the development of new

biomarkers to predict immunotherapy efficacy.
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Background: Tumor microenvironment (TME) status is closely related to breast

cancer (BC) prognosis and systemic therapeutic effects. However, to date studies

have not considered the interactions of immune and stromal cells at the gene

expression level in BC as a whole. Herein, we constructed a predictive model, for

adjuvant decision-making, by mining TME molecular expression information

related to BC patient prognosis and drug treatment sensitivity.

Methods: Clinical information and gene expression profiles were extracted from

The Cancer Genome Atlas (TCGA), with patients divided into high- and low-

score groups according to immune/stromal scores. TME-related prognostic

genes were identified using Kaplan-Meier analysis, functional enrichment

analysis, and protein-protein interaction (PPI) networks, and validated in the

Gene Expression Omnibus (GEO) database. Least absolute shrinkage and

selection operator (LASSO) Cox regression analysis was used to construct and

verify a prognostic model based on TME-related genes. In addition, the patients’

response to chemotherapy and immunotherapy was assessed by survival

outcome and immunohistochemistry (IPS). Immunohistochemistry (IHC)

staining laid a solid foundation for exploring the value of novel therapeutic

target genes.

Results: By dividing patients into low- and high-risk groups, a significant

distinction in overall survival was found (p < 0.05). The risk model was

independent of multiple clinicopathological parameters and accurately

predicted prognosis in BC patients (p < 0.05). The nomogram-integrated risk

score had high prediction accuracy and applicability, when compared with

simple clinicopathological features. As predicted by the risk model, regardless

of the chemotherapy regimen, the survival advantage of the low-risk group was

evident in those patients receiving chemotherapy (p < 0.05). However, in patients
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receiving anthracycline (A) therapy, outcomes were not significantly different

when compared with those receiving no-A therapy (p = 0.24), suggesting these

patients may omit from A-containing adjuvant chemotherapy. Our risk model

also effectively predicted tumor mutation burden (TMB) and immunotherapy

efficacy in BC patients (p < 0.05).

Conclusion: The prognostic score model based on TME-related genes effectively

predicted prognosis and chemotherapy effects in BC patients. Themodel provides

a theoretical basis for novel driver-gene discover in BC and guides the decision-

making for the adjuvant treatment of early breast cancer (eBC).
KEYWORDS

breast cancer, tumor microenvironment, prognostic, resistance, therapeutic sensitivity
1 Introduction

Breast cancer (BC) is the most common malignancy in women.

According to cancer burden data from the International Agency for

Research on Cancer (World Health Organization, 2020), up to 2.26

million new BC cases were recorded globally, and together with

lung and colorectal cancer, accounts for more than half of new

female cancers (1). Long-term survival in BC patients varies with

the stage status at the time of initial diagnosis. The overall 5-year BC

survival rate is 98% for stage I, 92% for stage II, 75% for stage III,

and a sudden drop to 27% for stage IV (2). Currently, the main BC

treatments include surgery, radiotherapy, and systemic therapy

(chemotherapy, endocrine therapy, and targeted medication) (3–

6). However, 40% of BC patients are resistant to current available

chemotherapy or targeted therapies (7). With the high

heterogeneity of BC, the traditional immunohistochemical

staining quadruple type is no longer able to provide more

accurate personalized treatment for early BC (eBC) patients,

especially considering the impact of new targets and targeted

drugs. Multigene panels, such as PAM50 intrinsic BC subtypes,

21 Gene Recurrence Score and 70-gene Prognostic Signature have

quietly stepped on to the historical stage, were incorporated into the

TNM staging system by the American Joint Committee on Cancer

(8th edition) (8). Unequivocally, for prognosis predictions,

multivariable indicators are more accurate and objective when

compared with single biomarkers (9). Hence, to identify more

biomarkers and guide precise personalized eBC treatment, more

risk models based on gene expression profiles, are required.

Tumor progression is a complex process with interactions

occurring among tumor cells, the tumor microenvironment

(TME), and the immune system (10–12). The TME reflects the

cellular environment of the tumor (13, 14), including cell

components other than tumor cells, e.g., immune and stromal

cells, extracellular matrix molecules, and cytokines (15, 16).

Previous studies indicated that stromal cells have important roles

in tumor growth, disease development (17, 18), and drug resistance

(19). Immune cells exert regulatory and destructive effects toward

tumor cells and may have dual promotional and antagonistic
02103
functions (20–22). Through crosstalk, they participate in tumor

processes and development, are involved in mechanisms

underpinning the TME, and contribute to tumor diagnostic and

prognostic evaluation (23–26). Increasingly, the TME is considered

a therapy target (27, 28); the prediction and prognostic value of

tumor-infiltrating lymphocytes (TILs) in BC is gradually being

recognized (29, 30). For example, ECOG2197 and ECOG1199

clinical studies identified an approximate 15% reduction in

relapse and mortality rates for every 10% increase in TIL levels

(30). The KEYNOTE-086 study indicated that higher TIL levels

were associated with significant improvements in objective response

rates for pembrolizumab (31). However, few studies have reported

on how the TME may be used as a prognostic and predictive

biomarker in assessing tumor immunity and treatment efficiency in

BC patients. In our study, we show that TME may be used to

accurately predict the prognosis in BC patients, independent of

multiple clinicopathological factors, and predict the efficacy of

chemotherapy and immunotherapy in these patients. Critically,

low-risk patients in our prediction model may be exempted from

the A-adjuvant chemotherapy regimens, thus providing guidance

for patients with de-escalated individual treatment.

Yoshihara et al. developed the ESTIMATE algorithm where gene

expression profiles were used to predict infiltrating stromal and

immune cell levels in the TME (23). Previous studies reported the

algorithm was effective in predicting TME status, with immune and

stromal scores predicting tumor-associated normal cells penetration.

However, studies focused exclusively on immune cells (32, 33) rather

than stromal cells, and largely ignored their role in tumorigenesis and

development. Secondly, due to complex reticular regulatory

mechanisms in the TME, a single pathway or single cell

subpopulation cannot fully identify mechanisms between the TME

and tumors (34). Therefore, a comprehensive understanding of tumor-

associated normal cells in tumor tissues may provide important

insights into BC biology. In our study, we comprehensively

evaluated molecular expression networks in stromal and immune

cells to (1) understand the significance of TME-related genes and (2)

provide a more accurate and comprehensive assessment of the TME

during BC development and treatment.
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We used several bioinformatics approaches to explore the TME

during BC occurrence and progression. Based on TME-related

genes expression, we constructed a new prognostic risk model to

evaluate the prognostic value of the TME. Differences between the

immune microenvironment in BC patients were comprehensively

analyzed. Additionally, underlying signal pathways were

preliminarily elucidated. This work provides new insights into the

molecular mechanisms underpinning BC tumor occurrence and

development, and may help predict prognosis in BC patients and

assess therapeutic efficacy.
2 Methods

2.1 Clinical specimens

Two BC tissue specimens were obtained from patients at the

Second Hospital of Dalian Medical University. Invasive breast cancer

was pathologically confirmed in all patients not on chemotherapy or

radiotherapy before tissue collection. Written informed consent was

obtained from patients, and the study was approved by the Ethics and

Human Subject Committee of the Second Hospital of Dalian Medical

University (NO.2023191). Procedures were performed according to

hospital guidelines and regulations.
2.2 Data sources

Gene expression matrices of enrolled patients were obtained from

The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus (GEO) databases. We included 1,069 BC samples from

TCGA as the training cohort. The gene-expression profiles of TCGA-

BRCA in the Fragments Per Kilobase per Million (FPKM) format

were obtained from the TCGA portal (http://cancergenome.nih.gov),

and then the ID conversion was carried out through the operation of

ENSG ID to GeneSymbol, and finally the data standardization was

carried out, and the standardization method is log2 (X+1). In

addition, the BC patients’ clinical data (gender, age, histological

type, and survival) were downloaded from TCGA. After searching

the datasets with more than 150 human breast cancer samples with

complete expression profile data, we selected the GSE42568,

GSE88770, GSE48390, and GSE162228 dataset from the GEO as

the validation cohort. These datasets were verified using the GPL570

platform. To ensure the scientificity and accuracy of the research, we

successfully removed batch effect with COMBAT when combining

GEO multi-data sets (Supplementary Figure S1). Additionally,

clinical survival and outcome data of BC patients were also

downloaded from this database.
2.3 Identifying differentially expressed
genes (DEGs)

Data analysis was performed using the “limma” R package. Fold

change > 1.5, p < 0.05, and false discovery rate (FDR) < 0.05 were set

as the cutoffs to screen for DEGs.
Frontiers in Oncology 03104
2.4 DEG enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were performed to enrich the DEGs

into associated pathways using the “clusterProfiler” R package

(version 3.14.3). p < 0.05 and FDR < 0.05 were considered significant.
2.5 Constructing and validating a risk
model based on TME-related genes

Least absolute shrinkage and selection operator (LASSO) Cox

regression analysis identified genes most correlated with OS, and 10-

round cross-validation was performed to prevent overfitting. The risk

score for each patient was then calculated based on the expression

levels of genes. Risk score: -0.0419970982477039 * NPY1R -

0.162055812415471 * CELSR2 - 0.043004672153174 * STC2 -

0.0716026845406244 * SCUBE2 + 0.2810654696502 * GIMAP2 +

0.0773881988402307 * HLA-DPB1 - 0.0232515777318596 * CXCL14 -

0.721867840891611 * KLRB1 - 0.253187064109637 * BIRC3 -

0.0587584464454724 * IL18 - 0.242105852075788 * PSMB8 +

0.198881881356143 * CD1C + 0.0814403392760682 * TNFAIP8 +

0.076656198308623 * IRF1. According to the median risk score,

BC patients were divided into high- and low-risk groups. Kaplan–

Meier analysis was employed to estimate the difference in OS

between the categorized patients via the R package “survival.” The

prognostic capability of the risk model was validated using time-

dependent receiver operating characteristic (ROC) analysis with the

R package “pROC”.
2.6 Evaluation of risk model independence

Univariate and multivariable Cox regression analyses were

performed to estimate whether the risk score was an independent

predictor of BC prognosis. A subgroup analysis was conducted to

confirm the independence of the risk model. The patients with BC

in the training cohort were regrouped into new subgroups based on

different clinical characteristics, and the patients in each subgroup

were stratified into high- and low-risk groups, based on the median

risk score.
2.7 Immunohistochemistry (IHC)

Patient tissue specimens were fixed in 10% neutral formalin,

embedded in paraffin, and sectioned into 4 µm sections before

staining. Sections were deparaffinized, rehydrated, and blocked for

endogenous peroxidase activity. Next, antigen retrieval was

performed in citrate buffer (pH 6.0) and sections autoclaved for

90 s at 121°C. After washing in phosphate buffered saline (3 min ×

3), sections were blocked in goat serum at room temperature for 30

min and incubated with primary antibodies (PSMB8, (1:200),

Proteintech Group, IL, USA; cIAP2, (1:200), Proteintech Group,

IL, USA) overnight at 4° C. The next day, sections were incubated
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with secondary antibodies (Maxin Biotechnologies, China) and

treated with diaminobenzidine hydrochloride to visualize

immunoreactivity. The immunohistochemical scoring was

performed independently by two experienced pathologists, who

had no knowledge of the clinicopathological information.
2.8 Nomogram construction

Nomograms are user-friendly clinical tools used to predict

disease prognosis. The risk score and clinical parameters were

subjected to univariate Cox regression analysis, and features with

P values < 0.05 were subjected to multivariable COX regression

analysis. Features with p values < 0.05 after multivariate analysis

were incorporated into nomograms that were constructed to predict

the 3- and 5-year OS rates. The nomogram was based on three

independent prognostic factors: age, tumor stage, and the risk score.

Factors corresponded to a specific point by drawing a line straight

up to the point axis. The sum of the three factor points indicated the

total points. By drawing a perpendicular line from the total point

axis to the two-outcome axes, estimated 3- and 5-year OS

probabilities were obtained. Observed 3- and 5-year OS rates

were compared with predicted rates to further verify predictive

performance. We assessed nomogram goodness-of-fit using

calibration plots.
2.9 Immune analysis

The estimation of stromal and immune cells in malignant

tumor tissues using expression data (ESTIMATE) method was

applied to calculate the immune score, stromal score, and

ESTIMATE score of the patients, via the R package “estimate”.

Tumor immune estimation resource (TIMER) analysis was

conducted to evaluate the abundance of six types of immune cells

(neutrophils, CD4 T cells, macrophages, CD8 T cells, dendritic cells

(DCs), and B cells). The MCPcounter (microenvironment cell

populations-counter) algorithm was also used to assess T cell,

CD8 T cell, cytotoxic lymphocyte, B cell lineage, natural killer

(NK) cell, monocytic cell lineage, myeloid DC, neutrophil,

endothelial cell, and fibroblast abundance.
2.10 Immune infiltration analysis of
hub genes

TIMER was used to analyze correlations between hub gene

expression and the degree of lymphocyte infiltration. TISIDB was

also used to analyze correlations between hub gene expression

and immune molecule expression in BC. We used the GSCA

Lite (A Web Server for Gene Set Cancer Analysis: http://

bioinfo.life.hust.edu.cn/web/GSCALite) online tool to analyze the

correlation between hub genes expression and sensitivity to current

chemotherapeutic or targeted drugs for BC.
Frontiers in Oncology 04105
2.11 Statistical analysis

Statistical analyses were completed using R (version 3.6.3).

Discontinuous data were presented as number (percentage), and

continuous data were displayed as mean± standard deviation. The

Wilcoxon rank sum test was utilized to compare two groups and the

Kruskal-Wallis test to compare multiple groups. In addition,

the survfit function of “survival” package in R was used to

analyze the prognostic differences between the two groups, and

the log-rank test was used to further evaluate the significance of

prognostic differences between the two groups. Statistical

significance was defined as p < 0.05.
3 Results

3.1 Immune scores and stromal scores are
significantly associated with BC subtypes,
hormone receptor status, and overall
survival (OS)

We downloaded the gene expression profiles and clinical

information of 1,069 BC patients from The Cancer Genome Atlas

(TCGA). Based on gene expression, BC can be mainly classified into

Luminal A, Luminal B, HER2-enriched, Basal-like, and Normal-like

(35, 36). The ESTIMATE algorithm showed that the highest mean

immune score of Normal-like subtype was highest among all five

subtypes, followed by Basal-like subtype, HER2-enriched subtype,

and Luminal A subtype. The Luminal B subtype cases had the

lowest immune scores (Supplementary Figure S2A, p < 0.0001).

However, stromal scores, from high to low, were Normal-like,

Luminal A, HER2-enriched, Luminal B, and Basal-like

(Supplementary Figure S2B, p < 0.0001). The mammary gland is

a hormone-responsive organ- the endocrine system is closely

related to its development and disease occurrence, therefore we

performed correlation analyses between immune and stromal

scores and hormone receptor status. As shown in Supplementary

Figure S2C, patients with progesterone receptor positive (PR+) had

lower immune scores when compared with progesterone receptor

negative (PR-) patients (p < 0.01), while estrogen receptor positive

(ER+) patients had lower scores when compared with estrogen

receptor negative (ER-) patients (p < 0.0001). In contrast, PR+/ER+

patients had higher scores when compared with PR-/ER- patients,

and ER+ patients had higher when compared with ER- patients in

the stromal scores (Supplementary Figure S2D, p < 0.0001). Thus,

stromal and immune scores were significantly associated with BC

subtypes and hormone receptor status.

To identify potential OS correlations with immune scores and/

or stromal scores, we divided our cohort into top and bottom halves

(high vs. low score groups) based on their scores. Kaplan-Meier

survival curves showed that median OS in the low score group was

longer when compared with the high score group when based on

immune scores (Supplementary Figure S2E, p = 0.01). Consistently,

patients with lower stromal scores had longer median OS when
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compared with patients with higher stromal scores (Supplementary

Figure S2F, p = 0.85), although statistical significance was

not observed.
3.2 Differentially expressed genes (DEGs) in
BC and correlations with OS

To determine global gene expression profile correlations

with immune scores and/or stromal scores, we compared

Affymetrix microarray data in 1,069 BC patients. Heatmaps in

Figure 1 showed distinct gene expression profiles of cases belong to

immune scores/stromal scores groups. Based on immune scores,

943 genes were upregulated, and 71 genes downregulated in the

high score group than the low score group (Figure 1A, fold change >

1.5, p < 0.05). Similarly, 1,011 genes were upregulated, and 50 genes

were downregulated in the high score group (Figure 1B, fold change

> 1.5, p < 0.05). Moreover, Venn diagrams (Figures 1C, D) showed

that 498 genes were upregulated in the high-score group, while two

genes were downregulated. We performed subsequent analyses by

focusing on all DEGs obtained based on comparisons of immune

and stromal scores. To determine potential DEGs functions, we

performed functional enrichment analysis on 1,574 DEGs. Top

Gene Ontology (GO) terms included immune system process,

immune response, extracellular matrix, signalling receptor

binding, and integrin binding (Figures 1E–G).

To explore individual DEG correlations with OS, we performed

Kaplan-Meier survival curve analysis. In total, 421 DEGs out of

1,574 significantly predicted OS in the log-rank test (p < 0.05,

selected genes are shown in Supplementary Figure S3).
3.3 Protein-protein interaction (PPI) of
genes of prognostic value

To better understand interactions between prognostic value

DEGs, we examined protein-protein interaction (PPI) networks in

STRING. The network consisted of eight modules, which included 218

nodes and 704 edges. We selected the top three important modules for

further analysis (Supplementary Figure S4). For descriptive

convenience, we termed these modules MCODE1, MCODE2, and

MCODE3modules, respectively. InMCODE1 (Supplementary Figure

S4A), ACKR3, CXCR3, and CCR5 had higher degree values. In

MCODE2 (Supplementary Figure S4B), several immune response

key genes occupied the module center and included HLA-DRB5,

HLA-DRB1, CD247, and LCK. In MCODE3 (Supplementary Figure

S4C), IL2RG, CD8B, and CD8A were significant nodes, as they had

the most connections with other module members.
3.4 Functional enrichment analysis of
genes of prognostic value

Consistent with PPI network analysis, functional enrichment

analysis of these genes also identified strong associations with
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immune responses. Top GO terms included extracellular region

and extracellular space (Supplementary Figure S5A), immune

response (Supplementary Figure S5B), and antigen binding and

signalling receptor binding (Supplementary Figure S5C).

Additionally, all pathways from Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis (Supplementary Figure S5D) were

associated with immune responses.
3.5 Gene Expression Omnibus (GEO)
database validation

To determine if genes identified by TCGA had prognostic

significance in other BC patients, we downloaded and analyzed

gene expression data from 435 BC patients (GSE42568, GSE88770,

GSE48390, and GSE162228) from the GEO database. Interestingly,

15 genes were significantly and prognostically related to the

validation set (Supplementary Figure S6, p < 0.05); NPY1R,

CELSR2, STC2, SCUBE2, GIMAP2, HLA-DPB1, TFF1, CXCL14,

KLRB1, BIRC3, IL18, PSMB8, CD1C, TNFAIP8, and IRF1.
3.6 Constructing a prognostic risk model
based on TME-related genes

Subsequently, we performed least absolute shrinkage and

selection operator (LASSO) Cox regression analysis to select

highly relevant genes from these 15 genes. Finally, 14 were

identified as related to the TME in BC, and optimal values of

the penalty parameter were determined by 10-fold cross-

validation (Figures 2A, B). We then constructed a prognostic

model based on these genes, with the risk score of each sample

from the training cohort calculated according to this model.

Based on median risk score, BC samples from the training

cohort were divided into high- and low-risk groups. To assess

the OS in these groups, Kaplan-Meier curves were generated and

showed that OS in the high-risk group was worse than that in the

low-risk group, indicating the validity of the risk score prediction

(Figure 2C, p < 0.0001). Additionally, the expression of the TME-

related genes, survival status, and survival time distribution for

patients according to risk scores are shown in Figure 2D. In terms

of model diagnosis, the AUC of the time-dependent receiver

operating characteristic (ROC) curves were 0.69 for 1-year

survival, 0.74 for 3-year survival, and 0.74 for 5-year survival,

respectively, suggesting acceptable stability of the risk model

(Figure 2E). In addition, to explore if BC subtypes affect

survival, we grouped patients according to subtypes and

subsequently performed survival analyses. Clearly, no

differences in survival due to subtypes were observed,

suggesting that the BC subtype did not affect survival

(Supplementary Figure S7, p = 0.26). Together, our risk model,

constructed from TME-related genes, appeared to accurately

predict prognosis in BC patients.

Next, to identify hub genes, we identified interactions between

genes in the TME model by constructing a PPI network in STRING.
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The network included 13 nodes and six edges. PSMB8 and BIRC3

had the maximum neighboring genes and were identified as hub

genes. The Kaplan-Meier analysis showed both were the prognostic

indicators, and its high expression favored the prognosis

(Supplementary Figure S2, p < 0.05). To verify this phenomenon

still exists in the human body, we used immunohistochemistry to

compare hub protein expression and identified high PSMB8 and

BIRC3 expression trends in BC epithelial cells when compared with

paracancerous cells (Figure 3).
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3.7 The risk model is an independent BC
prognosis indicator

Univariate Cox regression analysis showed that risk score

could predict the prognosis of BC patients (Figure 4A, p <

0.0001). In the multivariable Cox regression analysis, risk score

remained statistically significant (Figure 4B, p < 0.0001),

indicating our risk model was an independent prognostic factor

for BC. Additionally, BC patients in the training cohort were
B

C D E
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FIGURE 1

Differentially expressed genes (DEGs) in BC and their correlations with overall survival (OS). (A) Heatmap of the DEGs of immune scores. (B) Heatmap
of the DEGs of stromal scores. (C, D) Venn diagrams showing the number of commonly upregulated (C) or downregulated (D) DEGs in stromal and
immune score groups. (E–G) Gene Ontology analysis (GO) analysis.
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regrouped into subgroups based on age (< 50 and ≥ 50 years old),

and TNM stage (stage I, stage II, stage III, and stage IV).

Regardless of subgroups, low-risk group patients still showed

significantly longer survival (Figures 4C, D, p < 0.05), which

indicated excellent risk model independence.
Frontiers in Oncology 07108
3.8 Establishing a nomogram

To create a quantitative method to predict OS, we integrated the

risk score and independent clinicopathological prognostic factors,

including age and TNM stage, to construct a nomogram (Figure 5A).
B
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A

FIGURE 2

Construction of a prognostic model in the training cohort. (A) The Least absolute shrinkage and selection operator (LASSO) Cox regression analysis
identified 14 genes most correlated with prognostics. (B) The optimal values of the penalty parameter were determined by 10-round cross-
validation. (C) Patients in the high-risk group (blue) exhibited worse overall survival (OS) than those in the low-risk group (red). (D) Distribution of risk
scores, survival profiles, and heat maps showing characteristic expressions of the low and high risky groups. (E) Time-dependent receiver-operating
characteristic (ROC) curve.
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To evaluate its prognostic value, we compared the concordance

index (C-index) of the nomogram with TNM stage, and as shown in

Table 1, the nomogram improved the prediction accuracy for BC.

We compared predicted 3- and 5-year survival probabilities with

actual probabilities and observed the calibration curve showed good

concordance between these probabilities, thereby reflecting high

nomogram accuracy and dependability (Figure 5B). Taken together,

the nomogram, which integrated risk score, showed good

performance and applicability, and has potential as a clinical tool

to predict prognosis in BC patients.
3.9 Correlations between the risk model
and clinicopathological features

Relationships between prognostic risk score and clinical

characteristics were further investigated in the training cohort.

Age, T category, M category and TNM stage were significantly

related to risk score, whereas gender and N category were not

(Figure 6A, p < 0.05). As observed Figure 6B, patients with HER2-

enriched had the highest risk score, followed by Basal-like, Luminal

B, and Luminal A subtypes, while Normal-like patients had the

lowest scores (p < 0.0001). Association analysis with hormone

receptor status showed that patients with PR+/ER+ had lower

risk score when compared with PR-/ER- patients, and ER+

patients had lower risk score when compared with ER- patients

(Figure 6C, p < 0.0001).

To better visualize the clinicopathological features in individual

patients and assess correlations with survival, we used an alluvial
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diagram which showed that risk categories in the prediction model

accurately predicted patient survival (Figure 6D).
3.10 Correlation between the risk model
and immune infiltration

Association between the risk model and immune cell infiltration

was assessed using several immune infiltration approaches.

ESTIMATE algorithm data showed that immune, stromal, and

ESTIMATE scores in the high-risk BC patient group were lower

when compared with BC patients in the low-risk group (Figure 7A,

p < 0.0001). The TIMER algorithm showed that B cell, neutrophil,

CD4 T cell, dendritic cell (DC), and CD8 T cell abundance, but not

macrophage, was statistically higher in the low-risk group when

compared with the high-risk group (Figure 7B, p < 0.0001).

Moreover, MCPcounter algorithm results showed that T cells,

CD8 T cells, cytotoxic lymphocytes, B lineage cells, natural killer

(NK) cells, monocytic lineage cells, myeloid DCs, neutrophils,

endothelial cells, and fibroblasts were highly infiltrated in the low-

risk group (Figure 7C, p < 0.01). Thus, our risk model correlated

well with different immune microenvironment components.

Given the significant correlation of our risk model with the BC

immune microenvironment, we next examined relationships

between the risk model and immune cell subtype infiltration

using Pearson’s algorithm. As shown in Figure 7D, correlation

values for B cells, CD4 T cells, CD8 T cells, DCs, and neutrophils

with risk scores were −0.35, −0.48, −0.49, −0.43, and −0.39,

respectively. As expected, immune cell infiltration levels were
B

A

FIGURE 3

PSMB8 and BIRC3 expression. (A) Representative immunohistochemical image showing high and low PSMB8 expression. (B) Representative
immunohistochemical image showing high and low BIRC3 expression. The red area indicates paracarcinoma epithelial cells and the black area
indicates breast cancer epithelial cells.
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significantly and positively correlated with prognosis (Figure 7D, p

< 0.0001).
3.11 Practical analysis of the risk model

To further confirm model practicability and reliability, it was

verified using a validation cohort. Risk scores, survival status, and

gene expression are shown in Figure 8A. As expected, significant

differences in OS were identified between groups, with longer OS in

the low-risk group (Figure 8B, p < 0.0001). Furthermore, relationships

between risk score and the BC immune microenvironment were

confirmed in the validation cohort. From ESTIMATE, TIMER, and
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MCPcounter analysis, the low-risk group was significantly associated

with high immune cell infiltration levels From ESTIMATE analysis, the

low-risk group was significantly associated with high stromal, immune,

and ESTIMATE scores (Figure 8C, p < 0.0001). In TIMER analysis, the

abundance of the five aforementioned immune cell types, except

macrophages, was statistically different between groups (Figure 8D, p

< 0.0001), and immune cell abundance (all types) was significantly

higher in the low-risk group than the high-risk group. TheMCPcounter

algorithm showed that T cells, cytotoxic lymphocytes, B lineage,

monocytic lineage cells, myeloid DCs, endothelial cells, neutrophils,

and fibroblasts were in a high infiltration state in the low-risk group

(Figure 8E, p < 0.05). Therefore, our TME-related gene risk model was

associated with BC prognosis and the immune microenvironment.
B

C

D

A

FIGURE 4

Prognostic model independence. (A) Results of Univariate Cox regression analysis. (B) Results of multivariable Cox regression analysis. (C, D) Subgroup
analyses suggesting the independence of the prognostic model regarding age, and TNM stage.
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3.12 The risk model predicts
chemotherapy efficacy

As neoadjuvant and adjuvant chemotherapies are reportedly

related to immune infiltration (37), we evaluated if chemotherapy
Frontiers in Oncology 10111
influenced BC prognosis. According to the NCCN Guidelines in

Oncology, anthracycline + cyclophosphamide (AC), AC followed

by taxane (AC-T), and taxane + cyclophosphamide (TC) are major

chemotherapy regimens. The OS advantage was observed in the

low-risk group, regardless of whether they received chemotherapy

or not. And whether in high-risk group or low-risk group, patients

who received chemotherapy had a better prognosis (Figure 9A, p <

0.0001). In the low-risk group, the OS advantage was evident in

patients who received TC and AC-T chemotherapy regimens when

compared with those who received no chemotherapy (Figure 9B,

p < 0.05). In contrast, the chemotherapy benefits in the high-risk

group were observed for AC, TC, and AC-T chemotherapy
B

A

FIGURE 5

Nomogram construction. (A) Nomogram predicting 3-, and 5-year OS for BC patients in the training cohort based on risk score and other
clinicopathological parameters (age and TNM stage). (B) The calibration curves of nomograms between predicted and observed 3- and 5-year OS in
the training cohort. The gray line of 45° represents the perfect prediction of the nomogram.
TABLE 1 The concordance indexes of tumor-node-metastasis (TNM)
stage and nomogram system.

C-index 95% Confidence Interval

Nomogram 0.800 0.76-0.84

TNM stage 0.763 0.72-0.81
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regimens (Figure 9C, p < 0.05). More importantly, subgroup

interaction evaluations suggested that better chemotherapy

outcomes were achieved in low-risk patients regardless of the

chemotherapy regimen (Figure 9D, p < 0.05).

We also explored if the A-regimen was an indispensable

chemotherapy agent in the low-risk group. As shown in

Figure 9E, no significant differences in prognosis outcomes for
Frontiers in Oncology 11112
patients treated with the A-regimen were identified, regardless of

low- or high-risk (p > 0.05). Further subgroup analysis showed no

significant differences in prognosis outcomes in low-risk patients

who received the A-regimen when compared with those who did

not (Figure 9F, p > 0.05). These observations suggested that the low-

risk group selected by this prediction model has the opportunity to

exempt the A-containing adjuvant chemotherapy regimen.
B
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D

A

FIGURE 6

Stratified analysis of clinical characteristics for risk score in the prognostic model. (A) Correlation analysis of the risk score and the clinical
characteristics. (B) Correlation analysis of the risk score and the BC subtypes. (C) Correlation analyses of the risk score and the status of PR/ER.
(D) Alluvial diagram.
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FIGURE 7

Correlation between the risk model and the immune microenvironment. (A) The ESTIMATE algorithm. (B) The TIMER algorithm. (C) The MCPcounter
algorithm. (D) Correlations between the risk score and the infiltration of immune cell subtypes.
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FIGURE 8

Validation of the prognostic risk model in the validation cohort. (A) Distribution of risk scores, survival profiles, and heat maps showing characteristic
expressions of the low- and high-risk groups. (B) Patients in the high-risk group (blue) exhibited worse overall survival (OS) than those in the low-risk
group (red). (C) The ESTIMATE algorithm. (D) The TIMER algorithm. (E) The MCPcounter algorithm.
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3.13 The risk model predicts gene
expression in immune responses, immune
checkpoints, inflammation, and epithelial-
mesenchymal transition

Immune checkpoint blockade with immunotherapies, including

CTLA-4, CD28, and CD274 are promising treatment approaches for

several malignancies (38). However, the bottleneck problem of

immune checkpoint inhibitors (ICI) in the treatment of eBC is the

lack of precise biomarkers identifying populations who may benefit

from these therapeutics. In our study, we determined the expression

levels of several key immune checkpoint regulators and inflammatory

mediators to provide reference biomarker candidates for precision

immunotherapy in early drug-resistant patients. As presented in

Figure 10A, CD274, CD28, and CTLA-4 expression levels were

significantly higher in the low-risk group (p < 0.0001). The Pearson

algorithm was used to analyze correlations between immune

checkpoints and our risk model. Correlation values of CTLA-4,

CD28, CD274 and risk score were -0.37, -0.43 and -0.33,

respectively (Figure 10B, p < 0.0001). Additionally, other

immunomodulators or inflammatory mediators were increased in

the low-risk group (Figure 10C, p < 0.0001). A previous study

reported that HLA affected ICI efficacy (39), therefore we analyzed

correlations between HLA family expression and our model, and

showed this expression was significantly higher in the low-risk group

when compared with the high-risk group (Figure 10D, p < 0.0001).

We next explored ICI therapy responses, represented by the CTLA-4/
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PD1 inhibitors, by using the immunophenotype score (IPS), and

showed that the IPS was slightly higher than that of the low-risk

group in the patients treated with CTLA-4 and PD1 inhibitors

(Figure 10E, p < 0.05). Overall, these results suggested that our

model predicted the immunotherapy benefits for patients and may be

a more effective biomarker to predict the efficacy of immunotherapy.

We further analyzed DEGs between low- and high-risk groups in

TCGA. In total, 396 DEGs (7 upregulated and 389 downregulated

genes, FDR p-value < 0.05) were identified in the high-risk group when

compared with the low-risk group. Of these, SLC7A5, PRAME,

CRABP1, CBX2, CA9, CALML5, and CD24 were significantly

overexpressed in the high-risk group (Supplementary Figures S8A, B,

FDR p-value < 0.05, fold change > 1.5). Furthermore, KEGG analysis

showed that genes in the high-risk group were mainly involved in

environmental information processing, human diseases, and

organismal systems (Supplementary Figure S8C). From GO

enrichment analysis, these genes in the high-risk group were mainly

involved in extracellular matrix, vesicle, immune response, and antigen

binding (Supplementary Figures S8D–F).
3.14 Risk model correlation with tumor
mutation burden (TMB)

As shown in Figure 11A, BC patients in the high-risk group had a

higher TMB than those in the low-risk group (p < 0.05). As suggested

from previous studies, a high TMB leads to a poor prognosis in many
B

C D
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A

FIGURE 9

The prognostic model predicts chemotherapy efficacy. (A) Subgroup analysis of adjuvant chemotherapy (ACT) benefit for overall survival (OS) of
low-and high-risk patients in the TCGA database. (B) OS analysis in patients with different chemotherapy regimens in the low-risk group. (C) OS
analysis in patients with different chemotherapy regimens in the high-risk group. (D) OS analysis of treated patients in high- and low-risk groups.
(E) OS analysis of patients receiving the anthracycline (A) regimens in high- and low-risk groups. (F) OS analysis of patients receiving A, no-A, and
no treatment in the low-risk group.
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cancers (40), consistent with our data. In correlation analysis between

risk score and TMB, we identified a significant positive correlation

(Figure 11B, p < 0.05). Further survival analysis indicated that the

low-TMB group showed a significant survival benefit (Figure 11C, p <

0.05). Given the synergistic effect of TMB and the risk score, their

effect on prognostic stratification was evaluated. As indicated from

the results, TMB status did not interference the predictive ability of

the risk score. Survival difference of the risk score subtypes was

significant in both high- and low-TMB groups, and the subgroup

with low risk-score and low TMB showed a better survival benefit,

while the high-risk score and high TMB subgroup had a lower

survival probability (Figure 11D, p < 0.001). Combined, risk score

may act as a prognostic BC indicator, which is independent of TMB

and can effectively predict TMB and treatment sensitivity.
3.15 Relationships among hub genes
expression levels, tumor-infiltrating
immune cells, immune molecules, and
sensitivity to BC-targeting and
chemotherapeutic drugs

We used the TIMER database to explore the relationships between

hub genes expression (PSMB8 and BIRC3) and the level of infiltrating
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lymphocytes. Upregulated PSMB8/BIRC3 expression was associated

with increased B cell, CD8+ T cell, macrophage, neutrophil, DC, and

other infiltrating lymphocyte infiltration (Figures 12A, B, p < 0.05).

Next, using the TISIDB database, we found that upregulated PSMB8/

BIRC3 (Figures 12C, D) expression was associated with increased

expression of immunostimulatory molecules, immunosuppressive

molecules, MHC molecules, chemokines, and chemokine receptors,

which provides important information for predicting potential

therapeutic targets. Finally, we used GSCA Lite online tool to analyze

the relationship between the expression of the hub genes and sensitivity

to current immune or targeted therapies for BC (Figure 12E). PSMB8

expression levels were negatively correlated with sensitivity to many

BC-targeting or chemotherapeutic drugs, including clofarabine and

gemcitabine, and were positively correlated with abiraterone. BIRC3

expression levels were positively correlated with axitinib sensitivity and

negatively correlated with dasatinib sensitivity. Thus, hub genes could

function as new targets for predicting drug sensitivity and developing

multi-targeted combined therapy for BC.
4 Discussion

We developed a 14-TME-related gene prognostic model based

on statistical associations between eBC prognosis and drug
B
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FIGURE 10

Bioinformatics analysis of the characteristics and signaling pathways among patients in different risk groups. (A) CD274, CD28, and CTLA4 mRNA
expression between the low- and high-risk groups in the cohort from TCGA. (B) Correlation between the risk score and CD274, CD28, and CTLA4
mRNA expression. (C) LAG3, IL12A, IL12B, IL6, IFNG, IDO1, GZMB, and CD47 mRNA expression between the low- and high-risk groups in the cohort
from TCGA. (D) The HLA family mRNA expression between the low- and high-risk groups in the cohort from TCGA. (E) Correlation of the risk score
and the IPS.
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resistance. (1) Our model exhibited strong predictive prognosis

power in BC patients; (2) Enrichment analyses showed that

immune-related pathways mediated the role of TME-related

genes in BC; (3) we constructed a nomogram system, which was

shown when compared with simple clinicopathological features,

nomogram-integrated risk score had high prediction accuracy and

applicability; (4) Our model provided predictive power for eBC

patients to select the best treatments possible and avoid unnecessary

chemotherapy agents; and (5) We found 2 novel therapeutic target

genes, which provides a new direction for the development of BC

precision medicine.

With the wide application of high-throughput technology and

the continuous maturity of data sharing mechanism, unprecedented

large-scale multi-omics cancer data have been accumulated in the

international public databases, and cancer research has entered the

era of “big data”. The focus of precision genomic medicine is to

identify accurate specific survival prognostic factors from large

medical datasets with clinical outcomes (41). Therefore, in recent

years, some studies have aimed to explore microenvironment-

related prognostic factors using bioinformatics analysis. However,

the use of genomics, transcriptomic, and proteomic analysis of

clinical tumor tissue is affected by the proportion of tumor cells

present, and the method of evaluating the nontumor part of tumor

samples (ESTIMATE) can provide an important context for

genomic data analysis, a huge improvement in other capacity-

limited methods (42). Additionally, many studies have not
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comprehensively explored the role of the genes related to stromal

cells and immune cells in the BC TME and focused only on immune

cell-related genes. In this study, we investigated infiltrating immune

and stromal cell levels in tumor tissue in the ESTIMATE algorithm,

and provided new perspectives for the comprehensive

understanding on tumor-related normal cells in tumor tissue.

In our study, we used the ESTIMATE algorithm to assess the

levels of infiltrating immune and stromal cell levels in tumor tissues.

And we showed that the Basal-like subtype had a high immune

score, consistent with previous findings showing that high levels of

TILs were common in both the Basal-like type and the HER2-

enriched types (43). The effect of tumor-infiltrating immune cells

on the biological and clinical course of BC is well established in

previous research (44). In accordance with the previous studies, we

observed that BC patients with higher immune scores had the better

prognosis, while no significant association of stromal scores with

prognosis was observed. For another, LASSO regression was applied

to construct risk models for 14 key TME prognostic genes, as used

in previous studies (45, 46). The prognostic value of our risk model

was also confirmed in the training and validation sets. The OS

curves of the high-risk scoring group and low-risk scoring group

were obviously separated, and patients with low-risk scores

comprised a clear survival advantage, which vindicated our study

design. The fly in the ointment was that we observed similar

survival rates with the high- and low-risk groups in the validation

set at late time points. Studies have shown that the survival curves
B
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FIGURE 11

Correlations between risk score and tumor mutation burden (TMB). (A) The TMB was higher in the high-risk group than in the low-risk group.
(B) The scatterplots depicted the positive correlation between the risk score and TMB. (C) Kaplan–Meier curves of overall survival (OS) in
different TMB subgroups. (D) Kaplan–Meier curves of overall survival (OS) stratified by both TMB and the risk score.
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crossing happens, when a relative few subject still being followed at

late time points. When the sample reduce, there will also be a lot of

uncertainty in the true position of the survival curves (47).

Consistent with this, our data and results shown that the samples

in the later stage of this survival curve have been reduced a lot

compared to those at the start (Supplementary Figure S9). In

addition, insufficient samples, differences in patient treatment

regimens, and age deviation may also contribute to this

phenomenon. Furthermore, model diagnosis using ROC analysis

indicated that our risk model was a reliable indicator for predicting

prognosis. Subgroup analysis further showed that risk score

remained independent prognostic factor even when patients were

regrouped based on clinical parameters. Finally, a nomogram,

which may be used in clinical practice, was constructed and a

calibration curve used to explore the predictive efficacy of our

model for survival. Overall, our risk model of TME-related genes
Frontiers in Oncology 16117
may be a mature reference for predicting prognosis in patients with

BC that is feasible in clinical practice.

In this study, we selected 14 TME-related genes, including

BIRC3, CELSR2, CXCL14, IL18, KLRB1, NPY1R, PSMB8,

SCUBE2, STC2, CD1C, HLA-DPB1, GIMAP2, IRF1 and

TNFAIP8, all of which were implicated in tumor progression and

prognosis outcomes. BIRC3 is a member of the apoptosis inhibitor

(IAP) family, with pro-survival and antiapoptotic effects in cancer

cells (48). BIRC3 is associated with treatment resistance in BC; IL-1

upregulates BIRC3 and generates doxorubicin resistance in BC cells

(49), thus BIRC3 appears to have important roles in the TME.

PSMB8 is the catalytic subunit of the immunoproteasome and is

implicated in glioblastoma, mucinous ovarian cancer, cutaneous

squamous cell carcinoma, papillary thyroid carcinoma, and prostate

cancer development and progression (50–52), consistent with our

findings showing that PSMB8 was associated with high immune
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FIGURE 12

Relationships between hub gene expression and tumor-infiltrating immune cells, immune molecules, and sensitivity to BC-targeting and
chemotherapeutic drugs. (A) Upregulation of PSMB8 expression is associated with increased infiltration of B cells, CD8+ T cells, macrophages,
neutrophils, dendritic cells (DCs), and other infiltrating lymphocytes. (B) Upregulation of BIRC3 expression is associated with increased infiltration of
B cells, CD8+ T cells, macrophages, neutrophils, dendritic cells (DCs), and other infiltrating lymphocytes. (C) The correlation between PSMB8
expression and lymphocytes, immunostimulatory molecules, immunosuppressive molecules, MHC molecule, chemokines, and chemokine receptors
in BC. (D) The correlation between BIRC3 expression and lymphocytes, immunostimulatory molecules, immunosuppressive molecules, MHC
molecule, chemokines, and chemokine receptors in BC. (E) The expression levels of PSMB8and BIRC3 are correlated with sensitivity to many BC-
targeting and chemotherapeutic drugs.
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infiltration and was a predictive protective gene. CELSR2 is part of

the cadherin superfamily and was associated with poor prognosis

(53). However, we confirmed CELSR2 was a protective gene and

involved in changing the TME. These contradictory results

highlight the need for more experimental studies on CELSR2.

Furthermore, we found the first prognostic value of CD1C and

GIMAP2 genes, which may provide new directions for further

BC research.

In recent years, tumor immunity has attracted considerable

research interest, while prognostic features related to the TME have

great applications in identifying novel biomarkers. As described, BC

growth and invasiveness are influenced by different cells in the

TME. Many studies have reported that the degree of immune

infiltration in the TME correlates with BC prognosis (30, 54). GO

and KEGG analysis indicated that the DEGs between the high-risk

and low-risk groups were mainly enriched in immune-related

pathways. Specifically, ESTIMATE, TIMER and MCPCounter

analysis showed that patients in the low-risk group had a

relatively high immune infiltration status. When combined with

the patient survival results, we showed that a good prognosis is

associated with a high immune infiltration status, consistent with

previous studies (30, 54). In the TME, tumor cells interact with

different immune cell types by activating the immune checkpoint

pathway (55, 56). We identified several immune checkpoint genes

(e.g., CTLA-4, PDL1, LAG3, and CD28) which were highly

expressed in the low-risk group, suggesting these patients may

benefit from immunotherapy. The genomic instability may

produce an immune response phenotype that affects the immune

response and immunotherapy (57). We comprehensively analyzed

correlation between the TMB and risk score and identified

significant positive associations. Furthermore, the stratified

prognostic analysis showed that the prognostic value of the risk

score in the BC was independent of the TMB. Taken together, our

results provide potential therapeutic targets and provide novel

clinical applications for immunotherapies.

Chemotherapy is an important adjuvant treatment for eBC but

has long been regarded as an immunosuppressive treatment

modality. However, recent studies reported that chemotherapy

has immune modulation effects (58, 59). The induced stress and

apoptosis generated by chemotherapy produces new tumor

immune antigens on cell surfaces and in the TME, which

stimulate antitumor immune responses (60). Our results

suggested that receiving chemotherapy was better than not

receiving it, regardless of the immune microenvironment in low-

or high-risk groups. A-based chemotherapeutic agents are

represented by topoisomerase 2 inhibitors and have pivotal roles

in eBC chemotherapy. However, it also exerts dose-dependent toxic

side effects such as myelosuppression, cardiotoxicity, and

gastrointestinal responses (61). Based on a pooled analysis of

PlanB and SUCCESS C randomized clinical trials, six TC cycles

provided similar efficacy to the A-regimen in most patients with

HER2-eBC, and a significantly lower incidence of overall grade 3/4

toxicity was observed (62). The randomized neoadjuvant

multicenter phase II trial, WGS-ADAPT-TN, found that

additional A-containing chemotherapy was not associated with a

significant invasive disease-free survival advantage in pathological
Frontiers in Oncology 17118
complete response patients (63). Therefore, A-regimen removal is

the trend, but how to accurately screen the population of

chemotherapy is not unclear. We observed that A-use in the

high-risk group may potentially promote immune cell infiltration

and enhance antitumor immune responses. Interestingly, no

prognosis differences were identified between A-use in low- and

high-risk groups, and even an absence of A-regimen in the low-risk

group did not affect long-term survival. This suggested that the no-

A chemotherapy regimen seems feasible in low-risk patients despite

chemotherapy benefit. Thus, we provide clinicians with an accurate

tool that provides an opportunity for patients to choose the best

treatment and avoid unnecessary chemotherapy.

Our study had some limitations. Firstly, our conclusions were

based on open datasets and not sequencing data. Despite this

weakness, the concordance between our TME-related gene risk

model and survival in TCGA and GEO cohorts identified

prognostic signatures in BC, but which still need to be further

validated with sufficient sample data. Secondly, our data, which

originated from databases, lacked experimental validation. In future

studies, we will focus on these novel molecules using in vitro and in

vivo analyses.
5 Conclusions

We comprehensively explored the role of the TME in BC

patients using statistical analyses of public database data. First,

the risk model we constructed based on TME-associated genes and

successfully predicted the OS in BC patients. In addition, our model

was inversely associated with BC immune cell infiltration and may

be used as an independent prognostic marker to predict the efficacy

of immunotherapy in BC patients. Importantly, we showed that

outcomes in patients receiving the A-regimen in the low-risk group

were not significantly different to those receiving the no-A regimen,

suggesting this patient cohort may be exempted from A-containing

adjuvant chemotherapy. The hub genes (BIRC3 and PSMB8) can be

used as effective biomarkers to predict BC prognosis and used as

novel targets to predict drug sensitivity.

Our work provides innovative perspectives for future BC

research and the development of targeted therapeutic strategies

for BC patients. Further studies are required to validate the clinical

prognostic value of our risk model and explore underlying

mechanisms associated with eBC.
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pan-cancer analysis

Chao Sun1, Guoji Zhu2, Conghuan Shen1, Shungen Huang3,
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1Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China, 2Surgery
Intensive Care Unit, Children’s Hospital of Suzhou University, Suzhou, China, 3Department of General
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Introduction: Proprotein convertase subtilisin/kexin-9 (PCSK9) has been

primarily studied in the cardiovascular field however, its role in cancer

pathophysiology remains incompletely defined. Recently, a pivotal role for

PCSK9 in cancer immunotherapy was proposed based on the finding that

PCSK9 inhibition was associated with enhancing the antigen presentation

efficacy of target programmed cell death-1 (PD-1). Herein, we provide results

of a comprehensive pan-cancer analysis of PCSK9 that assessed its prognostic

and immunological functions in cancer.

Methods: Using a variety of available online cancer-related databases including

TIMER, cBioPortal, and GEPIA, we identified the abnormal expression of PCSK9

and its potential clinical associations in diverse cancer types including liver, brain

and lung. We also validated its role in progression-free survival (PFS) and immune

infiltration in neuroblastoma.

Results: Overall, the pan-cancer survival analysis revealed an association

between dysregulated PCSK9 and poor clinical outcomes in various cancer

types. Specifically, PCSK9 was extensively genetically altered across most

cancer types and was consistently found in different tumor types and

substages when compared with adjacent normal tissues. Thus, aberrant DNA

methylation may be responsible for PCSK9 expression in many cancer types.

Focusing on liver hepatocellular carcinoma (LIHC), we found that PCSK9

expression correlated with clinicopathological characteristics following

stratified prognostic analyses. PCSK9 expression was significantly associated

with immune infiltrate since specific markers of CD8+ T cells, macrophage

polarization, and exhausted T cells exhibited different PCSK9-related immune

infiltration patterns in LIHC and lung squamous cell carcinoma. In addition,

PCSK9 was connected with resistance of drugs such as erlotinib and docetaxel.

Finally, we validated PCSK9 expression in clinical neuroblastoma samples and
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concluded that PCSK9 appeared to correlate with a poor PFS and natural killer

cell infiltration in neuroblastoma patients.

Conclusion: PCSK9 could serve as a robust prognostic pan-cancer biomarker

given its correlation with immune infiltrates in different cancer types, thus

potentially highlighting a new direction for targeted clinical therapy of cancers.
KEYWORDS

pcsk9, tumorigenesis, prognosis, immune infiltrate, pan-cancer
1 Introduction

The complex process of tumorigenesis involves interactions

between the immune system and tumor. Currently, targeting

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and PD-1

has provided superior anticancer effects in colorectal and lung

cancer compared to conventional chemotherapy (1). However,

most cancer patients continue to suffer poor outcomes from

immunotherapies with observed overall objective response rates

approximately 15–25% in various cancer types (2). Recently, the 3rd

generation immune checkpoint blockades have received widespread

attention, because of their combined immunotherapy strategies in

the anti-tumor microenvironment (TME) (3, 4). In order to

maximize the synergistic benefits in strengthening the immune

response, it is vital to verify and highlight novel immune-related

therapeutic targets in malignancies (5). Performing a pan-cancer

investigation of putative genes could help determine its involvement

in clinical prognosis and immunological functions due to the

intricate relationship between carcinogenesis and TME.

In 2003, human PCSK9 gene mutation was identified as the

third genet ic cause of autosomal dominant fami l ia l

hypercholesterolemia for the first time (6). Low-density

lipoprotein cholesterol (LDL-C) levels were shown to increase in

response to PCSK9-mediated degradation of low-density

lipoprotein cholesterol receptors (LDLR) (7, 8). Clinical research

has finally confirmed the key role for PCSK9 in cholesterol

metabolism, because the inhibition of LDL-C mediated by PCSK9

has expanded the therapeutic tools that can be used to treat

individuals with residual LDL-C related cardiovascular risk (9). In

addition to regulating cholesterol metabolism, in vitro and in vivo

studies have also found that PCSK9 is involved in various other

physiological processes (10). For example, inhibition of PCSK9 was

demonstrated to reduced myocardial ischemia-/reperfusion injury

via BNIP-3 mediated autophagic pathway and improved

myocardial infarct size and subsequent cardiac function. By

investigating the functional role of PCSK9 inhibitions in the

metabolic targets, it could potentially lead to better understanding

of the pathogenesis of myocardial infarction and ischemic stroke, as

well as provide a potential therapeutic target for its management

(11). Additionally, the knowledge gained from exploring the role of

PCSK9 in cell proliferation and apoptosis could help to elucidate the

potential involvement of this protein in cancer risk, providing
02122
insight into potential preventive strategies (12). A recent study

showed that inhibiting PCSK9 enhanced the antigen presentation

efficacy of PD-1 and influenced the tumor response to immune

checkpoint treatment, although through a mechanism unrelated to

its role in controlling cholesterol (13, 14). This novel finding

highlighted that PCSK9 inhibition was a potential strategy for

improving immune checkpoint treatment for cancer. Given its

likely engagement with PD-1 in tumor immunotherapy, PCSK9

might provide useful insight into tumor development and immune

treatment response. Therefore, it is vital to comprehensively assess

PCSK9 clinical prognostic association with tumors.

In the current study, we thoroughly examined the relationships

among PCSK9 expression, methylation, mutation, and patient

prognosis in 33 different cancer types. In order to further

examine aberrant patterns and the possible clinical importance of

PCSK9 across various cancer types, a survival association study was

carried out. We also investigated the relationship between PCSK9

expression and immunological checkpoints and six tumor-

infiltrating immune cells in 33 TME. PCSK9 expression changes

in neuroblastoma was not verified in the databases used in this

study. Therefore, we further verified the expression changes of

PCSK9 in neuroblastoma clinical samples as a supplemental study.

Our results emphasize the potential relevance of PCSK9 across

malignancies and indicated that it may be a predictive biomarker

associated with immune infiltration in various tumors.
2 Materials and methods

2.1 Gene expression analysis

2.1.1 Tumor immune estimation
resource database

In this study, PCSK9 mRNA expression levels in different tumor

disease tissues and normal tissues were retrieved from the

TIMER database (15). Thirty-three cancer types were included:

adrenocortical carcinoma (ACC), bladder urothelial carcinoma

(BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma

(COAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

esophageal carcinoma (ESCA), glioblastoma multiforme (GBM),

head and neck squamous cell carcinoma (HNSC), kidney

chromophobe (KICH), kidney renal clear carcinoma (KIRC),
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kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia

(LAML), brain lower grade glioma (LGG), liver hepatocellular

carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous

cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),

pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma

(PRAD), rectum adenocarcinoma (READ), skin cutaneous

melanoma (SKCM), stomach adenocarcinoma (STAD), testicular

germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma

(THYM), uterine corpus endometrial carcinoma (UCEC), cervical

squamous cell carcinoma (CESC), cholangiocarcinoma (CHOL),

mesothelioma (MESO), pheochromocytoma and paraganglioma

(PCPG), sarcoma (SARC), uveal melanoma (UVM), and uterine

carcinosarcoma (UCS).

2.1.2 Gene expression profiling interactive
analysis 2 database

The GEPIA2 database (http://gepia2.cancer-pku.cn/) was used

to analyze PCSK9 expression profiles between disease tumors and

normal tissues (16). We also explored the distribution of PCSK9 in

specific tumor stages and drew a violin diagram of tumor stages.

The distribution of PCSK9 in different cancers and the clinical stage

of the tumors were initially explored, and a violin map of the tumor

stage was drawn.

2.1.3 TISIDB portal
TISIDB is a website for gene- and tumor-immune interaction

(http://cis.hku.hk/TISIDB/index.php/) (17). It was used to analyze

PCSK9 gene expression in different immune subtypes, including C1

(wound healing), C2 (IFN-g dominant), C3 (inflammatory), C4

(lymphocyte depleted), C5 (immunologically quiet), and C6 (TGF-

b dominant) subtypes. PCSK9 gene expression was also analyzed in

different molecular subtypes of tumor samples from The Cancer

Genome Atlas (TCGA).
2.2 Genetic alteration analysis

2.2.1 cBioPortal database
The mutation levels of the PCSK9 gene were obtained from the

online cBioPortal database (https://www.cbioportal.org/). We

searched in the “mutation” module of the website to obtain the

specific mutation site information on the PCSK9 functional and

structural domain map (18, 19).
2.2.2 UALCAN network
DNA methyltransferase alteration plays a vital role in

chromatin structure and gene expression levels. The UALCAN

network (http://ualcan.path.uab.edu) was used to analyze

differential DNA methylation of PCSK9 between tumor and

normal tissues (20).
2.2.3 GSCALite platform
The GSCALite platform (http://bioinfo.life.hust.edu.cn/web/

GSCALite/) was selected to obtain the copy number variations
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(CNV) of PCSK9 between cancer tissues and adjacent tissues in 33

types of cancers in the TCGA (21).
2.3 Gene set enrichment analysis of PCSK9

Here, ssGSEA is used to calculate the enrichment score of each

sample and obtain the correlation between PCSK9 expression and

pathway score. R software GSVA package was used to analyze,

choosing parameter as method = ‘ssgsea’. The correlation between

genes and pathway scores was analyzed by Spearman correlation.

ClusterProfiler package (version: 3.18.0) in R software was

employed to analyze the Gene Ontology (GO) function of

potential targets and enrich the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway, p <0.05 or FDR <0.05 is considered to

be a meaningful pathway (enrichment score with −log10 (P) of

more than 1.3).
2.4 Stemness analysis of PCSK9

To analyze the stemness features, we performed the spearman

correlation between mRNAsi of various tumors and PCSK9

expression. This method refers to the OCLR algorithm

constructed by Malta, which contains 11774 different gene

profiles (22).
2.5 Survival prognosis analysis

2.5.1 PrognoScan database
The correlation of PCSK9 expression with pan-cancer survival

was analyzed using PrognoScan (23). Specifically, PCSK9 expression

levels were searched in all available microarray datasets in

PrognoScan to determine its association with prognosis, including

overall survival (OS) and disease-free survival (DFS). The threshold

was set at a Cox p value < 0.05. We explored the impact of PCSK9

expression on OS and DFS in each cancer type.
2.5.2 Kaplan-Meier Plotter database
Kaplan-Meier Plotter (https://kmplot.com/analysis/) is an online

database containing gene expression and clinical information for

54,000 samples on 21 cancer types (24). To assess the clinical

prognostic value of specific genes, patient samples were divided

into two groups according to median gene expression (high vs. low

expression). Kaplan-Meier survival curves were used to analyze pan-

cancer OS rates. The association between PCSK9 expression and OS

in different tumor tissues was analyzed, and the 95% confidence

interval (95% CI) and the hazard ratio (HR) of the log-rank p values

were calculated. Furthermore, we analyzed the relationship between

PCSK9 expression in LIHC and OS and recurrence-free survival

(RFS) and calculated log-rank p values and 95% confidence intervals

(CIs) for risk ratios (HRs). The impact of various risk factors on

tumor prognosis was also analyzed to explore the impact of different

clinical characteristics on tumor prognosis.
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2.5.3 GEPIA database
The survival analysis module in the GEPIA database was used

to obtain the OS and DFS data of patients with different PCSK9

expression across TCGA and Genotype-Tissue Expression Project

(GTEx). The survival module was also used to explore the

expression patterns between PCSK9 and survival factors in tumor

patients (16).
2.6 Immune correlation analysis

2.6.1 TIMER database
2.6.1.1 Immune infiltrating cells

To focus on the role of immune cells in the TME, the expression

profile data of tumor samples in TCGA were analyzed using the

“immune gene” module of the TIMER 2.0 database. The xCell

algorithms were used to explore the potential relationship between

the level of cancer-related immune cell infiltration and PCSK9 gene

expression in different cancer types found in TCGA. The tumor-

infiltrating immune cells were correlated with gene expression to

assess the level of immune cell infiltration in the TME.

2.6.1.2 Immune checkpoint

Over 40 common immune checkpoint genes were identified, and

the correlation between PCSK9 and the immune checkpoint genes

was analyzed using the R software package in the SangerBox database

(http://www.sangerbox.com/) and presented in a heat map.

2.6.2.3 Immune infiltration

TIMER is an ideal database for systematically analyzing

immune infiltration in multiple cancer types. We analyzed the

relationship between PCSK9 expression and immune infiltrating

cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils,

macrophages, and dendritic cells. ESTIMATE is a tool for

predicting tumor purity and stromal and immune cell infiltration

into tumor tissue using gene expression data. The ESTIMATE

algorithm was used to infer the immune score of each sample (25).

2.6.2.4 Copy number alterations and immune infiltration

The correlation between different somatic copy number

alterations (SCNAs) and immune cell infiltration affecting PCSK9

expression was also explored by using TIMER. Four types of

alterations (arm-level deletion, diploid/ordinary, arm-level gain,

high amplification) were analyzed and compared in the SCNAs.

The infiltration level of each SCNA category was compared with

that of normal tissue using a two-sided Wilcoxon rank-sum test.
2.7 Drug sensitivity analysis

The Drug Sensitivity Genomics Project (GDSC) and The

Cancer Therapeutics Response Portal (CTRP)are two databases,

which combine drug sensitivity and genome data sets to promote
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the new therapeutic biomarkers for cancer therapy. Through these

two databases, we investigated the role of PCSK9 expression in

cancer therapeutic response. Pearson correlation analysis was

performed to obtain the correlation between PCSK9 mRNA

expression and drug IC50. P-value was adjusted by FDR.
2.8 Neuroblastoma specimen collection

A total of 25 neuroblastoma (NB) patients from Children’s

Hospital of Soochow University (Suzhou, China) were

consecutively enrolled in a study between January 2016 and

December 2019 and followed up until December 2021. NB

specimens and adjacent normal tissues were collected at the time,

frozen in liquid nitrogen, and stored at −80°C until use. No patients

received chemotherapy or radiotherapy or any treatment for the

tumor before surgery or tissue biopsy. The sample collection and

related experiments met the ethical requirements of the Children’s

Hospital of Suzhou University, Suzhou, China. The Clinical

Research Ethics Committee approved this study at the Children’s

Hospital of Suzhou University, Suzhou, China, and all patients or

their parents signed informed consent forms.
2.9 Western blot assay and quantitative
real-time PCR

Proteins were isolated from tissues using RIPA lysis buffer

(Biotime, Shanghai, China), separated using SDS-PAGE, and

transferred onto a nitrocellulose membrane (Bio-Rad

Laboratories, CA, USA). Then, we blocked proteins with 5% skim

milk for 30 min and incubated the membranes with diluted primary

antibodies. Primary antibodies for GAPDH (ab8245, 1:10000

dilution; Abam, Cambridge, UK), PCSK9 (ab181142, 1:1000

di lut ion; Abam, Cambridge, UK), CD11b (ab133357,

1:1000 dilution; Abam, Cambridge, UK), CD45 (ab40763, 1:5000

dilution; Abam, Cambridge, UK), CD68 (ab213363, 1:1000 dilution;

Abam, Cambridge, UK), and BSA-1 (ab219724, Abam, Cambridge,

UK) were purchased from Abcam (Cambridge, UK). After

incubating with horseradish peroxidase-conjugated secondary

antibodies, the immune complexes were detected with an ECL

detection kit (Millipore, Billerica, MA, USA) and quantified using a

Gel-Pro Analyzer (Media Cybernetics Corporation, USA). Total

RNA was isolated from patients with NB by using Trizol and then

converted into cDNA by reverse transcription (GoScriptTM

Reverse Transcription system, USA). RT-qPCR was used to assay

the mRNA expression of PCSK9, immune-related genes, and

pathway-related genes. PCSK9 primers were purchased from Sino

Biological Inc. The primers used for qRT-PCR were as follows:

PCSK9, 5′-GCT GAGCTGCTCCAGTTTCT-3′ (forward) and 5′-
AAT GGCGTAGACACCCTCAC-3′ (reverse); and GAPDH, 5′-
AAGGTGAAGGTCGGAGTCAAC-3′ (forward) and 5′-GGGG
TCATTGATGGCAACAATA-3′ (reverse).
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2.10 Statistical analysis

Gene expression data from the TCGA and GTEx databases were

analyzed by using t-tests. The Kruskal-Wallis test was used to

evaluate the difference among various tissues, and the Wilcoxon

test was used to determine the gene expression differences between

normal and tumor tissues. In PrognoScan, univariate Cox regression

analysis was used to analyze the survival time of patients with the HR

and p value. In GEPIA and Kaplan-Meier Plotter, log rank test was

used to compare survival rate of patients stratified according to the

different expression levels of PCSK9. Other online analysis websites of

GEPIA2, cBioportal and GSCALite were also used. Spearman

correlation analysis was calculated between the expression of

PCSK9 and the level of infiltrating immune cells, the level of

immunosuppressant or immunostimulant factors and infiltration

scores of six immune infiltrations. Correlations were considered

statistically significant when p < 0.05 for all statistical analyses. The

experimental data were analyzed using SAS 9.3 statistical software.

Statistical analysis was performed using the t test. Differences were

considered statistically significant at p < 0.05. OS was defined as the

time interval between the date of surgery and the date of progression

or death. Survival analyses were conducted by Kaplan–Meier curves

(p values from log-rank test) by R version 3.5.3 and the survival

package. HRs were calculated using the R package.
3 Results

3.1 mRNA expression level of PCSK9 in
human cancer

Abnormal PCSK9 expression has been reported in various

cancer types. Previous studies on PCSK9 expression in cancer

used several research methods, such as DNA microarrays, but

were limited to relatively small sample sizes and limited numbers

of cancer types. This study has provided a more comprehensive

analysis of PCSK9 expression in cancer. Since PCSK9 has a potential

role as an important new target for cancer diagnosis and prognosis,

we analyzed the PCSK9 mRNA levels across different cancers from

TIMER, GEPIA, and UALCAN databases. Data from these

databases indicated that PCSK9 mRNA expression had inter-

tumor heterogeneity, with some tumors having very high levels of

PCSK9 (BRCA, CESC, CHOL, COAD, ESCA, HNSC, LIHC, READ,

SKCM, STAD, THCA, and UCEC). In contrast, others were

characterized by low levels of PCSK9 expression (LUAD, PRAD,

KIRP, KIRC, PCPG, LUSC, and GBM) (Figure 1A). Different stages

and subtypes of a tumor may exhibit differential expression of

PCSK9. Thus, we further assessed PCSK9 expression in different

clinical stages and subtypes from GEPIA and UALCAN. Briefly,

differential expression of PCSK9 was obtained from GEPIA to

correlate with clinical subtypes of tumors, including BRCA,

COAD, ESCA, HNSC, STAD, LUSC, OV, and UCEC (Figure 1B).

As shown in Figure 1C, PCSK9 expression was elevated in some

tumors, including BLCA, BRCA, CESC, HNSC, READ, STAD,

THCA, COAD, ESCA, UCEC, and LIHC. Whereas lower PCSK9
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expression in later stages was observed only in KIRC, KIRP,

and LUAD.
3.2 PCSK9 genetic alterations (mutations
and DNA methylation) in various cancers

It has been widely acknowledged that genomic mutations are

closely associated with tumorigenesis. To determine the genomic

mutations of PCSK9 in tumors, we reviewed the genetic alterations

of the PCSK9 gene in cancer patients using the cBioPortal database.

Notably, patients with ovarian epithelial tumors had the highest

frequency of PCSK9 genetic alterations (5%), including

amplification of copy numbers and deep deletions (Figure 2A). In

addition, several cancer types (e.g., non-small cell lung cancer,

cervical squamous cell carcinoma, ESCA, LIHC, SARC, BLCA,

and BRCA) had PCSK9 mutations (amplifications or deep

deletions). Tumors with dominant PCSK9 mutations included

cervical adenocarcinoma, esophageal squamous cell carcinoma,

esophagogastric adenocarcinoma, renal non-clear cell carcinoma,

COAD, HNSC, KIRC, PAAD. Deep deletions were more common

in various neuroepithelial tumors, PCPG, LGG, and GBM. These

results revealed the highly heterogeneous inheritance and

expression changes of PCSK9 in different types of cancer.

We next differentiated the distribution of mutations and collected

the types, sites, and case number of genetic alterations of PCSK. As

shown in Figures 2B, C, there were 93 missense and 6 truncation

mutations in PCSK9. The site S91T/E92Afs*78/S91L, in the

inhibitor_I9 domain, was confirmed to have the highest abundance

of mutations. We future searched the cBioPortal website for PCSK9-

related tumor gene mutations and identified six types of tumors with a

total of eleven protein changes: Melanoma (D321N, E84K, G176E,

E405K, S249G), Uterine Endometrioid Carcinoma (V79M), Colorectal

Adenocarcinoma (R272L), Diffuse Large B-Cell Lymphoma (Q454H),

Serous Ovarian Cancer (R93H, S5G), and Esophageal

Adenocarcinoma (C526F). Subsequently, we conducted a search on

the PolyPhen-2 website (http://genetics.bwh.harvard.edu/pph2/) and

found that in five tumor types (Melanoma, Uterine Endometrioid

Carcinoma, Diffuse Large B-Cell Lymphoma, Serous Ovarian Cancer,

and Esophageal Adenocarcinoma), the protein changes were predicted

to be either “probably damaging” or “possibly damaging.” However,

the mutation in Colorectal Adenocarcinoma exhibited benign

characteristics. Moreover, when we further correlated the prognosis

of these six tumor types, we observed that three of them (Melanoma,

Serous Ovarian Cancer, and Uterine Endometrioid Carcinoma)

displayed worse prognoses, suggesting a potential association with

inherent mutations (Supplementary Table 1).

DNA methylation is an epigenetic modification that can alter

gene expression. The alteration of DNA methylation may be an

essential factor in tumorigenesis. Through the UALCAN database,

we explored PCSK9 methylation between tumors and normal

tissues. The results showed that the methylation of PCSK9 was

upregulated in various tumors, including BRCA, CHOL, HNSC,

KIRC, KIRP, LGG, LUAD, LUSC, PRAD, SARC, and THCA

(Figure 2D). Accordingly, these results indicated that PCSK9 may

mediate tumorigenesis by regulating DNA damage or methylation
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status in human cancers. Furthermore, similar results were

concluded from GSCALite data, which revealed a relatively high

mutation frequency in diverse types of cancer. We also investigated

the frequency of CNV changes of PCSK9. The results showed that

tumors, including TGCT, BRCA, COAD, SKCM, PCPG, PRAD,

LIHC, BLCA and KIRC, were significantly correlated with the CNV

changes (Figure 2E).
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3.3 Multifaceted prognostic value of PCSK9
across cancers

The PrognoScan database was used to explore the relationship

between PCSK9 expression and prognosis in each cancer, results are

summarized in Figure 3. Notably, PCSK9 expression was

significantly associated with five cancer types: brain, colorectal,
A

B

C

FIGURE 1

(A) PCSK9 expression levels in different cancer types. Increased or decreased expression of PCSK9 compared with normal tissues across different
cancer types from the TCGA database in TIMER (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Pan-cancer PCSK9 expression in different subtypes. (A–H),
Pan-cancer differential expression of PCSK9 in different cancer subtypes in the indicated tumor types from GEPIA. (C) Correlation between PCSK9
expression and the main pathological WHO stages for BLCA, BRCA, CESC, HNSC, KIRC, KIRP, READ, STAD, THCA, COAD, ESCA, UCEC, LIHC, and
LIHC (A–N) from the UALCAN database (*p < 0.05, **p < 0.01, ***p < 0.001).
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lung, head and neck, and ovarian cancer (Figure 3A). Among them,

PCSK9 showed a detrimental relationship in three cancer types,

including colorectal cancer [OS: total = 177, HR = 1.46, Cox p =

0.048], lung cancer [OS: total = 56, HR = 1.43 Cox p = 0.028], lung

cancer [RFS: total = 56, HR = 1.30, Cox p = 0.011] and head and

neck cancer [RFS: total = 28, HR = 3.26, Cox p = 0.048]. However,

PCSK9 exhibited a protective effect in two other cancer types, brain
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cancer [OS: total = 67, HR = 0.01, Cox p = 0.030] and ovarian cancer

[PFS (progression free survival): total = 110, HR = 0.89, Cox p =

0.044] (Figure 3A).

To evaluate the relationship between PCSK9 protein expression

levels and the prognosis of tumor patients, the Kaplan-Meier Plotter

database was used to study the PCSK9 protein expression level in 21

cancer tissues (Figure 3B). In some cancer tissues, such as BLCA
A

B

D

E

C

FIGURE 2

DNA methylation and mutation features of PCSK9 across cancer types. (A) The alteration frequency with different types of mutations was examined
using the cBioPortal database. (B, C) The mutation site with the highest alteration frequency (E92Afs*78) in the 3D structure of PCSK9. (D) Promoter
methylation level of PCSK9 across cancers. The results were obtained from the UALCAN database and GSCA database. (E) The correlation between
PCSK9 expression and copy number variations (CNV) are shown from the GSCA database.
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FIGURE 3

(A) Survival analyses of PCSK9 expression across cancers (based on PrognoScan). OS (n = 67) in brain cancer cohort GSE16581. OS (n = 177) in
colorectal cancer cohort GSE17536. OS (n = 56) in lung cancer cohort GSE17710. RFS (n = 56) in lung cancer cohort GSE17710. RFS (n = 28) in head
and neck cancer cohort GSE2837. PFS (n = 110) in ovarian cancer cohort GSE17260. OS, overall survival; RFS, relapse free survival; PFS, progression
free survival. (B) Kaplan-Meier survival curves of survival comparing high and low expression of PCSK9 in the Kaplan-Meier Plotter database. Overall
survival differences between groups in BLCA, THYM, KIRC, KIRP, LIHC, SARC, BRCA, LUAD, OV, PAAD, PCPG, and UCS. (M–T) Relapse-free interval
difference between groups in UCS, BRCA, ESCA, KIRP, HNSC, LIHC, TGCT, and PAAD. (C) Kaplan-Meier survival curves of survival comparing high
and low expression of PCSK9 in the GEPIA database. (A–H) Overall survival differences between groups in BLCA, UVM, LUAD, SKCM, KIRC, KIRP,
LIHC, and BRCA. (I–M) Disease-free interval difference between groups in PAAD, KIRC, KICH, BLCA, and LUAD.
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(OS, HR = 1.68, p = 0.0005), THYM (OS, HR = 4.26, p = 0.02),

KIRC (OS, HR = 2.56, p = 0.002), LIHC (OS, HR = 1.64, p = 0.005),

SARC (OS, HR = 1.9, p = 0.008), LUAD (OS, HR = 1.43, p = 0.015),

OV (OS, HR = 1.38, p = 0.014), PAAD (OS, HR = 2.00, p = 0.003),

KIRP (RFS, HR = 3.44, p = 0.001), LIHC (RFS, HR = 1.46, p =

0.025), TGCT (RFS, HR = 3.44, p = 0.032), and PAAD (RFS, HR =

3.21, p = 0.006), high expression of PCSK9 correlated with poor OS

and RFS. Other cancers exhibited a protective role for PCSK9 with

low expression, such as BRCA (OS, HR = 0.58, p = 0.001; RFS, HR =

0.64, p = 0.047), UCS (OS, HR = 0.61, p = 0.022; RFS, HR = 0.56, p =

0.044), ESCA (RFS, HR = 0.26, p = 0.013), and HNSC (RFS, HR =

0.26, p = 0.007).

Similar work was also performed using the GEPIA database.

High expression of PCSK9 was associated with a poor OS prognosis

in BLCA (p = 0.002), UVM (p = 0.012), LUAD (p = 0.028), SKCM

(p = 0.0002), KIRC (p = 0.014), KIRP (p = 0.001), LIHC (p = 0.023),

and BRCA (p = 0.009) (Figure 3C). The data showed that high

expression of PCSK9 was associated with an adverse DFS prognosis

in PAAD (p = 0.031), KIRC (p = 0.014), KICH (p = 0.046), BLCA

(p = 0.009), and LUAD (p = 0.026) (Figure 3C).

To verify the correlation between PCSK9 expression and

multiple clinicopathological characteristics, we used LIHC as an

example. The results indicated that PCSK9 was associated with a

detrimental prognosis with five patient or tumor characteristics:

female (OS: p = 0.01; PFS: p = 0.02), Asian race [OS: p = 0.01; PFS:

p = 0.01], no hepatitis virus infection [OS: p = 0.03; PFS: p = 0.02],

pathology stage 2 [OS: p = 0.01] and stage 3 [OS: p = 0.04], grade 2

[OS: p = 0.01], and AJCC stage 2 (OS: p = 0.01) and stage 3 (PFS: p =

0.03) (Figure 4A). A nomogram prediction model was generated by

integrating the above clinicopathological parameters and PCSK9

expression levels. The calibration curve is further evaluated to show

that the predictions made by nomogram is in considerable

agreement with the actual survival (Figures 4B–D).
3.4 Correlation of PCSK9 expression
and stemness

Cancer progression involves the gradual loss of differentiated

phenotypes and stemness features. Our correlation analysis revealed

that the expression of PCSK9 was positively correlated with the

mRNAsi in COAD, LUAD and LIHC. As for tumors such as

SKCM, BLCA and LGG, there is no correlation between the

characteristics of stemness and the expression of PCSK9

(Figures 5A, B).
3.5 KEGG, GO, and GVSA analysis of PCSK9

Taking BLCA as an example, we found that abnormal

expression of PCSK9 was associated with tumor invasion

characteristics, cell hypoxia manifestations, and EMT-related

markers (Figure 6A). In BRCA, PCSK9 expression was involved

in tumor inflammation signature, reactive oxygen species and

transforming growth factor beta (TGF-b) (Figure 6B). The KEGG
pathway analysis and GO enrichment analysis were performed to
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demonstrate the primary biological pathways and potential targets

of major potential PCSK9 mRNA. The results showed that PCSK9

positively regulated cellular adhesion, cholesterol and fatty acid

metabolism, PI3K-Akt signaling pathway and immune-related

functions in BRCA, LIHC and LUAD (Figures 7A–C).
3.6 Correlation of PCSK9 expression with
immune infiltration and various subsets of
immune cells

Tumor-infiltrating lymphocytes are independent predictors of

sentinel node status and cancer prognosis. The correlation between

the expression levels of PCSK9 protein and immune cells in pan-

cancer tissues were analyzed using the TIMER database. PCSK9

expression levels significantly correlated with immune cells (CD8+

T cells in 14 types of cancer, dendritic cells (DCs) in 11 types of

cancer, and macrophages in 13 types of cancer). We further studied

whether PCSK9 expression correlated with the infiltration of

different immune cell subtypes using the xCell online tool. The

results showed that PCSK9 expression was significantly correlated

with subtypes of infiltrating immune cells in various tumors,

including HNSC, TGCT, ESCA, COAD, STAD, LUSC, and LIHC

(Figure 8A). CD8+ T cells, DCs, and M2 macrophages were the

immune cell subtypes most positively associated with PCSK9

expression in these different cancers.

Immune checkpoint inhibitors (ICIs) are novel tumor

immunotherapy agents that play an essential role in tumor

immunotherapy. Subsequently, we analyzed the correlation

between PCSK9 expression and immune checkpoint gene

expression levels using the R software package in the SangerBox

database. The correlations between 46 immune checkpoint genes

and PCSK9 protein expression levels were calculated, and a

significant relationship was found in many cancer types with

many of the 46 genes, such as THCA (40 of 46), BRCA (37 of

46), LUAD (37 of 46), BLCA (35 of 46), and TGCT (33 of 46)

(Figure 8B). Furthermore, the results showed that the expression of

PCSK9 in BRCA, BLCA, PRAD, THCA, LIHC, PCPG, and UVM

was negatively correlated with immune checkpoint genes.

Furthermore, a positive correlation was found in CESC, CHOL,

LUAD, STAD, and TGCT. Notably, these immune checkpoint

genes contained a broad spectrum of immune regulators,

including signaling chemokines, immune stimulators, immune

inhibitors, and major histocompatibility complex molecules, such

as those related to regulatory T (Treg) cells (chemokine receptor 8,

CCR8; forkhead box protein p3, FOXP3; signal transducer and

activator of transcription 5B, STAT5B), B cells (CD19),

macrophages (CD68), interleukin-10 (IL10), Th17 (signal

transducer and activator of transcription 3 (STAT3), neutrophils

(integrin subunit alpha m, ITGAM), natural killer (NK) cells killer

cell immunoglobulin-like receptor 2DL (KIR2DL), DCs (major

histocompatibility complex class II DR beta 1 (HLA-DPB1);

histocompatibility complex class II DR alpha (-DRA; integrin

subunit alpha X(ITGAX), Th1 cells (interferon gamma (IFNy);

tumor necrosis factor (TNF), Th2 cells (signal transducer and

activator of transcription 6 (STAT6; signal transducer and
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activator of transcription 5A (STAT5A), and exhausted T cells

(programmed cell death protein 1 (PDCD1); CTAL4; hepatitis A

virus cellular receptor 2 (HAVCR2). Additionally, our results

showed a significant correlation between PCSK9 expression with

PDCD1 and CTLA4, which referred to T cell exhaustion and led to

the loss of T cell function in patients with common chronic

infections and cancer.

Immune infiltration plays a vital role in the TME. To evaluate

the association between PCSK9 expression and immune infiltration,

we further investigated the relationships between the PCSK9

expression and immune cells in three different cancers (BLCA,

BRCA, and LIHC) from the TIMMER database (Figure 8C). The
Frontiers in Oncology 10130
immune cells included B cells, CD8+ T cells, CD4+ T cells,

macrophages, neutrophils, and DCs. In BLCA, the expression

level of PCSK9 significant and positively correlated with CD4+ T

cells (R = 0.126, p = 8.55E−05), CD8+ T cells (R = 0.11, p = 6.00E

−04), macrophages (R = 0.09, p = 4.88E−03), neutrophils (R = 0.158,

p = 1.01E−06), and DCs (R = 0.162, p = 5.23E−07). In BLCA, the

correlation between the expression level of PCSK9 with immune

cells was significant, including CD8+ T cells (R = 0.246, p = 1.82E

−06), CD4+ T cells (R = 0.086, p = 9.93E−02), macrophages (R =

0.167, p = 1.35E−03), neutrophils (R = 0.231, p = 8.38E−06), and

DCs (R = 0.356, p = 2.50E−12). In LIHC, we also found a significant

correlation of PCSK9 with B cells (R = 0.136, p = 1.17E−02), CD4+
A

B

D

C

FIGURE 4

Survival analysis of PCSK9 expression in different clinicopathologic features in hepatocellular carcinoma. (A) Correlation of PCSK9 mRNA expression
with OS in LIHC. (B) Correlation of PCSK9 mRNA expression with PFS in LIHC. OS, overall survival; PFS, progression free survival. (C, D) Development
of a nomogram prediction model using PCSK9 expression levels and clinicopathological parameters for survival prediction.
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T cells (R = 0.132, p = 1.40E−02), macrophages (R = 0.143, p = 7.98E

−03), neutrophils (R = 0.098, p = 7.03E−02), and DCs (R = 0.131,

p = 1.60E−02). There was no correlation between PCSK9 and B cells

in BRCA or BLCA (p > 0.05), or LIHC with CD8+ T cell (p > 0.05).

In addition, PCSK9 expression strongly correlated with tumor-

associated macrophages and DCs in these three cancers. These

findings strongly suggested that PCSK9 affected the immune

microenvironment by interacting with immune cell infiltration in

various cancers.

Considering the heightened sensitivity of gamma delta T cells,

particularly gamma 9 delta 2 T cells, towards alterations in the

cholesterol pathway, it would be significant to include these cells as a

specific control in the immune infiltration analysis. Thus, we further

evaluated the immune cell infiltration scores associated with tumor

samples obtained from the TCGA database. By utilizing the “corr.test”

function in R software, we ultimately identified a significant correlation

between PCSK9 expression and gamma delta T cell immune

infiltration scores. Specifically, we observed a significant association

between PCSK9 expression and gamma delta T cell infiltration in five

types of tumors (TGCT, COAD, PRAD, LUSC and LIHC). These

results indicated incorporating gamma delta T cells into the analysis

would provide additional insights into the potential impact of PCSK9

and its role in modulating immune responses within the tumor

microenvironment (Supplementary Figure 1).

To further unravel the potential predictive value of PCSK9 gene

alterations for ICI treatment, we then investigated the relationship

between PCSK9 alterations and six common immune infiltrates (B
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cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and

DCs) across multiple cancer types. We demonstrated that PCSK9 is

frequently altered across different cancer types. Furthermore, we

investigated the relationship between the PCSK9 CNV and immune

infiltration in various cancers (Figure 8D i–v). For six types of

immune cells, we verified a correlation of the PCSK9 CNV with

immune infiltration. CD8+ and CD4+ T cells were associated with

PCSK9 deletions in LIHC, BLCA, BRCA, and THCA. Deletion of

PCSK9 was significantly related to infiltration of CD4+ T cells (p =

0.001), neutrophils (p = 0.001), and DCs (p = 0.05) in BRCA. These

results suggested a possible mechanism by which immune cells may

be affected by PCSK9 in the TME, which may help direct future

immunotherapy treatments.
3.7 Correlation of PCSK9 expression and
clinical chemotherapies

GDSC showed that high expression of PCSK9 could make

cancer more sensitive to IPA-3 (target PAK1), (5Z)-7-Oxozeaenol

(target TAK1), Nutlin-3a (target MDM2), Navitoclax (target BCL2)

and resistant to Docetaxel (target microtubule stabilizer),

Epothilone B (target microtubule stabilizer), OSU-03012 (target

PDK1) (Figure 9A). While in CTRP database, IC50 of QW-BI-011,

CCT036477, CIL70, PRIMA-1, PRIMA-1-Met, teniposide, ML210,

BRD-K92856060, BRD-K26531177 and avrainvillamide showed top

10 significant positive correlations with the expression level of
A

B

FIGURE 5

Associations of stemness indices with the PCSK9 expression in various cancers. (A) Positive correlations between mRNAsi and PCSK9 in COAD,
LUAD and LIHC (p < 0.05). (B) No correlation between mRNAsi and PCSK9 expression in SKCM, BLCA and LGG (p > 0.05).
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PCSK9 (Figure 9B). Collectively, these results may provide new

ideas for developing potential drugs relating to the expression of

PCSK9 for treating cancers.
3.8 Experimental verification of PCSK9
in neuroblastoma

To confirm PCSK9 expression in NB, we measured mRNA and

protein levels of PCSK9 in paired NB and adjacent non-tumor

tissues using qRT-PCR (n = 18; Figure 10A) and western blotting

(n = 18; Figure 10A). Our findings revealed that PCSK9 expression
Frontiers in Oncology 12132
in tumor tissues was significantly higher at both the transcriptional

and protein levels than in adjacent normal tissues (p < 0.001).

Immune cells play an essential role in tumor immune tolerance.

Immunotherapy (such as disialoganglioside GD2) has been

incorporated into first-line treatment regimens of relapsed NB to

significantly improve patient outcomes. Remarkably, immune cells,

such as NK cells and macrophages, are thought to be the main

effectors of anti-GD2 antibody potency in NB tumors. Thus, to

investigate the role of immune cells in the NB TME, we used

western blotting to measure the levels of CD11b, CD45, and CD68

expression in NB tissues (Figure 10B). The results showed that

CD11b (PDC#2, PDC#4, and PDC#5) was positive for immune
A

B

FIGURE 6

GVSA analysis of PCSK9 in various tumors. (A) BLCA, (B) BRCA.
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infiltration of NB, which represented the potential involvement of

NK cells in immune infiltration (Figure 10B).

Furthermore, we investigated the PCSK9 prognostic value in

NB patients. Upregulated PCSK9 was associated with a lower PFS in

the NB cohort, which was consistent with our database survival

analysis (HR = 1.51, Figure 10C). Our findings showed that PCSK9

was negatively associated with NK cell infiltration in NB, implying a

potential role of PCSK9 modulation in the NB microenvironment.
4 Discussion

Pan-cancer evaluations are increasingly being used to uncover

functional genes, particularly those with immunological roles in
Frontiers in Oncology 13133
oncology. To better understand the commonalities and

heterogeneities during the fundamental biological processes of

distinct malignancies, pan-cancer approaches have been

employed. The data from such studies is beneficial for developing

novel strategies of cancer prevention and treatment targets (26).

Reports of PCSK9 involvement in the management of

dysregulated cholesterol levels and atherosclerotic cardiovascular

diseases are well established. For example, PCSK9 inhibition during

coronary artery disease is recognized as an effective therapeutic

strategy. Additionally, several studies on cholesterol regulation in

tumor sites have been proposed to be due to the corresponding

association between PCSK9 and oncogenesis (27, 28). Therefore,

PCSK9 regulation in physiological processes such as cancer cell

death and cell proliferation is in addition to its role in cholesterol
A

B

C

FIGURE 7

PCSK9-related KEGG pathway analysis and GO enrichment analysis. (A–C) KEGG pathway analysis and GO enrichment analysis of biological
processes based on the PCSK9-interacted and PCSK9-correlated genes in BRCA, LIHC and LUAD.
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homeostasis (10). The finding that PCSK9 and PD-1 might

collaborate to enhance T cell immunological tolerance suggests a

potential role in the immunotherapy of tumors. However, the

function of PCSK9 in human cancers has not been determined,

and it is not yet known if PCSK9 could have a significant impact on
Frontiers in Oncology 14134
the immunological crosstalk associated with cancer and, in turn,

affect the prognosis of different cancer types. Our novel findings are

discussed below.

First, we conducted extensive data searches from TIMER to

investigate the levels of PCSK9 expression in diverse tumor types.
A

B

D

C

FIGURE 8

Correlation of PCSK9 expression with immune infiltration and various subsets of immune cells. (A) Correlation of PCSK9 expression with the levels of
infiltrating immune cells based on xCell (*p < 0.05, **p < 0.01). (B) Correlation between PCSK9 expression and immunosuppressive factors or
immune stimulatory factors (*p < 0.05, **p < 0.01). (C) Correlation between PCSK9 expression and infiltration scores of six immune infiltrates,
including B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils, in BRCA, BLCA, and LIHC. (D) The association between
PCSK9 copy number variations and immune infiltrates in LIHC, BLCA, BRCA, COAD, and THCA (i–v, *p < 0.05, **p < 0.01, ***p < 0.001).
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The results revealed dysregulated PCSK9 expression in different

cancers. PCSK9 expression was shown to be considerably higher in

the following tissues: BRCA, CESC, CHOL, COAD, ESCA, HNSC,

LIHC, READ, SKCM, STAD, THCA, and ECEC. Low levels of

PCSK9 were expressed in malignancies of the brain, kidney, lung,

and prostate. Our results further detailed that tumor with

substantial PCSK9 expression may express different levels at

various stages and subtypes, based on the GEPIA and UALCAN

databases. DNA methylation has recently been demonstrated to

serve significant regulatory functions in cancer development. In

support of the positive relationship between DNA methylation and

PCSK9 dysregulation, our study discovered that melanoma, non-

small cell lung cancer, cervical squamous cell carcinoma, ESCA,

LIHC, SARC, BLCA, and BRCA all had greater levels of PCSK9

methylation. Taken together, aberrantly expressed PCSK9 was

related to cancer progression and cancer prognosis through

modulation of PCSK9 DNA methylation, an epigenetic hallmark

of cancer.
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Next, we visualized the prognostic landscape in human cancers

using independent datasets from TCGA data in GEPIA and

Kaplan-Meier Plotter. Our study indicated that PCSK9 was a

significant prognostic factor in various cancer types. However, an

apparent heterogeneity was observed in different tumors regarding

prognosis with some cancers exhibiting protective effects whilst

others showed a pathogenic or an insignificant link. Concerning the

heterogeneity, we further explored the correlation between PCSK9

expression and several clinicopathological characteristics in

different stages and grades of LIHC. The results showed that

different factors could to some extent explain the heterogeneity of

cancers that may have led to a protective or detrimental PCSK9

prognostic relationship. These findings suggested that PCSK9 may

be a tumor molecular marker according to different forms of

initiation and progression of LIHC.

Another significant discovery was the correlation between

PCSK9 expression and various infiltrating types of immune cells

in the majority of cancer types. These cells, including Treg cells,
A

B

FIGURE 9

Correlation analysis between PCSK9 expression and drug sensitivity. (A) Correlation between PCSK9 and sensitivity of the top 10 anticancer drugs in
GDSC database. (B) Difference of drug sensitivity between PCSK9-related expression groups in CTRP database.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1134063
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2023.1134063
DCs, macrophages, neutrophils, and tumor-infi ltrating

lymphocytes (B cells and T cells), are crucial for the development

and spread of tumors (29, 30). For instance, Treg cells are thought

to be suppressors of overactive immunological responses by

producing CTLA4, IL-10, and TGF, which may allow tumor cells

to evade the immune system (31, 32). Treg cells may also affect the

proportion of CD4+ and CD8+ T cells and T cell differentiation
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(33). However, under the influence of the TME, Treg cells are

immature and have a poor immune regulatory capacity, which

could result in tumor immune escape. Studies have demonstrated

the complex regulatory network of Treg cells in the TME, which

makes Treg regulation in immunotherapy more challenging (34).

Our research found a link between aberrant PCSK9 expression and

the presence of Tregs in a variety of malignancies (Figure 10A),
A

B

C

FIGURE 10

(A) Preliminary experimental verification of PCSK9 expression in neuroblastoma (NB). The mRNA and protein expression levels of PCSK9 in paired NB
and adjacent non-tumor tissues by qRT-PCR (n=18; Figure 1A) and western blotting (n=18; Figures 1B, C) **p < 0.01, ***p < 0.001; (B) The
association between NK cell-relevant immune checkpoints (CD11b, CD45, CD68) and PCSK9 expression in NB was detected by western blot in 18
NB tissue samples (***p < 0.001). (C) The association between PCSK9 expression in different clinical stages and survival analysis of patients. WHO
stage III and IV showed highly expressed PCSK9 that correlated with poor progression-free survival (PFS, HR=1.51, 95% CI 1.25–1.71, p < 0.05).
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which may help to explain the synergistic effects of PCSK9 and PD-

1 in immunotherapy.

The degree of CD8+ T cell infiltration into a tumor is yet

another process that has been correlated with improved prognosis

(35, 36). CD8+ T cells serve crucial functions in the immune system

of the tumor, not only by attracting other immune cells and

increasing the immunological response, but also by increasing the

effectiveness of cancer immunotherapy, and ultimately improving

the prognosis of patients (37). Furthermore, our examination of the

pan-cancer population highlighted a correlation between PCSK9

expression and CD8+ T cell subpopulations in LIHC and LUAD.

These findings suggested that PCSK9 might be involved in a

significant and essential role in the immune infiltration.

Immune checkpoints that are abnormally expressed in the

immune cell membrane or that act through receptors on cell

membranes have the potential to be modulated by an oncogene

(38). In this study, we gathered expression information on over 40

common immune checkpoint genes and investigated the connection

between PCSK9 and these immune checkpoint genes. Using LIHC as

an example, upregulated PCSK9 expression was positively linked with

immunosuppressive checkpoint genes such as PDCD1 (encoding PD-

1), CTLA4, and LAG3, which are primarily expressed in exhausted T

cells and consequently influence the prognosis of LIHC (39). A

correlation of co-inhibition of PCSK9 and PDCD1 or CTLA4

immune checkpoints could explain the enhanced effect of

combining two or more ICIs in the 2nd generation immune

therapy strategy (37). FOXP3 and CCR8 strongly correspond with

PCSK9 expression in LIHC, indicating that they may be involved in

adaptive immune responses such as Treg cell-mediated immune

response control (40). Next, we chose LUAD as another example,

as we previously revealed that PCSK9 was downregulated in LUAD

patients, and associated with a poorer prognosis. In the immune

checkpoint examination, a significant negative correlation existed

between PCSK9 and CD163, V-set and Ig domain-containing 4

(VSIG4), and membrane spanning 4-domains A4A (MS4A4A),

which encode proteins exhibited on the surface of M2

macrophages, indicating the relationship with M2 macrophage

polarization in the tumor microenvironment (41, 42). Furthermore,

we also found a significant negative relationship between PCSK9

overexpression and NOS2, which encodes a protein found on the

surface of M1 macrophages. Collectively, these findings elucidated a

possible stimulus function of M2 polarization and inflammation

when considered jointly. Above all, these findings strongly suggest

that PCSK9 could be a future cancer immunotherapy target based on

the interaction of immune cells in multiple cancer types.

The function of PCSK9 was not only to regulate cholesterol and

prevent cardiovascular diseases, but also to potentiate the

application of PCSK9 inhibitors in ischemia-reperfusion injury

and enhance the synergistic anticancer effect of PD-1. All these

highlighted the potential application prospect of PCSK9 inhibitors

in clinic. Furthermore, recent research has unveiled an additional

role of PCSK9 in the degradation of major histocompatibility

complex I (MHC-I) receptors, exerting effects on the immune

system and various physiological functions. This significant

finding suggests a potential strategy of inhibiting PCSK9 to

potentially augment T cell infiltration within tumors and enhance
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the response to immune checkpoint therapy. Overall, the discovery

of PCSK9’s regulation of MHC I levels on cell surfaces represents a

crucial breakthrough, providing valuable insights into immune

infiltration within tumor microenvironments. Our study further

analyzed the signal pathways that may performed in the

tumorigenesis and revealed the sensitivity of PCSK9 correlated

with anti-tumor drugs in tumor treatment and their

corresponding targets, such as PAK1, BCL2 and MDM2. These

results indicated the potential role of PCSK9 in chemosensitivity or

resistance in different cancers. However, our study’s use of

numerous datasets was not without its limitations. For example,

past laboratory findings could not support a logical interpretation of

the link between PCSK9 expression and methyltransferase gene

expression. Whilst useful conclusions could be drawn from our data

based on numerous pan-cancer patient datasets, proof of concept

clinical trials are needed to validate them. Specifically, the execution

of functional tests and mechanistic investigations in in vivo and in

vitro research, as well as clinical trials, are therefore needed for

further analysis. Finally, even though we were able to show that

PCSK9 expression was associated with tumor immune cell

infiltration and patient survival, we were not certain that PCSK9

affected clinical survival through the immunological system; this

requires further clinical trial verification.

Recently, the association between PCSK9 and extracellular vesicle-

derived miRNA has been studied in the context of cardiovascular

disease (43). Studies have found that extracellular vesicles (EVs) can be

induced by PCSK9 and hence transport miRNAs to target cells, where

the miRNAs can further modulate the expression of target genes,

including LDLR and TLR4 (44). The interaction between PCSK9 and

EVs in tumorigenesis was interesting, but due to limited research, our

pan-cancer analysis cannot reveal this point. Further study is of great

significance to fully understand the specific mechanisms of the

interaction between EVs and miRNAs to regulate the expression of

PCSK9 and its influence on tumor mechanisms. Interestingly,

emerging data show that the circulating concentration of PCSK9 in

women is higher than that in men, which indicates that the potential

roles of PCSK9may be different according to gender (45, 46). However,

these researches of sex-related PCSK9 mainly focused on

cardiovascular diseases. As we mentioned that some studies have

found that higher levels of PCSK9 are associated with increased risk

of colorectal cancer and liver cancer in both men and women. And

some breast cancer patients showed that women with higher levels of

PCSK9 had a higher risk of developing metastatic disease. Hence, about

the relationship between sex-related PCSK9 and tumor, it needs to be

further explained. Since the expression of PCSK9 is sex-related,

research is needed to explore if there are differences in the

association of PCSK9 and cancer risk between men and women.

Although our pan-cancer analysis did not include related gender

factors, the relationship between the abnormal expression of PCSK9

related to gender and the prognosis, immune infiltration and treatment

of tumor deserves further consideration. Since the current PCSK9

inhibitors have been used in clinic, and the incidence of subsequent

related tumors in these patients can be compared in a prospective study

to help prove the potential of PCSK9 in tumor immunotherapy.

To the best of our knowledge, this is the first report based on data

mining and in-depth bioinformation analysis on the comprehensive
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molecular characteristics of PCSK9 across diverse cancer types.

Furthermore, we found a strong correlation between PCSK9

expression and an immune checkpoint marker and immune cell

infiltration levels. Finally, our observation that aberrant PCSK9

expression was associated with a poorer prognosis and immunity

in neuroblastoma is consistent with previous pan-cancer findings.

Further investigations and clinical trials are warranted to validate the

utility of PCSK9 as a reliable biomarker and explore its potential role

in guiding immunotherapeutic interventions for cancer treatment.
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Multi-omics analysis reveals
the involvement of origin
recognition complex subunit
6 in tumor immune regulation
and malignant progression

Jinfeng Zhu1,2, Qitong Chen1,2, Liyun Zeng1,2, Hongyu Gao1,2,
Tong Wu1,2, Yeqing He1,2, Jiachi Xu1,2, Jian Pang1,2, Jing Peng1,2,
Yueqiong Deng1,2, Yi Han1,2 and Wenjun Yi1,2*

1Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha,
Hunan, China, 2Clinical Research Center For Breast Disease In Hunan Province, Changsha,
Hunan, China
Background: Origin recognition complex 6 (ORC6) is one of the six highly

conserved subunit proteins required for DNA replication and is essential for

maintaining genome stability during cell division. Recent research shows that

ORC6 regulates the advancement of multiple cancers; however, it remains

unclear what regulatory impact it has on the tumor immune microenvironment.

Methods: Unpaired Wilcoxon rank sum and signed rank tests were used to

analyze the differences in the expression of ORC6 in normal tissues and

corresponding tumor tissues. Multiple online databases have evaluated the

genetic alterations, protein expression and localization, and clinical relevance

ofORC6. To evaluate the potential prognostic impact and diagnostic significance

of ORC6 expression, we carried out log-rank, univariate Cox regression, and

receiver operating characteristic curve analysis. The ICGC-LIRI-JP cohort,

CGGA-301 cohort, CGGA-325 cohort, CGGA-693 cohort, and GSE13041

cohort were used for external validation of the study findings. The associations

between ORC6 expression and immune cell infiltration, immune checkpoint

expression, and immunotherapy cohorts was further analyzed. To explore the

functional and signaling pathways related to ORC6 expression, gene set

enrichment analysis was performed. To clarify the expression and function of

ORC6 in hepatocellular carcinoma (LIHC) and glioma, we conducted in vitro

experiments.

Results: Expression ofORC6 is upregulated in the majority of cancer types and is

associated with poor patient prognosis, notably in cases of LIHC and gliomas. In

addition, ORC6may be involved in multiple signaling pathways related to cancer

progression and immune regulation. High expression ofORC6 correlates with an

immunosuppressive state in the tumor microenvironment. The results of further

immunotherapy cohort analysis suggested that patients in the ORC6 high-
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expression group benefited from immunotherapy. Inhibiting ORC6 expression

suppressed the proliferative and migratory abilities of LIHC and glioma cells.

Conclusion: High expression of ORC6 may be used as a biomarker to predict the

poor prognosis of most tumor patients. The high expression of ORC6 may be

involved in the regulation of the tumor immunosuppressive environment, and it is

expected to become a molecular target for inhibiting tumor progression.
KEYWORDS

Orc6, pan-cancer, prognosis, immunotherapy, tumor microenvironment
1 Introduction

Worldwide, cancer presents a life-threatening situation and is one

of the most economically burdensome diseases (1). Currently, no

treatment for cancer is absolutely effective. As research advances,

scientists are increasingly concentrating on the shared characteristics

of different malignant tumors to uncover their underlying causes and

create targeted inhibitors for cancer therapy (2). For instance, PD-L1

levels are often increased in different cancer types, and recent studies

indicate that many oncogenic signaling pathways lead to this

overexpression. Antagonistic antibodies against the inhibitory

immune checkpoint receptor PD-1 or its ligand PD-L1 have shown

promise in the treatment of various cancers, leading to significant

improvement in patient survival rates (3). Protein tyrosine kinases

from the human epidermal growth factor receptor family, such as

EGFR and HER2, are important therapeutic targets for many

malignancies, including non-small cell lung cancer, breast cancer,

and gastroesophageal cancer, particularly colorectal cancer (4).

Aldehyde dehydrogenase (ALDH) serves as a cancer stem cell

biomarker across various cancers. Clinically, ALDHs are also

regarded as indicators of poor prognosis in solid cancers. Targeting

ALDHs may impede cancer stem cells in solid tumors, thereby

achieving therapeutic effects (5). Therefore, analyzing the

differential expression of genes across cancers, screening valuable

genes, and exploring their correlation with clinical prognosis and the

tumor immune microenvironment will promote the further

development of tumor-targeted therapy and immunotherapy.

The origin recognition complex (ORC) is a vital six-subunit

protein that is highly conserved across species and plays a crucial

role in DNA replication. It is essential for maintaining genome

stability during cell division (6). ORC6, the smallest subunit of

human ORC, is primarily involved in chromosome segregation,

DNA replication, and cell division. It localizes to replication forks to

carry out these functions (7). ORC6 is a cofactor in the mismatch

repair (MMR) complex that promotes efficient mismatch repair (8).

In recent years, research has identified a correlation between

elevated ORC6 expression and adverse prognostic outcomes in

patients with colorectal cancer (9), renal clear cell carcinoma (10),

gastric adenocarcinoma (11), and breast cancer (12). Current

research on ORC6 in tumors is restricted to specific types of

human cancers. There has been no systematic multi-omics
02141
analysis across different types of cancer, notably in liver

hepatocellular carcinoma (LIHC) and glioma (GBMLGG).

The research found that ORC6 was frequently overexpressed in

various cancer types and was associated with adverse survival outcomes.

Additionally, the biological function of ORC6 may be linked to RNA

modifications, DNA methylation, and the tumor immune

microenvironment. By examining ORC6 across cancers, we observed

that it significantly contributes to the development of LIHC and

GBMLGG. Our study reveals that ORC6 acts as an independent risk

factor for the overall prognosis of LIHC and GBMLGG. Subsequently,

we conducted in vitro experiments to elucidate whetherORC6 promotes

the progression of LIHC and GBMLGG. Together, our investigation

provides a comprehensive understanding of the tumorigenic role of

ORC6 in different cancers and indicates that ORC6 could be a

dependable biomarker for predicting the clinical prognoses and

immune landscapes in patients with LIHC and GBMLGG.
2 Materials and methods

2.1 Data preprocessing and differential
expression analysis

We obtained a unified and standardized pan-cancer dataset

(TCGA TARGET GTEx, https://xenabrowser.net/) from the UCSC

database. Furthermore, we extracted the ORC6 gene values from each

sample and applied log2 (x+1) transformation for each value. The

Sangerbox (13) online tool was used for visualization. In addition, we

acquired validation cohorts from external sources, including the

International Cancer Genome Consortium (ICGC), Chinese Glioma

GenomeAtlas Project (CGGA), and Gene Expression Omnibus (GEO)

databases. These cohorts included the ICGC-LIRI-JP cohort, CGGA-

301 cohort, CGGA-325 cohort, CGGA-693 cohort, and GSE13041

cohort. Cancer-type abbreviations are listed in Table 1.
2.2 Genetic alterations, localization, and
interaction network of ORC6

The gene mutation type and frequency of ORC6 in the TCGA

pan-cancer dataset were explored by accessing cBioPortal (https://
frontiersin.org
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www.cbioportal.org/). We obtained the copy number variation

(CNV) dataset at gene level 4 from all TCGA samples processed by

GISTIC software (14) through GDC (https://portal.gdc.cancer.gov/).

We used the unpaired Wilcoxon rank sum test or the Wilcoxon

signed rank test to compare the values between the two groups and

the Kruskal–Wallis test for differences among multiple groups.

The Human Protein Atlas (HPA, https://www.proteinatlas.org/)

was utilized to obtain images of the subcellular localization of ORC6

protein in cancer cells (HEK293 and PC-3) by immunofluorescence

staining of cells. Furthermore, the subcellular localization of the

ORC6 gene was obtained through the Genecards database.

The comPPI website (http://comppi.linkgroup.hu/) was utilized

to analyze the protein-protein interaction network of ORC6. The

minimum interaction score was 1, and the edge width was scaled

based on the interaction score.
2.3 The relationship among ORC6
expression levels, clinical characteristics,
and prognosis

The correlation of ORC6 expression with clinical features was

assessed by Spearman correlation analysis. We performed univariate

Cox regression analysis to investigate the prognostic significance of

ORC6 expression in predicting the disease-free interval (DFI),

progression-free interval (PFI), overall survival (OS), and disease-

specific survival (DSS) in pan-cancer cohorts. We then utilized forest

plots for a graphical representation of these results.

TCGA data were curated to extract ORC6 expression levels in

transcripts per million (TPM) format, followed by data

normalization using log2(TPM+1). Survival data of matched

samples were integrated and subsequently subjected to optimal

grouping truncation using the ‘surv_cutpoint’ function from the

‘survminer’ package. The aim was to distinguish between the high

and low ORC6 expression groups. Prognostic differences between
TABLE 1 Tumor types and abbreviations.

Abbreviation Full name

ACC Adrenocortical carcinoma

ALL Acute Lymphoblastic Leukemia

AML Acute myeloid leukemia

AST Astrocytoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC
Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL Cholangiocarcinoma

CML Chronic myelogenous leukemia

COAD Colon adenocarcinoma

COADREAD Colon adenocarcinoma/Rectum adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

GBMLGG Glioma

HGG High-grade glioma

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIPAN Pan-kidney cohort (KICH+KIRC+KIRP)

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LSCC Lung squamous cell cancer

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MEL Melanoma

MESO Mesothelioma

NSCLC Non-small cell lung cancer

ODG Oligodendroglioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

RB Retinoblastoma

RCC Renal cell carcinoma

READ Rectum adenocarcinoma

(Continued)
TABLE 1 Continued

Abbreviation Full name

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

STES Stomach and Esophageal carcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UM Uveal Melanoma

UVM Uveal Melanoma

WT High-Risk Wilms Tumo
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the high- and low-expression groups were evaluated using the log-

rank test. RNA-seq data in TPM format from TCGA and GTEx

were uniformly processed through the Toil pipeline, as sourced

from UCSC XENA (https://xenabrowser.net/datapages/). ORC6

expression levels corresponding to TCGA cancer samples and

GTEx normal tissue samples for each cancer type were extracted.

The data were normalized using Log2(TPM+1). To assess the

diagnostic accuracy for tumor detection, we employed the ‘pROC’

package to calculate sensitivity and specificity. Diagnostic value was

quantified by the area under the curve (AUC), with a value of 1.0

indicating perfect diagnostics and 0.5 representing no diagnostic

value. An AUC greater than 0.85 was considered to possess a high

diagnostic value.
2.4 Correlation of ORC6 expression
with DNA methylation and RNA
modification genes

The correlation of ORC6 expression with DNA promoter

methylation levels in cancer was explored by UALCAN(https://

ualcan.path.uab.edu/) (15). The correlation of ORC6 expression

with marker gene expression associated with three classes of RNA

modifications (N1-methyladenosine (m1A), 5-methylcytosine

(m5C) and N6-methyladenosine (m6A)) (16) across cancers was

assessed using Spearman correlation analysis.
2.5 Identification of corresponding
characteristics of ORC6

To clarify the expression of ORC6 and immune-related

characteristics, we employed Spearman correlation analysis to

calculate the correlation between ORC6 and 5 types of immune-

r e l a t e d g ene s ( ch emok in e s , c h emok in e r e c ep to r s ,

immunosimulators, immunoinhibitors, and MHC). TISIDB

(http://cis.hku.hk/TISIDB/) (17) to assess the immune cell

infiltration status of ORC6.

To assess the impact of immunotherapy on ORC6 expression,

we analyzed the immunotherapy advanced urothelial carcinoma

cohort (IMvigor210 cohort) (18). The R package ‘limma’ was

utilized for differential expression analysis of the target gene in

the different groups. Additionally, we accessed the CAMOIP

database (https://www.camoip.net/) (19) to obtain the prognostic

information of the Auslander-Melanoma (20) immunotherapy

cohort and assessed the effect of ORC6 expression on the survival

time of patients after immunotherapy.

The possibility of ORC6 expression as a predictive marker for

immunotherapy response was analyzed using the TISMO (http://

tismo.cistrome.org/) (21) and TIDE (http://tide.dfci.harvard.edu/)

(22) databases. To examine the correlation between ORC6

expression and the half-inhibitory concentration (IC50) of the

drug, we employed the R package ‘pRRophetic’ (23) for the analysis.
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2.6 Single-cell and bulk transcriptome
sequencing analysis

Tumor Immune Single-cell Hub (TISCH, http://tisch.comp-

genomics.org/) is a scRNA-seq database that has been specifically

developed to investigate the single-cell landscape of the tumor

microenvironment (TME) (24). We screened single-cell datasets,

i n c l u d i n g A L L _G S E 1 3 2 5 0 9 , B R CA _G S E 1 6 1 5 2 9 ,

CESC_GSE168652, CHOL_GSE138709, CRC_GSE166555,

ESCA_GSE160269, HNSC_GSE103322, LIHC_GSE166635,

LSCC_GSE150321, OV_GSE154600, PAAD_ CRA001160,

PRAD_GSE141445, STAD_GSE134520, THCA_GSE148673 and

UVM_GSE139829. UMAP plots were used for the visualization of

cell types and ORC6 expression levels.
2.7 Functional enrichment analysis

We utilized single-cell sequence data obtained from CancerSEA

(http://biocc.hrbmu.edu.cn/CancerSEA/) (25) to examine the

relationship between ORC6 and 14 distinct cancer functional states.

To investigate the mechanisms underlying the impact of ORC6

expression on the prognosis of tumor patients, we performed gene

set enrichment analysis (GSEA) to explore the ORC6-related

signaling pathways, as previously described in the literature (26,

27). We performed differentially expressed gene (DEG) analysis on

the ORC6-low and ORC6-high subgroups of each cancer using the

“limma” R package. The threshold was set at 30%, and genes with

adjusted P values <0.05 were considered DEGs. We selected the

h.all.v7.2.symbols.gmt gene set as our reference and employed it to

determine the normalized enrichment score (NES) and false

discovery rate (FDR). By examining the correlation between the

ORC6 gene expression matrix and the known functional genome,

we evaluated the impact of coordinated changes in genes within the

genome on phenotypic alterations. The presented findings were

visualized as bubble plots with the aid of the R package “ggplot2”.

The CAMOIP (19) network server was employed to perform Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) analyses based on ORC6 expression in TCGA-LIHC

transcriptome data using the R package “clusterProfiler”.
2.8 Cell lines and ORC6
expression detection

The LIHC cell lines HCCLM3 and MHCC97-H and the hepatic

epithelial cell line THLE-2 were acquired from BeNa Culture

Collection. The HepG2, U-251 MG, and LN229 cell lines were

obtained from Procell and cultured according to the manufacturer’s

instructions. Transfection was carried out in 6-well plates (NEST

Biotechnology) using Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s protocol in HepG2, HCCLM3, U-251 MG, and

LN229 cells. The siRNA used in this study was synthesized by
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GenePharma. Supplementary Table S1 lists the sequences of the

siRNAs used in this study. The Western blot experimental steps

were described in a previous study (28). The antibodies used in this

study were anti-ORC6 (Proteintech, 17784-1-AP, 1:1000) and anti-

alpha tubulin (Proteintech, 11224-1-AP, 1:5000).

2.9 Cell viability and proliferation assays

Control and experimental cells were placed in 96-well plates at

cell densities of 5,000 (HepG2 and HCCLM3) or 3,000 (U251 MG

and LN229) cells per well, respectively. After incubation for 0, 24,

48, and 78 hours, cell viability was assessed by using the CCK-8

assay (GlpBio), and the optical density (OD) was measured at 450

nm with a microplate reader.

Cell proliferation was assessed using EdU (5-ethynyl-2’-

deoxyuridine) staining. Briefly, control and experimental cells

were seeded in 96-well plates and incubated overnight. After

incubation with 10 mM EdU (RiboBio) for 2 hours, cells were

fixed with 4% paraformaldehyde for 20 minutes, permeabilized with

0.5% Triton X-100 for 15 minutes, incubated with EdU reaction

solution for 30 minutes, and finally incubated with Hoechst 33342

for 10 minutes. Images were taken using an inverted fluorescence

microscope (Olympus).

2.10 Cell migration assays

Control and experimental cells were seeded onto a 6-well plate

and cultured until reaching a confluence of 70% before undergoing

transfection and continuing to be cultured normally. Scratch assays

were performed when cell confluence reached approximately 90%,

with images taken at 0 and 36 hours thereafter. For Transwell

migration assays, 50,000 (HepG2 and HCCLM3) or 15,000 (U251

MG and LN229) cells were seeded into the chamber and cultured

with serum-free medium within the insert and with 10% complete

medium outside of the insert. After 24 hours, cells were fixed and

stained, and then the cells within the insert were removed by gently

swabbing with a cotton tip before imaging.

2.11 Statistical analysis

We used Student’s t-test to determine the statistical significance

of differences between the two groups. Paired t-tests were conducted

to compare the expression levels of ORC6 in tumor tissues with those

in their paired normal tissues. We evaluated the prognostic

significance of ORC6 by conducting log-rank and univariate Cox

regression analyses. Spearman correlation analysis was employed to

assess the correlations between ORC6 and its corresponding features.

A p value < 0.05 was considered to indicate statistical significance.
3 Results

3.1 Expression landscape of ORC6

We conducted a comparative analysis of ORC6 expression in

tumor vs. normal tissues by merging the TCGA and GTEx
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databases. ORC6 was found to be significantly upregulated in 33

tumors (all p<0.05), as illustrated in Figure 1A. However, no

significant changes were observed in TCGT. Then, our analysis of

tumor and matched normal tissue samples from the TCGA

database revealed that ORC6 expression was significantly elevated

in tumor samples from BLCA, BRCA, CHOL, COAD, ESCA,

HNSC, KICH, KIRC, KIRP, LIHC, LUSC, LUAD, PRAD, READ,

STAD, THCA, and UCEC (Figure 1B, all p<0.05). Further protein

score hints were provided by the HPA online database. ORC6

showed high protein scores in the stomach, duodenum, colon,

pancreas, lymph nodes, testis, and bone marrow but low protein

scores in the liver (Figure 1C). Regarding its protein expression in

tumors, we observed that ORC6 was moderately/highly expressed in

100% of head and neck cancer (3/3) and testicular cancer (11/11)

tissues and was moderately/highly expressed in 54.5% (6/11) of liver

cancer tissues (Figure 1D). To clarify the localization of ORC6

protein expression, we obtained immunofluorescence staining

images of ORC6 protein expression in HEK 293 and PC-3 cells

through the HPA database (Supplementary Figure S1A). Further

access to the Genecards database was performed for validation

(Supplementary Figure S1B). We found that ORC6 was mainly

concentrated in the nucleus and cytoplasm. Finally, we constructed

a PPI network using interaction data sourced from the ComPPI

website. The results of our analysis showed that proteins found to be

in close interaction with ORC6 were primarily localized within the

nucleus, as depicted in Supplementary Figure S1C. In summary, we

identified that ORC6 was generally highly expressed in tumors.
3.2 ORC6 genetic alterations and
epigenetic modifications

The frequency and type of ORC6 gene genetic alterations across

cancers were analyzed by the cBioPortal platform. As illustrated in

Supplementary Figure S1D, the most frequent type of genetic

alteration in ORC6 was “amplification”, followed by “deep

deletion”, “mutation” and “structural variation”. SARC exhibited

the greatest frequency of ORC6 genetic mutations. These alterations

included “deep deletions” in 2.35% of genes and “structural

variants” in 0.39% of genes. In PRAD, the gene alteration

frequency of ORC6 was 2.63%, of which the frequency of

“amplification” reached 2.43%. In both DLBC and UCS, ORC6

genetic alterations were “deeply deleted”. In UCEC and SKCM, the

frequency of ORC6 gene “mutation” reached 1.13%. In five different

cancer types (ACC, ESCA, LIHC, KIRP, and PAAD), the ORC6

gene only exhibited “amplified” genetic variants. The mutation

frequency of the ORC6 gene is generally low, at less than 3%.

This could be due to the high conservation of genes within the ORC

family (29). Subsequently, to explore the relationship between

ORC6 expression and genomic variations across different cancer

types, we employed either the Wilcoxon rank-sum test or the

Kruskal–Wallis rank-sum test. We observed differential

expression of ORC6 across three distinct variant groups (gain-

variant, loss-variant, and no-variant) in 14 different cancers:

BLCA, BRCA, CESC, COAD, HNSC, KIPAN, LIHC, LUAD,

LUSC, OV, PRAD, STAD, STES, and UCS (Supplementary
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Figure S1E, all p<0.05). Specifically, ORC6 expression was generally

higher in the gain-variant group than in the loss/neutral-

variant group.

Numerous reports suggest that abnormal DNA methylation in

the promoter region of genes can induce changes in chromatin

structure and DNA stability, ultimately leading to the dysregulation

of gene expression within the body (30). Therefore, we analyzed

differences in the DNA promoter methylation levels of ORC6

between tumor and normal tissues using UALCAN. As depicted

in Supplementary Figure S2A, methylation levels were lower in

BLCA, BRCA, HNSC, THYM, UCEC, and PRAD than in normal

tissues (all p<0.05). In contrast, methylation levels were higher in

PAAD, KIRC, LUSC, and SARC than in normal tissues

(Supplementary Figure S2A, all p<0.05). Moreover, RNA

modifications are critical in selectively regulating the expression

of genes (31). Our analysis, as illustrated in Supplementary Figure

S2B, reveals a strong positive correlation between ORC6 expression

and m1A-, m5C-, and m6A-related genes across almost all tumor

types. These findings suggest that the ubiquitous overexpression of

ORC6 in tumors may be closely associated with its epigenetic
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modifications and genetic variations. This correlation further

supports the potential of ORC6 as a cancer regulatory factor and

provides valuable clues for further exploring its role in cancer.
3.3 Correlation of ORC6 expression with
clinicopathological features

We also investigated the correlations between ORC6 expression

and various clinicopathological features. According to the results

presented in Figure 2A, there was a positive correlation between

ORC6 expression and lymph node metastasis in several tumor

types, and the correlations in HNSC (p=2.2e-4), KIPAN (p=6.8e-

8), KIRC (p=5.6e-3), PRAD (p=4.0e-8), THCA (p=0.02) and other

tumor types were the most robust. Figure 2B shows that the increase

in ORC6 expression was positively correlated with tumor metastasis

in ACC (p=8.2e-3), KIPAN (p=1.9e-3), KIRC (p=4.3e-4), LUAD

(p=9.5e-3), PRAD (p=0.01), and SKCM (p=0.03). Furthermore,

increased ORC6 expression was positively correlated with the T

stage of ACC (p=4.8e-8), KIPAN (p=1.1e-9), KIRC (p=1.4e-5),
B

C

D

A

FIGURE 1

ORC6 expression profiles. (A) ORC6 mRNA expression levels in pan-cancer tissues and corresponding normal tissues derived from TCGA and GTEx
databases. (B) Differential expression of ORC6 in tumor and paired adjacent tissues. (C, D) Protein expression analysis of ORC6 in normal tissues and
cancer tissues using the Human Protein Atlas database. The left panel shows the expression scores or positive percentages in each tissue, while
representative immunohistochemistry images of normal liver tissue and liver cancer tissue are shown in the right panel. (**p < 0.01, ***p < 0.001).
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KIRP (p=2.4e-8) and PRAD (p =7.0e-12) (Figure 2C). Figure 2D

shows that the increased expression of ORC6 was positively

correlated with the histological grade of GBMLGG (p=9.2e-25),

HNSC (p=5.6e-9), LGG (p=9.2e-25), LIHC (p=3.0e-15) and PAAD

(p=2.9e-9) but negatively correlated with the histological grade of

STES (p=6.3e-5). Similarly, increased ORC6 expression was

positively correlated with clinical staging (Figure 2E), and typical

tumor types were ACC (p=6.3e-5), HNSC (p=1.5e-3), KIPAN

(p=3.3e-9), KIRC (p=2.4e-4), and LUAD (p=0.01). From the

above findings, it can be inferred that ORC6 might play a role in

tumor progression and metastasis.
3.4 Prognostic and diagnostic
value of ORC6

To investigate the effect of ORC6 on tumor prognosis, we

plotted survival curves and assessed OS using the Kaplan–Meier
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method. As shown in Figure 3, in ACC, BRCA, GBMLGG, HNSC,

KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUADLUSC, MESO,

OSCC, PAAD, PCPG, SARC and UCEC patients, high ORC6

levels were highly correlated with poorer OS (Figure 3A; all

p<0.05). Moreover, it is worth noting that high ORC6 expression

was exclusively correlated with improved OS in OV

(Figure 3B; p<0.05).

Following this, we conducted Cox regression analysis to assess

the correlation between ORC6 expression and several survival

outcomes, including OS, DSS, DFI, and PFI, for each tumor type.

The results were then presented in the form of a forest plot. As

shown in Figure 4A, our findings indicate that high ORC6

expression was significantly associated with shorter OS in

GBMLGG, KIPAN, KIRP, LGG, ACC, KIRC, MESO, LIHC,

PCPG, PRAD, PAAD, KICH, LUAD, UVM, BRCA and HNSC

patients (all p<0.05). High ORC6 expression in GBMLGG, KIPAN,

KIRP, KIRC, ACC, LGG, MESO, LIHC, PRAD, KICH, PCPG,

BRCA, PAAD, UVM, and LUAD patients was associated with
B
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A

FIGURE 2

Correlations between clinical features and ORC6. (A–E) Correlation of ORC6 expression with pan-cancer clinical N stage (A), M stage (B), T stage
(C), histological grade (D), and clinical stage (E). (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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poorer DSS (Figure 4B, all p<0.05). Regarding DFI, there was a

significant association between high ORC6 expression and lower

DFI in KIRP, KIPAN, LIHC, BRCA, PRAD, PAAD, SARC, THCA,

MESO, and LUAD patients, whereas high ORC6 expression in OV

patients was associated with improved prognosis for DFI

(Figure 4C, all p<0.05). Furthermore, as illustrated in Figure 4D,

high ORC6 levels were strongly correlated with poorer PFI in

GBMLGG, KIPAN, PRAD, KIRP, ACC, LIHC, LGG, UVM,

KIRC, KICH, PAAD, BRCA, MESO, BLCA and HNSC (all p<0.05).

Moreover, we assessed the diagnostic accuracy of ORC6 in

different types of cancer using ROC curves. As shown in Figure 5,

in ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD,

ESAD, ESCA, GBM, HNSC, LAML, LIHC, LUAD, LUADLUSC,

LUSC, OSCC, OV, PAAD, READ, STAD, UCEC and UCS, ORC6

could be used as a highly accurate diagnostic marker (Figures 5A–

W, all AUC>0.85). In DLBC, GBMLGG, KICH, KIRC, KIRP,

SKCM, and THYM, ORC6 had moderate diagnostic performance

(Supplementary Figures S3A–E, H, K; all AUC=0.7~0.85). In LGG,

PRAD, TGCT, and THCA, ORC6 had poor diagnostic values

(Supplementary Figures S3F, G, I, J; all AUC=0.5~0.7). In

conclusion, our study revealed that high expression of ORC6 is

generally linked to unfavorable prognosis in the majority of cancer

types, and it has good diagnostic value.
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3.5 Pathways and functions associated with
ORC6 expression

To explore the possible biological pathways influenced by ORC6

that may contribute to tumorigenesis and progression, we conducted

GSEA on data obtained from 33 tumors from TCGA. As illustrated in

Figure 6A, we observed that immune-related pathways, including

TNFa signaling via NFkB, IFN-a response, IFN-g response,

inflammatory response, IL-6/JAK/STAT3, IL-2/STAT5, complement

and coagulation cascades, and allograft rejection pathways, were

significantly enriched across a diverse range of tumors. Moreover, we

observed a positive correlation between ORC6 expression and MYC

target V2, MYC target V1, MTORC1, mitotic spindle, G2 checkpoint,

E2F target, DNA repair, and other pathways across cancers.

Furthermore, KEGG analysis revealed that ORC6 was mainly

involved in the synthesis and degradation of various substances, drug

metabolism, the cell cycle, ferroptosis, and neuroactive ligand-receptor

interactions in LIHC (Figure 6B). GO analysis, including the BP, CC,

andMF categories, indicated thatORC6was mainly related to immune

response regulation and biological enzyme activity in LIHC

(Figures 6C–E).

To explore ORC6 expression in diverse TMEs, including ALL,

BRCA, CESC, CHOL, CRC, ESCA, HNSC, LIHC, LSCC, OV,
B

A

FIGURE 3

Relationship between ORC6 expression and overall survival (OS) of patients. (A, B) Relationship between ORC6 expression levels and prognosis in
the indicated tumor types. In the abbreviation of tumor type, red represents poor prognosis, and blue represents good prognosis. The results are
grouped by the best cutoff value, and the log-rank method was used for survival difference analysis.
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PAAD, PRAD, STAD, THCA, and UVM, we investigated their

expression distribution (Figures 7A–O). The results were

interesting, as they showed that ORC6 was primarily expressed at

high levels in the malignant cells of these cancers. In STAD, it was

predominantly expressed in pit mucus cells (Figure 7M). It is worth

noting that in LIHC, ORC6 was also found to be expressed in T-cell

proliferation, which demonstrates its potential role in this immune

response (Figures 7H, P). To further investigate the relationship

between ORC6 and the functional status of different cancers, we

analyzed single-cell sequencing data obtained from CancerSEA for

14 types of cancer. In most tumors, ORC6 showed a positive

correlation with the cell cycle, proliferation, DNA damage, and

DNA repair (Supplementary Figure S4). In contrast, ORC6 was

negatively associated with apoptosis, hypoxia, metastasis, and

quiescence in most tumors (Supplementary Figure S4). These

findings suggest a correlation between abnormal expression of

ORC6 and the advancement of cancer as well as the immune

response of cancer.
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3.6 Correlation between ORC6 expression
and the tumor immune landscape

Investigating the possible gene expression within tumors and its

connection to immune cells can greatly aid in predicting the clinical

outcome for patients with tumors and selecting appropriate

diagnostic targets and intervention strategies (32). To gain further

insights into the correlation between ORC6 and immune cells in the

TME, we used the TISIDB tool for analysis. The pan-cancer analysis

indicated that the expression level of ORC6 displayed an inverse

correlation with the infiltration abundance of various immune cells,

including Tem CD8 cells, Th1 cells, NK cells, pDCs, iDCs,

eosinophils, monocytes, and neutrophils, while showing a positive

correlation with the infiltration abundance of Act CD8 cells and

Th2 cells (Figure 8A). This phenomenon was especially evident in

LIHC (Figures 8B–K). Furthermore, in gliomas, which include

GBM and LGG, ORC6 expression was negatively correlated with

the abundance of infiltrating immune cells, including Tem CD8,
B
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FIGURE 4

Univariate Cox regression analysis was performed to determine the prognostic role of ORC6. (A–D) Correlation of ORC6 expression with OS
(A), DSS (B), DFI (C), and PFI (D). (OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval).
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Tcm CD4, Tfh, Th1, Th17, Act B, lmm B, NK, MDSC, NKT, Act

DC, pDC, iDC, macrophage, eosinophil, mast, monocyte, and

neutrophil cells. In contrast, ORC6 expression levels in THCA

and KIRC were positively correlated with the majority of immune

cell infiltration (Figure 8A).

Furthermore, we examined the association between ORC6

expression and the expression of genes related to immune regulation

(Figures 9A–E). The heatmap indicated that ORC6 was coexpressed

with most immune-related genes across cancers. Especially in DLBC,

UVM, LIHC, KIRC, and THCA, ORC6 was roughly positively

correlated with 5 immune-related genes. In TGCT, GBM, and

LUSC, ORC6 was roughly negatively correlated with immune-related

genes. Furthermore, the chemokine CCL14 was negatively correlated
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withORC6 expression across cancers (Figure 9A). Among the immune

activation-related genes, MICB, PVR, ULBP1, CD276, and TNFRSF25

were positively correlated with ORC6 expression in most tumors

(Figure 9C). There was a positive correlation between the expression

of ORC6 and genes related to immunosuppression in several cancer

types, such as DLBC, UVM, LIHC, KIRC, THCA, GBMLGG, LGG,

and PRAD, as indicated in Figure 9D. Notably, in the advanced

urothelial carcinoma cohort with immunotherapy, the response

group had significantly higher ORC6 expression (Figure 9F,

p=0.00099). Furthermore, we observed that in the melanoma

immunotherapy cohort, the high ORC6 expression group had

prolonged survival after immunotherapy (Figure 9G, p=0.027).

Taken together, these results suggest that ORC6 may be involved in
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FIGURE 5

Diagnostic value of ORC6. (A–W) ROC curve of ORC6 in ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, ESAD, ESCA, GBM, HNSC, LAML,
LIHC, LUAD, LUADLUSC, LUSC, OSCC, OV, PAAD, READ, STAD, UCEC and UCS.
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immune cell infiltration and the expression of immunomodulatory

genes and that high ORC6 expression may indicate a better response

to immunotherapy.

3.7 ORC6 predicts immunotherapy
response and chemotherapy efficacy

To elucidate the predictive function of ORC6 expression in

immunotherapy response, we evaluated it using the TISMO

database. As depicted in Figure 10A, ORC6 expression was

markedly different in 5 subjects before and after ICB treatment

and between responder and nonresponder cohorts. Moreover,

ORC6 expression was significantly different in the six cell lines

before and after cytokine treatment (Figure 10B). Furthermore, we

performed a biomarker assessment of ORC6 by TIDE. The findings

indicated that ORC6 had a better predictive effect in 7

immunotherapy cohorts (Figure 10C). In addition, we performed

a sensitivity analysis of chemotherapy drugs commonly used to

treat LIHC. As shown in Figure 10D, the ORC6 high-expression

group was closely correlated with the reduction of IC50 of 5-

fluorouracil, doxorubicin, gemcitabine, and imatinib (all p<0.001).

3.8 External cohort and in vitro
experiments clarify the promotional effect
of ORC6 on LIHC and GBMLGG

After collating and analyzing the pan-cancer data mentioned

above, it was observed that the elevated expression of ORC6 was
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significantly associated with the unfavorable prognosis and

malignancy of LIHC and GBMLGG patients (Figures 1–4).

Consequently, our study will concentrate on LIHC and GBMLGG.

We collected clinical information and ORC6 expression profiles

of patients belonging to the TCGA-LIHC cohort. After performing

a chi-square test analysis, we discovered a significant correlation

between ORC6 expression and tumor histological grade, alpha-

fetoprotein (AFP) content, and vascular invasion in LIHC

(Supplementary Table S2). Furthermore, via univariate and

multivariate Cox regression analysis, we identified ORC6 and

pathological stage as independent prognostic risk factors for

LIHC (Supplementary Table S3). Subsequently, a nomogram was

developed to estimate the survival likelihood of patients at intervals

of 1, 3, and 5 years, and its prediction efficiency was confirmed by

the calibration curve, as illustrated in Figures 11A, B. This indicates

that the model had a high accuracy in its predictive ability. Given

that our analysis of ORC6 was solely based on the TCGA database,

we conducted external verification by collating clinical information

and ORC6 expression profiles of patients belonging to the ICGC-

LIRI-JP cohort. The results showed that ORC6 expression in LIHC

was significantly higher than that in normal tissues (Figure 11C). It

was positively correlated with the clinical stage and associated with

poor overall survival (Figures 11D, E). Furthermore, univariate and

multivariate Cox regression analyses revealed ORC6, sex, and

clinical stage as independent risk factors for poor prognosis in

LIHC (Figures 11F, G). To investigate the function of ORC6 in

LIHC cells, we carried out in vitro experiments. Initially, we
B

C D E
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FIGURE 6

Gene set differential enrichment analysis of ORC6 across cancers and in liver cancer. (A) This graph visualizes the potential signaling pathways that
are associated with ORC6 expression in different tumor types. The circles depict cancer enrichment projects. Their sizes vary based on their false
discovery rate (FDR), while the colors represent the corresponding normalized enrichment score (NES) for each enrichment item. (B) The top 20
enriched KEGG results in HCC are shown. (C–E) The top 10 enriched gene ontology biological processes (BPs) (C), molecular functions (MFs)
(D), and cellular components (CCs) (E) are also displayed.
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assessed the basal expression ofORC6 in LIHC cell lines and normal

hepatocytes. Our findings indicate that LIHC cell lines have

noticeably increased ORC6 expression compared to normal

hepatocytes, as illustrated in Figure 12A. To assess the impact of

ORC6 downregulation in LIHC cells, we chose two LIHC cell lines

with high expression (HepG2 and HCCLM3) and conducted an

ORC6 knockout assay (Figures 12B, C). Using the EdU cell

proliferation test, a significant decrease in the proliferation of

LIHC cells was observed after the knockout of ORC6 expression

(Figure 12D). In addition, similar results were obtained through

CCK-8 analysis (Figures 12E, F). Subsequently, we conducted
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wound healing and Transwell tests to examine the impact of

ORC6 downregulation on the migratory capacity of LIHC cells.

The results indicate that compared to the control cells, the

downregulation of ORC6 significantly inhibited the migration

ability of LIHC cells (Figures 12G–L).

Subsequently, we compiled the ORC6 expression and clinical

information of patients in the TCGA-GBMLGG cohort. The chi-

square test revealed a significant association between ORC6

expression and age, histological type, WHO grade, IDH status,

and 1p/19q codeletion in GBMLGG patients (Supplementary Table

S4). Furthermore, our investigation revealed that ORC6, age, WHO
B C

D E F

G H I

J K L

M N O

P

A

FIGURE 7

Single-cell sequencing analysis of ORC6 expression in malignant cells. (A–0) ORC6 in ALL (A), BRCA (B), CESC (C), CHOL (D), CRC (E), ESCA (F),
HNSC (G), LIHC (H), LSCC (I), OV (J), PAAD (K), PRAD (L), THCA (N) and UVM (O) were mainly expressed in malignant cells; ORC6 was mainly
expressed in pit mucous in STAD (M). (P) Expression distribution of ORC6 in several LIHCs.
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grade, and 1p/19q codeletion were independent prognostic risk

factors for GBMLGG patients, as confirmed by univariate and

multivariate Cox regression analyses (Supplementary Table S5).

Time-dependent ROC curve analysis further identified age, WHO

grade, and ORC6 as the top three effective predictors for 1-, 3-, and

5-year patient survival (Figure 13A, all AUC>0.7). Our results were

validated in an external cohort. As demonstrated in Figures 13B–D,

ORC6 expression increased concomitantly with WHO grade in the

CGGA-301, CGGA-325, and CGGA-693 cohorts. Moreover, high
Frontiers in Immunology 13152
levels of ORC6 expression were significantly associated with an

unfavorable prognosis among GBMLGG patients in the CGGA-

301, CGGA-325, CGGA-693, and GSE13041 cohorts (Figures 13E–

H, all p < 0.05). In addition, the expression profile of ORC6 in the

GBMLGG cell line was analyzed using the CCLE database

(Figure 13I). Further, the expression of ORC6 protein was

effectively inhibited in U251 MG and LN229 cells (Figures 14A,

B). Consistent with findings in LIHC, the inhibition of ORC6

expression led to decreased proliferation and migration of U251
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FIGURE 8

The relationship between ORC6 levels and immune infiltration was analyzed by Timer 2.0. (A) ORC6 expression correlates with immune cell
infiltration across cancers. (B–K) Correlation of ORC6 expression with the abundance of Tem CD8, Act CD4, Th1, Th2, NK, pDC, iDC, eosinophil,
monocyte and neutrophil cell infiltration in LIHC.
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MG and LN229 cells (Figures 14C–J). In conclusion, our in vitro

results strengthen the evidence supporting the carcinogenic effects

of ORC6 in LIHC and GBMLGG.
4 Discussion

Multi-omics data mining analysis is crucial for exploring tumor

heterogeneity and complexity and identifying prognostic

biomarkers. Prior studies have linked high ORC6 expression to

poor tumor prognosis, progression, and drug resistance in some

cancers (33, 34), but its prognostic and biological significance in

most cancer types remains unclear. We performed a comprehensive

pan-cancer study of ORC6 and revealed its important role in LIHC

and GBMLGG. In addition, we verified that ORC6 was highly

expressed in LIHC and GBMLGG and could serve as an

independent marker of poor prognosis. Further external cohort

analysis and in vitro experiments supported our findings.

In this study, we observed that the expression of ORC6 was

higher in most tumors than in normal tissues, as well as in paired

cancer and paracancerous tissues. Next, we analyzed the

correlations between ORC6 expression and clinicopathological

features and discovered that ORC6 expression was positively

correlated with tumor size, metastasis, histological grade, lymph

node metastasis, and clinical analysis, which further implied that
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ORC6 expression was associated with tumor progression and

metastasis. By utilizing log-rank and Cox regression analysis, it

was determined that increased expression of ORC6 was significantly

linked to unfavorable prognosis in various types of tumors, in

concurrence with previous research (10, 34, 35). Through ROC

curves, we also found that ORC6 was a highly accurate diagnostic

marker for most tumor types. Single-cell functional analysis also

indicated that ORC6 expression was positively correlated with the

cell cycle and proliferation of tumor cells. We found that ORC6 and

pathologic stage were independent prognostic risk factors for

patients with LIHC. ORC6, age, WHO grade, and 1p/19q

codeletion are independent risk factors for poor prognosis of

GBMLGG, and this result is consistent with previous studies (36).

Furthermore, the time-dependent ROC curves showed that ORC6

was more accurate than sex, histological type, IDH, and 1p/19q

colocation in predicting the 1-, 3-, and 5-year survival of GBMLGG

patients. After silencing ORC6 expression, we found that the

proliferation and migration abilities of LIHC and GBMLGG cells

were attenuated. The results of this study suggest that elevated

ORC6 levels may serve as a valuable prognostic marker for adverse

outcomes in most tumor types. However, the validation of this

study was limited to in vitro experiments, and further in vivo studies

are needed to fully explore this possibility.

Genetic alterations and altered epigenetic regulation are

considered major factors in cancer development and progression
B

C

D

E

F G

A

FIGURE 9

ORC6 expression and immunotherapy response. (A–E) Correlation analysis of ORC6 expression with five types of immune regulation-related genes,
including chemokine (A), chemokine receptor (B), immune stimulator (C), immune inhibitors (D), and MHC (E). (F) Association of ORC6 expression
with immunotherapy response in the IMvigor210 cohort. (G) In the melanoma immunotherapy cohort, the log-rank method was used to analyze the
difference in survival after immunotherapy between the high- and low-expression groups of ORC6. *p<0.05.
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(37, 38). In recent years, there has been growing recognition that

RNA not only serves as an intermediary or effector molecule in

protein synthesis but also plays a crucial and direct functional role

in regulating gene expression. Consequently, the significance of

RNA modifications has gained increasing prominence in scientific

research and healthcare settings. Extensive evidence has suggested

that the perturbation of RNA epigenetic pathways is associated with

the development and progression of various human diseases,

including cancer (39). In our study, we found that genetic

alterations, DNA promoter methylation, and RNA modifications

of ORC6 have important effects on its expression. The main

mutation forms of ORC6 in tumors were “amplification” and

“deep deletion”, and the amplification was mainly concentrated in

PAAD, BRCA, OV, BLCA, ACC, ESCA, LIHC, LUAD, etc. We also

noticed that ORC6 expression was markedly linked to CNV, mainly

in BRCA, CESC, HNSC, LUAD, LUSC, OV, and STES. In BLCA,

BRCA, HNSC, THYM, UCEC, and PRAD, as the levels of ORC6

promoter methylation were reduced compared to those in normal
Frontiers in Immunology 15154
tissues. However, in PAAD, KIRC, LUSC, and SARC, there was a

significant increase in ORC6 promoter methylation levels.

Furthermore, we identified a positive correlation between ORC6

expression and m1A-, m5C-, and m6A-related genes in almost all of

the analyzed tumor types. Our single-cell functional analysis also

indicated a close association between ORC6 expression and DNA

damage and repair mechanisms, which highlights the underlying

mechanisms of aberrant ORC6 expression in cancer from both

genetic alteration and epigenetic modification perspectives.

Cancer progression, metastasis, invasion, and resistance to

therapy are modulated by bidirectional interactions between cancer

cells and the TME (40). Characteristics of TME include hypoxia,

immunosuppression, chronic inflammation, acidosis, high interstitial

fluid pressure, increased ECM stiffness, and depletion of essential

nutrients. Immunotherapy mainly targets hypoxia and

immunosuppression, which are presently active research topics

(41). Precision medicine aims to develop targeted and

immunotherapies to enhance the survival rate. Cancer
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FIGURE 10

Correlation of ORC6 expression with immunotherapy response, biomarkers, and drug sensitivity. (A) Differences in ORC6 expression between the
immunosuppressive treatment group and the control group. (B) Differences in ORC6 expression between cytokine-treated and control groups.
(C) The predictive role of ORC6 as a biomarker versus other markers in different immunotherapy cohorts. (D) Relationship between ORC6
expression and half-inhibitory concentration (IC50) of 5-fluorouracil, doxorubicin, gemcitabine and imatinib. *p < 0.05, **p < 0.01, ***p < 0.001.
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immunotherapy presents an effective and groundbreaking method to

fight cancer by manipulating or modulating the immune system to

elicit a robust response against tumors (42). Successful cancer

immunotherapy depends on overcoming the immunosuppressive

environment in the TME of cancer patients (43). Increasing

evidence suggests that immune dysregulation plays a critical role in

allowing tumors to evade the host immune system (44), involving

both innate and adaptive immunity. Research has revealed that

tumor-infiltrating lymphocytes tend to exhibit dysfunctional

behavior and may remain in a quiescent state near cancerous cells.

Despite this, a few patients’ T cells have been found to preserve their

ability to proliferate and persist, leading to the complete eradication
Frontiers in Immunology 16155
of sizable tumor deposits (45). This finding is consistent with our

finding in single-cell sequencing that ORC6 is predominantly

expressed on Tprolif and malignant cells. Therefore, targeting

ORC6 could potentially offer a precise method for identifying

Tprolif and malignant cells, leading to novel avenues for tumor

immunotherapy (46). Here, we found an inverse correlation between

the expression level of ORC6 and the abundance of immune cells

widely believed to contribute to the suppression of tumor infiltration,

including Tem CD8 cells, Th1 cells, NK cells, pDCs, iDCs,

eosinophils, and monocytes (47–52). Interestingly, we noticed that

ORC6 expression levels were positively correlated with the abundance

of Act CD4 and Th2 cells in the TME. Act CD4 refers to activated
frontiersin.or
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FIGURE 11

ORC6 is an independent risk factor for poor prognosis in LIHC. (A) Construction of line charts for 1-, 3-, and 5-year time points. (B) Calibration
curves for 1-, 3-, and 5-year timepoints. (C–G) External data validation using the ICGC LIRI-JP cohort. (C) Differential expression analysis of ORC6
between tumor and normal tissues. (D) Differential expression analysis of ORC6 across different clinical stages. (E) Survival analysis of the high and
low ORC6 expression groups, with both univariate (F) and multivariate (G) Cox regression analyses used to establish the role of ORC6 in LIHC.
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CD4 T cells, a key component of the adaptive immune system. Recent

studies have found that CD4+ T-cell infiltration defines an immune

escape environment and predicts poor patient outcomes (53). Th2

refers to helper T-cell type 2, which is a specific type of T-cell in the

immune system. Th2 cells play a critical role in the adaptive immune

response by supporting B-cell function. Interestingly, the

accumulation of Th2 cells within tumors, in addition to Hodgkin’s

lymphoma, has been associated with a poor prognosis in several types

of cancers (54). At present, researchers are exploring ways to regulate

Th2 cells to improve the effect of tumor treatment. Regulatory T cells

(Tregs) are a subset of T cells crucial for maintaining immune

homeostasis and tolerance. Research suggests that several subtypes

of Tregs, including TNFR2+, LAG3+, TIM3+, and CTLA-4+ Tregs,
Frontiers in Immunology 17156
demonstrate potent anticancer capabilities. However, in recent years,

researchers have also discovered links between particular highly

infiltrated Treg subtypes within tumors and favorable patient

outcomes, such as CD30+OX40+ and BLIMP‐1+FOXP3+ Tregs

(55). This might elucidate the favorable correlation between ORC6

and Treg infiltration abundance in BRCA, KIRC, MESO, and THCA,

whereas an inverse correlation exists in the majority of other

tumor types.

Cancer cells can secrete important cytokines and chemokines

for the TME during growth and progression (56), these cytokines

and chemokines can in turn regulate the TME and cell signaling

pathways to affect cancer progression (57, 58). Our study revealed a

positive correlation between ORC6 expression and cytokines as well
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FIGURE 12

Silencing ORC6 expression suppresses the proliferation and migration of LIHC cells. (A) Western blot analysis and quantitative measurements of
ORC6 protein levels in liver cells (THLE-2) and LIHC cells (HCCLM3, HepG2, and MHCC-97H). Western blot analysis and quantitative measurements
of ORC6 knockdown efficiency in HepG2 (B) and HCCLM3 (C) cells. (D) EdU staining and quantitative analysis were performed to evaluate changes
in cell proliferation following ORC6 knockdown. A CCK-8 assay was utilized to evaluate the effect of ORC6 knockdown on cell viability in HepG2
(E) and HCCLM3 (F) cells. (G–I) A wound-healing assay was used to evaluate the changes in the cell migration rate among the si-NC, si-ORC6#1,
and si-ORC6#2 groups of HepG2 and HCCLM3 cells. (J–L) Transwell assays were utilized to evaluate the changes in cell migration ability among
the si-NC, si-ORC6#1, and si-ORC6#2 groups in HepG2 and HCCLM3 cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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as receptors in different types of tumors. Notably, GSEA revealed a

strong association between ORC6 expression and the cytokine-

cytokine receptor interaction pathway, and our GSEA further

highlights the close association between ORC6 and immune-

related pathways in multiple tumor types. Moreover, we

discovered a positive association between ORC6 expression and

well-known targets for classical immune suppression and

activation, such as PVR, MICB, ULBP1, CD276, CTLA4,

TNFRSF25, PD-1 (PDCD1), TIGIT, PD-L2 (PDCD1LG2),

HAVCR2, PD-L1 (CD274), and LAG3. Strikingly, our findings

reveal that ORC6 expression has a certain predictive effect on

immunotherapy, cytokine therapy, and chemotherapy response.

The current use of multifunctional carriers to deliver therapeutic

drugs to lesion sites helps to significantly improve the effect of

noninvasive treatment. Multifunctional carriers allow for multiple

treatment options, including photodynamic therapy, photothermal

therapy, chemotherapy, immunotherapy, or their synergistic
Frontiers in Immunology 18157
treatments (59). Therefore, molecular probes targeting ORC6

combined with multifunctional carriers are promising cancer

treatment strategies (60). Collectively, these observations provide

new insights into the complex regulation of immune cell-mediated

tumor suppression and suggest that ORC6may serve as a promising

predictive marker of immunotherapy efficacy in cancer treatment.

Nevertheless, the mechanisms by which ORC6 regulates the tumor

immune microenvironment and tumor progression need to be

further elucidated in the future.
5 Conclusion

ORC6 emerges as a promising prognostic biomarker across

various cancer types, particularly in LIHC and GBMLGG. This

study underscores the correlation between high ORC6 expression
frontiersin.or
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FIGURE 13

ORC6 effectively predicts the prognosis of the patients with GBMLGG. (A) Receiver operating characteristic (ROC) curves for predicting 1-, 3-, and 5-
year overall survival (OS) of patients with GBMLGG. (B–D) Analysis of differential expression of ORC6 in different WHO grades explored in the CGGA-
301, CGGA-325, and CGGA-693 cohorts, respectively. (E–H) Survival differences between high and low ORC6 expression groups were examined in
the CGGA-301, CGGA-325, CGGA-693 and GSE13041 cohorts. (I) The Cancer Cell Line Encyclopedia (CCLE) database was used to analyze the
expression of ORC6 in GBMLGG cell lines.
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and the tumor immunosuppressive environment. These findings

suggest a potential role for ORC6 in tumor immune regulation,

thereby offering further support for advancing the development of

cancer immunotherapies.
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SUPPLEMENTARY FIGURE S1

ORC6 genet ic a l terat ions, loca l izat ion, and interact ions. (A)
Immunofluorescence images and merged images of ORC6 protein, nucleus,

endoplasmic reticulum (ER), and microtubules in HEK 293 and PC-3 cell lines.
(B)ORC6 expressionmappingwas obtained through the Genecard website. (C)
Protein-protein interaction (PPI) network presenting proteins that interact with
ORC6. (D) Mutation types and frequencies of ORC6 in pan-cancer were

obtained from the cBioPortal website. (E) The expression levels of ORC6 in
various CNV status in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE S2

ORC6 DNA methylation levels and the relationship betweenORC6 and RNA-

modifying gene expression. (A, B) Promoter methylation levels of ORC6 in
different cancer types compared to normal adjacent tissues. Beta values

represent DNA methylation levels ranging from 0 (unmethylated) to 1 (fully
methylated). (C) The relationship between ORC6 expression and gene

expression related to three types of RNA modifications was analyzed by
Spearman correlation. *p<0.05.

SUPPLEMENTARY FIGURE S3

Diagnostic value of ORC6 across cancers. (A-W) ROC curve of ORC6 in

DLBC, GBMLGG, KICH, KIRC, KIRP, LGG, PRAD, SKCM, TGCT, THCA,
and THYM.

SUPPLEMENTARY FIGURE S4

Correlation between ORC6 expression and the functional status of 14

cancers. (A) The correlation between ORC6 expression and the functional
status of 14 cancers was analyzed using single-cell sequence data from the

CancerSEA database.
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Neutrophil–lymphocyte
ratio and platelet–lymphocyte
ratio as potential predictive
markers of treatment
response in cancer patients
treated with immune checkpoint
inhibitors: a systematic review
and meta-analysis

Tibera K. Rugambwa1,2, Omar Abdihamid3, Xiangyang Zhang1,
Yinghui Peng1, Changjing Cai1, Hong Shen1,
Shan Zeng1 and Wei Qiu4*

1Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China,
2Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and
Allied Sciences, University of Dar-es-salaam, Mbeya, Tanzania, 3Garissa Cancer Center, Garissa
County Referral Hospital, Garissa, Kenya, 4Department of Oncology, The First People's Hospital of
Loudi, Loudi, Hunan, China
Background: The role of platelet–lymphocyte ratio (PLR) and neutrophil–

lymphocyte ratio (NLR) as independent prognostic markers in different tumors

is well established. However, there is a limited review of the potential of NLR and

PLR as predictors of treatment outcomes from immune checkpoint inhibitors

(ICIs).

Objective: To establish a correlation between NLR and PLR and the potential of

clinical benefit from ICIs.

Methods: The literature search was performed for studies that reported the

association between NLR, PLR, and treatment outcomes among cancer patients

treated with ICIs. The outcomes of interest were objective response rate (ORR),

disease control rate (DCR), and progressive disease (PD). ORR was the

summation of patients who achieved complete response and partial response.

DCR included patients who achieved stable disease. PD was the proportion of

patients who progressed, relapsed, or discontinued the treatment. Statistical

analysis was performed using the STATA 12.0 package. Heterogeneity was

determined by the I2 value. Quality assessment was performed using the

Newcastle–Ottawa Scale. Egger’s test was used to establish publication bias

and sensitivity analysis.

Results: A total of 40 papers that met the inclusion criteria were included in the

systematic review. However, only 17 studies were used in the meta-analysis to

determine the correlation between NLR, PLR, and treatment response. We found
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that treatment with ICIs and monitoring of outcomes and adverse events using

PLR and NLR parameters have been studied in different tumors. Our analysis

showed that low NLR correlated with higher ORR (OR = 0.62 (95% CI 0.47–0.81,

p = 0.001) and higher DCR (OR = 0.23, 95% CI 0.14–0.36, p < 0.001). Higher NLR

predicted a higher probability of PD (OR = 3.12, 95% CI 1.44, 6.77, p = 0.004).

Similarly, low PLR correlated with higher ORR (OR = 0.69, 95% CI 0.5, 0.95, p =

0.025). Generally, patients with low NLR and PLR were more likely to achieve

clinical benefit and better response (p-value < 0.001). Meanwhile, patients with

high ratios were more likely to progress (p-value < 0.005), although there was

significant heterogeneity among studies. There was no significant publication

bias observed.

Conclusion: The study showed that high NLR and PLR either at baseline or during

treatment is associated with poorer treatment outcome. Therefore, these ratios

can be utilized in clinical practice with other markers to determine treatment

efficacy from immunotherapy.
KEYWORDS

neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, immune checkpoint inhibitors,
predictive, biomarkers, response
1 Introduction

Chronic inflammation is one of the enabling characteristics in

the acquisition of hallmarks of cancer, together with genomic

instability (1). The inflammatory process is driven by key

inflammatory cells, namely, lymphocytes, neutrophils, monocytes,

and platelets (2). Interaction of these cells in the tumor

microenvironment (TME) and the peripheral circulation not only

facilitates the propagation and survival of cancer cells but also

provides them with the ability to evade the immune system, induce

angiogenesis, and metastasize to other sites (2).

Immunotherapy is one of the pillars of cancer treatment in

combination with surgery, chemotherapy, radiotherapy, and the

expanding targeted therapy. These drugs function by blocking

immune checkpoints, which are programmed death-1 (PD-1) and

its ligand (PDL-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4),

and lymphocyte-activation gene 3 (LAG-3), resulting in

upregulation of T-cell activation, preventing tumor evasion and

increasing CD8 T-cell response toward cancer cells (3).

Indication of immune checkpoint inhibitors (ICIs) is expanding

rapidly from advanced disease settings to neo-adjuvant and

adjuvant use in early disease (4–6) with the potential of complete

treatment response and durable disease control in some patients (3).

Currently, ICIs are indicated for multiple cancers with non-small

cell lung cancer (NSCLC) and melanoma deriving the greatest

benefit to gastrointestinal, genitourinary, and breast cancers and

lymphomas just to mention a few (3).

The mechanism of action of immunotherapy depends on the

inflammatory cells and tumor immunogenicity (3). Hence, in a state

of lymphopenia (7), thrombocytosis (8, 9), and neutrophilia (10)

either at baseline or during the course of treatment as is the case in
02162
most patients with advanced disease and poor performance status, it

is less likely to achieve durable clinical response. In addition, tumors

that can generate significant immune responses like melanoma and

squamous cell carcinomas show dramatic responses in comparison

to cold tumors like gliomas and pancreatic cancer (3).

The currently approved biomarkers to predict response to

immunotherapy are PDL-1 levels, microsatellite instability status

(MSI), and tumor mutation burden (TMB). However, these have

been shown to be applicable in a small proportion of patients (2,

11). Although they have revolutionized the use of ICIs in cancer

treatment, the fact that they are tissue-based makes them

susceptible to tumor heterogeneity (12). In addition, they cannot

distinguish between patients who will respond to therapy against

those who will not (12).

Interaction between neutrophils, platelets, and lymphocytes

reflects the balance between protumoral inflammation and anti-

tumor activity (3). In some studies, the neutrophil–lymphocyte

ratio (NLR) and platelet–lymphocyte ratio (PLR) was associated

with a better response than PDL-1 levels (11, 13). Therefore, there is

a need to develop a prognostic and predictive model that

incorporates other potential biomarkers to be able to determine

those who are more likely to benefit from treatment (14, 15).

A recent meta-analysis looked at the association of dynamic

changes in NLR with survival outcomes and treatment response

(16). The study concluded that lower baseline NLR and a downward

trend of NLR during and post-treatment with immunotherapy were

associated with longer survival and better tumor response (16).

However, very few studies that were included reported on treatment

response and disease control. Another meta-analysis on renal cell

carcinoma (RCC) also showed high NLR correlated with worse

survival outcomes (17).
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Notably, a significant number of studies have focused on the

role of NLR and PLR as prognostic factors, but very few have

focused on treatment response with immunotherapy (18–21).

Therefore, this study will focus on the role of NLR and PLR as

predictive markers of response to immunotherapy.
2 Methods

2.1 Search strategy

The systematic review and meta-analysis were conducted in

accordance with Preferred Reporting Items for Systematic Reviews

and Meta-analyses (PRISMA) guidelines. A comprehensive

literature search was conducted from PubMed, Embase, Web of

Science, and Cochrane Library from 2015 to 2022. The search terms

employed were “neutrophil-to-lymphocyte ratio” AND “immune

checkpoint inhibitors” and “platelet-to-lymphocyte ratio” AND

“immune checkpoint inhibitors” (Table S1).

The outcomes of interest were objective response rate (ORR),

disease control rate (DCR), and progressive disease (PD) as defined

by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1.

ORR was the summation of patients who achieved complete

response and partial response. DCR included patients who

achieved stable disease. PD was the proportion of patients who

progressed, relapsed, or discontinued the treatment. The correlation

was made according to cutoff values of NLR and PLR established at

baseline and during the course of treatment as determined by

the authors.
2.2 Inclusion and exclusion criteria

Studies that met the following criteria were included in

the study:
Fron
□ studies published from 2015 to 2022;

□ studies that enrolled patients with solid tumors who

received any of the ICIs;

□ studies reporting clinical response (ORR, DCR, and PD)

and prognostic value of inflammatory markers and ICIs;

and

□ prospective studies, retrospective studies, exploratory

studies, and randomized controlled trials (RCTs).
2.2.1 Exclusion criteria
□ Studies that did not document or analyze the association

or prognostic value of inflammatory markers and ICIs;

□ non-English studies;

□ abstracts, reviews, meta-analyses, case reports, editorials,

letters to the editor, and commentaries; and

□ animal studies.
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2.3 Data extraction

The following information was extracted:
□ name of the first author,

□ year of publication,

□ type of cancer,

□ number of patients,

□ type of study design,

□ inflammatory markers investigated, and

□ numerical data for NLR, PLR, ORR, DCR, and PD from

frequency tables.
2.4 Quality assessment

The Newcastle–Ottawa Scale (NOS) was used to assess the

quality of included studies. Any study with a minimum of two stars

was considered suitable to be included in the review and meta-

analysis. However, the most important criterion was the availability

of quality extractable data from an individual study (Table S2).
2.5 Statistical analysis

Authoritative statistical software (Stata 12.0: StataCorporation)

was used to perform the meta-analysis. The OR and 95% CI values

were applied to estimate the prognostic value of NLR and PLR for

patients treated with ICIs. Individual OR and 95% CI values were

combined to an overall OR and 95% CI. An OR < 1 indicated a

better treatment outcome. The Higgins I2 statistic was applied to

detect the heterogeneity between studies; p ≤ 0.1 and I2 > 50%

indicated a substantial heterogeneity between studies, and random-

effects models were adopted. Egger’s test and visual inspection of a

funnel plot were carried out to evaluate the possibility of publication

bias. Egger’s test result was the primary indicator, and a symmetry

funnel plot with a p-value ≥0.05 was considered an insignificant

publication bias.
3 Results

3.1 Literature screening results

The literature search identified 1,062 studies from the database

and registers. Out of those, 711 were removed as duplicates, 158

records were removed because they were not eligible, 80 reports

could not be retrieved, and 73 reports either had missing

information or were not related to the study. The final review and

meta-analysis included 40 studies and 17 studies, respectively

(Figure 1). The characteristics of studies, data extracted, and

patient characteristics involved in the studies are represented in
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Tables 1 and 2. Important findings from the studies are summarized

in Supplementary Table 3.
3.2 Research characteristics

A total of 40 studies were included in this systematic review, but

only 17 studies (13, 22–37) qualified for meta-analysis. Regionwise,

almost half of the included studies came from Asian countries

(Japan, China, and Korea). The sample size in the included 40

studies ranged from 16 patients to 672 patients. Almost all studies

were retrospective in nature except for one study that used a

prospective study design (23) and received moderately high scores

in the Newcastle–Ottawa Scale quality assessment. A total of 36
Frontiers in Oncology 04164
studies looked at distinct cancer types, and three studies looked at

two or more types of tumors. Out of the 36 studies that looked at

specific cancer types, NSCLC was the most frequently studied

tumor. Fifteen studies focused only on ICI as a single agent, while

the remaining studies included patients who received

immunotherapy in combination with other cancer treatment

modalities. Apart from reporting NLR and PLR, other blood cell

counts included derived neutrophil–lymphocyte ratio (dNLR),

absolute lymphocyte count (ALC), absolute neutrophil count

(ANC), absolute platelet count (APC), absolute eosinophil

count (AEC), and leukocyte count and its differentials. Receiver

operating characteristic (ROC) curves were used in nine studies (25,

33, 36, 38–43) to determine the optimal cutoff value for NLR

and PLR.
Records identified from*:

Databases (n = 1062)

Records removed before 

screening:

Duplicate records removed

(n = 711)

Records screened

(n =351 )

Records excluded

(n = 158)

Reports sought for retrieval

(n =193 )

Reports not retrieved

(n = 80)

Reports assessed for 

eligibility(n =113 ) Reports excluded:
Missing data (n = 56)

Unrelated (n = 17)

Studies included in review

(n =40 )

Studies included in 

meta-analysis (n=17)

FIGURE 1

PRISMA flow diagram of study selection for inclusion in the systematic review and meta-analysis. PRISMA, Preferred Reporting Items for Systematic
Reviews and Meta-analyses.
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TABLE 1 Study Characteristics.

Author Year Design Cancer Patients Marker Outcome NOS Ref.no

Benzekry 2021 RC NSCLC 298 NLR, PLR DCR 6 20

Booka 2022 RC GI 61 NLR, PLR DCR,PD 8 35

Chen 2021 RC NSCLC 151 NLR ORR, DCR 6 15

Cheng 2022 RC CERVICAL 70 NLR ORR 8 54

Criscitiello 2020 RC PAN CANCER 153 NLR, PLR ORR, DCR 6 52

Dusselier 2019 RC NSCLC 59 NLR, PLR DCR-long responders
PD-Early progressors

8 22

Eso 2021 RC HCC 40 NLR ORR, DCR, PD 8 44

Faccinetti 2018 PC NSCLC 54 NLR DCR, PD 6 23

Fan 2021 RC GI 111 NLR, PLR ORR, DCR, PD 8 36

Guida 2021 RC MELANOMA 331 NLR DCR 6 42

Guida 2022 RC MELANOMA 272 NLR DCR 6 43

Guven 2022 RC PAN CANCER 231 NLR ORR 8 53

Huang 2020 RC NSCLC 61 NLR DCR, PD 8 24

Hung 2021 RC HCC 45 NLR, PLR DCR, PD 8 45

Jiang 2020 RC NSCLC 76 PLR DCR, PD 8 11

Jung 2017 RC MELANOMA 104 NLR DCR, PD 8 75

Kim 2022 RC GASTRIC 45 NLR ORR, DCR 9 37

Lee 2021 RC HNSCC 45 NLR ORR, DCR 6 50

Moller 2021 RC NSCLC 90 NLR DCR, PD 7 26

Mountzios 2021 RC NSCLC 672 NLR ORR, DCR 7 27

Musaelyan 2022 RC NSCLC 45 NLR, PLR DCR-Responders
PD-Non-responders

7 10

MELANOMA 29

Nakazawa 2022 RC GASTRIC 58 NLR DCR, PD 7 38

Namikawa 2020 RC GASTRIC 29 NLR DCR 7 39

Nenclares 2021 PC HNSCC 100 NLR DCR-Responders
PD-Non-responders

6 51

Newman 2020 RC NSCLC 137 NLR DCR, PD 8 28

Ohashi 2020 RC MELANOMA 16 NLR ORR, PD 6 41

Ohba 2019 RC NSCLC 32 NLR ORR, DCR 8 29

Petrova 2020 RC NSCLC 119 NLR, PLR DCR, PD 9 31

Pu 2021 RC NSCLC 184 NLR, PLR ORR, DCR 8 32

Quaquarini 2022 RC NSCLC 166 NLR DCR, PD 9 33

Rebuzzi 2022 RC RCC 422 NLR, PLR ORR, DCR, PD 7 47

Russo 2018 RC NSCLC 62 PLR ORR 6 9

Simonaggio 2020 RC RCC 86 NLR DCR, PD 7 48

Spassova 2022 RC MERKEL 114 NLR DCR, PD 7 55

Tanaka 2022 RC HCC 28 NLR ORR-Responders
PD-Non-responders

6 46

Wang 2022 RC ESCC 69 NLR ORR, DCR 8 40

(Continued)
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TABLE 1 Continued

Author Year Design Cancer Patients Marker Outcome NOS Ref.no

Wu 2021 RC NSCLC 136 NLR, PLR ORR, PD 6 34

Yamamoto 2020 RC UC 121 NLR, PLR ORR 6 49

Yuequan 2021 RC NSCLC 103 NLR, PLR PR vs PD
SD vs PD

8 76
F
rontiers in Oncolo
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RC, Retrospective cohort; PC, Prospective cohort; GI, Gastroinstestinal cancer; HCC, Hepatocellular carcinoma; HNSCC, Head and neck squamous cell carcinoma; RCC, Renal cell carcinoma;
UC, Urothelial carcinoma; NLR, Neutrophil-to-lymphocyte ratio; NSCLC, Non-small cell lung cancer; CRC, Colorectal cancer; ESCC, Esophageal squamous cell carcinoma; PAN CANCER,
Multiple cancers; PLR, Platelet-to-lymphocyte ratio; NOS, Newcastle Ottawa scale.
TABLE 2 Characteristics of patients involved in the studies that related NLR, PLR and treatment response.

Author,
Country

Tumor type Gender
(M/F)

Age ECOG
PS
High 0-1
Low >1

NLR
values

PLR values Treatment

Booka,
Japan

Upper GI 49/12 <65-11
>65-50

PS<1-49
PS>2-12

3.9(0.9-31.7) 118(31-860) Nivolumab
Pembrolizumab

Benzekry,
France

NSCLC 199/99 Median
62 (55,69)

Low-26
High-265

Mean-5.66
Median-3.85

Mean-273
Median-214

ICI-295
Comb-3

Chen,
China

NSCLC 115/36 <63-70
>63-81

High-147
Low-4

>2.96=75
<2.96=76
(median)

>159=75
<159=76
(median)

ICI+Chemo=105
ICI+Angio=18
Both=28

Cheng,
China

CERVIX F=70 Median
51(29-77)

N/R 5.17(3.19-9.16) 270.5(174.19-
363.49)

PD1+chemo=21
PDI+CHEMO+Angio=49

Christiello,
Italy

-GI
-Breast
-Gynacologic
-HNSCC
-NSCLC
-Melanoma& other skin cancers
-MesothelICIma
-NET
-GUT

62/91 Median
58(31-80)
>65=46
<65=107

Low=71
High=82

6 300 ICI=59
ICI+ICI=84
ICI+TARGET=10

Dusselier,
France

NSCLC 44/15 Median
59.5(30.3-87.3)

Low=6
High=53

<5=21
>5=37

<160=19
169-262=31
>2=8

Nivolumab

Eso,
Japan

HCC 35/5 Median
70.5(53-82)

N/R 2.56(0.39-14.0) 125(27.1-351) Atezo/Bev

Facchinetti,
Italy

NSCLC 45/9 Median
69(43-85)

LOW-15
High=39

To be
retrieved

To be retrieved Nivolumab

Fan,
China

GI 56/55 >65=23
<65=88

N/R >5=17
<5=94

<135=55
>135=56

ICI+Chemo=74
ICI+Target=44
ICI+RT=7

Guida,
Italy

Melanoma 204/127 Median
63.4(53.3-73.8)

Low=78
High=252

NR NR Anti-PD1=246
Ipilimumab=80
Anti-PD1+Ipi=5

Guida,
Italy

Melanoma
(BRAF wt)

172/100 Median
63.2(52.0,73.0

Low=2
High=270

DNLR=0.86 DPLR=22.85 PD-1=209
CTLA4=57
PD-1+CTLA4=6

Guven,
Turkey

Melanoma
RCC
NSCLC
Others

155/76 Median
61(51-67)

Low=30
High=201

<5,<10%
increase=76
>5, >10%
increase=155

Niv=169
Atezo=28
Pembro=20
Ipi=13
Ave=1

(Continued)
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TABLE 2 Continued

Author,
Country

Tumor type Gender
(M/F)

Age ECOG
PS
High 0-1
Low >1

NLR
values

PLR values Treatment

Huang,
China

NSCLC 38/23 >.65=11
<65=50

High=60
Low=1

MEDIAN
C1-2.72
C2=2.93
C3=2.56
C4=2.69

Niv=24
Pembro=6
Atezo=27
Niv/ipi=4
ICI+Chemo=5

Hung,
China

HCC 41/4 61.8+/-9.6 Low=1
High=44

Serum NLR
4.0+/-2.2

Nivolumab

Jiang,
China

NSCLC 66/10 61(35-74)
median

Low=7
High=69

>168.13=27
<168.13=41

Niv=59
Durvalumab=17

Jung,
Korea

Melanoma 51/53 58(50-66)
median

Low=12
High=92

<5=84
>5=20

Ipilimumab

Kim,
Korea

GC 34/11 Median
60(23-76)

NR <2.9=23 Nivolumab

Lee,
Korea

HNSCC 103/22 Median
Median
57(33-87)

Low=19
High=106

>4=49
<4=76

PD-1=73
PD-L1=24
PD1/PDL1+CTLA4=28

Moller,
Germany

NSCLC 60/30 Median
65(31-87)

High=90
Low=0

<6.1=61
>6.1=29

pembrolizumab

MountzICIs,
Greece
Germany

NSCLC 463/209 65 (median) High=584
Low=88

Median
4.8(8.1)

ICI=460
ICI+Chemo=212

Musaelyan,
Russia

NSCLC
Melanoma

46/28 Median
62(59-69)
57(53-62)

N/R N/R Niv=41
Pembro=30
Atezo=3

Nakazawa,
Japan

GC 45/13 Median=66 0=8
>1=50

Baseline
DC
3.18+/-0.65
PD
4.85+/-0.49
After C2
DC
2.97+/-0.8
PD
5.43+/-0.7

Nivolumab

Namikawa,
Japan

GC 19/10 Median
71(49-86)

High=28
Low=1

Baseline
1.8(0.5-9.4)
Week 8
2.5(0.9-13.2)

nivolumab

Nenclares,
UK

HNSCC 80/20 Median
62(31-85)

N/R Baseline-
responders
(mean)
6.4+/-6.5
Non-
responders
9.1+/-10.22)

ICI not specified

Newman,
USA

NSCLC 80/57 Median
68.4(28-92)

N/R Baseline
<5=90
>5=47

1st line ICI=25
>2nd line=112
ICI+Chemo=8

Ohashi,
Japan

Melanoma 8/8 Median
74.6(51-88)

High=15
Low=1

Baseline NLR
Responders-
2.7(1.6-3.7)
Non-
responders-2.3
(1.4-3.3)

Nivolumab
pembrolizumab

(Continued)
F
rontiers in Onc
ology
 0716
7
 frontiersin.org

https://doi.org/10.3389/fonc.2023.1181248
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rugambwa et al. 10.3389/fonc.2023.1181248
TABLE 2 Continued

Author,
Country

Tumor type Gender
(M/F)

Age ECOG
PS
High 0-1
Low >1

NLR
values

PLR values Treatment

Ohba, Japan NSCLC 29/3 <70=26
>70=6

High=30
Low=2

Median
4.16(0.98-
109.15)
<4.11=19
>4.11=13

pembrolizumab

Park,
Korea

NSCLC 62/21 65(42-82) N/R Cut-off value
baseline
4.0

Cut off value
baseline= 210

pembro=18
atezo=65

Petrova,
Bulgaria

NSCLC 74/45 62.3+/-7.9 High=119
Low=0

Median NLR
<5=57
>5=62

MEDIAN PLR
<200=60
>200=59

Pembro

Pu
China

NSCLC 134/50 Median
58(33-87)
<70=153
>70=31

High=174
Low=10

NLR<5=115
>5=69

<200=99
>200=85

Pembro=98
Niv=86

Quaquarini,
Italy

NSCLC 129/37 <65=54
>65=54

High=147
Low=19

<5=81
>5=85

Niv=84
Pembro=56
Atezo=26

Rebuzzi,
Italy

RCC 305/117 Median
63.4(18-85)
<70=314
>70=108

KPS>80%
=367
KPS<80%
=55

Mean=4.12 Mean=237 nivolumab

Russo,
Italy

NSCLC 24/4 69(47-78) PLR>160=2
PLR<160=12

nivolumab

Simonaggio,
France

MRCC 67/19 Median
67(21.6-82)

High=73
Low=12

Median(95%
CI)
3.26(1-37)

Nivolumab

MNSCLC 47/28 65(31.2-86.7) High=51
Low=24

Median
3.4(1.4-13)

Nivolumab

Spassova,
Germany

MERKEL CELL CARCINOMA
(MCC)

82/32 <70=40
>70=74

PS-0=64
PS>1=49
Not
available=1

<4=54
>35=35
Not
available=25

Avelumab=57
Niv=13
Pembro=44

Tanaka,
Japan

HCC 22/6 73.5(56,89) High=27
Low=1

3.13(1.19-23.7) Atezo/Bev

Wang,
China

ESCC 64/5 61(38-75) PS-0=47
PS-1=22

NLR<4=36
NLR>4=33

Camrelizumab

Wu,
China

NSCLC 101/35 <60=75
>60=61

HIGH
PS<1=124
LOW
PS>2=12

REPORTED IN TERMS OF DELTA
(pre,medICI, post)

ICI-not specified
Absolute values not
provided

Yamamoto,
Japan

UC 87/34 74(50-86) Not
provided

NLR cut
off=3

PLR cut off=154 Pembro

Yuequan,
China

NSCLC 68/35 Median
66(61,71)

High=97
Low=6

<5=69
>5=34

ICI=32
ICI+Chemo=71
F
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Ave, Avelumab; Atezo, Atezolizumab; Bev, Bevacizumab; Chemo, chemotherapy; Comb, combination; ECOG-PS, Eastern Cooperative Oncology Group; GC, Gastric cancer; GI,
Gastroinstestinal, GUT, Genitourinary tract; HCC, Hepatocellular carcinoma; HNSCC, Head and neck squamous cell carcinoma; ICI, Immune checkpoint inhibitor; Ipi, Ipilimumab; KS,
Karnofsky status; M/F, Male/female; NET, Neuroendocrine tumor; NLR, Neutrophil-lymphocyte ratio; Niv, nivolumab; NSCLC, non-small cell lung cancer; N/R, not recorded; PD-1,
Programmed death-1; PD-L1, Programmed death ligand 1; PLR, Platelet-lymphocyte ratio; Pembro, pembrolizumab; RCC, renal cell carcinoma; WT, wild type.
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3.2.1 Non-small cell lung cancer
Up to 50% (18 studies) of the included studies (10, 11, 13, 22–

28, 38, 39, 44–49) reported the association of NLR and PLR in non-

small cell lung cancer patients treated with ICIs. The sample size

ranged from 45 to 672 patients. The average number of patients was

142 patients. In total, there were 2,563 patients. One study only

reported the ORR, five studies reported on DCR, four studies

reported on ORR and DCR, and seven studies reported DCR and

PD. None of the included studies had all the three components. Two

studies compared numerical percentages between patients who

responded to treatment (DCR) and those who progressed (PD).

One study reported the correlation of ratios with overall short-

term efficacy.

The studies were further divided on the basis of the presence or

absence of a significant relationship between the ratios and end points.

The subdivision produced a total of 51 reports. Out of those, five reports

were on ORR, 27 reports were on DCR, and 19 reports were on PD.

3.2.1.1 Objective response rate

Three out of five reports showed a statistically significant

relationship between the ratios and ORR. In one of the studies,

ORR was higher in PLR-low patients compared to PLR-high

patients (46.15% vs. 8.3%, p < 0.0004). In another study, those

who had a decrease in NLR 12 weeks post-treatment were more

likely to derive clinical benefit than those with increasing NLR (OR

= 3.304, 95% CI 1.560–7.001, p = 0.002).

3.2.1.2 Disease control rate

Out of 29 reports, 16 reports showed a significant correlation

between NLR, PLR, and DCR, while nine studies reported a lack of

relationship. Most of the reports with significant association also

noted a higher DCR among patients with low ratios either at

baseline or after a few cycles of treatment.

3.2.1.3 Progressive disease

Ten reports showed a statistically significant correlation

between the ratios and PD. Generally, patients with higher NLR

and PLR tend to progress earlier and have a higher rate of PD as

compared to those with low ratios.
3.2.2 Gastrointestinal cancer
Six studies (29–32, 50, 51) (17 reports) reported the

correlation between ratios and study end points. Out of

five reports for ORR, only one study showed a significant

relationship with NLR at baseline compared with other times

(NLR L vs. H Baseline 36.1% vs. 9.1%, p = 0.018; at V1 34.4% vs.

15.6%, p = 0.083; variation (baseline-V1) < 20% vs. >20%; 31.6% vs.

22.2%, p = 0.430).

Among nine reports that looked at DCR, five of them showed a

positive correlation, while four reports lacked a statistically

significant relationship. Those with low PLR and NLR had higher

DCR than those with high ratios (PLR L vs.H) = 36.7% vs. 9.7%, p =

0.012; NLR (L vs. H) = 33.3% vs. 12.9%, p = 0.058).

Likewise, patients with higher ratios had higher rates of

progressive disease than those with low ratios. In a retrospective
Frontiers in Oncology 09169
study of 58 patients (50), mean NLR was significantly higher in the

PD group at both baseline and post-treatment (Pre-rx, 318 vs. 4.85,

p = 0.045; Post-rx, 2.97 vs. 5.43, p = 0.025). In another study (51),

NLR showed a statistically significant relationship at week 4 post-

treatment compared to other times (p = 0.044).

3.2.3 Melanoma
A study by Ohashi et al. with a small sample size of 16 patients

reported no significant relation between NLR and ORR (52).

Another retrospective study (53) that looked at DCR reported a

significant correlation between NLR and DCR despite the NRAS

mutation status (OR = 0.88, 95% CI 0.77–1.00, p = 0.005). Also, a

change in NLR and PLR correlated with lower response (DNLR with

OR = 2.779, p < 0.001, DPLR OR = 2.022, p < 0.009) (40).

3.2.4 Hepatocellular carcinoma
Out of the three studies (33, 41, 54) (10 reports), three reports

on DCR and three reports on PD showed a significant relationship.

Only one study reported a lack of correlation between the ratios

and ORR.

3.2.5 Urothelial carcinoma (renal [RCC] and
bladder [UC])

Rebuzzi et al. (34) reported mean values of NLR and PLR

among patients who achieved clinical response and those with

progressive disease at baseline and after four doses of treatment

(longitudinal variation). The mean value of NLR and PLR at

baseline and after four doses of treatment was lower as compared

with the group with progressive disease (NLR, 3.18 vs. 4.12, p =

0.012; PLR, 184 vs. 237, p = 0.003).

In the study by Simonaggio et al. (55), the NLR-low group had

greater DCR in any NLR decrease at week 6 as compared to the

NLR-high group (81% vs. 40%, p = 0.0007).

Likewise, in the study by Yamamoto et al. (42), NLR had a

statistically significant association with ORR (p = 0.016), while PLR

had a marginal significance (p = 0.0536).

3.2.6 Head and neck cancers
A study by Lee et al. (56) showed that those patients with high

NLR were associated with poor response (OR = 0.3, 95% CI 0.11–

0.84, p = 0.022). Similar findings were reported by Nenclares et al.

(43) where NLR was significantly lower in responders (DCR)

compared to non-responders (p < 0.001).

3.2.7 Across solid tumors
In both pan-solid cancer retrospective studies (35, 57), those

with low ratios had a greater response rate as compared to those

with high ratios. In a study by Guven et al., those patients with high

NLR and greater than 10% NLR increase had the lowest ORR.

3.2.8 Other tumors
One study on cervical cancer (36) reported a significant

relationship between NLR and ORR [NLR (L vs. H) 78.26% vs.

53.19%, OR = 0.316, 95% CI 0.1–0.991, p = 0.048], while there was

no relationship with PLR [PLR (L vs. H) 70% vs. 58%, OR = 0.592,
frontiersin.org

https://doi.org/10.3389/fonc.2023.1181248
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rugambwa et al. 10.3389/fonc.2023.1181248
95% CI 0.195–1.794, p = 0.354]. However, despite the lack of

significance, ORR was higher in patients with low ratios than

those with high ratios.

A study on advanced Merkel cell carcinoma by Spassova et al.

(37) noted that the NLR-low group had more patients with disease

control (ORR) than the NLR-high group (49% vs. 37%), while there

was no difference in the group with disease progression.
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3.3 Meta-analysis

As described in the Methods, a meta-analysis was conducted

under two subgroups NLR and PLR for the treatment efficacy end-

point ORR, DCR, and PD. Each study that focused on these

inflammatory markers was assessed independently. Forest plots

were used to represent the pooled results (Figures 2A–F).
B

C D

E F

A

FIGURE 2

(A) Forest plot for the association NLR and ORR. (B) Forest plot for the association between PLR and ORR. (C) Forest plot for the association
between NLR and DCR. (D) Forest plot for the association between PLR and DCR. (E) Forest plot for the association between NLR and PD. (F) Forest
plot for the association between PLR and PD. NLR, neutrophil–lymphocyte ratio; ORR, objective response rate; PLR, platelet–lymphocyte ratio; DCR,
disease control rate; PD, progressive disease.
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3.3.1 Meta-analysis for ORR, DCR, and PD in NLR
subgroup

A total of nine studies looked at the impact of NLR on ORR. All

studies showed a positive correlation between a low NLR and a

higher ORR. Out of the nine studies, five of them showed statistical

significance (p < 0.05). The pooled effect estimate (OR) was found

to be statistically significant at a value of 0.62 (95% CI 0.47–0.81, p =

0.001). Assessment of heterogeneity suggests that there is low

heterogeneity between the studies included in the subgroup meta-

analysis (I2 = 45.3%, p = 0.067).

Analysis of DCR included 14 studies, whereby 10 of them

showed a statistically significant correlation in favor of low NLR,

suggesting that patients with low ratios were more likely to have a

better treatment response. The pooled effect estimate (OR) was

found to be statistically significant at a value of 0.23 (95% CI 0.14–

0.36, p < 0.001). Assessment of heterogeneity suggests that there is

high heterogeneity between the studies included in the subgroup

meta-analysis (I2 = 69.4%, p = 0.000).

Ten studies reported the correlation of NLR with progressive

disease. Eight studies demonstrated that higher NLR was associated

with a higher probability of disease progression. One study had

contrasting results whereby low NLR was associated with PD. The

overall estimate was statistically significant at a value of 3.12 (95%

CI 1.44, 6.77, p = 0.004). Assessment of heterogeneity showed

substantial heterogeneity among the included studies (I2 = 84.8%, p

= 0.000).

3.3.2 Meta-analysis of ORR, DCR, and PD
in PLR subgroup

Four studies were pooled to determine the impact of PLR

levels on the ORR. All four studies showed a positive correlation

between low PLR levels and ORR, but only one study was

statistically significant. The pooled effect (OR) was found to be

statistically significant at a value of 0.69 (95% CI 0.5, 0.95, p =

0.025). There was no heterogeneity among the studies (I2 = 0.0%, p

= 0.985).

In the analysis of DCR, four studies showed a statistically

significant positive correlation between low PLR and DCR,

suggesting a better treatment response in PLR-low patients. Three

studies favored high PLR, but only one of them was statistically

significant. The overall estimate (OR) was 0.56 (95% CI 0.24, 1.29, p

= 0.172), although it was not statistically significant. Assessment of

heterogeneity showed high heterogeneity between the included

studies (I2 = 85.5%, p = 0.000).

Six studies were analyzed for the relationship between PLR

levels and PD. Four studies reported a positive correlation between

high PLR and a higher probability of progressive disease.

Meanwhile, two studies were contradicting, suggesting that low

PLR levels were associated with the likelihood of disease

progression. Out of the six studies, only two studies did not show

a statistically significant correlation. The overall estimate was not

statistically significant at a value of 1.84 (95% CI 0.72, 4.75, p =

0.205). There was substantial heterogeneity among the studies

(I2 = 82.8%, p = 0.000).
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3.3.3 Publication bias
Egger’s test and funnel plots were used to assess publication bias

(Figures 3A–F). All funnel plots had a symmetrical distribution of

studies. However the findings from Egger’s test showed that there

was publication bias for studies that reported the association

between ORR, DCR and NLR. After performing the trim and fill

method, there was no significant change in the results.
4 Discussion

Our review and meta-analysis looked at the correlation

between NLR and PLR and treatment response in patients

treated with ICIs across different tumors. Generally, patients who

had low ratios at baseline or decreasing trend during the course of

treatment according to cutoff values pre-determined by authors based

on previous studies or derived from the area under the curve (AUC)

had a better treatment outcome and were more likely to obtain

clinical benefit than those with higher values. Also, they had a lower

rate of disease progression compared to the high-ratio group.

The findings of this study correspond with previous studies that

looked at the correlation between inflammatory markers and

treatment efficacy. A meta-analysis by Guo et al. studying the

dynamics of NLR during ICI treatment also showed that patients

with a significant upward trend of NLR did not respond to

immunotherapy, while those with a downward trend were

associated with better clinical and treatment outcomes (16).

Similarly, Zhang et al. observed a significant correlation between

NLR and ORR (p = 0.003) and a lack of significance between NLR

and DCR (p = 0.111) in a meta-analysis involving patients with

gastric cancer treated with immunotherapy (58).

There are limited studies on the effect of PLR and response to

immunotherapy compared to NLR. Most of the literature focuses on

PLR as a prognostic indicator (33, 34, 40, 41, 52–54). One of the

studies included in this meta-analysis investigated blood markers

before treatment that could be used as predictors of best clinical

response (13). With the use of chi-square analysis, the PLR-H

(<168.13) group had an inferior stable disease/partial response (SD/

PR) rate than the PLR-L (<168.13). However, there were no significant

differences in the best clinical response between PD-L1-positive and

PD-L1-negative patients. Therefore, the study concluded that PLR

could be a better predictive marker to differentiate the best response of

ICIs than PD-L1 expression. Likewise in the study by Spassova et al.

(37) and Musaelyan et al. (11), there was a lack of a statistically

significant relationship between PDL-1 levels and clinical response. A

study by Diem et al. also showed that elevated pre-treatment NLR and

PLR were independently associated with poorer survival and lower

response rates in lung cancer patients treated with nivolumab.

It is well-established that NLR is an independent prognostic

factor in different cancers (59). The mechanism behind this

observation is that some cancers express chemokines that drive

the proliferation of tumor cells. Also, these chemokines drive the

influx of myeloid-derived suppressor cells (MDSCs). Examples of

those chemokines include CXCL5 and CXCL8, which interact with
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receptor CXCR2 and CXCR1 expressed on neutrophils. This influx

inhibits the tumor-suppressor activity of tumor-infiltrating

lymphocytes (TILs) and cytotoxic CD8+ T cells. Additionally,

they promote angiogenesis and metastatic potential of cancer cells

(59). A study by Kargl et al. in NSCLC patients treated with

immunotherapy demonstrated that cells of myeloid origin

contributed to treatment failure (60).

Tumor-associated neutrophils (TANs) present in the TME, and

neutrophils present in the blood or the bone marrow are linked with

resistance to immunotherapy through adaptive immune cell
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polarization and suppression, tumor neoangiogenesis, immune

evasion and exclusion, and tumor intrinsic characteristics. TAN-

rich tumors display lower macrophage and TIL infiltration, making

them resistant to ICIs. In gastric cancer patients, a sub-population

of neutrophils was identified in the peripheral circulation that

suppresses CD8+ cell activity. Arginase-1 (ARG1)-expressing

human granulocytic cells downregulate T-cell proliferation and

cytokine secretion. ARG1+ neutrophils increase with tumor stage

in treatment-naive patients and negatively correlate with the

number of CD8+ cytotoxic T-cell lymphocytes (61).
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FIGURE 3

(A) Funnel plot for the association between NLR and ORR. (B) Funnel plot for the association between PLR and ORR. (C) Funnel plot for the
association between NLR and DCR. (D) Funnel plot for the association between PLR and DCR. (E) Funnel plot for the association between NLR and
PD. (F) Forest plot for the association between PLR and PD. NLR, neutrophil–lymphocyte ratio; ORR, objective response rate; PLR, platelet–
lymphocyte ratio; DCR, disease control rate; PD, progressive disease.
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Platelet activation is stimulated by pro-inflammatory cytokines

and participates in the recruitment of neutrophils (62). They play a

fundamental role in systemic and local responses against cancer. They

sequester tumor molecules, including RNA and protein transcripts,

altering their RNA profiles. After their interaction with the TME, they

are called tumor-educated platelets. They transport material from the

TME to sites closer to the tumor, creating a favorable environment for

the development of metastases. They contain a rich repertoire of RNA

varieties, providing biomolecules for diagnosis and prognostic,

predictive, or follow-up biomarkers (62).

The prognostic and predictive roles of NLR and PLR cut across

most cancer types and in all forms of cancer treatment, not only in

immunotherapy. However, the lack of standard cutoff values makes

them difficult to apply in clinical practice. Also, baseline values are

affected by underlying pre-clinical state, co-morbid systemic

conditions, and other confounders.

The findings of this study have shown how heterogeneous the

utilization of NLR and PLR as prognostic and predictive factors is.

The study has shown that these ratios are predictive but not in all

cancers. For example, the study by Wu et al. reported a lack of

correlation between inflammatory markers and immune response

(63). Moreover, in the same cancer type, one factor could be

predictive while the other is not, which indicates that these

markers cannot be used as a single entity; rather, they are more

functional when combined with other markers in a predictive or

prognostic model (64).

Examples of existing models and indexes that are multivariable

include neutrophil–platelet score (NPS) (65), which is a systemic

inflammation score based on the number of neutrophils and

platelets. When tested in NSCLC patients, NPS predicted OS and

DCR in pre-treated advanced NSCLC patients who received

treatment with nivolumab or pembrolizumab (65). A study by

Zhao et al. showed three models, namely, lung immune prognostic

index (LIPI) based on pre-treatment blood levels of derived-NLR

and lactate dehydrogenase (LDH), EPSILoN (ECOG-PS, smoking,

liver metastases, LDH, and NLR), and modified LIPI were

predictive and prognostic in immunotherapy (64).

Another study in melanoma patients built a multivariable

predictive model for response and survival. A combination of

performance status, number of liver and lung metastatic sites, serum

LDH, blood NLR, type of treatment (monotherapy vs. combination),

and line of treatment was predictive of ORR (14). Another is the

Gustave Roussy Immune Score (GRIm-S), which is a composite of

neutrophil–lymphocyte ratio (>6 = 1), albumin (<35 = 1), and LDH

(>ULN = 1) established as a prognostic score and may aid in the

selection of patients for phase 1 trials of immune checkpoint inhibitors

(66). Additionally, the Pan-immune inflammation value (PIV), also

called the aggregate index of systemic inflammation (AISI), which

combines neutrophils, monocytes, platelets, and lymphocytes, is

another useful prognostic index (67, 68).

Other prognostic models and indexes utilized in overall cancer

treatment include systemic immune-inflammatory index (SII),

which combines platelets and NLR (20); advanced lung cancer

inflammatory index (ALI), which combines body mass index and

the ratio of albumin to NLR (22, 69); and the immune metabolic

prognostic index, which is an association of NLR, dNLR,
Frontiers in Oncology 13173
lymphocyte–monocyte ratio (LMR), PLR, and SII (70, 71). In

genitourinary tumors, there is a FAN score in urothelial

carcinoma that relates to Fibrosis-4-index, albumin–bilirubin

ratio, and NLR (72). The International Metastatic RCC Database

Consortium (IMDC) predictive score combines hemoglobin levels,

serum calcium levels, Karnofsky performance status, time to

treatment, and number of platelets and neutrophils (73). The risk

blood biomarker (RBB) accounts for the total leukocyte count and

ratio of neutrophils, monocytes, and lymphocytes (74). More so, the

Glasgow prognostic score (GPS-m) relates to C-reactive protein

(CRP), albumin, and NLR (42, 75).

Prospective studies on inflammatory cells that constitute the

TME and affect treatment response continue to report other cellular

markers apart from neutrophils and platelets. One study reports

that more infiltration of cytotoxic CD8+ TCLs present in the

intratumoral area was associated with better disease control (37).

The study by Musaelyan et al. suggested that other markers of T-cell

activation like IL-18 and b2-microglobulin could be used to

evaluate and monitor treatment response (11). Another study

used artificial intelligence-powered analysis of TILs to generate

immunophenotypes, which was shown to correlate with treatment

response (76). A combined model of FOXP3+ TCLs and other

clinical covariates including NLR was a better predictor of response

to immunotherapy in urothelial carcinoma patients (77).

Apart from inflammatory cells, the use of gene expression like

circulating tumor DNA (ctDNA) kinetics (78), single-nucleotide

variants (SNVs) of PD-1 and PDL-1 (79), gene expression

signatures (80), and tumor burden determined from FDG-PET

derived metabolic tumor volume (MTV) (81) provide additional

biomarkers that predict benefit from ICIs. Pioneer trial (NCT

03493581), which is a comprehensive biomarker analysis for

treatment efficacy of ICI with chemotherapy in NSCLC patients,

has identified up to 15 biomarker signatures associated with efficacy

and progression-free survival (PFS) (82).

This study aimed to highlight the association between

inflammatory markers NLR and PLR with disease control, objective

response, and disease progression for patients treated with

immunotherapy. The study has highlighted that at any point in time

before, during, or after treatment, both low andhigh ratios of NLR and

PLR correlate with treatment outcomes regardless of cutoff points,

something that was not reported in previous meta-analyses.

Despite the highlighted correlation, the findings are limited by

the fact that almost all the included studies were retrospective in

nature with a risk of information bias and publication bias. The

grouping of patients according to treatment response was not

homogeneous. Some studies in the systematic review were not

included in the meta-analysis due to the heterogeneous nature of

reported data, particularly patients with SD and those with PD.

Patients with stable disease were counted with those who

progressed as non-responders, while in other studies, they were

counted as part of disease control. Also, there was variation in

reporting of the ratios, as some studies reported the means and

medians, while others just the numerical data or percentages.

Our study was heavily skewed toward NSCLC and melanoma

patients, which is attributed to the fact that these were the first tumor

sites to obtain Food and Drug Administration (FDA) approval to use
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ICIs in comparison to other sites. In addition, most patients involved

in the studies were treated with pembrolizumab (anti-PD1),

nivolumab (anti-PD1) and ipilimumab (anti-CTLA4), and

atezolizumab (anti-PDL-1) with limited studies in other agents,

hence making it challenging to generalize our findings.

In addition, most of the included studies did not report on the

association between NLR and PLR and treatment response in

patients treated with immunotherapy according to racial

background. Therefore, determining the correlation according to

racial background was not possible.

There is a paucity of literature that reported the association of

NLR, PLR, and racial background in cancer patients treated with

immune checkpoint inhibitors, while some studies that performed

sub-group analysis according to country of origin reported

contradicting results (58, 83, 84). However, sub-group analysis

was not performed in this particular systematic review.

Despite the contradiction, it is evident that with effective

treatment, a drop in NLR and PLR correlates with better

treatment outcomes and improved survival.
5 Conclusion and recommendations

It is clear that the state of inflammation plays a significant role

in treatment response to cancer treatment overall. Inflammatory

cells serve as adjunct markers to the FDA-approved biomarkers.

The fact that in some studies there was a lack of correlation between

PDL-1 levels and treatment response calls for additional markers to

augment the predictive and prognostic roles of PDL-1 levels, MSI

status, and TMB.

These markers tend to be affected by other underlying co-

morbid conditions and the overall state of the body, which

compromises their prognostic and predictive functions. Therefore,

there is a need to develop a comprehensive clinical model that is

reflective of real-world settings and the models to be tested in

clinical trials for validation before being incorporated into

clinical practice.
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Serum cytokines and neutrophil-
to-lymphocyte ratio as predictive
biomarkers of benefit from PD-1
inhibitors in gastric cancer

Yidan Hou †, Xiaoli Li †, Yudan Yang, Hao Shi,
Shaofang Wang and Ming Gao*

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China
Background: Immunotherapy is significantly revolutionizing cancer treatment

and demonstrating promising efficacy in gastric cancer (GC) patients. However,

only a subset of patients could derive benefits from targeted monoclonal

antibody therapy against programmed death receptor 1 (PD-1). This study aims

to identify suitable serum cytokines and blood cell ratios as predictive biomarkers

to aid in the selection of GC patients likely to benefit from PD-1 inhibitors.

Materials and methods: This retrospective study included 41 GC patients who

received PD-1 inhibitors combined with chemotherapy, 36 GC patients treated

solely with chemotherapy, and 33 healthy controls. The study assessed the levels

of seven cytokines: interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17A, tumor necrosis

factor-alpha (TNF-a), interferon-gamma (IFN-g), and various inflammatory

markers, including the neutrophil-to-lymphocyte ratio (NLR), total lymphocyte

count (TLC), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte

ratio (LMR). Measurements were obtained using the inpatient system. Univariate

and multivariate Cox regression analyses were performed to evaluate the

predictive significance of these hematologic parameters for clinical outcomes.

Results: Levels of IL-6, IL-10, TNF-a, NLR, and PLR were significantly elevated in

GC patients compared to healthy controls, while TLC and LMRwere higher in the

control group. Among the 41 patients receiving PD-1 inhibitors and

chemotherapy, baseline IL-2 was associated with OS and PFS. Additionally, IL-

6 and IL-17A correlated with OS, while NLR was linked to PFS (all P<0.05). These

factors were identified as independent prognostic indicators in both univariate

and multivariate analyses. Furthermore, almost all cytokine levels increased

following the initiation of PD-1 inhibitor treatment.

Conclusions: The introduction of PD-1 inhibitors alongside chemotherapy in GC

impacts serum cytokine levels. IL-2, IL-6, IL-17A, and NLR exhibit potential as

reliable circulating predictive biomarkers for identifying patients whomay benefit

from PD-1 inhibitors combined with chemotherapy.

KEYWORDS

gastric cancer, immune-checkpoint inhibitors, cytokines, predictive biomarker, blood
cell ratio, overall survival, progression-free survival
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Introduction

Gastric cancer is a significant global health concern, ranking

fifth in terms of incidence and fourth in mortality worldwide (1).

Certain regions, such as Eastern Asia, Eastern Europe, and South

America, have particularly high rates of gastric cancer cases. In

mainland China, a considerable number of patients are diagnosed at

an advanced stage due to low screening rates and subtle clinical

symptoms, resulting in missed opportunities for surgery and poorer

prognoses (2). Fortunately, the development of immunotherapy for

gastric cancer has shown promising results, changing traditional

treatment approaches.

The immune checkpoint is a vital element of the immune

system, consisting of receptors found on the surface of immune

cells that can either positively or negatively regulate immune

responses. For example, PD-1, located on the surface of T cells,

functions as a natural brake to control the excessive activity of

cytotoxic T effector cells when it binds to its ligand PD-L1. PD-L1 is

commonly found in both normal tissues and tumor cells, and their

interactions help limit immune-mediated tissue damage and

support tumor cells in evading the immune system (3).

Immunotherapy using Immune Checkpoint Inhibitors (ICIs) has

emerged as a promising approach in the treatment of various

cancers. ICIs target the PD-1/PD-L1 pathway to boost the

reactivity of anti-tumor T cells. Notably, several PD-1 inhibitors

(Nivolumab, Pembrolizumab, Sintilimab, Camrelizumab,

Tislelizumab) and PD-L1 inhibitors (Atezolizumab, Avelumab,

Durvalumab) have received approval for cancer therapy and have

demonstrated effectiveness in an expanding range of malignancies,

including gastroesophageal, melanoma, and lung cancers (4).

However, despite these significant advancements, a considerable

proportion of gastric cancer patients receiving ICIs do not derive

therapeutic benefits (5). Numerous clinical studies have been

conducted to identify biomarkers that can predict which gastric

cancer patients are likely to respond well to ICIs therapy. Some

potential biomarkers include PD-L1 expression, tumor mutational

burden (TMB), microsatellite instability/mismatch repair (MSI/

MMR) status, Epstein-Barr virus (EBV) infection, circulating

tumor DNA (ctDNA), and gut microbiota. However, their

practical application in day-to-day clinical practice still requires

further confirmation (6).

Recent research has been rapidly uncovering the mechanisms

linking infection, innate immunity, inflammation, and cancer (7).

Cytokines, produced by activated immune cells, play a crucial role
Abbreviations: PD-1, programmed death-1; GC, gastric cancer; IL-2,

interleukin-2; TNF-a, tumor necrosis factor-alpha; IFN-g, interferon-gamma;

NLR, neutrophil-to-lymphocyte ratio; TLC, total lymphocyte count; PLR,

platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; OS, overall

survival; PFS, progression-free survival; PD-L1, programmed cell death-ligand 1;

ICIs, immune checkpoint inhibitors; TMB, tumor mutational burden; MSI/

MMR, microsatellite instability/mismatch repair; EBV, Epstein Barr virus;

ctDNA, circulating tumor DNA; SIR, systemic inflammatory response; TME,

tumor microenvironment; HR, hazard ratios; CI, confidence intervals; CR,

complete response; PR, partial response; CAFs, cancer-associated fibroblasts;

DCs, dendritic cells; TIL, tumor-infiltrating lymphocytes.
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in this linkage. Pro-inflammatory cytokines such as IL-1b, IL-8, IL-
12, TNF-a, IFN-g, and anti-inflammatory cytokines like IL-4 and

IL-10 have dual functions, activating anti-tumorigenic actions of T

cells while also participating in tumor malignant transformation,

growth, invasion, and metastasis (8). Cytokines can activate anti-

tumorigenic actions of T cells and also contribute to tumor growth,

invasion, and metastasis (9). Moreover, systemic inflammatory

response (SIR) indicators, such as NLR, PLR, LMR, and TLC,

have been reported to be associated with the prognosis of certain

cancers (10). Changes in cytokine expression levels and cell

composition in the tumor microenvironment (TME) can

potentially influence the efficacy of ICIs in various malignancies

(11). Therefore, multiplex cytokine and blood cell analysis could

yield valuable prognostic assessments in patients.

This study aims to examine the association between baseline and

post-treatment peripheral cytokines and blood cells in GC patients who

received PD-1 inhibitors combined with chemotherapy. The goal is to

identify clinically significant predictive factors for the efficacy of

immunotherapy in patients with gastric cancer.
Materials and methods

Patient characteristics

December 2022. Among them, 41 GC patients received PD-1

inhibitors in combination with chemotherapy (Cohort 1), while 36

GC patients underwent chemotherapy alone (Cohort 2). The 33

healthy controls exhibited good health without any indications of

tumors, viral infections, diabetes, connective tissue diseases, or

liver/kidney impairments. Inclusion criteria for the 77 patients

included: 1) histopathological confirmation of gastric cancer at

stage II-IV according to the American Joint Committee on

Cancer (AJCC); 2) receiving PD-1 inhibitors combined with

chemotherapy (Cohort 1) or chemotherapy alone (Cohort 2) for a

minimum of 3 cycles; 3) regular tumor assessments every 2

treatment courses using imaging evaluations, with Overall

Survival (OS) and Progression-Free Survival (PFS) times recorded

based on imaging results and follow-up phone calls; 4) blood

samples collected for cytokine and blood cell analysis when tumor

progression or response was observed; 5) physical condition scored

according to the Eastern Cooperative Oncology Group guidelines

(ECOG) ranging from 0 to 3 (12), and no dysfunction in vital

organs detected. This study adhered to the principles outlined in the

World Medical Association’s Declaration of Helsinki and received

approval from the Medical Ethical Committee of our hospital. Since

only anonymous data were used for this retrospective study, the

ethics committee waived the requirement for informed consent.
Treatment

In Cohort 2, 36 GC patients were treated: 19 received first-line

Sox (Oxaliplatin, Teggio) chemotherapy, 15 received first-line Sox

combined with albumin-bound paclitaxel, and 2 received first-line

Xelox (oxaliplatin and capecitabine). The median number of cycles
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for the first-line chemotherapy was 5, with a range from 3 to 10, and

no subsequent PD-1 inhibitor treatment was administered. In

Cohort 1, 41 patients were included: 14 received PD-1 inhibitors

as part of the first-line therapy, while 27 received PD-1 inhibitors

during subsequent-line therapy. The PD-1 inhibitors used were

Sintilimab, Camrelizumab, and Tislelizumab, combined with

chemotherapy over a 21-day cycle. The chemotherapy regimen

was consistent with the description above. The median number of

chemoimmunotherapy cycles was 5, with a range from 3 to 14.
Analysis of survival

Tumor assessments were performed after every two treatment

courses using various imaging techniques such as CT, ultrasound,MRI,

or PET-CT. The evaluation was conducted following the Response

Evaluation Criteria of Solid Tumors 1.1 (RECIST1.1) criteria (13). PFS

was calculated from the initiation of anti-tumor therapy to the date of

disease progression. On the other hand, OS was measured from the

date of the first treatment dose until death from any cause.
Blood sample collection
and measurements

Plasma samples were collected from the patients before the first

treatment and at the time of disease remission or progression. These

samples were then centrifuged at 1000 g for 10 min at 4°C. After

centrifugation, the supernatant (serum) was immediately extracted and

analyzed on the spot or divided into aliquots and stored frozen at −80°

C. Cytokine levels were assessed using the Human Cytokine 12 Plex Kit

(Beijing ACRO Biosystems, catalog number: CRS- A002/A017/B001/

B003/B005/B008) at the clinical laboratory department of our hospital.

The panel of measured cytokines included IL-2, IL-4, IL-6, IL-10, IFN-

g, TNF-a, and IL-17A. Beyond that, blood routine examination was

achieved by flow cytometry, NLR, PLR, and LMR were then calculated

as the total neutrophil counts divided by the lymphocyte counts,

platelet counts divided by the TLCs, and the TLCs divided by the

total monocyte counts, respectively.
Cytokine cut-off value calculation

To assess the correlation between baseline blood parameters

and survival, we categorized the baseline blood parameters into

high-level and low-level groups. This categorization was based on

either the median value or the optimal cut-off value (Tables S1-2).

To ascertain the most suitable cut-off value for the studied

indicators, we employed the web-based software X-tile (Table S3-4).
Statistical analyses

Patient characteristics underwent analysis using descriptive

statistical methods. Continuous variables were summarized using
Frontiers in Immunology 03179
medians and quartiles, and comparisons were conducted using the

Mann-Whitney U test and the Kruskal-Wallis test. Categorical

variables were presented as numbers (%) and analyzed using the

chi-squared test and Fisher’s exact test. For the evaluation of

independent prognostic factors, both univariate and multivariate

analyses were performed. Hazard ratios (HRs) and 95% confidence

intervals (CIs) were reported. In the multivariable model, only

elements with a p-value of <0.1 from the univariate analysis were

incorporated. The significance threshold for multivariate analyses

was set at P < 0.05. OS and PFS were illustrated using the Kaplan-

Meier method, and the log-rank test was employed to compare the

survival curves. All statistical analyses were executed using SPSS

version 26.0 software, and the figures were generated using

GraphPad Prism version 8.0.
Results

Patients’ characteristics and
survival outcomes

Table 1 presents the clinical characteristics and pre-treatment

blood parameters of the 77 patients diagnosed with GC. Cohort 1

consisted of a higher percentage of patients in stages III-IV of the

TNM classification (82.93% vs. 58.33%) and more patients who had

not undergone gastric surgery (56.10% vs. 22.22%) compared to

Cohort 2. The level of IL-6 was found to be higher in Cohort 1 than

in Cohort 2 (12.06 vs. 4.85). Patients in Cohort 1, who received

chemoimmunotherapy, experienced a significantly better PFS of

10.67 months compared to 8.1 months in Cohort 2 (p = 0.003).

Additionally, Cohort 1 also showed an improved OS of 15.7 months

compared to 10.83 months in Cohort 2 (p = 0.021). No statistically

significant differences were observed between Cohort 1 and Cohort

2 regarding age, sex, ECOG score, presence of other chronic

diseases (diabetes, hypertension, cardiopathy), history of smoking,

and family history of cancer (p > 0.05).
Comparison of baseline blood
parameters between GC patients
and healthy individuals

To clarify the significance of cytokines in GC diagnosis, we

included 33 healthy participants. As displayed in Table S5, there was

no marked difference in age and gender distribution between the

healthy controls and GC patients (p > 0.05), making subsequent

results comparable. Figure 1 reveals that, aside from IL-2 and IL-4,

levels of all other cytokines were elevated in GC patients compared

to healthy individuals. Specifically, the differences in IL-6, IL-10,

and TNF-awere statistically significant (p<0.0001, p<0.0001, p =

0.021, respectively). It is worth highlighting that every blood cell

component ratio studied exhibited statistical differences between

the two cohorts. In healthy individuals, both TLC and LMR were

higher (p<0.0001, p<0.0001), while GC patients had elevated NLR

and PLR (p = 0.0085, p = 0.0034) (Table S6).
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Correlation between blood indexes and
clinical features in GC patients

As illustrated in Table S7, females exhibited notably higher

baseline levels of IL-6 and PLR, while their NLR was significantly

lower (p = 0.032, p = 0.046, p = 0.003, respectively). Elevated IL-6

levels were also observed in patients without a family history of

cancer (p = 0.012) and in those aged above 60 years (p = 0.048).

Patients who underwent gastric surgery had significantly increased

levels of IFN-g and NLR (p = 0.009, p = 0.017). Patients with an

ECOG score of ≤2 had a notably raised TLC (p = 0.048).
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Conversely, LMR was distinctly lower in patients diagnosed with

primary diseases such as hypertension, diabetes, and stroke (p =

0.028). There were no statistically significant differences in cytokine

levels based on clinical stages or smoking histories (p > 0.05).
Associations between blood indexes and
survival outcomes

Initially, we categorized baseline blood parameters into a high-

level group and a low-level group based on the median value. As
TABLE 1 Characteristics of patients at baseline.

Clinical characteristics
GC patients (n=77)

n (%)
Cohort 1 (n=41)

n (%)
Cohort 2 (n=36)

n (%)
P

Gender
male 53 (68.831%) 26 (63.415%) 27 (75.000%) 0.273

female 24 (31.169%) 15 (36.585%) 9 (25.000%)

Age
<60 41 (53.247%) 24 (58.537%) 17 (47.222%) 0.321

≥60 36 (46.753%) 17 (41.463%) 19 (52.778%)

ECOG score
≤2 63 (81.818%) 34 (82.927%) 29 (80.556%) 0.788

>2 14 (18.182%) 7 (17.073%) 7 (19.444%)

TNM stage
II 22 (28.571%) 7 (17.073%) 15 (41.667%) 0.017

III-IV 55 (71.429%) 34 (82.927%) 21 (58.333%)

Surgery history
Yes 46 (59.740%) 18 (43.902%) 28 (77.778%) 0.002

No 31 (40.260%) 23 (56.098%) 8 (22.222%)

Smoked
Yes 27 (35.065%) 15 (36.585%) 12 (33.333%) 0.765

No 50 (64.935%) 26 (63.415%) 24 (66.667%)

family cancer history
Yes 14 (18.182%) 6 (14.634%) 8 (22.222%) 0.389

No 63 (81.818%) 35 (85.366%) 28 (77.778%)

other chronic disease
Yes 20 (25.974%) 10 (24.390%) 10 (27.778%) 0.735

No 57 (74.026%) 31 (75.610%) 26 (72.222%)

mPFS (month) median 8.87 10.67 8.1 0.003

mOS (month) median 14.83 15.7 10.83 0.021

IL-2 median[Q1, Q3] 1.740[1.210,2.590] 1.960[1.420,2.600] 1.490[1.110,2.260] 0.213

IL-4 median[Q1, Q3] 1.990[0.910,3.310] 2.370[1.020,3.310] 1.930[0.800,3.080] 0.444

IL-6 median[Q1, Q3] 6.100[3.970,14.190] 12.060[5.020,18.060] 4.850[2.980,8.280] <0.001

IL-10 median[Q1, Q3] 2.690[1.870,3.790] 2.860[1.870,3.840] 2.650[1.890,3.650] 0.748

TNF-a median[Q1, Q3] 1.940[1.300,2.700] 1.870[1.470,2.550] 2.230[1.230,2.910] 0.537

IFN-g median[Q1, Q3] 2.060[1.460,2.590] 2.110[1.500,2.560] 1.940[1.460,2.620] 0.736

IL-17A median[Q1, Q3] 5.680[2.900,9.260] 5.680[2.340,9.890] 5.720[3.190,8.910] 0.779

TLC median[Q1, Q3] 1.320[1.040,1.700] 1.310[1.000,1.790] 1.370[1.200,1.690] 0.721

NLR median[Q1, Q3] 2.338[1.571,3.444] 2.600[1.692,4.500] 2.338[1.571,2.628] 0.234

PLR median[Q1, Q3] 149.231[109.924,209.375] 149.231[109.924,205.833] 149.693[114.557,223.171] 0.732

LMR median[Q1, Q3] 3.478[2.370,4.238] 3.462[2.167,4.238] 3.714[2.726,3.953] 0.713
frontie
Eastern Cooperative Oncology Group Performance Status (ECOG PS). P < 0.05 was considered statistically significant and shown in bold type.
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outlined in Table 2, univariate analysis revealed a significant

association between OS and several factors, including IL-2, IL-6,

IFN-g, IL-17A, NLR, and ECOG (all p < 0.05). To account for other

potential influences on survival outcomes, a multivariable Cox

regression analysis was conducted. It confirmed that the IL-2-

high group had an improved OS, whereas the IL-6-high and IL-

17A-high groups exhibited reduced OS (all p < 0.05) (Figures 2A–

C). Regarding PFS, the univariate analysis indicated significant

associations with IL-2, IL-4, IL-6, IL-10, IFN-g, and NLR (all p <

0.1). Subsequent multivariate analysis confirmed that the NLR-high

group had a reduced PFS (p <0.01) (Figure 2D). In a similar

manner, we conducted an analysis of the prognostic impact of

blood parameters (categorized by the median) after the initial 2

treatment cycles. The multivariable regression analysis revealed that

the IL-6-low group exhibited an enhanced OS and PFS, whereas the

IL-2-high groups showed increased OS. Conversely, the IL-17A-

high group demonstrated a diminished PFS (all with p < 0.05)

(Table S8).

As detailed in Table 3, the blood parameters of Cohort 1 were

divided into high-level and low-level groups based on a cut-off

value. Univariate analysis identified significant links between OS

and parameters such as IL-2, IL-6, TNF-a, IFN-g, IL-17A, NLR, and
ECOG (all p <0.05). Further multivariate analysis verified that the

IL-6-high and IL-17A-high groups had diminished OS (all p < 0.05)

(Figures 3A, B). Similarly, univariate analysis revealed a significant
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relationship between PFS and variables like IL-2, IL-4, IL-6, IL-10,

TNF-a, IFN-g, NLR, and LMR (all p < 0.1). Upon multivariate

assessment, the IL-2-high group was found to have a superior PFS

(all p < 0.05) (Figure 3C). In a parallel manner, the Cox regression

analysis of blood parameters (categorized by cut-off value) after the

initial 2 treatment cycles indicated that the IL-2-high and IL-6-low

groups experienced enhanced overall survival (OS) and

progression-free survival (PFS), while the IL-17A-high groups

displayed decreased PFS (all p < 0.01) (Table S9).

Interestingly, these relationships between blood parameters and

clinical outcomes were exclusive to Cohort 1. When focusing on

Cohort 2, where patients underwent only chemotherapy, these

associations were not evident (Tables S10-11). This implies that

baseline serum IL-2, IL-6, IL-17A, and NLR can independently

forecast the efficacy of PD-1 inhibitors in GC patients.
Dynamic changes of cytokines once
treatment was initiated in each cohort

As depicted in Figure 4, there was a general elevation from

baseline to the moment the tumor exhibited its first complete

response (CR) or partial response (PR) in all cytokines, with the

exceptions being IL-6 and IL-17A in Cohort 1. Notably, the levels of

IL-2, IL-4, IL-10, and IFN-g were statistically significantly increases
FIGURE 1

Baseline IL-6, IL-10, TNF-a, NLR and PLR are higher, TLC and LMR are lower in GC patients than in healthy individuals. Dot plots show the difference
of baseline blood parameters between healthy volunteers (n = 33) and GC patients (n = 77). The top of the grey box shows the median value. All
cytokines except for IL-2 and IL-4 were higher in GC patients, but only in the case of IL-6 (p<0.0001), IL-10 (p<0.0001) and TNFa (p = 0.021) these
differences were statistically significant. TLC (p<0.0001) and LMR (p<0.0001) were higher in healthy individuals while NLR(p=0.0085 )and PLR
(p=0.0034)were higher in GC patients. Error bars show the interquartile range. *p < 0.05, **p < 0.01, and ***p < 0.001.
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(p = 0.044, p = 0.025, p = 0.034, p = 0.007, respectively). In contrast,

Cohort 2 displayed a decline in IL-2, TNF-a, IFN-g, and IL-17A

from baseline to response. While IL-4, IL-6, and IL-10

demonstrated a rise from baseline to tumor response, none of

these changes reached statistical significance. We calculated the

percentage variations in cytokine levels from baseline to response to

determine if these quantitative shifts during treatment correlated

with survival outcomes. As illustrated in Figure 5, individuals in

Cohort 1, where IL-2 levels increased by over 20% from baseline to

response, showed a considerably improved OS (16.32 m vs. 13.03 m;

p = 0.0154). This trend in IL-2 variation was also observed in

Cohort 2 patients, but it did not maintain statistical significance

(13.58 m vs. 12.49 m, p = 0.6537). We additionally computed the

percentage variations in cytokine levels from baseline to the

timepoint following 2 treatment cycles, but we did not observe

any consistent trend.
Discussion

The detection of cytokines and blood cell parameters is

preferable to other biomarkers due to their widespread use and
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minimally invasive sampling technique. In this study, we had access

to two groups of patients treated either with immunochemotherapy

or solely with chemotherapy. This allowed us to assess the biological

impacts of incorporating Immune ICIs. Only associations that were

notably significant in Cohort 1, distinct from those observed in

Cohort 2 (chemotherapy-only group), were considered indicative of

the effects related to ICIs. We employed statistical analysis to

determine whether baseline levels and variations in cytokines and

blood cell parameters could predict the efficacy of immunotherapy

across different treatment outcomes. Initially, we compared baseline

cytokine levels of GC patients against those found in healthy

subjects. One significant observation was the universally elevated

cytokine levels in GC patients, with the exceptions being IL-2 and

IL-4. Notably, levels of IL-6, IL-10, and TNF-a were markedly

increased in the GC patient group. As depicted in Figure 1, there

were no significant differences in the levels of IL-2, IL-4, INF-g, and
IL-17A between GC patients and healthy controls. IL-2 is primarily

secreted by T cells (14), and our study observed a decrease in the

total lymphocyte count among gastric cancer patients. Consistent

with our findings, Mohammad et al. (15), reported no significant

differences in IL-2 levels between gastric cancer patients and healthy

controls. Furthermore, another study noted that patients with
TABLE 2 Univariate and Multivariate analysis for PFS and OS of Cohort 1 baseline blood parameters grouped by median.

OS PFS

Characteristics univariate analysis multivariate analysis univariate analysis multivariate analysis

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

IL-2 0.217 (0.098-0.478) 0.000 0.382 (0.165-0.888) 0.025 0.432 (0.223-0.838) 0.013 0.702 (0.294-1.674) 0.425

IL-4 0.745 (0.396-1.401) 0.361 - - 0.547 (0.287-1.041) 0.066 0.73 (0.333-1.599) 0.431

IL-6 2.944 (1.453-5.965) 0.003 3.018 (1.367-6.666) 0.006 2.212 (1.145-4.273) 0.018 1.882 (0.866-4.089) 0.110

IL-10 0.74 (0.393-1.396) 0.353 - - 0.516 (0.265-1.002) 0.051 0.668 (0.311-1.437) 0.302

TNF-a 0.88 (0.46-1.683) 0.699 - - 0.919 (0.49-1.722) 0.791 - -

IFN-g 0.355 (0.174-0.725) 0.004 0.553 (0.251-1.218) 0.142 0.567 (0.296-1.084) 0.086 0.79 (0.372-1.677) 0.540

IL-17A 1.978 (1.049-3.729) 0.035 2.143 (1.077-4.265) 0.030 1.382 (0.739-2.587) 0.311 - -

TLC 0.956 (0.501-1.824) 0.891 - - 1.454 (0.727-2.908) 0.289 - -

NLR 2.162 (1.137-4.111) 0.019 2.022 (0.981-4.166) 0.056 2.38 (1.241-4.563) 0.009 2.886 (1.418-5.876) 0.003

PLR 1.052 (0.559-1.981) 0.876 - - 0.946 (0.508-1.763) 0.862 - -

LMR 1.156 (0.607-2.203) 0.660 - - 0.874 (0.467-1.635) 0.673 - -

gender 0.921 (0.479-1.768) 0.804 - - 0.875 (0.459-1.667) 0.685 - -

age 0.74 (0.39-1.403) 0.357 - - 0.968 (0.504-1.86) 0.922 - -

ECOG (>2) 10.172 (3.453-29.966) 0.000 7.481 (2.19-25.548) 0.001 1.659 (0.723-3.81) 0.233 - -

TNM stage (III-IV) 1.267 (0.526-3.055) 0.598 - - 0.953 (0.391-2.322) 0.915 - -

surgery history 1.33 (0.699-2.529) 0.385 - - 0.957 (0.512-1.79) 0.891 - -

other chronic basic diseases 1.001 (0.484-2.069) 0.999 - - 1.072 (0.521-2.208) 0.850 - -

smoked 0.903 (0.47-1.734) 0.758 - - 0.97 (0.508-1.852) 0.927 - -

family cancer history 1.373 (0.563-3.349) 0.486 - - 0.765 (0.319-1.833) 0.548 - -
frontier
Baseline blood parameters were grouped by the median. HR, hazard ratios; CI, confidence interval. basic disease (diabetes, hypertension, cardiopathy). Elements with a p-value of <0.1 in the
univariate analysis and with a p-value of <0.05 in the multivariate analysis were in bold type.
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gastric cancer stage III or IV exhibited elevated levels of IL-2, while

there was no distinction in the serum levels of IL-2 between patients

with gastric cancer stage I or II and healthy controls (16), which

aligns with our findings in Table S7. Increased IL-4 levels have been

frequently observed in various types of cancers. However, the

evidence regarding the pro- or antitumoral role of IL-4 is

conflicting, and this function is closely linked to IL-4 levels and

its interaction with other immunological modulators (17). IFN-g,
produced by numerous immune cell subsets (including T cells,

natural killer cells, B cells, and others), possesses both pro-tumor

and anti-tumor activities (18). Nitu et al. reported that no

significant differences existed in the concentration of IFN-g
between patients and healthy controls (19), which is consistent

with our findings. Norma et al. also identified that circulating levels

of IL-6 and IL-10 were discernibly higher in GC patients compared

to a healthy control group (20), aligning with our results. Numerous

studies indicate the pivotal role of IL-6 in a variety of malignancies

(21–23). Elevated serum IL-6 concentrations have been

documented in several solid tumors, including those of the lung,

breast, pancreas, and stomach (24). The STAT3 pathway, when

activated by IL-6, up-regulates the expression of cyclins and down-

regulates the expression of the cyclin-dependent kinase (Cdk)

inhibitor p21. This mechanism consequently promotes tumor cell

cycle progression, leading to metastasis and tumor cell proliferation

(25). Additionally, IL-6 has been reported to prevent cellular

senescence by increasing telomerase activity, thereby promoting

tumor growth (26). Studies indicate that IL-10 primarily inhibits the
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differentiation and antigen-presenting properties of DCs (dendritic

cells) during the early stages of immune response (27). As a result,

IL-10 significantly suppresses the production of IL-2 from antigen-

presenting cells. In the absence of Th1-associated cytokines (like IL-

2), the T-cell-mediated response is inevitable (28). While TNF-a, a
pro-inflammatory cytokine, has been linked to promoting tumor

metastasis and correlated with advanced cancer stages (29–31), its

presence in cancers has also been associated with immune

suppression. Animal model research further supports TNF-a’s
role in promoting tumor growth and malignancy (32–35).

Conversely, there are reports suggesting the benefits of the potent

pro-inflammatory cytokine (TNF-a) in cancer treatments,

especially given its recognition as a major factor in the anti-tumor

activities of Coley’s toxins (36). In this study, both NLR and PLR

were statistically elevated in GC patients compared to healthy

controls. The neutrophil-to-lymphocyte ratio in peripheral blood

reflects the balance between systemic inflammation and immunity.

Consistent with our results, Mishra et al. discovered that the NLR is

higher in cancer patients and its elevated level is linked to a worse.

In SIR studies, elevated NLR levels after ICI treatment have

been linked to reduced survival rates in advanced esophagus cancer

and lung cancer (10, 37). Consistent with these findings, our

patients with a pre-treatment NLR above the median

demonstrated a notably worse PFS. This negative correlation may

be indicative of the interplay between intense inflammation and

compromised immune function (38). While some studies suggest

that a higher PLR corresponds to a worse prognosis in lung cancer
B

C D

A

FIGURE 2

Kaplan-Meier curve of OS/PFS of Cohort 1 patients, grouped by median of baseline blood parameters. Kaplan-Meier OS curves according to baseline
median of (A) IL-2; (B) IL-6; (C) IL-17A. Kaplan-Meier PFS curves according to baseline median of (D) NLR.
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patients (38), there is a dearth of research examining whether PLR,

TLC, and LMR values differ between cancer patients and

healthy individuals.

Cytokines represent a broad category of intercellular signaling

proteins that play a pivotal role in almost every aspect of human

immunology. However, the interaction of cytokine signaling
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activities is highly complex due to the redundancy and pleiotropy

exhibited by cytokines. Moreover, there exists an intricate network

of “cytokine cascades,” wherein the expression of a specific cytokine

gene is invariably influenced by other cytokines (39). Cytokines are

subject to regulation through various mechanisms. For instance, the

anti-inflammatory cytokine IL-10 can suppress the expression of
TABLE 3 Univariate and Multivariate analysis for PFS and OS of Cohort 1 baseline blood parameters grouped by cut-off value.

OS PFS

Characteristics univariate analysis multivariate analysis univariate analysis multivariate analysis

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

IL-2 0.215 (0.097-0.474) 0.000 0.735 (0.267-2.026) 0.552 0.195 (0.083-0.456) 0.000 0.354 (0.127-0.983) 0.046

IL-4 0.713 (0.378-1.346) 0.297 – – 0.47 (0.243-0.909) 0.025 0.62 (0.287-1.34) 0.224

IL-6 2.969 (1.489-5.92) 0.002 3.092 (1.204-7.943) 0.019 1.815 (0.923-3.569) 0.084 2.114 (0.935-4.78) 0.072

IL-10 0.65 (0.337-1.254) 0.199 – – 0.423 (0.209-0.859) 0.017 0.511 (0.226-1.156) 0.107

TNF-a 0.278 (0.111-0.701) 0.007 0.697 (0.189-2.573) 0.588 0.45 (0.183-1.107) 0.082 1.828 (0.53-6.301) 0.339

IFN-g 0.355 (0.174-0.725) 0.004 0.475 (0.179-1.262) 0.135 0.45 (0.213-0.949) 0.036 0.414 (0.17-1.006) 0.051

IL-17A 2.704 (1.378-5.306) 0.004 2.715 (1.156-6.375) 0.022 1.382 (0.739-2.587) 0.311 – –

TLC 0.703 (0.332-1.491) 0.359 – – 1.218 (0.63-2.354) 0.558 – –

NLR 2.967 (1.301-6.766) 0.010 2.036 (0.758-5.463) 0.158 2.22 (1.149-4.29) 0.018 1.645 (0.653-4.141) 0.291

PLR 0.775 (0.374-1.606) 0.493 – – 0.716 (0.352-1.46) 0.359 – –

LMR 0.508 (0.213-1.211) 0.127 – – 0.54 (0.274-1.065) 0.075 0.575 (0.207-1.594) 0.287

gender 0.921 (0.479-1.768) 0.804 – – 0.875 (0.459-1.667) 0.685 – –

age 0.74 (0.39-1.403) 0.357 – – 0.968 (0.504-1.86) 0.922 – –

ECOG (>2) 10.172 (3.453-29.966) 0.000 7.546 (2.281-24.966) 0.001 1.659 (0.723-3.81) 0.233 – –

TNM stage
(III-IV)

1.267 (0.526-3.055) 0.598 – – 0.953 (0.391-2.322) 0.915 – –

surgery history 1.33 (0.699-2.529) 0.385 – – 0.957 (0.512-1.79) 0.891 – –

other chronic basic disease 1.001 (0.484-2.069) 0.999 – – 1.072 (0.521-2.208) 0.850 – –

smoked 0.903 (0.47-1.734) 0.758 – – 0.97 (0.508-1.852) 0.927 – –

family cancer history 1.373 (0.563-3.349) 0.486 – – 0.765 (0.319-1.833) 0.548 – –
frontier
Baseline blood parameters were grouped by cut-off value. Elements with a p-value of <0.1 in the univariate analysis and with a p-value of <0.05 in the multivariate analysis were in bold type.
B CA

FIGURE 3

Kaplan-Meier curve of OS/PFS of Cohort 1 patients, grouped by cut-off values of baseline blood parameters. Kaplan-Meier OS curves according to
baseline cut-off values of (A) IL-6; (B) IL-17A. Kaplan-Meier PFS curves according to baseline cut-off values of (C) IL-2.
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TNF-a and IFN-g, a process referred to as feedback inhibition (40).

IL-4, on the other hand, can suppress the production of IFN-g by T
cells, a phenomenon known as antagonism (41), IL-2, conversely,

can enhance the production of IFN-g (42), and IL-17A can

synergistically stimulate TNF-a-induced IL-8 production (43).

To explore the prognostic and predictive role of cytokines, we

examined the baseline and variations in cytokine levels and assessed

their influence on patient outcomes across both cohorts. Cohort 2

had a higher number of patients in the early stages, and more had

undergone radical surgery, which is traditionally considered a

positive indicator for survival. However, the better OS in Cohort

1 implies that immunotherapy plays a more pivotal role in

enhancing survival. A comparative analysis of the two cohorts

allowed us to discern the specific effects associated with ICIs.
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Based on our findings, IL-2 can be perceived as a predictor of

favorable response to ICIs. Higher baseline levels of IL-2 correlated

with a significantly extended PFS and OS in Cohort 1, a distinction

not observed in Cohort 2. IL-2 is a cytokine important in T-cell

proliferation and promoting immune responses, as well as in

increasing the activity of natural killer cells (44). Garrelds et al.

identified that mice deficient in IL-2 are more prone to

gastrointestinal inflammation, resembling human ulcerative colitis

(45). Ren et al. documented that combining IL-2 with anti-PD-1

helps overcome tumor resistance to ICIs in mice by reactivating

intratumoral CD8+ T cells rather than CD4+ Treg cells (46).

Similarly, Ewan A et al. reported a two-year remission resulting

from combined anti-PD-1 and intralesional IL-2 therapy in two

patients with locoregional metastatic melanoma. This impressive

response was partly due to an altered tumor microenvironment,

including increased PD-L1 expression and CD8 T cell infiltration

(47). Moreover, as shown in Figure 5, patients of Cohort-1 whose

IL-2 increased more than 20% from baseline as a response, had a

longer OS, which conforms to our preceding view.

IL-6 seems to be a predictor of resistance to ICIs, as patients

with higher levels of this factor were found to have significantly

worse OS. These observations perfectly agree with the study by Yu

et al., who reported that increased circulating levels of IL-6 are

associated with poor outcomes in liver cancer patients who received

therapy with PD-1 inhibitors (48). IL-6 is a pro-inflammatory

cytokine that may contribute to tumor progression by stimulating

angiogenesis, invasion, and metastasis (8, 49). In some studies,

increased IL-6 serum levels were reported to be associated with

metastasis and poor prognosis in prostate, ovarian, and

gastrointestinal cancers (21, 50, 51). Tsukamoto et al. indicated

that increased IL-6 levels could indicate decreased efficacy of PD-1

blockade in patients with melanoma, and IL-6 blockade augments

PD-L1 expression on tumor cells (52). Consistently, a study using

IL-6-deficient mice bearing a murine colon cancer cell line found

that the lack of IL-6 enhances the induction of effector T cells and
FIGURE 4

Evolution of cytokine levels in patients of two Cohorts. Values corresponded to the median of cytokine titers, and p values were obtained taking into
account the difference of cytokine levels in the baseline and response period. B, baseline; R, response, include first complete response (CR) and
partial response (PR); P, progression.
FIGURE 5

Modulation of IL-2 during immunochemotherapy treatment predicts
a better prognosis. Cohort 1 patients whose IL-2 increased more
than 20% from baseline to response indicate a longer OS.
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inhibits tumorigenesis. Additionally, PD-L1 expression levels on

tumor cells were significantly increased in the IL-6-deficient mice

compared with wild-type mice (53). These findings strongly

indicate the negative immune role of IL-6, especially in patients

receiving ICIs.

IL-17A is a prominent member of the IL-17 family of pro-

inflammatory cytokines. Prior research has reported its

upregulation in the serum and tumors of GC patients. Kang et al.

suggested that IL-17A promotes gastric carcinogenesis by regulating

the IL-17RC/NF-kB/NOX1 pathway (54). However, it is worth

noting that Karl et al. (55) found decreased IL-17A levels in

esophageal adenocarcinoma patients when compared to healthy

controls. In our study, we observed a less pronounced elevation of

IL-17A in GC patients in comparison to healthy controls (as shown

in Figure 1). Furthermore, our study revealed that GC patients with

lower levels of IL-17A experienced improved OS, as demonstrated

in Figures 2C, 3B. Interestingly, IL-17A exhibited a noticeable

decline from baseline to the point of maximum tumor remission.

Accumulating evidence indicates that IL-17A activity may

contribute to resistance to anti-tumor immunity and play a role

in therapeutic failure. It is reported that the IL-17A signaling

pathway can enhance the immunosuppressive activity of

regulatory T cells (Tregs), leading to tumor growth and

development (56). Liu et al. revealed that IL-17A increases PD-L1

expression through the p65/NRF1/miR-15b-5p axis, thereby

promoting resistance to anti-PD-1 therapy. Blocking IL-17A

improved the efficacy of anti-PD-1 treatment in murine models

of MSS CRC (57). Another clinical analysis suggested that the

activation of IL-17A signaling is associated with the failure of anti-

PD-1 therapy in patients with colorectal cancer (58).

Prior research has shown that tumor cells release cytokines,

vascular endothelial growth factors, and chemokines, which attract

neutrophils into tumors. These neutrophils facilitate vascular

invasion and contribute to the metastatic potential of tumor cells

( 59 ) . Neu t r oph i l s a l s o pa r t i c i p a t e i n c r e a t i n g an

immunosuppres s ive microenv i ronment by re l ea s ing

myeloperoxidase and arginase-1, and upregulating PD-L1. This,

in turn, reduces the number of tumor-infiltrating lymphocytes

(TIL) and leads to decreased effectiveness of immunotherapy (60).

The correlation between peripheral blood NLR and clinical

outcomes may be explained by the association between tumor-

infiltrating lymphocytes and neutrophils, which results in reduced

anti-tumor T-cell responses (61, 62).

As depicted in Figure 4, we observed changes in cytokine levels

after treatment in both Cohorts. Cancer cells are the primary

sources of cytokines, so successful treatment can lead to

reductions in specific cytokines, as observed for IL-2, TNF-a,
IFN-g, and IL-17A in Cohort 2. However, patients treated with

chemotherapy alone exhibited stabilization or an increase in levels

of IL-4, IL-6, and IL-10 cytokines, which may suggest that the

crucial cell compartments contributing to the presence of these

cytokines might not be affected by chemotherapy, such as M2

macrophages in the tumor microenvironment (63, 64).

Furthermore, the addition of ICIs increased concentrations of
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cytokines after treatment globally and appeared to counteract the

effect of chemotherapy, which typically decreases cytokine levels. It

is believed that cytokine levels reflect the immunosuppressive state

to some extent, where a high level of cytokines indicates that the

body is more sensitive to PD-1 antibodies (65). This finding is

consistent with our observation that GC patients in Cohort 1 with

more than 20% variation in IL-2 from baseline to the point of

maximum remission had better OS.
Conclusion

In conclusion, ongoing studies are actively investigating the

predictive role of peripheral blood indicators in the effectiveness

and prognosis of immunotherapy. However, comprehensive data

on the use of Immune Checkpoint Inhibitors (ICIs) in advanced

gastric cancer patients, both domestically and internationally, are

still limited. Therefore, further prospective validation is required.

To sum up, serum cytokines have varying significance in assessing

the response of gastric cancer (GC) patients to anti-PD-1 therapy.

Baseline levels of IL-2, IL-6, IL-17A, and Neutrophil-to-

Lymphocyte Ratio (NLR), as well as changes in IL-2 levels over

time, may serve as convenient predictive biomarkers for identifying

GC patients who are likely to benefit from the addition of anti-PD-1

monoclonal antibodies to chemotherapy.
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Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
Purpose: This study aims to explore novel biomarkers related to the coagulation

process and tumor-associated macrophage (TAM) infiltration in lung

adenocarcinoma (LUAD).

Methods: The macrophage M2-related genes were obtained by Weighted Gene

Co-expression Network Analysis (WGCNA) in bulk RNA-seq data, while the TAM

marker genes were identified by analyzing the scRNA-seq data, and the

coagulation-associated genes were obtained from MSigDB and KEGG

databases. Survival analysis was performed for the intersectional genes. A risk

score model was subsequently constructed based on the survival-related genes

for prognosis prediction and validated in external datasets.

Results: In total, 33 coagulation and macrophage-related (COMAR) genes were

obtained, 19 of which were selected for the risk score model construction.

Finally, 10 survival-associated genes (APOE, ARRB2, C1QB, F13A1, FCGR2A, FYN,

ITGB2, MMP9, OLR1, and VSIG4) were involved in the COMAR risk score model.

According to the risk score, patients were equally divided into low- and high-risk

groups, and the prognosis of patients in the high-risk group was significantly

worse than that in the low-risk group. The ROC curve indicated that the risk

score model had high sensitivity and specificity, which was validated in multiple

external datasets. Moreover, the model also had high efficacy in predicting

the clinical outcomes of LUAD patients who received anti-PD-1/PD-L1

immunotherapy.
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Conclusion: The COMAR risk scoremodel constructed in this study has excellent

predictive value for the prognosis and immunotherapeutic clinical outcomes of

patients with LUAD, which provides potential biomarkers for the treatment and

prognostic prediction.
KEYWORDS

lung adenocarcinoma, coagulation, tumor-associated macrophage, risk score model,
prognosis, immunotherapy
1 Introduction

Although the screening and treatment of lung cancer have

witnessed greater improvement in the past few years, there are

still ongoing challenges in improving the clinical outcomes of

patients (1, 2). Lung adenocarcinoma (LUAD), a kind of non-

small cell lung cancer (NSCLC), was the most common lung

malignancy with genetic and morphologic diversity, and the

pathogenesis and treatment of LUAD still need further

exploration (3, 4). The tumor microenvironment (TME) plays a

critical role in tumor progression and treatment (5, 6). Tumor-

associated macrophage (TAM) was an essential component of the

tumor microenvironment, and it contributed to tumor growth,

metastasis, and immunosuppression, as well as tumor resistance to

chemotherapy and checkpoint blockade immunotherapy (7, 8).

There were also a number of studies about the roles of TAMs in

NSCLC or LUAD. TAMs in the TME usually originated from two

main sources: one was the bone marrow (BM)-derived monocytic

precursors; another was the tissue-resident macrophages (TRMs)

originated from embryonic precursors (8). After egress from the

BM, monocytes (or M-MDSCs) were recruited to the TME via

chemokines of the CC and CXC families, such as CCL2, CCL5, and

CXCL12, that were produced by cancer cells early during

tumorigenesis (9). Subsequently, the myeloid cells recruited to

tumors would convert to TAMs under the activation of integrin

(9). CCR2 and CX3CR1 were the receptors of the chemokines CCL2

and CX3CL1, respectively, and they were proven to play significant

roles in macrophage migrating to lung cancer and M2

polarization (10).

TAMs shaped the TME of NSCLC. They accumulated close to

tumor cells in the early stage of tumor formation to promote

epithelial–mesenchymal transition and invasiveness of tumor

cells, and they also caused a potent regulatory T-cell response

that suppressed the adaptive immunity of tumor cells (11). TAMs

can promote LUAD growth or metastasis by secreting some factors

that can be adopted by the tumor cells in the TME, such as miR-942

(12), LINC00273 (13), and HB-EGF (14), as well as by upregulating

CRYAB expression in tumor cells (15). The M2 subtype of TAM

enhances the expression of VEGF-A and VEGF-C, which is

significantly associated with angiogenesis and lymphangiogenesis,

contributing to the progression of NSCLC (16). TAMs also have a

great impact on the chemotherapy and anti-PD1/PD-L1
02190
immunotherapy for LUAD (17, 18). Recent studies found that

TAMs had a close relationship with coagulation. On the one

hand, TAM was an important contributor to the coagulation in

tumors by producing factor X (FX) and leading to cell-autonomous

FXa-PAR2 signaling in these cells within the TME (19, 20). On the

other hand, some coagulation-related factors can regulate the

functions of TAMs, consequently influencing the progression of

tumors. For example, thrombin and plasminogen activator

inhibitor-1 (PAI-1) can facilitate the M2 polarization of TAMs in

ovarian and breast cancer, respectively (21, 22). Tissue factor (TF)

expression by tumor cells can recruit TAMs to the lung, supporting

the formation of the premetastatic niche (23). The lung plays an

important role in blood coagulation, and there was evidence that the

lung is a primary site of terminal platelet production (24). Lung

cancer is a non-negligible cause of the disturbance of blood

coagulation, which can lead to venous thromboembolism, the

second leading cause of death in cancer patients (5, 25). NSCLC

has a relatively high risk of venous thromboembolism among lung

cancer types, and LUAD is especially an independent risk factor for

it (26, 27). The pathophysiology of this phenomenon was complex

and not entirely understood, and several related risk factors were

involved (25).

The study was designed to further explore the significance of

coagulation and TAM infiltration in shaping the TME of LUAD

and predicting the prognosis and immunotherapeutic clinical

outcomes of LUAD patients.
2 Materials and methods

2.1 Data collection and preprocessing

The gene expression profiles of The Cancer Genome Atlas

(TCGA)-LUAD cohort (converted to log2(FPKM+1)) were

downloaded using the R package “TCGAbiolinks”. The officially

corrected survival information (overall survival (OS)) and clinical

information (including age, stage, gender, grade, etc.) of LUAD

patients in TCGA were downloaded from the cBioPortal database.

The gene expression profiles and clinical information of the

GSE30219, GSE37745, GSE41271, GSE42127, GSE50081,

GSE68465, and GSE72094 datasets were downloaded from the

GEO database. In these datasets, the primary tumors were
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collected by surgical resection from lung adenocarcinoma patients.

The patients in these cohorts have been collected with high-quality

gene expression data and complete clinical and follow-up

information. None of the patients received preoperative

chemotherapy or radiotherapy. The probes in the GEO datasets

corresponding to more than one gene would be removed. When

multiple probes corresponded to the same symbol, the average value

would be taken.

We filtered out the samples with incomplete survival information

in TCGA and the GEO datasets. The GSE68465 dataset was used as

the training cohort, while the other datasets were taken as the

validation cohorts. The GSE131907 dataset, containing single-cell

transcriptome data from 15 lung adenocarcinoma patients, was also

downloaded from the GEO database. The cellular annotation results,

reported by Kim, were used for the subsequent analyses (28). A total

of 535 coagulation-related genes were obtained from the coagulation-

related pathways in the MSigDB and Kyoto Encyclopedia of Genes

and Genomes (KEGG)databases. The detailed pathways and the

numbers of the corresponding genes were listed in (Table 1), and

the names of those 535 genes are listed in Supplementary Table S1.
2.2 The construction of the gene co-
expression network by WGCNA analysis

Weighted Gene Co-expression Network Analysis (WGCNA)

aimed to identify co-expressed gene modules, explore the

relationships between the gene co-expression networks and the

phenotypes of interest, and study the core genes in the network.

WGCNA analysis was performed using the genes with the top 75%

highest variation coefficient in the expression profile of the

GSE68465 dataset. First, the correlation coefficient between every

two genes was calculated, and the connections between genes in the

network were made to obey a scale-free network using the weighted

values of the correlation coefficients. Subsequently, a hierarchical

clustering tree was constructed based on the correlation coefficients

among these genes. Different branches of the clustering tree

represented different gene modules, and different colors

represented different modules. Next, the significance of the
Frontiers in Immunology 03191
modules was calculated and used to calculate the correlation

between the macrophage M2 infiltration scores and different

modules, and the genes in each module, considered signature

genes of the modules, were recorded.
2.3 Processing the single-cell
RNA-seq data

The R package “Seurat” was used to preprocess the scRNA-seq

data. First, we set the following thresholds in which the cells can be

included in the study: (1) cells with more than 200 and less than

10,000 genes; (2) cells with less than 20% mitochondrial gene

expression; and (3) cells with more than 100 and less than

150,000 UMIs. The “NormalizeData” function was used to

normalize the scRNA-seq dataset, and 3,000 highly variable genes

w e r e i d e n t ifi e d u s i n g t h e “mvp ” me t hod o f t h e

“FindVariableFeatures” function. Subsequently, we made scale

transformed for the data and performed principal component

analysis (PCA) for dimensionality reduction. We eventually

selected the top 20 principal components for the downstream

analyses. Since the data were obtained from different samples,

batch correction was performed using the R package “Harmony”

to avoid the interference of the batch effect on the subsequent

analyses. We used the UMAP algorithm to mine and visualize the

data. Finally, we annotated the cell populations based on the

signatures provided by the study of Kim et al. (28).

We identified differentially expressed genes (DEGs) between

each cell type by using the “FindAllMarkers” function in the R

package “Seurat”, where min.pct = 0.1, logfc. threshold = 0.25, and

only.pos = FALSE were set, while only genes with p-values of< 0.05

would be retained. We used the R package “scRNAtoolVis” to plot

the volcano chart for the DEGs between different cell types.
2.4 Mutation and CNV analyses

R package “maftools” was employed to plot the waterfall maps

of the mutation landscape of the 33 coagulation and macrophage-

related (COMAR) genes in the TCGA-LUAD cohort. The CNV

data of TCGA-LUAD was downloaded from the “UCSC Xena”

website, and then the CNV frequency was presented in a plot

finished by R software.
2.5 Construction of the COMAR
prognostic model

The COMAR prognostic model was constructed based on 33

coagulation and macrophage-related genes. First, Kaplan-Meier

survival analysis was performed to divide the patients into high

and low-expression groups with the best cut-off value for each gene,

and 19 genes that had significant differences in survival status

between the two groups were identified. Next, multivariate Cox

regression analysis for the 19 genes was used to construct the 10-

gene prognostic model. In the COMAR prognostic model, patients’
TABLE 1 The coagulation-related pathways and the number of genes
involved in each pathway.

Pathways Count

GOBP_BLOOD_COAGULATION_INTRINSIC_PATHWAY 18

GOBP_COAGULATION 347

GOBP_NEGATIVE_REGULATION_OF_COAGULATION 52

GOBP_POSITIVE_REGULATION_OF_COAGULATION 24

GOBP_REGULATION_OF_COAGULATION 71

HALLMARK_COAGULATION 138

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 69

KEGG_PLATELET_ACTIVATION 124

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 86
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risk scores were calculated based on the expression levels of each

prognosis-related gene and their corresponding regression

coefficients:

Risk score =o
n

i=1
expi* bi

In the above formula, “n” represents the number of genes;

“expi” represents the expression level of gene “i”; and “bi”
represents the coefficient of gene “i”. Patients were divided into

high- and low-risk groups according to the median risk score, and

survival analysis was performed using the R package “survminer” to

analyze OS in the high- and low-risk groups. The “survminer” and

“timeROC” packages were used to perform time-dependent ROC

curve analysis to check the predictive efficacy of the prognostic

models. Finally, risk scores would be calculated in the validation

cohorts using the same formula.
2.6 Biological functional annotation

The GO_BP and GO_MF enrichment analyses were performed

using the Gene Set Variation Analysis (GSVA) algorithm to calculate

the score for each pathway in each sample. The differentially

activated pathways in the high- and low-risk score groups were

identified using the “limma” package, with the differential threshold

set at FDR< 0.05. Differentially activated KEGG pathways between

the high- and low-risk score groups were analyzed using Gene Set

Enrichment Analysis (GSEA).
2.7 The estimation of immune cell
infiltration in the TME

The CIBERSORT algorithm in the R package “IOBR” was

applied to evaluate the immune cell abundance in the samples of

the GSE68465 dataset. Specifically, the CIBERSORT algorithm was

used to calculate the infiltration fractions of the 22 types of immune

cells. CIBERSORT was considered superior to previous methods of

deconvolution when analyzing unknown mixture content and

noise. This algorithm could be used to statistically estimate the

relative proportions of cell subgroups in complex tissues according

to gene expression profiles, making it a useful tool for estimating the

abundance of specific cell types in mixed tissues.
2.8 Collecting the immunotherapeutic
cohorts

The GSE126044 dataset, containing seven LUAD patients who

received anti-PD-1 immunotherapy, was downloaded from the

GEO database. The GSE135222 dataset containing 27 NSCLC

patients with anti-PD1/PD-L1 immunotherapy was also

downloaded from the GEO database. We calculated the risk

scores for each sample in these datasets using the same algorithm

as the previous model and made a survival analysis. We also

compared the difference in risk score between the patients with
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cancer progression and those with no progression after

receiving immunotherapy.
2.9 Statistical analysis

All the analyses were performed in R software (version 4.1.2).

For significance analysis between various values (such as expression

levels, infiltration ratio, and various eigenvalues, etc.), the Wilcoxon

rank-sum test was applied to compare the differences between two

groups of samples, while the Kruskal–Wallis test was used to

compare the differences between multiple groups of samples. For

plot presentation, the “ns” represents p > 0.05; “*” represents p<

0.05; “**” represents p< 0.01; “***” represents p< 0.001; and “****”

represents p< 0.0001. Survival curves in the prognostic analysis

were generated by the Kaplan–Meier method, and the significance

of the differences was determined by the log-rank test.
3 Results

3.1 Screening the macrophage-related
genes through WGCNA

The flow chart of this study is shown in Figure 1. The

CIBERSORT algorithm was used to calculate the content of

macrophages M1 and M2 in the samples of the GSE68465 cohort.

Next, the LUAD patients were divided into groups with high and low

macrophages M1 and M2. Kaplan–Meier analysis indicated that

there was no significant difference in the survival of LUAD patients

between the high and low macrophage M1 groups (Supplementary

Figure S1A), but patients in the low macrophage M2 group had a

longer overall survival (Supplementary Figure S1B). This suggested

that macrophage M2 played an important role in LUAD. Based on

this result, WGCNA was used to identify macrophage M2-related

genes in LUAD. First, the result of sample clustering showed no

outliers in these LUAD samples (Supplementary Figure S1C). When

the power value was 7, the degree of independence was > 0.85 for the

first time, so 7 was selected as the optimal soft threshold power

(Supplementary Figures S1D, S2E). There were nine gene modules

identified in the WGCNA (Supplementary Figures S1F, S2G). The

correlation analysis indicated that genes in the brown module (cor =

0.33, p = 0.0001) and blue module (cor = −0.41, p = 0.0000) were

most significantly correlated with macrophages M2. Therefore, 408

genes in the brown module and 430 genes in the blue module

(Supplementary Table S2) were selected for the subsequent analyses.
3.2 Acquiring the TAM marker genes using
scRNA-seq data

After quality control for the scRNA-seq dataset GSE131907,

25,011 genes were detected in 50,515 cells. The violin plots showed

the number of genes detected in each cell (nFeature), the total number

of counts in each cell (nCount), and the percentage of mitochondrial

genes in each cell (percent.mt) (Supplementary Figures S2A–C).
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The correlation analysis indicated that nCount was significantly

positively correlated with nFeature (Supplementary Figure S2D).

Next, the 3,000 highly variable genes were plotted in the scatter

plot (Supplementary Figure S2E). In total, 20 PCs were identified by

PCA (Supplementary Figure S2F), which were selected for “harmony”

analysis. According to the TSNE and cell type annotation, all cells

were divided into two groups (34,279 immune cells and 16,236

nonimmune cells). The immune cell group consisted of B

lymphocytes, mast cells, myeloid cells, T/NK cells, and TAM, while

the nonimmune cell group included endothelial cells, epithelial cells,

and fibroblasts (Supplementary Figures S3A, S4B). Differentially

expressed genes for each cell type were analyzed and displayed in

the volcano plot (Supplementary Figure S3C). The 1,815 differentially

expressed genes in TAM were considered the TAM-associated genes

(Supplementary Table S3).
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3.3 Characterization of the COMAR genes
and the landscape of their genetic and
transcriptional alterations

The intersection of the 535 coagulation-associated genes, 838

macrophage M2-related genes, and 1,815 TAM-associated genes

contained 33 genes, and these genes were selected for the

subsequent analyses (Figure 2A; Supplementary Table S4). We

first summarized the incidence of copy number variations and

somatic mutations of the 33 COMAR genes in LUAD. Among 561

samples, 183 experienced mutations of coagulation-related genes,

with a frequency of 32.62%. It was found that the TLR4 exhibited

the highest mutation frequency, followed by ITGAX, while 11 genes

did not show any mutations in LUAD samples (Figure 2C). The

investigation of CNV alteration frequency indicated a prevalent
FIGURE 1

The flow chart of this study.
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FIGURE 2

The characterization of the 33 COMAR genes and the landscape of their genetic and transcriptional alterations. (A) The determination of the 33
COMAR genes from the cross-talk of the coagulation-related genes, the macrophage M2-related genes identified by WGCNA, and the TAM markers.
(B) The mutational frequency of the 33 coagulation-associated genes in 561 LUAD patients from the TCGA-LUAD cohort. Each column represents
individual patients. Upper bar plots show TMB, and the numbers on the right indicate the mutational frequency of each gene. Right-bar plots show
the proportion of each variant type. Stacked bar plots below show the fraction of conversions in each sample. (C) The CNV variation frequency of
the 33 coagulation-related genes in the TCGA-LUAD cohort. The height of the column represents the alteration frequency. Red dots represent
deletion frequency; blue dots represent amplification frequency. (D) The expression levels of the 33 genes between normal and LUAD cancer tissues
in the TCGA-LUAD cohort. In the box plot, blue represents normal tissues, and red represents cancer tissue. The upper and lower ends of the boxes
represent the interquartile ranges of values. Lines in the boxes represent median values. Blue or red dots show outliers. Asterisks above the boxes
represent the p-value (*p< 0.05; **p< 0.01; ***p< 0.001; ns, p> 0.05). (E) The immunohistochemical staining images of FCGR2A, FYN, ITGB2, MMP9,
and VSIG4 genes in normal lung tissues and LUAD tumor tissues. The names of genes and antibodies are listed at the top of the figure. The upper
five images are the staining in the corresponding normal tissues, and the lower five images are the staining in the tumor tissues.
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CNV alteration in these coagulation-related genes, with copy

number amplification being much more significant than copy

number deletion. Genes like FCER1G and FCGR2A were found

with pretty prominent copy number amplification, while RASGRP1

and C5AR1 were found with obvious copy number deletion

(Figure 2B). We also compared the relative RNA expression levels

between LUAD and paired normal tissues and found that most of

the genes were downregulated in LUAD compared with paired

normal tissues (Figure 2D). Thus, there may be some other factors

that may influence the expression of these genes, except for CNV.

The Human Protein Atlas (HPA) database was applied to validate

the protein expression of the COMAR genes, and the IHC staining

images of FCGR2A, FYN, ITGB2, MMP9, and VSIG4 were

obtained (Figure 2E). Each gene was stained using the same

antibody in the normal lung tissue and LUAD cancer tissue.

Among these genes, FCGR2A, FYN, ITGB2, and VSIG4 protein

levels were increased in tumor tissues, while MMP9 protein level

was decreased, which was consistent with their mRNA expression

levels (Figures 2D, E).
3.4 Construction and validation of the
prognostic model based on the
COMAR genes

To investigate the clinical value of the 33 COMAR genes, we

divided the patients in the training cohort GSE68465 into high- and

low-expression groups for each gene with the best cut-off value and

performed survival analysis. Results indicated that 19 genes were

prognostic-related genes (Supplementary Figure S4). We then

conducted a multivariate Cox regression analysis based on the 19

genes. Finally, 10 of the 19 genes were found in the prognostic

model we constructed (Figures 3A–J). The specific calculation

formula for the risk score model was listed as follows:

Risk score = (−0.26708659 * APOE expression level) +

(−0.282614466 * ARRB2 expression level) + (0.410059345 *

C1QB expression level) + (0.178659465 * F13A1 expression level)

+ (−0.303985307 * FCGR2A expression level) + (−0.271534215 *

FYN expression level) + (−0.610784492 * ITGB2 expression level) +

(0.15191577 * MMP9 expression level) + (0.120339218 * OLR1

expression level) + (0.446920184 * VSIG4 expression level).

The training LUAD patients were ranked by the risk score and

divided into low-risk (n = 221) and high-risk (n = 221) groups

(Figure 3M; Supplementary Table S5), and the patient’s survival

time became shorter with the risk score increasing generally

(Figure 3N). The Kaplan–Meier curve showed a significantly

poorer prognosis in the high-risk group than in the low-risk

group (log-rank test, p = 4.59e−07) (Figure 3K). The ROC curve

showed the AUCs of the patients at 1, 3, and 5 years were 0.693,

0.696, and 0.672, respectively (Figure 3L). The AUCs in the

prediction of short-term prognosis were higher, and they were

0.745, 0.740, and 0.718 at 4-, 6-, and 9-month follow-up,

respectively (Supplementary Figure S5A). Thus, the prognostic

model might have stronger predictive efficacy for shorter-term

prognosis. Moreover, this prognostic model had significantly

superior predictive efficacy compared with other clinical factors
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such as age, sex, tumor stage, and differentiation status at 1-, 3-, and

5-year follow-ups (Supplementary Figures S5B–D).

To evaluate the robustness and generalizability of the 10-gene

COMAR prognostic model, several external independent datasets,

including GSE30219, GSE37745, GSE41271, GSE42127, GSE50081,

GSE72094, and TCGA-LUAD, were used as the validation cohort

for this model. In both validation cohorts, the patients in the low-

and high-risk groups had significantly different prognoses, and the

ROC curves all indicated high sensitivity and specificity

(Figures 4A–G). Furthermore, univariate and multivariate Cox

regression analyses were applied to evaluate whether the risk

score model could act as an independent prognostic factor for

LUAD. In both training and validation cohorts, the risk score was

considered to be an independent prognostic factor among other

clinical features such as age, sex, and tumor stage (Figures 5A–P).

These results all indicated that the 10-gene coagulation-related risk

score model had a better prognostic efficacy with high robustness

and generalizability.
3.5 Relationship between the COMAR risk
score and the tumor microenvironment

Different activations of hallmarks, GO_BPs, and GO_MFs in the

GSE68465 dataset were investigated using the GSVA algorithm.

Results indicated that some cancer hallmarks were much more

enriched in the high-risk score group, such as MYC and MTOR-

related pathways (Figure 6A; Supplementary Table S6). The high-risk

score group had stronger molecular functions on DNA replication

and transcription (such as DNA replication origin binding, helicase

activity, and transcription initiation factor activity), while the low-risk

score group exhibited greater molecular functions on immune

activities (such as type I interferon receptor binding and T-cell

receptor binding) (Figure 6B; Supplementary Table S6).

Consistently, the immune biological pathways were mostly

activated in the low-risk score group (such as positive regulation of

T-cell receptor signaling pathway, positive regulation of antigen

receptor-mediated signaling pathway, and positive regulation of

inflammatory response to antigen stimulus), while pathways about

DNA replication were activated in the high-risk group (such as DNA

replication checkpoint and mitotic cell cycle checkpoint) (Figure 6C;

Supplementary Table S6).

Similar to the results in the GO analyses, the KEGG GSEA

indicated the high-risk score group was mostly enriched in the

following pathways (DNA replication, cell cycle, and P53 signaling),

while the low-risk score group was mostly enriched in the immune-

related pathways (natural killer cell-mediated cytotoxicity,

complement and coagulation cascades, and intestinal immune

network for IgA production) (Figure 6D; Supplementary Table S6).

To further explore the correlation between the risk score and tumor

immune characteristics, the immune cell infiltration in these samples

was investigated using the CIBERSORT algorithm. It was found that

immune cell infiltration was overall higher in the low-risk score group

than in the high-risk score group (such as naïve B cells, resting

dendritic cells, naive CD4 T cells, resting memory CD4 T cells, and T

follicular helper cells) (Figure 6E; Supplementary Table S7). However,
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the infiltration of macrophage M0 and M2 was significantly higher in

the high-risk score group (Figure 6E; Supplementary Table S7).

Moreover, some immune-related functions were much more

activated in the low-risk score group, including HLA, T-cell co-

stimulation, and type II IFN response (Figure 6F).
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3.6 Predictive efficacy of the 10-gene
COMAR model in immunotherapy

The risk scores of LUAD patients treated with anti-PD1/PD-L1

blockade in the GSE126044 and GSE135222 datasets were
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FIGURE 3

Construction of the 10-gene prognostic model in the training cohort. (A–J) The overall survival curves of the 10 genes involved in the prognostic
model: (A) APOE, (B) ARRB2, (C) C1QB, (D) F13A1, (E) FCGR2A, (F) FYN, (G) ITGB2, (H) MMP9, (I) OLR1, and (J) VSIG4. The abscissa axis shows
survival time, while the ordinate axis shows survival probability. Blue represents low expression, while red represents high expression. The grouping
status of the patients is indicated at the bottom of the chart. p< 0.05 in the Log-rank test was considered statistically significant. (K) The overall
survival curve of patients in high- and low-risk score groups in the training cohort. The abscissa axis shows survival time, while the ordinate axis
shows survival probability. Blue represents patients with low-risk scores, while red represents patients with high-risk scores. The grouping status of
the patients is indicated at the bottom of the chart. P< 0.05 in the Log-rank test was considered statistically significant. (L) The ROC curve for
predicting the 1-, 3-, and 5-year survival of LUAD patients according to the risk score. The abscissa axis represents specificity and the vertical axis
represents sensitivity. Different colors represent different predictive times. (M) The risk score distributions of the patients. (N) The survival status of
the patients.
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calculated using the risk score model. In the GSE126044 cohort, it

was found that patients in the low-risk score group had significantly

better progression-free survival (PFS) and overall survival (OS)

versus high-risk score group (Figures 7A, C). Surprisingly, the

corresponding ROC curves indicated that the AUCs at 6 months,

12 months, and 18 months were all 1 (Figures 7B, D). Similar results

could also be found in the GSE135222 cohort. Patients in the low-

risk score group had a remarkable advantage in prognosis

(Figure 7E), and the AUCs of patients at 4 months, 8 months,

and 12 months were 0.846, 0.8, and 0.854, respectively (Figure 7F).

The risk score distributions and the survival status of the patients in

the GSE135222 cohort are provided in Figures 7G, H. Moreover,

patients who experienced progression of LUAD after anti-PD1/PD-

L1 immunotherapy were found to have a higher risk score

(Figure 7I), and they were all in the low-risk score group

(Figure 7J). These results indicated that the 10-gene coagulation
Frontiers in Immunology 09197
and macrophage-related model had a strong predictive efficacy for

patients’ prognosis with anti-PD1/PD-L1 immunotherapy.
3.7 Validation of the bioinformatic
analytical results through the patient
specimens and cancer cell lines

To further investigate the functions of the genes in the COMAR

model in immunotherapy, first we made a correlation analysis in

the TCGA-LUAD dataset and found the expression levels of all the

genes in the COMAR model were positively correlated with PD-L1

expression level and the immunophenoscore (IPS) with anti-PD1

+CTLA4 or anti-PD1 along immunotherapy (Figure 8A). Next, we

analyzed the protein expression levels of the COMAR genes and

PD-L1 in the HPA database, and the immunochemical images of
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FIGURE 4

The predictive efficacy of the prognostic model in the external validation cohorts: (A) GSE30219 dataset, (B) GSE37745 dataset, (C) GSE41271
dataset, (D) GSE42127 dataset, (E) GSE50081 dataset, (F) GSE72094 dataset, (G) TCGA-LUAD dataset. On the left of each panel is the overall survival
curve of patients in high and low-risk score groups. The abscissa axis shows survival time while the ordinate axis shows survival probability. Blue
represents patients with low-risk scores while red represents patients with high-risk scores. The grouping status of the patients is indicated at the
bottom of the chart. On the right of each panel is the ROC curve for predicting the 1-, 3-, and 5-year survival of LUAD patients according to the risk
score. The abscissa axis represents specificity and the vertical axis represents sensitivity. Different colors represent different predictive times.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1273422
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1273422
VSIG4 and PD-L1 of six patients stained using the same antibody

for each gene were obtained.

It was found that patient 2003 with the strong staining intensity

of PD-L1 could also be found with the strong staining intensity of

VSIG4 in the specimens. Furthermore, the specimens of the other

five patients with negative staining of PD-L1 were consistent with

the negative VSIG4 staining results (Figures 8B–G). This indicated
Frontiers in Immunology 10198
that the COMAR genes were positively correlated with PD-L1

expression at the proteinic level. We also explored the correlation

between the 10 COMAR genes and immune checkpoint genes in

LUAD cell lines using the data from the Cancer Cell Line

Encyclopedia (CCLE) database (29). The results indicated that the

expression levels of some COMAR genes, like ITGB2, were

positively correlated with multiple immune checkpoints
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FIGURE 5

Forest plots of the univariate and multivariate Cox regression analyses for the prognostic model in the training and validation cohorts. (A) Univariate Cox
regression analysis for the training cohort GSE68465. (B) Multivariate Cox regression analysis for the training cohort GSE68465. (C) Univariate Cox regression
analysis for the validation cohort GSE30219. (D) Multivariate Cox regression analysis for the validation cohort GSE30219. (E) Univariate Cox regression analysis
for the validation cohort GSE37745. (F) Multivariate Cox regression analysis for the validation cohort GSE37745. (G) Univariate Cox regression analysis for the
validation cohort GSE41271. (H) Multivariate Cox regression analysis for the validation cohort GSE41271. (I) Univariate Cox regression analysis for the validation
cohort GSE42127. (J) Multivariate Cox regression analysis for the validation cohort GSE42127. (K) Univariate Cox regression analysis for the validation cohort
GSE50081. (L) Multivariate Cox regression analysis for the validation cohort GSE50081. (M) Univariate Cox regression analysis for the validation cohort
GSE72094. (N) Multivariate Cox regression analysis for the validation cohort GSE72094. (O) Univariate Cox regression analysis for the validation cohort
TCGA-LUAD. (P) Multivariate Cox regression analysis for the validation cohort TCGA-LUAD. The left column of each panel shows the p-value and hazard
ratio of the factors, including risk score, and the right column shows the corresponding forest plot.
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(Supplementary Figure S6A), which was consistent with the results

in the patient specimens. Moreover, we obtained the

immunofluorescent staining image of the VSIG4 gene in LUAD

cell line A-549 from the HPA database and found that VSIG4 is

mainly located in the plasma membrane and cytosol of cancer cell

line A-549 (Supplementary Figure S6B).
4 Discussion

It had been extensively reported that lung cancer, especially for

LUAD, could frequently cause coagulation aberration and even

venous thromboembolism, which was a major cause of cancer-

related deaths (25–27, 30–32). It has been proved that the TME
Frontiers in Immunology 11199
plays a significant role in tumor progression and therapy. As an

essential component of the TME, TAMs have been the focus of

several studies. TAMs could facilitate the progression of most types

of cancer, including LUAD, through promoting angiogenesis,

suppression of specific immunity, and cancer growth and

metastasis (7, 8, 11–16). TAMs could also be applied as the

therapeutic target for cancers, and the ways include depleting

them, reverting TAM polarization, checkpoint blockade, strategies

to reshape and activate TAMs, metabolic approaches, and

macrophage cell therapies (7, 8). TAMs played an important role

in coagulation, which was closely related to cancer development.

For example, TAMs could produce factor X (FX) and activate the

cell-autonomous FXa-PAR2 signaling in the TME, which led to

tumor immune evasion and a poor prognosis (19, 20). Some other
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FIGURE 6

The association between the COMAR risk score and the TME characteristics. (A–C) GSVA enrichment analysis shows the differentially activated
hallmarks (A), GO_MFs (B), and GO_BPs (C) between risk score low and high groups. The items of hallmarks, molecular functions, and biological
processes are listed on the right. Red represents activation, while blue represents inhibition. (D) GSEA enrichment analysis shows the activated
pathways in risk score high and low groups. The abscissa axis represents the ranked gene list according to their expression levels in two groups. The
vertical axis represents the running enrichment score. Curves of different colors represent different pathways. The curves that have a high peak on
the left side represent pathways that are enriched in the high-risk score group, while the curves that have a low peak on the right side represent
pathways that are enriched in the low-risk score group. (E) Relative abundance of the 22 types of immune cells in risk score low and high groups.
The abscissa axis represents the names of immune cells. The abscissa axis shows the immune cell types, and the vertical axis represents the
infiltration fraction of each immune cell. (F) Score of functions in immune regulation in risk score low and high groups. The abscissa axis shows the
items of immune functions, and the vertical axis shows the activation score of each immune function. "*p< 0.05; **p< 0.01; ***p< 0.001; ns, p> 0.05.
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FIGURE 7

The 10-gene COMAR model predicts the immunotherapeutic outcomes of patients with LUAD. (A) The progression-free survival curve of
patients with high and low-risk scores in the anti-PD-1 cohort GSE126044. (B) The ROC curve for predicting the 6- and 12-month
progression-free survival of patients in the GSE126044 cohort. (C) The overall survival curve of patients with high and low-risk scores in the
GSE126044 cohort. (D) The ROC curve for predicting the 6- and 12-month overall survival of patients in the GSE126044 cohort. (E) The
progression-free survival curve of patients with high- and low-risk scores in the anti-PD-1/PD-L1 cohort GSE135222. (F) The ROC curve for
predicting the 4-, 8-, and 12-month progression-free survival of patients in the GSE135222 cohort. For the survival charts, the abscissa axis
shows survival time, while the ordinate axis shows survival probability. Blue represents patients with low-risk scores, while red represents
high-risk scores. The grouping status of the patients is indicated at the bottom of the chart. For the ROC curves, the abscissa axis represents
specificity, and the vertical axis represents sensitivity. Different colors represent different predictive times. (G) The risk score distributions of
the patients in the GSE135222 cohort. (H) The survival status of the patients in the GSE135222 cohort. (I) Violin plot showing the risk score of
patients with progression or no progression after anti-PD-1/PD-L1 blockade immunotherapy in the GSE135222 cohort. (J) The proportion of
patients with progression or no progression after immunotherapy in low- and high-risk score groups in the GSE135222 cohort.
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coagulation-associated factors could also strengthen the tumor-

promoting effects of TAMs (21–23). Therefore, targeting the

coagulation-related factors might effectively dampen the tumor-

promoting functions of TAMs and boost the efficacy of cancer

therapy. There have been some studies showing that targeting

coagulation signaling could inhibit or reprogram TAMs and

improve immunotherapy (19, 20). However, the regulatory

mechanisms between coagulation and TAMs in tumor

development still need to be further studied, and more

biomarkers related to the coagulation process and TAM functions
Frontiers in Immunology 13201
that could be used for cancer therapeutic targets and prognostic

prediction should be explored.

In this study, we acquired the coagulation-related genes from

the coagulation pathways provided by MSigDB and KEGG

databases (Table 1; Supplementary Table S1). Then, we found

high macrophage M2 content in the tumor was associated with a

worse prognosis in LUAD patients while macrophage M1 was not

(Supplementary Figures S2A, B), so the macrophage M2-related

genes were identified using the WGCNA method in the bulk RNA-

seq data (Supplementary Figures S2C–G; Supplementary Table S2).
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FIGURE 8

The correlation between genes in the COMAR model and anti-PD-1/PD-L1 immunotherapy. (A) Correlation analysis between the 10 genes involved
in the COMAR model, PD-L1 expression, and IPS in immunotherapy. (B-G) Immunohistochemical staining images of the specimens of patient ID
2003 (B), 4923 (C), 1907 (D), 1932 (E), 4090 (F), and 4488 (G). Images were downloaded from the Human Protein Atlas (HPA) database. Gene names,
antibodies, and staining intensity are listed at the bottom of each image. IPS, immunophenoscore. *p< 0.05; **p< 0.01; ***p< 0.001.
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Single-cell sequencing is an advanced technology that gives us an

unprecedented opportunity to dissect cellular heterogeneity in

various biological contexts by analyzing transcriptomic profiles of

thousands to millions of cells simultaneously (33–36). Through

analyzing the scRNA-seq data, we annotated all the cell types and

characterized the TAMmarker genes in the LUAD scRNA-seq data

(Supplementary Figure S3C; Supplementary Table S3) (28). Finally,

we adopted the intersectional genes of the three groups of genes and

obtained 33 genes that are closely related to the coagulation process

and TAM infi ltration for further analyses (Figure 2A;

Supplementary Table S4). Those genes were named COMAR genes.

Subsequently, we performed K-M survival analysis for those 33

COMAR genes and found that 19 genes were associated with the

prognosis (Supplementary Figure S6). Based on the 19 genes, we

constructed a prognostic model including 10 genes, which was

effective and proved robust in predicting patients’ prognosis

(Figures 3–5). Among the 10 genes, ARRB2 was reported to be a

tumor suppressor and could inhibit the progression of various kinds

of cancer, including lung cancer (37–41). In our study, ARRB2 was

found to be a protective factor for prognosis, which was consistent

with the previous studies (Figure 3B). Moreover, it was found that

ARRB2 was significantly downregulated in tumor versus normal

tissues and presented with a higher frequency of CNV deletion

(Figures 2B, D). Thus, we speculated that the expression of ARRB2

might be regulated by CNV in LUAD.

F13A1 was an important coagulation-related gene encoding

factor XIII subunit A (FXIII-A), which was a transglutaminase

involved in hemostasis, wound healing, tumor growth, and

apoptosis (42). It was reported that F13A1 was a risky factor for

the prognosis of patients with several types of cancer (43–45), which

was consistent with our study (Figure 3D). Though F13A1 had a

high frequency of CNV amplification (Figure 2B), it was

downregulated in LUAD tumor tissues (Figure 2D). Considering

its high mutation rate (Figure 2C), we speculated that mutational

inactivation might be the reason for the low expression of F13A1.

C1QB was a risky factor for patients with some cancers,

including NSCLC, according to previous studies (46–48), which

was also consistent with our analyses (Figure 2C). CIQB might

affect prognosis by regulating the TME because a study found that

intrahepatic cholangiocarcinoma (ICC) with APOE+C1QB+

subtype of macrophage infiltration was associated with the

chronic inflammation subtype of ICC and poor prognosis (46).

The FCGR2A gene encodes a member of the immunoglobulin

Fc receptor gene family (49). Previous studies mainly focused on the

polymorphisms of this gene that could influence the clinical

outcomes of monoclonal antibody treatment in cancers like breast

cancer (50), colorectal cancer (51, 52), and neuroblastoma (53).

Only limited reports pointed out that high expression of FCGR2A

was associated with a poor prognosis for cancer patients (49, 54). In

our study, we also found that high expression of FCGR2A was

associated with shorter survival in LUAD (Figure 3E). Moreover,

FCGR2A, presented with a higher rate of CNV amplification, was

downregulated in LUAD tumor tissues (Figures 2B, D), which was

rarely reported. Thus, it needed to be further explored, and the

regulatory mechanisms of its expression that were not consistent

with CNV amplification also needed to be figured out.
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FYN was a nonreceptor tyrosine kinase (RTK) member of the

Src family kinase (SFK) (55). It was reported that FYN promoted

tumor progression in glioma (56), melanoma (57), colon cancer

(58), gastric cancer (59), and pancreatic cancer through various

mechanisms (60). Furthermore, FYN was found to suppress LUAD

by downregulating PI3K/AKT and inhibiting the epithelial-to-

mesenchymal transition (61). This might partially account for the

result of our study that FYN was a protective factor for the

prognosis (Figure 3F).

ITGB2 participated in the YAP-induced cancer cell invasion by

activating leukocyte-specific integrin b2 expression (62) and the

myxofibrosarcoma aggressiveness conferred by SKP2 amplification

(63). High expression in cancer-associated fibroblast (CAF) could

promote oral squamous cell carcinoma proliferation by regulating

PI3K/AKT/mTOR pathways to enhance glycolysis activity in CAFs

(64). Moreover, high expression of ITGB2 was also reported to be

correlated with poor prognosis in some cancers (65, 66). However,

ITGB2 presented with opposite functions in NSCLC. It inhibited

the proliferation and metastasis of NSCLC cells through

suppressing EMT. Furthermore, low expression of it was

associated with inferior prognosis in NSCLC (67), which was

validated in an independent dataset, GSE68465 (Figure 3G).

MMP9 can degrade various components of the extracellular

matrix to promote cancer cell invasion and liberate ligands for

growth factor receptors from the extracellular matrix. It has been

reported to play an important role in tumor-induced VEGF-

dependent angiogenesis and prepping organs for the formation of

distant metastases depending upon VEGFR-1 (68). Furthermore, it

not only induced metastasis to the lung but was also involved in

lung cancer invasion through multiple mechanisms (69). Consistent

with previous reports, we found that MMP9 was also a risky factor

for the prognosis of LUAD (Figure 3H).

The OLR1 gene encodes the LOX-1 receptor protein, which

could facilitate the progression and metastasis of several cancers

(70). OLR1 could also promote lung metastases of osteosarcomas

through regulating the EMT (71). Similar to the above, OLR1 was

also an unfavorable risky factor for the prognosis (Figure 3I). Its

high frequency of CNV deletion might be the reason for its low

expression in LUAD (Figures 2B, D).

VSIG4 was a multifunctional cell surface protein and presented

as an immune checkpoint regulator, which suppressed T

lymphocyte function and promoted cancer development and

progression (72). In NSCLC tissues, VSIG4 could only be found

expressed in macrophages, and the VSIG4+ macrophages

infiltrating the tumor tissues could facilitate tumor growth by

inhibiting T-cell proliferation and cytokine production (73). This

might mechanically explain why the high expression of VSIG4 was

related to the poor prognosis of LUAD (Figure 3J).

Different from previous reports, APOE was found to be a

protective factor for the prognosis of LUAD (Figure 3A), while it

was reported to promote cancer proliferation and migration and

contribute to an aggressive clinical course in patients with LUAD

(74). When APOE was knocked out, lung tumor development and

metastasis were suppressed via increasing TREM-1-dependent

antitumor activity of NK cells (75). In general, most of the genes

involved in the COMAR prognostic signature were limitedly
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researched for their roles in LUAD. The regulatory mechanisms of

coagulation aberrancy and TAM functions and the cross-talk

relationships between them still need to be further studied.

For the correlation analysis between the COMAR risk score and

the TME, patients in the low-risk score group were found to

participate in much more activated immune-related biological

pathways versus patients in the high-risk score group. These

immune-related biological pathways might suppress tumor

progression and contribute to a better prognosis for the low-risk

group. In the GO_MF analysis, we found that the molecular

functions of T-cell receptor (TCR) and type I interferon (IFN)

receptor binding were enhanced in the low-risk score group

(Figure 6B). For T cells, antitumor reactivity was defined by their

unique TCRs (76), and high TCR abundance was associated with a

better prognosis (77). Type I IFNs play a major role in the natural

and therapy-induced immunological control of many malignancies,

including lung cancer (78). The GO_BP analysis also indicated that

positive regulation of the TCR pathway was activated in the low-risk

score group. In addition, the gamma-delta T-cell differentiation was

also found to be activated in the low-risk score group (Figure 6C).

Gamma-delta T cells had antitumor functions in the TME and a

high content of Vd1 T cells; Vd1 T cells were reported to be a

subtype of gamma-delta T cells and were associated with superior

prognosis and response to anti-PD-1 immunotherapy (79).

The GSEA of the KEGG pathway also indicated that several

immune-associated pathways were enriched in the low-risk score

group, including natural killer cell-mediated cytotoxicity (Figure 6D).

Natural killer (NK) cells were cytotoxic lymphocytes of the innate

immune system that were capable of killing viral infected and/or

cancerous cells (80); when NK cells were commonly reduced in

human tumors, immune surveillance escape would happen (81). The

CIBERSORT analysis indicated that samples in the low-risk score

group were infiltrated with a higher fraction of B cells, plasma cells,

and CD4 cells, but less macrophage M2 (Figure 6E). B cells, plasma

cells, and CD4 cells had been proven to play significant roles in

promoting antitumor immunity and better clinical outcomes in the

ICB immunotherapy (82–84), while macrophage M2 was associated

with NSCLC progression, antitumoral immunosuppression, and

resistance to anti-PD-1 immunotherapy (12, 15, 85, 86).

The results of the subsequent analyses in the LUAD

immunotherapeutic cohorts corresponded to those of the TME

analyses. Patients in the low-risk score group had significantly

longer survival times and lower progression rates after accepting

anti-PD-1 immunotherapy (Figure 7). The AUC values were pretty

high, especially in the GSE126044 cohort (the AUC value = 1), which

indicated the high sensitivity and specificity of this prognostic model

(Figures 7B, D, F). Immune surveillance escape occurred by hijacking

the corresponding inhibitory pathways via overexpressed checkpoint

genes such as PD-L1 and CD47; thus, phagocytosis checkpoints have

emerged as essential checkpoints for cancer immunotherapy (87). In

the correlation analysis, we found that the 10 COMAR genes were

positively correlated with immune checkpoint expression, such as

PD-L1 and the IPS with anti-PD1 plus anti-CTLA4 or anti-PD1

along immunotherapy in both patient specimens and LUAD cell lines

(Figure 8; Supplementary Figure S6A). Most of the genes in the

COMAR model have also been reported to be positively correlated
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with PD-L1 expression and respond to ICB immunotherapy in

multiple cancers (47, 88–93), which was consistent with the results

of our study. These suggested that the 10 COMAR genes might serve

as potential targets for ICB immunotherapy.

Certainly, there were also some limitations in our study. First,

our study was mainly based on bioinformatic analyses of public

datasets. Biological and molecular experiments in vitro and/or in vivo

were needed to further explore the relevant mechanisms of the key

COMAR genes. Second, due to our retrospective study, bias might be

inevitable, and prospective experiments were needed for further

validation. These limitations were also the focus of our future

research. Our research had significant potential for future clinical

guidance. First, the expression levels of key COMAR genes in LUAD

could be examined before ICB immunotherapy and then applied for

screening of immunotherapy patients. Second, researchers could

explore the therapeutic target potential of these genes, which could

be adopted for the development of targeted drugs.

In brief, the coagulation process and macrophage infiltration

are two important factors that are usually aberrant in LUAD. They

have cross-talk impacts on each other mutually and contribute to

the concerto in regulating LUAD development. Based on the

coagulation-related genes and the M2-TAM marker genes, a

scoring model containing 10 prognostic genes (APOE, ARRB2,

C1QB, F13A1, FCGR2A, FYN, ITGB2, MMP9, OLR1, and VSIG4)

was constructed. This prognostic signature is super efficacious in

predicting the prognosis and ICB immunotherapeutic outcomes of

patients with LUAD, which provides potential biomarkers for

LUAD treatment and prognostic prediction.
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The enrichment of the gut
microbiota Lachnoclostridium
is associated with the presence
of intratumoral tertiary
lymphoid structures in
hepatocellular carcinoma

Rui Zhao1†, Jiacheng Li2†, Bo Chen2†, Jungang Zhao2, Leyin Hu3,
Kate Huang3, Qiwen Chen1, Jiangqiao Yao2, Ganglian Lin2,
Lishimeng Bao4, Mengmeng Lu1, Yi Wang5,6*,
Gang Chen2,6,7* and Fang Wu1*
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Medical University, Wenzhou, China, 3Department of Pathology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, China, 4The Second Clinical College, Wenzhou Medical
University, Wenzhou, China, 5Department of Epidemiology and Biostatistics, School of Public Health
and Management, Wenzhou Medical University, Wenzhou, China, 6Zhejiang-Germany Interdisciplinary
Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, China, 7Key
Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
Backgrounds and aims: Immunotherapies have formed an entirely new

treatment paradigm for hepatocellular carcinoma (HCC). Tertiary lymphoid

structure (TLS) has been associated with good response to immunotherapy in

most solid tumors. Nonetheless, the role of TLS in human HCC remains

controversial, and recent studies suggest that their functional heterogeneity

may relate to different locations within the tumor. Exploring factors that

influence the formation of TLS in HCC may provide more useful insights.

However, factors affecting the presence of TLSs are still unclear. The human

gut microbiota can regulate the host immune system and is associated with the

efficacy of immunotherapy but, in HCC, whether the gut microbiota is related to

the presence of TLS still lacks sufficient evidence.

Methods: We performed pathological examinations of tumor and para-tumor

tissue sections. Based on the location of TLS in tissues, all patients were divided

into intratumoral TLS (It-TLS) group and desertic TLS (De-TLS) group. According

to the grouping results, we statistically analyzed the clinical, biological, and

pathological features; preoperative gut microbiota data; and postoperative

pathological features of patients.

Results: In a retrospective study cohort of 60 cases from a single center,

differential microbiota analysis showed that compared with the De-TLS group,

the abundance of Lachnoclostridium, Hungatella, Blautia, Fusobacterium, and

Clostridium was increased in the It-TLS group. Among them, the enrichment of
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Lachnoclostridium was the most significant and was unrelated to the clinical,

biological, and pathological features of the patients. It can be seen that the

difference in abundance levels of microbiota is related to the presence of TLS.

Conclusion: Our findings prove the enrichment of Lachnoclostridium-

dominated gut microbiota is associated with the presence of It-TLS in

HCC patients.
KEYWORDS

hepatocellular carcinoma (HCC), tumor immune microenvironment (TIME), tertiary
lymphoid structure (TLS), gut microbiota, Lachnoclostridium
Highlights

• What is already known on this topic

Previously, the presence of intratumoral tertiary lymphoid

structures (TLS) has been demonstrated to correlate with

favorable immunotherapy response and long-term prognosis in

patients with hepatocellular carcinoma (HCC); however, factors

influencing their presence remain elusive.

• What this study adds

Our study has, for the first time, demonstrated the association

between gut microbiota and TLS presence. We found that the

enrichment of Lachnoclostridium-dominated gut microbiota is

associated with the presence of intratumoral TLS in HCC a patients.

• How this study might affect research, practice, or policy

This provides new insights into the research on how gut

microbiota affects tumor immunotherapy, specifically by

modulating the formation of intratumoral TLS.
Introduction

Primary liver cancer is the sixth most commonly diagnosed

cancer type and the third leading cause of cancer death worldwide

in 2020. Hepatocellular carcinoma (HCC) is the main pathological

type of primary liver cancer, accounting for 75%–85% of all liver

cancer cases (1). Over the past decade, the systemic therapies of

tyrosine kinase inhibitors sorafenib and lenvatinib have been the

first-line treatment for advanced HCC. Currently, immune

checkpoint inhibitors (ICIs) and other immunotherapies are

emerging as a major treatment approach in HCC due to

significantly improved overall survival and lower recurrence rates

in HCC patients (2–5). Despite these major advances, the full
HCC, hepatocellular

oup, intratumoral TLS

filtrating lymphocytes;

rus infection; NAFLD,

ver cancer; AFP, alpha-

dded; TIME, tumor

02208
therapeutic potential of ICIs has not yet been fully realized

because not all patients benefit from immunotherapy, and some

HCC patients may even experience hyperprogressive disease after

treatment (6, 7). Finding predictive biomarkers for good efficacy of

immunotherapy can better guide the choice of clinical treatment

plans, help improve patient prognosis, and solve problems pending

in clinical treatment.

Tertiary lymphoid structures (TLS) are organized clusters of

immune cells comprised by T and B cells and sometimes other

immune cell type that develop in non-lymphoid tissues after birth.

In TLS, germinal center-like aggregates of CD20+ B cells are

surrounded by CD3+ T cells, resembling structures found in

secondary lymphoid organs (8). TLS has emerged as a promising

biomarker, as its presence in most solid tumors is closely linked

with better outcomes and may predict response to ICIs (9, 10).

However, the role of TLS in HCC is still debated. Recent research

indicates significant functional differences depending on location

within the tumor. Finkin et al. found TLS in para-tumor liver tissue

increased the risk of HCC recurrence long after treatment (11). In

contrast, Wolf Herman Fridman et al. found TLS within HCC

tumors linked to lower odds of the cancer recurrence after surgery.

They suggested that TLS inside tumors may help antitumor

immunity by boosting local antigen presentation and immune cell

maturation (12). Most importantly, the drivers of TLS formation in

HCC and other cancers are still not fully understood.

The gut microbiota, as the largest symbiotic microbial

community in humans, plays a critical role in directing the

normal development of the immune system and regulating

immune functions (13), including contributing to germinal center

formation, regulating germinal center reactions (14), and

promoting T- and B-cell activation (15, 16). Given the

intertwined nature of the microbiota and the immune system, the

microbiota is likely to influence the host’s response to

immunotherapy. Recent clinical studies have shown that changes

in the gut microbiota profiles of patients responding to

immunotherapy can predict the efficacy of immunotherapy,

including in HCC (17). Specific gut microbes have been identified

and shown to even affect the efficacy of ICI in tumor patients,

including those with gastrointestinal tumors and distal intestinal

tumors (18–20). Mechanistic explorations have shown that the gut
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microbiota increases the number of infiltrating lymphocytes in

tumor tissues. In recent years, with a deepening understanding of

the function of tumor infiltrating lymphocytes (TILs), recent studies

have highlighted that TILs exert their effects by forming specific

spatial structures such as TLS (21). However, little is known so far

about whether the gut microbiota affects the formation of specific

spatial structures by TILs. Previously, research clinical features by

Timothy W. Hand et al. confirmed that specific gut microbiota can

support the maturation of adjacent TLS in mouse colorectal cancer

(22), but further investigation is needed to determine whether

similar relationships exist in human patients with tumors outside

the gut.

In th i s s tudy , we found that the enr ichment of

Lachnoclostridium-dominated gut microbiota is associated with

the presence of intratumoral TLS (It-TLS) in HCC patients in a

single-center retrospective cohort (Figure 1).
Materials and methods

Study population and specimen collection

We conducted a retrospective analysis of 60 patients who

underwent curative hepatectomy for HCC at the First Affiliated

Hospital of Wenzhou Medical University between 1 January 2019

and 30 June 2022. All cases were pathologically and clinically

diagnosed as HCC. Within 30 min of hepatectomy, HCC tumor
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tissues and adjacent non-tumor tissues (defined as >3 cm from the

tumor margin) were collected. The tissues were evenly cut and

immediately preserved in RNA later solution. All tissue samples

were stored at −80°C within 24h. The tissue specimens were

obtained from the surgically resected tissues and did not cause

any additional interventions or risks to the patients. Patients had

not been prescribed lactulose, proton pump inhibitors, non-

steroidal anti-inflammatory drugs, antibiotics, probiotics, or

prebiotics within 4 weeks prior to surgery. Fecal samples were

obtained from all patients before surgery for 16S rRNA sequencing

analysis. This study was approved by the Ethics Committee of the

First Affiliated Hospital of Wenzhou Medical University, and the

study protocol conforms to the ethical guidelines of the 1975

Declaration of Helsinki.
Clinical and biological features

We retrospectively obtained the following clinical and biological

features of patients in the study cohort: age, sex, alcohol

consumption (active or inactive at the time of surgery), hepatitis

B virus (HBV) infection, hepatitis C virus (HCV) infection

(eradicated or non-eradicated at the time of surgery),

nonalcoholic fatty liver disease (NAFLD), other etiologies,

Barcelona clinic liver cancer (BCLC) stage, and preoperative

serum alpha-fetoprotein (AFP) levels. These clinical features were

analyzed to determine their effects on the formation of TLS.
FIGURE 1

Graphical abstract, schematic diagram of this study. Our results for the first time demonstrate that the enrichment of the gut microbiota
Lachnoclostridium taxa is associated with the presence of intratumoral tertiary lymphoid structures (TLS) in hepatocellular carcinoma.
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H&E staining and
multiplex immunohistochemistry

All tissues were prepared into 4-µm formalin-fixed paraffin-

embedded (FFPE) sections. After dewaxing the xylene clear, the

sections were deparaffinized via a series of decreasing

concentrations of ethanol. The sections were then washed in

deionized water and phosphate buffered saline (PBS).

For hematoxylin and eosin (H&E) staining, hematoxylin

stained the nuclei and eosin stained the cytoplasm. For multiplex

immunohistochemistry, antigenic epitopes were unmasked in a

decloaking chamber using citrate buffer (10 mM sodium citrate

and 0.05% Tween 20, pH 6). Rinsed in PBS, endogenous peroxidase

activity was blocked by incubation in a 3% methanol solution of

H2O2, blocked at 37°C with 5% bovine serum albumin for at least

30 min, then incubated with primary antibodies in a humidified

chamber at 4°C overnight. The next day sections were incubated

with anti-rabbit/mouse mixed IgG monoclonal antibodies at 37°C

for 1h. Thereafter, chromogenic development was performed

according to the kit manual. (Zsbio, Cat No. DS-0004).
Multiplex immunofluorescence

All FFPE blocks prepared from patient tumor tissue and

corresponding para-tumor tissue were sectioned at a thickness of 4

mmon slides. Antigen retrieval was performed on all slides as described

in “IHC staining.”On the first day of the experiment, the sections were

incubated with the first antibody (mouse antibody to human CD23) as

described in “IHC,” and stained with fluorescein isothiocyanate/

cyanine-3 (FITC/CY3) the next day. Then, the antigen epitopes were

revealed again under dark conditions using citrate buffer. The sections

were then exposed to primary antibodies (including rabbit antibody to

human CD3 andmouse antibody to human CD20) for 16h–20h at 4°C

and to secondary antibodies conjugated to Alexa 594 and Alexa 488 for

1h at room temperature. Slides were counterstained with 4’,6-

diamidino-2-phenylindole to visualize cell nuclei and imaged on a

Leica Stellaris 5 upright fluorescent microscope using a Leica Hyde S

camera and the LAS X imaging suite.
Pathological examination

Tumor tissue sections were strictly distinguished from para-

tumor tissue sections. All sections stained with H&E were observed

under microscope. The following information was recorded: tumor

size, satellite nodules, invasion of large blood vessels or

microvessels, multinodularity, tumor differentiation according to

the World Health Organization, and non-tumorous fibrotic septa

based on the METAVIR staging system.

Meanwhile, pathologists identified and categorized TLS on slides. If

at least one TLS was present in the field of view of the tumor tissue, the

patient was considered to have TLS within the tumor tissue, which was

finally confirmed by dual immunohistochemistry and

immunofluorescence. All pathological sections were evaluated
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separately by two pathologists specializing in liver disease (Jiacheng,

Li; Leyin, Hu). Different opinions were discussed and, in case of

disagreement, the final decision was made by a third senior

pathologist (Kate, Huang).
DNA extractions and PCR amplification

DNA from different samples was extracted using the

cetyltrimethylammonium bromide according to manufacturer’s

instructions. The full-length 16S rRNA gene was amplified using

primers 27F: 5′- AGRGTTTGATYNTGGCTCAG -3′ and 1492R:

5′- TASGGHTACCTTGTTASGACTT-3′, which were tagged with

specific barcode per sample. PCR amplification was performed in a

total volume of 20 mL reaction mixture containing 4 mL of 5 ×

FastPfu Buffer, 2 mL of 2.5 mM dNTPs, 0.8 mL of each primer (5

mM), 0.4 mL of FastPfu Polymerase, and 10 ng of template DNA,

and PCR-grade water to adjust the volume. The PCR conditions to

amplify the FL prokaryotic 16S rRNA gene consisted of an initial

denaturation at 95°C for 2 min; 25 cycles of denaturation at 95°C for

30 s, annealing at 55°C for 30 s, and extension at 72°C for 1 min; and

then final extension at 72°C for 5 min.
Library construction and sequencing

The PCR products were confirmed with 2% agarose gel

electrophoresis, and purified using the AxyPrep DNA Gel

Extraction Kit (Axygen Biosciences, Union City, CA, USA)

according to the manufacturer’s instructions. After quantified by

QuantiFluorTM-ST (Promega, Madison, WI, USA), the amplicon

pools were prepared for libraries construction. SMRTbell libraries

were prepared using the Pacific Biosciences SMRTbellTM Template

Prep kit 1.0 (PacBio, Menlo Park, CA, USA) and sequenced on

PacBio RS II (LC-Bio Technology Co., Ltd., Hangzhou, China).
Data analysis

All clinical and biological features were translated into

categorical variables, which were shown as number (percentage).

Then chi-square test or Fisher exact test was performed to compare

the composition differences.

Circular consensus sequence (CCS) reads were generated from raw

subreads by SMRT Link (v6.0) with the following parameters:

minPasses = 5; minPredictedAccuracy = 0.9. Then lima (v1.7.1) was

used to distinguished CCS reads from different samples, and cutadapt

(v1.9) was applied to identify primers. The CCS reads, which are

between 1200 bp and 1650 bp, were remained after the length filtration.

After dereplication and filtering chimeric sequences using DADA2, we

obtained feature table and feature sequence. Alpha diversity and beta

diversity were calculated by normalized to the same sequences

randomly. Alpha diversity were applied in analyzing complexity of

species diversity for a sample through five indices, including Chao1,

observed species, goods coverage, Shannon, Simpson, and all these

indices were calculated with QIIME2. Beta diversity was calculated by
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QIIME2. The ASVs were annotated by aligned feature sequences with

SILVA database (release 138). Other diagrams were implemented using

the R packages.
Results

Cohort characteristics

In our cohort of 60 patients, males comprised 83.33% and

patients over 60 years of age comprised 53.33%. The primary risk

factor was HBV infection in 49 patients (81.67%), followed by alcohol

consumption in 21 patients (35.00%). No patient had HCV infection.

20 patients (33.33%) had multiple risk factors. According to the

BCLC staging system (2022 version), two patients (3.33%) had very

early stage disease (Stage 0), 49 (81.67%) had early stage disease

(Stage A), nine (15.00%) had intermediate stage disease (Stage B), and

zero (0.00%) had advanced stage disease (Stage C). Elevated serum

AFP levels were detected in 15 patients (25.00%) (Table 1).
Pathological findings and cohort grouping

In a retrospective cohort of 60 patients, we found TLS in 33

cases (55.00%). Given previous studies showing that TLS located in

para-tumor parenchyma was associated with increased late

recurrence risk in HCC and could serve as an ecological niche to

maintain the survival of transformed hepatocytes (11), we further

distinguished para-tumor TLS in cases with TLS. Among these, TLS
Frontiers in Immunology 05211
was observed only within tumor tissues in eight cases (13.33%) but

not in para-tumor tissues. These were identified as tumor tissue

only (It-TLS group). In 27 cases (45.00%), no TLS was observed in

either tumor or para-tumor tissues (desertic-TLS group, De-TLS).

The grouping of this study is shown in Figure 2.
Identification of tertiary
lymphoid structures

Two hepatopathologist examined tumor sections and para-tumor

sections under microscopy. According to the recent expert consensus

(23), dense lymphoid aggregates within the liver parenchyma

containing ≥50 immunocyte nuclei were preliminarily identified as

TLS, It-TLS was required to be surrounded by and/or embedded

within the tumor matrix. We confirmed the presence of TLS using

multiplex immunohistochemistry. CD3 was utilized to label

peripheral T cells within the TLS, while CD20 was used to label B

cells within the TLS. To further verify that the observed structures

were TLS, we performed immunofluorescence staining on all sections

containing presumed TLS and assessed the maturity of TLS by CD23

staining (Figure 3).
The presence of intratumoral TLS was
unrelated to cohort characteristics

We performed statistical analyses between the It-TLS group and

De-TLS. The results showed that all clinical, biological, or
TABLE 1 Clinical, biological, and pathological features of the HCC patients according to the presence of intratumoral TLS.

Variables All patients (n =35) It-TLS (n = 8) De-TLS (n = 27) P-value

Age, > 60 years 19 (54.29%) 5 (62.50%) 14 (51.85%) 0.700

Gender, male 28 (80.00%) 7 (87.50%) 21 (77.78%) 1.000

BCLC stage, B–C 4 (11.43%) 1 (12.50%) 3 (11.11%) 1.000

AFP, > 300 ng/ml 9 (25.71%) 1 (12.50%) 8 (29.63%) 0.684

Alcohol 11 (31.43%) 3 (37.50%) 8 (29.63%) 0.685

HCV 0 (0.00%) 0 (0.00%) 0 (0.00%) /

HBV 28 (80.00%) 4 (50.00%) 24 (88.89%) 0.033

NAFLD 0 (0.00%) 0 (0.00%) 0 (0.00%) /

Other etiology 6 (17.14%) 3 (37.50%) 3 (11.11%) 0.117

PS score, 1–2 22 (62.86%) 3 (37.50%) 19 (70.37%) 0.116

Tumor size, > 5cm 15 (42.86%) 2 (25.00%) 13 (48.15%) 0.419

Satellite nodules 8 (22.86%) 1 (12.50%) 7 (25.93%) 0.684

Microvascular invasion 16 (45.71%) 4 (50.00%) 12 (44.44%) 1.000

Poor differentiation 4 (11.43%) 0 (0.00%) 4 (14.81%) 0.553

Cirrhosis 22 (62.86%) 3 (37.50%) 19 (70.37%) 0.116
fro
Statistical analysis was performed using chi-square tests. AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFALD, Nonalcoholic
fatty liver disease; TLS, tertiary lymphoid structure.
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pathological features did not differ between HCC patients with or

without It-TLS (It-TLS vs. De-TLS group, p > 0.05, chi-squared test)

(Table 1). These findings indicate that underlying liver disease did

not influence the presence of It-TLS.
Alterations in microbiota were associated
with the presence of intratumoral TLS

Based on the above grouping, we performed 16s rRNA

sequencing. Observed species and Chao1 were used to assess

species richness. Shannon and Simpson reflected species

abundance and evenness. Our results showed that there were no

significant differences in a diversity between the It-TLS and De-TLS

groups. The analysis of b diversity within groups showed no

significant differences in the It-TLS and De-TLS groups. Analysis

of the differentially abundant genera suggested that compared with

the De-TLS group, the abundance of Lachnoclostridium,

Hungatella, Blautia, Fusobacterium, Clostridium, Tyzzerella, and

Clostridiales increased in the It-TLS group. Among them, the

enrichment of Lachnoclostridium was the most significant.

Collectively, these results indicate that differences in the

abundance of microbiota were associated with the presence

of TLS (Figure 4). We have consolidated the results pertaining

to the comparison of microbiota data between the It-TLS
Frontiers in Immunology 06212
group and the De-TLS group. The relevant data are accessible in

Supplementary Figure S1.
Discussion

Immunotherapy has produced unprecedented durable

therapeutic responses in HCC and other solid tumors, bringing

revolutionary changes to cancer treatment (2). This clinical

outcome has aroused people’s interest in exploring immune

components in the tumor microenvironment, namely, the tumor

immune microenvironment (TIME) (24). TIME is closely related to

tumor development, recurrence, and metastasis. As research

deepens, some unexplained results have also emerged, for

example, earlier studies focusing on cellular components in TIME

showed that patients with similar immune cell infiltration had

different prognoses (25), suggesting the necessity to explore the

spatial structure of TIME in tumors to further deepen

understanding of the impact of TIME on tumors. With the study

of the spatial distribution of immune cells within tumors, some

aggregation patterns of immune cells have attracted attention due to

their functional consistency in multiple tumor types and different

individuals and potential clinical value, such as TLS (26). Since the

back-to-back studies published in Nature successfully demonstrated

that TLS affected the objective response rate of ICB in melanoma
FIGURE 2

The flowchart of this study. TLS, tertiary lymphoid structure; It-TLS group, Intratumoral TLS group; De-TLS group, Desertic TLS group.
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and was associated with good patient prognosis (10, 27), similar

conclusions have been obtained in most tumors (28–30). In

particular, in a previous study by Mark Yarchoan, cabozantinib

and nivolumab converted locally advanced HCC into a resectable

disease, and significant enrichment of TLS was present in the tumor

tissue of responders (31). Recently, Fridman et al’s study showed

that the presence of TLS in advanced soft tissue sarcoma could be
Frontiers in Immunology 07213
used as a predictive biomarker to improve patients’ drug selection

for pembrolizumab treatment (32). These findings demonstrate the

application prospect of TLS in helping patients choose clinical

treatment regimens. To encapsulate, this seems to form a

guideline for the “clinical benefit” of TLS in the tumor context.

Interestingly, this guideline is currently controversial in HCC:

initially, Finkin et al’s study challenged this tenet. Their study found
FIGURE 3

(A–D) The tertiary lymphoid structures (TLS) in tumor and para-tumor tissues of hepatocellular carcinoma were identified and grouped by H&E
staining,1:200. (A) Tertiary lymphoid structure in tumor tissue, namely, intratumoral TLS group (It-TLS) group. (B) Tertiary lymphoid structure exists in
para-tumor tissues. (C, D) TLS is not found in tumor tissue and para-tumor tissues, namely, desertic TLS group, De-TLS group. (E, F) Mature tertiary
lymphoid structure in tumor tissue by multiplex immunohistochemistry, CD3+ T cells, CD20+ B cells, E 1:200, F 1:400. (G–J) CD3+ T cells, CD20+
B cells, and CD23+FDCs multiplex immunofluorescence, 1:100; (K–N) Representative regions CD3+ T cells, CD20+ B cells and CD23+FDCs
multiplex immunofluorescence, 1:400.
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that ectopic TLS in HCC provided a growth environment for

malignant hepatic progenitor cells (11), recently, Wenjie Song

et al’s study found that CD15+ neutrophil infiltration in HCC, and

increased density of TLS around the tumor were associated with

worse prognosis (33). Fridman et al’s observed in early HCC that

immature TLS formation was associated with overexpression of genes

related to immunosuppression, immune failure, and tumor immune

escape, promoting tumor immune evasion (34). However, Hong Wu

et al’s previous study showed that para-tumor TLS were associated

with improved patient prognosis (35). Specifically, they found

decreased infiltration of FOXP3+, CD68+, and PD1+ cells in para-

tumor TLS. Valerie Chew et al’s work showed that close interaction

between tumor-infiltrating T cells and B cells was associated with

enhanced local immune activation and contributed to better

prognosis in HCC patients (36), supporting Fridman et al’s finding

that It-TLS in HCC had good clinical prognostic value (12). In

summary, given the contradictory results of TLS on anti-tumor

immunity in HCC, studying the specific cellular composition and

origin of TLS in HCC may provide more effective information.

Nonetheless, the factors influencing the formation of TLS in HCC

are currently unclear, which greatly limits the exploration of TLS in

HCC. Therefore, there is an urgent need to clarify the factors affecting

the formation of It-TLS in HCC.

The microbiota in the host gut can regulate the host immune

system. The role of the gut microbiota in the progression of

gastrointestinal tumors is undoubtedly crucial. In particular, a

recent series of studies have shown that the gut microbiota is

involved in and affects anti-tumor immunity, including regulating

patients’ clinical responses to ICIs. The exact mechanisms by which

the gut microbiota influences cancer immunotherapy are being

gradually revealed, surprisingly not only in gastrointestinal tumors

but also including pancreatic cancer and melanoma (19, 20).

Previously, Giandomenica Iezzi et al’s work demonstrated that

microbiota abundance and high chemokine expression were

associated with TILs recruitment (37). As a specific spatial form

of TILs, Helicobacter hepaticus can promote TLS maturation in
Frontiers in Immunology 08214
mouse CRC models (22). However, whether the gut microbiota is

associated with TLS in HCC still lacks sufficient evidence.

To our knowledge, this is the first study to explore the

relationship between gut microbiota and It-TLS in extraintestinal

tumors. Our study shows that the presence of TLS in tumor tissues

of HCC patients is associated with enrichment of specific gut

microbial phyla, specifically, increased enrichment of

Lachnoclostridium, Hungatella, Fusobacterium, and Clostridium

in these patients, among which Lachnoclostridium enrichment in

the tumor TLS group was most pronounced. Lachnoclostridium

belongs to the family Lachnospiraceae (38). Although intestinal

microbiota members belonging to the Lachnospiraceae family have

been shown to play important roles in regulating the host’s immune

system, our understanding of the functional diversity of strains

belonging to this family remains incomplete. Recently, Shuo Wang

et al. found that Ruminococcus gnavus, a member of the

Lachnospiraceae family, can act as an intratumoral bacterium to

increase and degrade hemolytic glycerophospholipids that inhibit

CD8+ T-cell activity. Maintaining CD8+ T-cell immune

surveillance, thereby reducing colon tumor growth (18), and

Lachnoclostridium is highly homologous to Ruminococcus

gnavus (39). Previously, Peichang Lee et al. first demonstrated the

important role of the gut microbiome-liver axis in the therapeutic

response and survival of ICI treatment in HCC patients. In

addition, in responders to immunotherapy with unresectable

HCC, increased enrichment of Lachnoclostridium was found in

fecal samples, which was associated with better overall survival (17),

suggesting an important role of Lachnoclostridium in

immunotherapy for HCC. In addition, analysis of the

intratumoral microbiome in melanoma showed that

Lachnoclostridium was positively correlated with the number of

CD8+ T-cell infiltration in tumor tissues and affected patient

survival (40). Lachnoclostridium has also been reported as a non-

invasive marker to distinguish colorectal cancer from adenoma and

is enriched in the intestine of patients with adenomas (41).

Although our study has not yet revealed the specific mechanism
A B

FIGURE 4

(A) Heatmaps of differential clinical, biological, and pathological features characteristics and flora features of HCC patients between It-TLS group and
De-TLS group in our cohort, the heatmap was generated using the pheatmap R package. (B) Differential flora between It-TLS group and De-
TLS group.
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by which Lachnoclostridium influences the presence of TLS at the

experimental animal level, published studies may allow us to

speculate that Lachnoclostridium may affect lymphocyte

recruitment or activation in HCC and promote TLS formation

within tumor tissues, but this requires further validation (Figure 5).

For other differential flora between the It-TLS group and the De-

TLS group, we focused on several sub-high abundance flora,

including Hungatella, Fusobacterium, and Clostridium in addition

to Lachnoclostridium. In a previous study of differential flora between

colorectal adenomas and colorectal cancer, Hungatella hathewayi was

enriched in the colorectal cancer group (42). In addition, previous

studies have reported that Hungatella increased in cancer patients

who did not respond to anti–PD-1 and chemotherapy combined

treatment (43). Fusobacterium has recently been defined as a

“notorious” expert in cancer immunotherapy by many studies.

Jingyuan Fang et al. showed that succinic acid derived from F.

nucleatum inhibited the cGAS–interferon-b pathway, thereby

inhibiting anti-tumor responses by limiting the transport of CD8+

T cells (44), while Shuo Wang ‘s study found that Fusobacterium

nucleatum can limit the function of Lachnospiraceae and promote

tumor progression (18). In HCC tumor tissues, the enrichment of

Fusobacterium was accompanied by a significant increase in

processes such as fatty acid and lipid synthesis, which is thought to

be a key factor in the effect of intratumoral microbes on tumor

progression (45). Clostridium XIVa was enriched in the intestinal

flora of patients with HBV-related HCC with high tumor burden and

may affect disease progression through bile acid metabolism (46). To

encapsulate, several other differential flora did not seem to show the
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function of promoting anti-tumor immunity in the body, but rather

the ability to promote tumor progression, but their role in HCC still

needs more experiments to prove. Finally, although we observed a

significant enrichment of Subdoligranulum in the De-TLS group, we

did not find studies on its mechanism of function in tumors. Instead,

it has been more reported in inflammatory diseases and is related to

regulating the function of Th17 cells (47).

In this single-center retrospective study, most of the patients

had HBV-related HCC, without the other two common underlying

chronic liver diseases of HCC–HCV infection and NAFLD.

Therefore, our data may be more applicable to HBV-related

HCC. In addition, our data also showed no statistical differences

in either clinical or pathological features between It-TLS and De-

TLS groups, which supports microbiota difference as an

independent impact factor for TLS existence. However, some data

may need further exploration. We found less than half of patients

with It-TLS had liver cirrhosis, while over 70% patients in De-TLS

group had cirrhosis (p = 0.1). Previous studies have shown

decreased immune cell infiltration in HCC tissues of cirrhotic

mice (48). However, there are few studies evaluating It-TLS

formation in human HCC patients with liver cirrhosis, which

could be a potential direction for future research.

In conclusion, our results for the first time demonstrate that the

enrichment of the gut microbiota Lachnoclostridium taxa is

associated with the presence of It-TLS in HCC. Our study

provides a new line of reasoning for the mechanism by which gut

microbes influence cancer immunotherapy, that is, by affecting the

formation of specific spatial structures of tumor-infiltrating
FIGURE 5

Graphical abstract, summary of the evidence from previous studies supporting that enrichment of Lachnoclostridium-dominated gut microbiota
promotes anti-tumor immunity.
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lymphocytes–TLS, thereby promoting anti-tumor immunity. We

show that the gut microbiota may be an interesting research focus.

In the future, Related studies in experimental animals may have a

positive impact on revealing the mechanism by which gut microbes

regulate the formation of TLS in HCC tumors.
Limitation of the study

Regrettably, there are still some limitations in this study. First,

due to the short follow-up time, we did not analyze the prognosis of

patients, although previous studies have supported it, further study

of the specific mechanisms is warranted. Second, due to the

limitations of sequencing technology, we were unable to finely

identify some differential flora. Finally, we did not study the

causal relationship between changes in the intestinal microbiome

and the existence of TLS in tumors. Further study of the

mechanisms is essential to elucidate the exact interactions

between gut microbiota and It-TLS, as well as identify potential

therapeutic targets. In future studies, we plan to further confirm our

view in a mouse model of primary hepatocellular carcinoma.
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SUPPLEMENTARY FIGURE 1

The 16S rRNA data of the It-TLS group and De-TLS group were analyzed.
Firstly, microbiota compositional analyses were undertaken. A stacked bar

chart (A) delineated the top 30 species with the highest relative abundances

at the genus level across different samples. A Venn diagram (B) depicted the
species compositional similarities and overlaps between the two groups at

the genus level. A Circos plot (C) visualized sample-species co-occurrence at
the genus level, elucidating the correspondence between samples and

species. Subsequently, analyses of microbiota diversity were conducted.
Regarding a-diversity metrics, Observed species (D) and Chao1 (E)
reflected species richness in samples irrespective of proportional

abundances, whereas Shannon (F) and Simpson (G) indexes reflected
both species richness and evenness. For b-diversity metrics, PCA (H) and
PCoA (I) revealed variation in community compositions, and NMDS
analysis (J) revealed differences among individuals. Finally, differential

abundance analysis was performed to ascertain differentially abundant taxa.
Fisher’s exact test (K) identified differentially abundant microbiota. Taken

together, the results demonstrate distinct gut microbiota between the It-TLS

and De-TLS groups, with enrichment of Lachnoclostridium in the It-TLS
group. All analyses were performed on the OmicStudio (https://

www.omicstudio.cn/home).
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Single-cell RNA-seq analyses
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Tongqiang Fan3, Li Wang3, He Zhang2, Yanyan Hu1,
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Introduction: Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor

progression, but the similarity and distinction of their fundamental properties in

pancreatic ductal adenocarcinoma (PDAC) remain elusive.

Method: In this study, we conducted scRNA-seq data analysis of cells from 12

primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal

pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and

revealed a heterogeneous TIMs environment in PDAC.

Result: Systematic comparisons between tumor and non-tumor samples of

myeloid lineages identified 10 necroptosis-associated genes upregulated in

PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral

blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was

found to act as a positive regulator of immunity. Additionally, HSP90AA1

+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3

+TLR4+ CD16 monocytes were found to be anti-immune. The findings were

validated through clinical outcomes and cytokines analyses. Lastly, intercellular

network reconstruction supported the associations between the identified novel

clusters, cancer cells, and immune cell populations.

Conclusion: Our analysis comprehensively characterized major myeloid cell

lineages and identified three subsets of myeloid-derived cells associated with

necroptosis. These findings not only provide a valuable resource for

understanding the multi-dimensional characterization of the tumor

microenvironment in PDAC but also offer valuable mechanistic insights that

can guide the design of effective immuno-oncology treatment strategies.

KEYWORDS

scRNA-seq, PDAC, TIMs, necroptosis, TME
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Highlights
Fron
• ScRNA-seq revealed a heterogeneous tumor-infiltrating

myeloid (TIMs) environment in PDAC.

• 10 necroptosis-associated genes were found to be upregulated

in PDAC tumors, while 5 genes were upregulated in

paratumor or healthy peripheral blood.

• A novel RTM subset, GLUL-SQSTM1- RTM, was found to act

as a positive regulator of immunity.

• HSP90AA1+HSP90AB1+ mast cells were identified to be pro-

immune, while HSP90AA1-HSP90AB- mast cells were

anti-immune.

• JAK3+TLR4+ CD16 monocytes were found to have anti-

immune characteristics, while JAK3-TLR4- CD16

monocytes displayed pro-immune properties.
Introduction

Pancreatic cancer is a highly malignant tumor of the digestive

system, with the most common subtype being pancreatic duct

adenocarcinoma (PDAC), and its morbidity and mortality are

increasing year by year worldwide (1). The insidious primary

lesion determines that more than 80% of cases cannot undergo

surgical resection due to regional or distant metastasis, and the

postoperative recurrence rate is as high as 85% for resectable

patients (2). For radiotherapy and chemotherapy, the mainstay

therapeutic strategy, resistances are usually inevitable, leading to

limited clinical benefits, especially for advanced patients. Recently,

researchers reported the therapeutic potential of immunotherapy by

recruiting and activating the host’s T cells to recognize tumor-

specific antigens, however, cancer cells developed mechanisms to

escape the cytotoxicity effect of T cells. Moreover, the unique

immunosuppressive microenvironment of pancreatic cancer

hinders the promotion of anti-tumor immune responses through

immune checkpoint manipulation (3–5). Therefore, it is urgent to

explore novel therapeutic strategies that can significantly improve

patient survival and prognosis (6).

Investigations of converting immune “cold” tumors into “hot”

tumors are ongoing in immunotherapy. Regulated cell death

(RCD), one of the hallmarks of cancer, has been identified as a

potential therapeutic target due to its association with anti-tumor

immunity. Necroptosis, a recently proposed form of cell death

proposed (7), can be inhibited by Necrostain-1 and mediated by

receptor-interacting serine/threonine protein kinase 1 (RIPK1) (8).

Necroptosis often triggers a robust inflammatory response by

releasing cellular contents into the extracellular environment, and

this process has been implicated in the pathogenesis and

progression of various diseases (9). It is reported that the impact

of necroptosis on cancer development, whether inhibitory or

promotive, often varies depending on the specific tumor type and

stage (10).
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The involvement of necroptosis in dysregulated tumor immune

microenvironment (TIME) has been demonstrated, especially for

myeloid lineages. For instance, damage-associated molecular

patterns (DAMPs) were released by tumor cells through

necroptosis to stimulate the antigen presentation by dendritic

cells (DCs), further enhancing the cytotoxicity of CD8+ T cells

(11, 12). RIPK3, the effector of necroptosis, contributes to NF-kB
activation, tissue repair of DC cells, and infiltration of CD8+ T cell

(13, 14). Previous studies have reported that the anti-tumor

immune response can be activated by NF-kB signaling via

necroptosis of fibroblasts (15, 16). However, the regulatory

mechanisms of necroptosis in tumor progression in other studies

seem to differ from the aforementioned processes. RIPK1 was found

to be upregulated in tumor-associated macrophages (TAMs) during

M2 Macrophages polarization in a PDAC mice model (17).

Necroptosis mediated by RIPK3 promoted the accumulation of

immunosuppressive myeloid-derived suppressor cells (MDSCs) in

tumor microenvironment (TME) of pancreatic cancer through

producing C-x-c motif chemokine ligand 1 (CXCL1) and CXCL5

(18, 19). In an intestinal tumor model, RIPK3 in intermediate

MDSC subpopulation was found to increase tumor size (20). Taken

together, these findings suggest that myeloid clusters and associated

necroptosis may play critical roles in tumor progression and

immune evasion.

The exploration of necroptosis-associated myeloid

subpopulation can provide a better understanding of the

mechanisms underlying immune evasion and therapy resistance

in PDAC. Recently, single-cell transcriptomic has made remarkable

breakthroughs in deciphering the heterogeneity at the individual

cell level. Accumulating evidence has demonstrated the abundance

of myeloid cells in tumor immune microenvironment (TIME) of

PDAC, serving as key regulators in immune response and treatment

resistance (21). By refining the clustering of tumor-associated

macrophages (TAMs) in human and mouse samples, researchers

have identified significant upregulation of proliferating tissue-

resident macrophages and inflammatory macrophages in PDAC

TIME received chemotherapy. Conversely, monocyte-derived

antigen-presenting cells (APCs) and Marco+ macrophages highly

expressed the scavenger receptor MARCO, showed decreased

expression. Results from multiplex immunohistochemistry

(mIHC) further supported the chemotherapy resistance of

proliferating tissue-resident macrophages (22). The deficiency of

DCs has been linked to dysfunctional T cell-mediated immunity in

early-stage PDAC, indicating their vital role in immune escape and

tumor progression (23). Although some progress have been made,

further detailed characterization of myeloid cell lineage is needed,

and the therapeutic application of myeloid cells in pancreatic cancer

remains limited.

This s tudy aims to further e luc idate the unique

microenvironment of PDAC, explore its intrinsic mechanisms in

the tumor occurrence and progression, and provide a potential

novel approach for the treatment of PDAC patients. Leveraging a

publicly available scRNA-seq resource (24), we revealed a tumor-

associated myeloid environment in PDAC. Specifically, we

identified upregulated necroptosis genes and immune-related
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novel clusters in PDAC. Furthermore, we discovered cell-specific

signaling pathways and receptor-ligand pairs within these new

clusters, which have the potentially to either promote or suppress

tumor development. In general, utilizing this unique resource, we

analyzed myeloid cell lineages, necroptosis-associated networks,

and cell-cell crosstalk in PDAC. This sheds light on the myeloid

ecosystems underlying PDAC initiation and progression, and may

provide a myeloid-modulating therapeutic strategies from pre-

clinical models to pancreatic cancer treatment.
Methods

Data source and preprocessing

The PDAC dataset GSE155698 (24) was downloaded from the

GEO database, including 12 primary tumor (PT) patients, 4

metastatic (Met) patients, 3 adjacent normal pancreas tissue

(Para) patients, and all samples were coupled with peripheral

blood (Figure 1A). The original dataset contained a total of

25,236 genes and 142,353 cells. The raw UMI count matrices

were processed using the R package Seurat (version 3.2.3) (25).

The data underwent several filtering steps: 1) cells with a low

number of unique detected genes (< 200) and a high number of

5000 were removed; 2) cells with more than 30,000 UMIs were

discarded; 3) cells with mitochondrial content higher than 30%

were removed; 4) cell cycle genes were regressed out. After

excluding low-quality cells, 124,575 single cells remained for

downstream analysis. Additionally, another publicly available
Frontiers in Immunology 03221
scRNA-seq data from CRA001160 (26), including a total of

57,539 cells from 24 primary PDAC tumors and 11 control

pancreases, was utilized to validate the findings.

Public clinical data and gene expression information were

retrieved from the TCGA database (https://www.cbioportal.org/).

A total of 178 samples from the TCGA-PAAD (Pancreatic

adenocarcinoma) cohorts were included for further analysis.
Sing-cell RNA-seq data clustering and
dimensional reduction

First, we performed data normalization on the merged data

using the NormalizeData function and identified the first 2000

highly variable genes through the FindVariableFeatures function,

which is based on the variance stabilization transformation (“vst”).

Simultaneously, all genes were scaled using the ScaleData function,

and the RunPCA function was applied to reduce the dimensionality

of the data using PCA for previously identified highly variable

genes. We selected a dimensionality reduction of 30 (dim = 30) and

clustered the cells using the FindNeighbors and FindClusters

functions with a resolution of 1.2, enabling the identification of

distinct cell clusters. To further reduce dimensionality and visualize

the data, we employed the UMAP and tSNE methods using the top

30 principal components. Specifically focusing on myeloid cell

types, we repeated the clustering protocol to identify clusters

within the aforementioned myeloid lineages. To address batch

effects, we utilized the runHarmony function from the

Harmony package (version 0.1.0) (27). Finally, we employed the
A
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FIGURE 1

Dissection of the tumor microenvironment in PDAC. (A) Samples were collected from GSE155698. (B) Visualization of single-cell RNA-seq data of
124,575 cells by t-SNE. (C) Single-cell resolution heatmap of top expressed genes for each cell type. (D) Proportions of 11 cell types among 39
samples including 16 primary or metastatic tumor tissues coupled with 16 PDAC PBMC samples, 3 paratumor tissues and 4 healthy PBMC samples.
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FindAllMarkers function to screen the marker genes of 40

subgroups, considering a log-fold change (logfc) threshold of 0.25

for differential expression and a minimum percentage (min.pct) of

0.25 for the expression ratio of the least differentially expressed

genes. We applied a corrected p threshold of less than 0.05 to screen

the significant marker genes.
Cell type identification

The annotation of each cell cluster was confirmed by the

expression of canonical marker genes. Epithelial cells were

identified using the higher expression of EPCAM, ACTA2, KRT7,

KRT8, KRT18, KRT19, CDH1, PRSS1, CTRB2, REG1A, CLU,

MKI67, SPINK1, TFF1, and MUC1, and other cell types were

annotated using: T cells (CD3D, CD3E, CD3G, CD4, CD8A, IL7R,

and LEF1), B cells (MS4A1, CD79A, CD79B, CD52, CD19, SDC1,

IGJ, IGLL5, CXCR4, KIT, CD27, and HLA-DRA), NK (natural

killer) cells (NCR3, FCGR3A, NCAM1, KLRF1, KLRC1, and

CD38), acinar cells (PRSS1, CTRB1, CTRB2, REG1B, SPINK1, and

AMY2A), mast cells (TPSAB1, and CPA3), fibroblast (LUM, DCN,

COL1A1, ACTA2, SPARC, CDH11, PDGFRA, PDGFRB, COL3A1,

RGS5, IGFBP7, PDPN, MCAM, IL6, APOE, GLI1, GLI2, GLI3, and

PDGFA), myeloid cells (CD14, ITGAM, MNDA, MPEG1, ITGAX,

FCGR3A, FCGR3B, APOE, C1QA, MARCO, LYZ, and HLA-DRA),

stellate cells (RGS5, ACTA2, PDGFRB, and ADIRF), and endothelial

cells (CDH5, PLVAP, VMF, VLDN5, KDR, and PECAM1).

Among myeloid cells, cell clusters were identified using genes

previously reported. Mast cells were identified by the high

expression of KIT, CPA3, and TPSAB1, and other myeloid

lineages were annotated using: granulocytes (CXCR2, FCGR3B,

IFTIM2, SLC25A37, IL1R2, CXCR1, SIRPA, and S100A8),

macrophages (C1QC, C1QA, APOE, CCL4, PLTP, and IL1B),

CD14 monocyte (CD14, FCN1, S100A8, and S100A9), CD16

monocyte (FCGR3A, LST1, and LILRB2), and DCs (dendritic

cells) (IL7R, CCR7, GZMB, LYZ, IL3RA, and IL32).
Tissue distribution of clusters

We quantified the tissue preference of each cluster by

calculating the ratio of observed to expected cell numbers (Ro/e)

in different tissue (28, 29). The expected cell numbers for each

combination of cell clusters and tissues were determined using the

chi-square test. A cluster was considered enriched in a specific tissue

if Ro/e value was greater than 1.
Differential expression and
pathway analysis

To identify differentially expressed genes between two groups of

clusters, we used theWilcox method in the FindMarkers function in

Seurat to evaluate the significance of each gene, with multiple

hypothesis correction using the Benjamini-Hochberg procedure.

Genes with adjusted P-values less than 0.05 were considered as
Frontiers in Immunology 04222
differentially expressed genes. In addition, the log2 fold change

(log2FC) for each gene was calculated by subtracting the log2

transformed mean count in each group.

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway

enrichment was performed using the clusterProfiler package

(version 3.14.3) (30), with a Benjamini-Hochberg multiple testing

adjustment. Gene sets with FDR-corrected P < 0.01 were considered

to be significantly enriched.
TCGA data analysis

Two endpoints (overall survival (OS) and disease-free interval

(DFI) from the TCGA-PAAD) were used to analyze patients’

clinical outcomes. We employed the Cox proportional hazards

model implemented in the survival package to assess the

correlation between selected genes and patients’ survival. Kaplan-

Meier survival curves were generated using the R function

ggsurvplot from the survminer package.

Specifically, to examine the relationship between clusters and

patients’ survival, we utilized their signature genes. The signature

genes including the following categories: macrophage (C1QC,

C1QA, APOE, MACRO, INHBA, IL1RN, CCL4, NLRP3, EREG,

IL1B, LYVE1, PLTP, SEPP1), granulocyte (FCGR3B, IFITM2,

CXCR2, S100A8, SLC25A37, CXCR1, IL1R2), CD14 monocyte

(CD14, FCN1, S100A8, S100A9, S100A12, VCAN, CD36), CD16

monocyte (FCGR3A, LST1, LILRB2, IFITM2, SIGLEC10, CX3CR1,

LILRB1, LIBRA1, TCF7L2, MTSS1, RHOC), DCs (GZMB, JCHAIN,

MZB1, CLIC3, CXCL8, IL7R, CCR7, MMP7, and IL32), and mast

cells (KIT, CPA3, TPSAB1, HDC, GATA2, HPGDS, TPSD1,

SLC18A2, MS4A2, IL1RL1, and VWA5A). The mean expression

of the signature genes was used to classify samples into a high and

low groups based on risk score (high: risk score > 0; low: risk score ≤

0). The Cox model was employed to adjust for OS and status in the

survival analysis.
Cell-cell interaction analysis

To investigate the potential interactions between different cell

types in the TME of PDAC, we conducted cell-cell interaction

analysis using CellChat (v1.1.3), which integrates a curated

repository of ligand-receptor (L-R) pairs and employs a statistical

framework (31). We combined CD4+T cells, CD8+T cells, B cells,

NK cells, and epithelial cells with the newly identified clusters,

including GLUL-SQSTM1- RTM, GLUL+SQSTM1+ Macro.,

HSP90AA1+HSP90AB1+ Mast and JAK3+TLR4+ Mono.

Interactions networks between cell clusters were investigated.
RNA fluorescence in situ hybridization

The samples used for RNA FISH were obtained from tumor

paraffin sections of patients diagnosed with PDAC. Isolated cancer-

associated cells were adhered onto laminin coated #1 coverslips

(ThermoScientific) were fixed for 10 min at room temperature with
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Fixation Buffer (3.7% formaldehyde in PBS), washed twice in 1x PBS

and permeabilized with 70% EtOH at 4°C for at least an hour. RNA

FISH was performed using 20-mer Stellaris Biosearch Probes for

LINCMs and core gene conjugated to Quasar 670 or CAL Fluor

Red 610. Briefly, cells were washed with Wash Buffer (10% formamide

in 2x SSC) prior to overnight 37°C hybridization with target probes

(125 nM) in Hybridization buffer (100 mg/ml Dextran Sulfate, 10%

Formamide in 2x SSC). After hybridization, cells were washed inWash

Buffer for 30min at 37°C, counterstained with DAPI (5 ng/ml inWash

Buffer) for 30min at 37°C, and washed in 2x SSC at room temperature.

Coverslips were transferred onto glass slides with mounting medium

(Vectashield) and imaging was performed immediately on upright

microscope (Nikon, Ni-E) with 100x Objective (Nikon) on a cooled

CCD/CMOS camera (Qi-1, Qi-2, Nikon).

For the notable exception of S100A4, SQSTM1 and GLUL RNA

FISH co-staining, RNA FISH was performed using 50-mer ZZ ACD

RNAScope probes due to the short unique sequence of the

antibodies available for probe design. Cells were fixed and

permeabilized as described above in 70% EtOH, washed in 1x

PBS and 1x Hybwash buffer for 10 and 30 min, respectively. They

were then incubated with 1x Target Probe Mix at 40°C for 3 hours.

Cells were washed thrice in 1x Hybwash at room temperature,

incubated in 1x Pre Amp Mix for 40 min at 40°C, washed thrice in

1x Hybwash at r.t.p, incubated in 1x Amp Mix for 30 min at 40°C,

washed twice in 1x Hybwash before incubation in 1x Label Probe

Mix (Alexa Fluo 488, ATTO0550) at 40°C for 25 min. Cells were

washed thrice in 1x Hybwash in dark at r.t.p, counterstained with

DAPI (5ng/ml) prior to mount and imaging.
Statistical analysis

All statistical analyses were conducted using R software.

Comparisons between two groups of samples were evaluated

using Wilcoxon rank-sum test (Mann-Whitney U-test) for

statistical analysis. Statistical significance was denoted as *P <

0.05, **P < 0.01, ***P < 0.001.
Results

Overall characteristics of the cell cluster
composition in pancreatic cancer

To gain a comprehensive understanding of TME, and explore

its heterogeneity between PDAC and normal tissues, we

investigated 39 PDAC samples consisting of primary tumors,

metastatic tumors, adjacent normal tissues and paired peripheral

blood (Figure 1A) from GSE155698 (24). Based on canonical cell

markers mentioned in Methods (Table S1), a total of 124,575 cells

were classified into distinct cell populations, including T cells

(39,372 cells, 31.61%), myeloid cells (48,054, 38.57%), epithelial

cells (14,998, 12.04%), NK cells (7,758, 6.23%), fibroblast (2,617,

2.10%), B cells (4,548, 3.65%), acinar cells (2,488, 2.00%), mast cells

(2,086, 1.67%), stellate cells (1,324, 1.06%), endothelial cells (1,238,

0.99%) and minor unknown cells (92, 0.74%) (Figures 1B, C, S1A).
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Compared to primary tumors and paracancerous samples,

metastatic tumors exhibited higher composition of T cells

(34.52%, 27.55%, 23.59%, respectively) and epithelial cells

(15.17%, 12.54%, 9.47%) (Figure S1B, Table S2). Conversely,

compared to primary and metastatic tumor samples, adjacent

normal tissues had higher proportions of stromal cells, including

acinar cells (14.27%, 1.11%, 1.21, respectively), stellate cells (6.26%,

0.95%, 0.57%) and endothelial cells (3.90%, 0.92%, 0.89%) (Figure

S1B, Table S2). As for PDAC samples across clinical stage I to IV,

the proportions of epithelial cells continued to rise, from 5.58% to

15.17%, while myeloid cell compositions decreased from 71.63% to

35.13% (Figure S1C, Table S2). Among the PDAC samples, T cells

(28.68%), myeloid cells (40.25%), and epithelial cells (12.86%) were

the most abundant populations. In normal samples, T cells

(51.88%), myeloid cells (27.00%), and NK cells (9.26%) accounted

for 88.14% of the cell population (Table S2, Figure S1D). The

peripheral blood from PDAC patients had a higher proportion of T

cells (36.87% vs. 22.41%), myeloid cells (41.46% vs. 33.53%), and

NK cells (7.53% vs. 3.95%) compared to solid tissue, whereas the

proportion of epithelial cell was higher in solid tissue (20.19%) than

peripheral blood (7.37%) (Figure S1E, Table S2).

Similar to previous studies (26, 32), there was significant

variation in the portions of epithelial, stromal, and immune cells

among the samples, which could be attributed to intrinsic

differences in tumor stages or specific locations within tumor

where biopsies were taken (Figure 1D). For example, PDAC

patients 15 and 16 (stage II) exhibited a highly immune-rich

microenvironment, with nearly 70% T cells in peripheral blood

compared to only 10% in solid tissue. Furthermore, patients 15 and

16 (stage II) had higher T cell portions (70%) than patients 2 and 3

(stage IV, approximately 20%). These findings indicated that the

formation and progression of metastases in PDAC may necessitate

a more immunosuppressive TME compared to primary tumors.
B cell may play a tumor-suppressive role
in PDAC

Subsequently, to assess the clinical significance of these cell

types in PDAC, we identified the top 20 genes that predominantly

determined the identity of each cell type through ROC analysis. The

correlation between the expression levels of these genes and the

patient prognosis was then computed using multivariate Cox

regression on TCGA-PAAD data (Table S3). Our analysis

revealed that genes exclusively expressed in C3 (epithelial cell)

(ave.cox = 0.182), C13 (epithelial cell) (ave.cox = 0.182), C21

(epithelial cell) (ave.cor = 0.193) were associated with poor

prognosis (Figure S2A), where ave.cox represents the average

Pearson correlation coefficient. On the other hand, genes

expressed in C0 (T cells) (ave.cox = -0.076) and C14 (B cells)

(ave.cox = -0.062) were correlated with a favorable prognosis in

PDAC, suggesting potential tumor-suppressive functions of these

cells. It is worth noting that B cells are prominent features of PDAC

tumors, although their roles in this disease remain controversial

(33). Notably, higher expression levels of genes exclusively

expressed in the C14 and C38 B cell types (such as BCL11A and
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DNASE1L3) were positively associated with favorable prognoses

(Figure S2B, Table S3), indicating the tumor-suppressive functions

of C14 and C38 cells in the PDAC microenvironment. Correlation

analysis revealed that BCL11A (R = 0.419, p = 3.52e-09) and

DNASE1L3 (R = 0.689, p < 2.2e-16) were positively correlated

with CD8A (Figure S2C). Clinical outcomes demonstrated that

higher expressions of BCLAA1 and DNASE1L3 were significantly

associated with improved survival (Figures S2E, F). Additionally,

these genes exhibited higher expression values in PDAC tumors

compared to normal samples (Figure S2D), suggesting B cells may

exert tumor-suppressive roles as tumor-infiltrating B cells.

Consistent with our findings, previous studies have demonstrated

that tumor-infiltrating B cells are a positive prognosis factor, both in

PDAC and other cancers (34, 35).
Myeloid cells exert immune-
suppressive potential

The presence and functional activities of myeloid cells in tumors

have garnered increasing interest due to their relevance as modulators

of anticancer therapies and potential targets for specific treatment. In

this study, we focused on unraveling the potential roles of myeloid

cells in PDAC (Figure 2). Correlation analysis showed that the genes

exclusively expressed in C1 (ave.cox = 0.023), C4 (ave.cox = 0.019),
Frontiers in Immunology 06224
C7 (ave.cox = 0.026), C10 (ave.cox = 0,023), C17 (ave.cox = 0.034),

C22 (ave.cox = 0.042) (myeloid cell) were associated with poor

prognosis (Figure 2A), suggesting the immune-suppressive

functions of myeloid cells in the microenvironment of PDAC.

Besides, Immune-suppressive markers as previously reported (37),

SPP1,MACRO, APOE, CD68, and SIPRA, were exclusively expressed

in myeloid cells (Figure 2B). Additionally, myeloid cells had a

relatively higher stemness score compared to other stromal cells

(Figure 2C).Previous studies have demonstrated that cancer

progression involves a gradual loss of differentiated phenotype and

the acquisition of progenitor-like, stem cell-like features (38).

Furthermore, myeloid cells exhibited heterogeneous expression of

immune checkpoint receptors (CD86, HAVCR2, CD48, and VSIR)

(Figure 2D). Collectively, these findings suggest that myeloid cells

may play an immune-suppressive role in the PDAC tumor

environment, consistent with previous observations and supporting

the notion that myeloid cells are a key immunosuppressive

component in TME (39).
Characterization of major myeloid
cell lineages

To investigate tumor-infiltrating myeloid cells (TIMs) in

PDAC, we firstly excluded all cells from healthy samples,
A
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FIGURE 2

Myeloid cells exert immune-suppressive potentials. (A) Bar Graphs illustrating the average coefficients (ave.cor) for the prognostic effect of genes
exclusively expressed in each clusters. Positive values of ave.cor indicate the associations with anti-tumor immunity and good clinical outcomes,
opposite from negative ave.cor values. (B) Expression landscapes of immunosuppressive markers of SPP1, MARCO, APOE, CD58, and SIRPA. (C) The
high stemness score profile of myeloid cells calculated by scCancer (36). (D) Heatmap of immune checkpoint inhibitors in 11 cell clusters.
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resulting in 45,859 myeloid cells for further analysis. Subsequently,

we performed unsupervised clustering and cell annotation of

myeloid cells using canonical markers (Figures 3A, C), as

described in the Methods section. It revealed the presence of 6

distinct subclusters within the myeloid lineage, including

granulocytes (24,786, 54.0%), CD14 monocytes (8,713, 19.0%),

macrophages (7,767, 16.9%), mast cells (1,999, 4.4%), CD16

monocytes (1,270, 2.8%), and dendritic cells (DCs) (1,324,

2.9%) (Figure 3B).

To visualize the distribution of cell populations of myeloid

subclusters across different histologic types, we utilized unbiased

hierarchical clustering algorithms and supervised annotation on

PBMC samples(Figures S3A, B). Compared to adjacent normal

tissues, tumor tissues exhibited overall increases in DCs, CD14

monocytes, and CD16 monocytes, indicating a redirected immune

response (Figure S3C). Besides, PBMC samples predominantly
Frontiers in Immunology 07225
consisted of granulocytes, while tumor and paratumor tissues

exhibited abundant macrophages (Figure S3C). The distict cellular

compositions suggested a heterogeneous TIMs environment in tumor.

We subsequently investigated the expression patterns of

immune-suppressive markers mentioned above. The results

revealed elevated expression of these markers in macrophages

(Figure 3D), suggesting that macrophages may contribute to the

immunosuppressive effects of TIMs in PDAC. To further assess the

clinical impact of the signature (Figure 3C) for myeloid subclusters,

including macrophages, mast cells, CD14 monocytes, CD16

monocytes and DCs, we utilized an independent PAAD cohort

from TCGA. Patients with high expression of signature genes

exhibited worse OS compared to those with low expression(two-

sided log-rank test p < 0.01) (Figures 3E–I). These findings further

underscored the immunosuppressive effects of myeloid lineages at

the bulk level.
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FIGURE 3

Myeloid-derived cell components in PDAC. (A) t-SNE plot showing 6 myeloid clusters of samples from PDAC patients. (B) Proportion of each
myeloid cell lineage from the primary tumor, metastatic tumor, paracancerous tissue, and peripheral blood. (C) Bubble plot showing selected cell
type-specific markers across all clusters. The size of dots represents the fraction of cells expressing a particular marker, and the intensity of the color
indicates the levels of average mean expression. (D) t-SNE plots showing the expression of specific immunosuppressive markers, which were
denoted in Figure B, in the myeloid subclusters. (E–I). Kaplan-Meier survival analyses of some myeloid subclusters markers, including macrophage,
mast cells, CD14 monocyte, CD16 monocyte, and DCs.
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PDAC tumor progression is associated
with necroptosis

In order to comprehensively investigate the diverse range of

myeloid cell populations in PDAC, we first performed tissue

prevalence analysis. Compared to paratumor samples, macrophages

and mast cells were highly enriched in tumor tissues, suggesting the

coexistence of host immune response and tumor escape in the PDAC

milieu. Moreover, macrophages exhibited a higher enrichment in

paratumor samples compared to primary and metastatic tumor

samples, in contrast to CD14 monocytes and granulocytes (Figure

S3C, left). Moreover, macrophages and mast cells exhibited a

preferential enrichment in PDAC tissues rather than peripheral

blood samples (Figure S3C, middle). Subsequently, we performed

differential gene expression (DGE) analysis between tumor and

paratumor samples (Figure 4A) and gene set enrichment analysis

of each cluster’s upregulated genes (Figures 4B-F). Strikingly, gene

ontology (GO) characteristics related to necroptosis were detected

across all myeloid lineages in tumor samples. Necroptosis can either

elicit robust adaptive immune responses that may impede tumor

progression, or it can recruit inflammatory responses that may
Frontiers in Immunology 08226
potentially facilitate tumorigenesis, cancer metastasis and the

generation of an immunosuppressive tumor microenvironment (40).

To investigate the potential enrichment of necroptosis in

peripheral blood, we only kept myeloid cells from peripheral

blood samples (Figure S3A). Compared with normal blood

samples, blood samples from PDAC patients showed higher

proportions of CD14 monocytes and lower proportions of DCs,

and CD16 monocytes (Figure S3B), indicating a heterogeneous

myeloid environment in peripheral blood. However, myeloid

lineages showed comparable enrichment in peripheral blood

except for DCs, CD16 monocytes, and macrophages (Figure S3C,

right). We performed DGE and enrichment analyses of PBMC

samples from PDAC or healthy individuals, and results

demonstrated the presence of necroptosis in PBMC samples from

PDAC (Figures S3D-I), indicating that the necroptosis event was

not tissue-specific. To investigate the differences between tumor and

paratumor tissues, we excluded myeloid cells from peripheral blood

samples. DGE and enrichment analyses showed that necroptosis

remained specifically enriched in all myeloid lineages within tumor

tissues (Figures S4A-F). Moreover, we removed myeloid cells from

adjacent normal samples to compare the differences between tumor
A B
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FIGURE 4

Differential gene analyses of PDAC tumors and paracancerous tissues. (A) Differential gene expression analysis showing up- and down-regulated
genes across all cell types between tumor and paratumor samples from PDAC patients. The top 10 DE genes were shown, and the points dotted in
red indicate significant genes. An adjusted p-value < 0.01 is indicated in red, while an adjusted p-value ≥ 0.01 is indicated in black. (B–F). Differential
pathways enriched in tumor and paratumor for each cell type.
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tissue and peripheral blood from PDAC. The results showed that

necroptosis was specifically enriched in all myeloid lineages from

tumor tissues, rather than peripheral blood (Figures S5A-F),

suggesting a propensity for necroptosis events to occur in solid

tumor tissues. Detailed information on all DEGs and necroptosis-

associated DEGs could be found in Tables S4, S5, respectively.

We next performed overlapping analyses to find key

necroptosis-pathway-associated (NPA) DEGs that exhibited

significant up- and down-regulation within each myeloid lineage

(Figure 5; Figure S6). The results revealed specific patterns in the

expression of NPA genes in different myeloid cell types within

tumor tissues. In macrophages from tumor samples, two NPA
Frontiers in Immunology 09227
genes, GLUL and SQSTM1, were found to be up-regulated

(Figure 5A), while SLC25A6 exhibited down-regulation

(Figure 5B). Besides, in mast cells, two NPA genes HSP90AA1

and HSP90AB1 were up-regulated in tumor tissues (Figure 5A),

whereas BIRC3 was down-regulated (Figure 5B). Interestingly,

BIRC3 displayed an opposite expression pattern, being up-

regulated in CD14 monocytes and CD16 monocytes but down-

regulated in mast cells (Figure 5B), indicating potential distinct

roles of this NPA gene in different cell types. Additionally, in CD16

monocytes, the remaining NPA genes, JAK3, PPIA, and TLR4 were

up-regulated in tumor tissues (Figure 5A), while IFNGR1 was

down-regulated in tumor samples (Figure 5B). In the case of DCs,
A
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FIGURE 5

Overlapped differentially expressed genes were associated with necroptosis. Analysis of overlapped necroptosis-associated genes up-regulated
(A) or down-regulated (B) in tumor for each cell type. (C) TCGA survival analysis of SLC25A6. (D) The predicted regulatory pathways of overlapped
necroptosis-associated genes we identified based on public Necroptosis pathway network. Genes in dashed-circles were not identified in
overlapped DEGs. ‘pdac.tumor.tissues&pbmc vs pdac.paratumor’, primary tumor tissues, metastatic tumor tissues and PBMCs samples from PDAC
patients vs paratumor samples from PDAC patients.; ‘pdac.tumor.tissues vs pdac.paratumor’, primary tumors and metastatic tumors from PDAC
patient vs paracarcinoma tissues from PDAC patient; ‘pdac.pbmc vs healthy.pbmc’, PBMCs of PDAC Patients vs PBMCs from healthy controls;
‘pdac.tumor.tissues vs pdac.pbmc’, primary tumor tissues and metastatic tumor tissues of PDAC patients vs PBMCs of PDAC patients; LMP, lysosome
membrane permeabilization; DYm, mitochondrial membrane potential.
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the NPA gene, CHMP1B was up-regulated in tumor tissues

(Figure 5A), while PARP1 was down-regulated in tumor

samples (Figure 5B).

Based on the Necroptosis pathway network (https://

www.kegg.jp/pathway/map04217), several NPA DEGs that

identified within PDAC myeloid cells were involved in this

network, thereby the interactive relationship was mapped. This

approach allowed us to gain insights into the underlying

contribution of necroptosis in the context of myeloid cell-

mediated immune responses within TME of PDAC. Of note, we

designated this mapping as the representation of the necroptosis

pathway associated with PDAC myeloid cells, while experimental

studies are necessary to confirm their precise roles and interactions

(Figure 5D). In this predicted simplified model, TLR4 acts as an

upstream regulator that promotes the phosphorylation of RIPK3, a

key regulator of necroptosis (41). This phosphorylation event leads

to the subsequent phosphorylation of GLUL, which contributes to

increased lysosome membrane permeabilization (LMP), a common

phenomenon in cancer cells (42). Besides, JAK3, a downstream

signaling molecule of IFN, BIRC3, a downstream molecule of TNF,

and SQSTM1, a dissociated molecule, work together to promote the

phosphorylation of RIPK1, another core regulator of necroptosis

(41). The phosphorylated RIPK1, in turn, represses the expression

of SLC25A6, result in a transient increases in mitochondrial

transmembrane potential (DYm), which is highly related to

cancer malignancy (43). Moreover, HSP90AA1 and HSP90AB1

can simultaneously promote the phosphorylation of necrosome,

including RIPK1, RIPK3, and MLKL. This leads to the activation

of various necroptosis pathways, such as MLP, DYm and

mitochondrial fission (44). Mitochondrial fission facilitates the

proliferation, metastasis, and drug resistance of cancer cells (45).

Despite their necroptosis-promoting function, HSP90AA1 and

HSP90AB1 can also act as upstream regulator of ESCRT-III,

which helps maintain membrane integrity during the initiation of

necroptosis, thereby promoting cell survival (46).

To explore the clinical relevance of necroptosis-associated genes

that were down-regulated in tumor (Figure 5B), we conducted

survival analysis. The results revealed that higher expression of

SLC25A6 was correlated with improved survival outcomes

(Figure 5C). Interestingly, we observed a significantly higher

expression of SLC25A6 in HSP90AA1+HSP90AB1+ mast cells

compared to HSP90AA1-HSP90AB1- mast cells (Figure 6E). These

findings indicated that HSP90AA1 and HSP90AB1 might have an

unknown mechanism of targeting SLC25A6 in necroptosis

pathway (Figure 5D).
A novel immunological RTM population is
specific to paratumor tissue

Based on the identified NPA genes mentioned above, we

proceeded to investigate the relations within myeloid lineages.

Firstly, myeloid cells from tumor and paratumor samples were

selected for subsequent analysis (Figure 7A, left). Subsequently, an

unsupervised clustering analysis was performed on macrophage

subsets (Figure 7A, middle). Cluster 3, characterized by high
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expression of ITGAX, CD86, HLA-DRA, and HLA-DRB1, was

identified as M1 macrophages (Figure 7B). Clusters 0, 2, 4, and 6

were classified as M2 macrophages as they highly expressed SPP1,

MACRO, APOE, FABP5, and LAMP1. Clusters 1 and 5, which

displayed elevated expression profiles of S100A4, RGS1, CD74,

and CSF1R ,were designated as RTM (resident t issue

macrophage) subset.

Focusing on the expression profiles of NPA genes, includingGLUL

and SQSTM1 in macrophages, strikingly, we found that GLUL and

SQSTM1 were elevated in all macrophage subsets except for a minor

RTM cell population (Figure 7C). Therefore, we named this RMT

subset as GLUL-SQSTM1- RTM. Unexpectedly, this subset was

deficient in tumor samples compared to paratumor samples

(Figure 7D), indicating that GLUL-SQSTM1- RTM may act as a

positive regulator of immunity. To validate this hypothesis, we

performed a correlation analysis of GLUL-SQSTM1- RTM and

CD8+T cells using GLUL-SQSTM1- RTM markers, including PRSS1,

CTRB1, CLPS, PLA2G1B, PNLIP and CPA1 (Figure 7E). The results

showed positive correlations between these markers with CD8+T cells

both in this cohort (Figure 7F) and TCGA-PAAD cohort (Figure 7G),

which validated that GLUL-SQSTM1- RTM represents an

immunological cell population. Furthermore, to investigate whether

this subpopulation directly interacts with epithelial cells, we performed

correlation analyses. The results indicated that this subpopulation had

no direct correlations with epithelial cells, neither in this cohort (Figure

S7A) nor in the TCGA-PAAD cohort (Figure S7B). This suggests that

this subpopulation may not directly exert immunological functions on

epithelial cells.

Cytokines, which are small proteins crucial in controlling the

growth and activity of the immune system, play a significant role in

the immune and inflammatory responses of all cells in the body

(47). Alternatively, cancers can respond to host-derived cytokines

that promote growth, inhibit apoptosis and facilitate invasion and

metastasis (48). In this study, we investigated the expression profiles

of several cytokines in macrophages. The results showed that ADM

(49), CCL2 (50), CCL4 (51), CXCL3 (52), MIF (53), SPP1 (54),

VEGFA (55) and VEGFB (56), which have previously been reported

to promote tumor progression and metastasis, were specifically

deficient in GLUL-SQSTM1- RTM (Figure 7H). This further

emphasizes the immunological role of GLUL-SQSTM1- RTM

in TME.
HSP90AA1+HSP90AB1+ mast cells are
pro-immune

After investigating macrophages, our focus shifted to mast cells

(Figure 6). We extracted mast cells from the myeloid cell population

to perform unsupervised clustering. A total of 6 clusters were

identified, and cluster 3 lacked HSP90AA1 and HSP90AB1

expression. Consequently, we termed cluster 3 as HSP90AA1-

HSP90AB1- mast cells, while the remaining mast cells were

classified as HSP90AA1+HSP90AB1+ mast cells (Figure 6A). To

determine whether HSP90AA1+HSP90AB1+ mast cells exhibited

pro-immune or anti-immune characteristics, we evaluated the

correlations between HSP90AA1+HSP90AB1+ mast cell markers
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(Figure 6B) and CD8+T cells. The results showed that all of the

HSP90AA1+HSP90AB1+ mast cell markers, including HSP90AA1,

HSP90AB1, TPSAB1, AREG, CPA3, JUN, LTC4S, CLU, KIT, FAU,

etc., exhibited positive correlations with CD8A (Figures 6C, D, S8A),

demonstrating that HSP90AA1+HSP90AB1+ mast cell may act as

positive regulator of immunity. In contrast, HSP90AA1-HSP90AB1-

mast cells were anti-immune, and their markers, including CLC,

RUNX1, FAM101B, SORL1, PIM1, CSF3R, ATP100, MAF, MYO1F,

etc. (Figure S8B), showed negative correlations with CD8+ T cells

(Figure S8C). To further investigate the novel mast clusters, we

evaluated the expression patterns of certain cytokines (Figure 6E),

including AVP, CTSG, and NAMPT. AVP (57) and CTSG (58),

known to play important roles in inflammation and immune

responses, were exclusively sufficient in HSP90AA1+HSP90AB1+

mast cells, while NAMPT (59), previously reported to be associated

with maintaining cancer stemness, was highly expressed in

HSP90AA1-HSP90AB1- mast cells. Additionally, the expression of

CD8A was significantly higher in HSP90AA1+HSP90AB1+ mast cells
Frontiers in Immunology 11229
(Figure S8D), providing further supporting for the notion that

HSP90AA1+HSP90AB1+ mast cells were immune-promoting.
JAK3+TLR4+ CD16 monocytes are
anti-immune

Furthermore, we investigated CD16 monocytes (Figure 8).

Firstly, we extracted CD16 monocytes from myeloid cells and

performed unsupervised clustering. As a result, a total of 7

clusters were identified, in which clusters 1, 4, and 5 were all

JAK3-TLR4- (Figure 8A). Therefore, we classified CD16

monocytes into JAK3+TLR4+ CD16 monocytes and JAK3-TLR4-

CD16 monocytes (Figure 8A). We then proceeded to examine the

distinctive features of these two clusters. In contrast to

HSP90AA1+HSP90AB1+ mast cells , JAK3+TLR4+ CD16

monocytes were immunosuppressive, as indicated by the negative
A
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FIGURE 6

Schema to identify HSP90AA1+HSP90AB1+ mast cells. (A) Schema showing the procedures to distinguish mast cells based on HSP90AA1 and HSP90AB1.
(B) Violin plots displaying the expression of HSP90AA1+HSP90AB1+ mast cluster-specific genes. (C) Scatterplot showing the Spearman correlation between
the HSP90AA1, HSP90AB1, and CD8A in this study. (D) Scatterplot illustrating the correlations between the top 6 HSP90AA1+HSP90AB1+ mast cluster-
specific genes and CD8A in this study. (E) Expression patterns of cytokines (AVP, CTSG, NAMPT, SLC25A6) in mast cells.
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correlation between their markers (JAK3, TLR4, CRIP1, IFI6,

ZBTB7A, ZYX, etc.) (Figure 8B) and CD8+T cells at a significant

levels (Figures 8C, D). In contrast, JAK3-TLR4- CD16 monocytes

displayed upregulation of EEF1D, MS4A4A, TMEM66, and TNF

(Figure S9A), all of which were positively correlated with CD8+ T
Frontiers in Immunology 12230
cells at significant levels (Figure S9B), suggesting a pro-immune role

of JAK3-TLR4- CD16 monocytes. Cytokine analysis further

confirmed these results. CAT (60), CECR1 (61), GPI (62), HDGF

(63), and MIF (53), previously reported to promote tumor

development and progression, were specifically abundant in
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FIGURE 7

Pipeline to identify novel immunological RTM (resident tissue macrophage) population. (A) Schema illustrating the procedures for identifying the
subclusters of macrophages. (B) Bubble plot displaying selected cell type-specific markers across all clusters. The size of dots represents the fraction
of cells expressing a particular marker, and the color intensity indicates the level of average mean expression. (C) t-SNE plots showing the
expression of GLUL and SQSTM1. (D) t-SNE plots showing the subclusters of macrophages between tumor and paratumor samples. (E) Violin plots
presenting RTM (GLUL-SQSTM-) cluster-specific markers. (F) Correlations between the GLUL-SQSTM1- RTM cluster-specific genes and CD8A.
(G) TCGA validation of the genes illustrated in (F). (H) Expression and distribution patterns of cytokines in macrophages. The left figure represents
macrophage subsets, while the right figures are expression patterns of some cytokines.
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JAK3+TLR4+ CD16 monocytes, rather than JAK3-TLR4- CD16

monocytes (Figure 8E).

Furthermore, we explored the NPA genes in other myeloid cells,

however, the correlations between these genes and CD8A were

insignificant. For example, in BIRC3+ CD14 monocytes, the marker

BIRC3, did not show a significantly correlation with CD8+ T cells

(Figure S10A). Moreover, in BIRC3+ CD16 monocytes, although

BIRC3 exhibited a significant positive correlation with CD8A, other

markers such as APRT, C1QB, GABARAP, and IFITM1 were not

correlated with CD8+ T cells (Figure S10B). Moreover, in

CHMP1B+ DCs, the marker CHMP1B was not correlated with

CD8+ T cells (Figure S10C). These results indicated that

these NPA genes may function as immune mediators in an

unknown manner.
Frontiers in Immunology 13231
Cluster-specific cellular interaction
networks that mediate immunity

To gain a comprehensive understanding of the interactions

among the novel clusters and the T/B/NK/epithelial cell

populations, as well as their collective contribution to the PDAC

tumor microenvironment, we inferred a putative cellular

interaction network based on the receptor-ligand database (31).

Our findings unveiled specific interactions within various signaling

pathways. Specifically, we observed that EPO/EPOR interaction of

EPO signaling pathway was unique to the GLUL-SQSTM1- RTM

cluster. In this cluster, the ligand EPO was predominantly expressed

in GLUL-SQSTM1- RTM, while EPOR receptor was present in

CD4+ T cells, CD8+ T cells, B cells, NK cells and epithelial cells
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FIGURE 8

Pipeline to identify JAK3+TLR4+ CD16 monocytes. (A) Workflow showing the procedures to identify JAK3+TLR4+ mast cells. (B) Violin plots displaying
the expression of JAK3+TLR4+ mast cluster-specific genes. (C) Scatterplot showing the correlations between JAK3, TLR4, and CD8A in this study.
(D) Scatterplot illustrating the correlation between JAK3+TLR4+ mast cluster-specific genes and CD8A in this study. (E) Violin plot showing the
expression profiles of some cytokines in CD16 monocytes. **** Represents a statistical significance level of P<0.0001.
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(Figure 9A). The EPO/EPOR interaction has been reported to

initiate a signaling cascade that activated and recruited a variety

of Src homology-2 (SH2) domain-containing proteins,

subsequently triggering downstream signaling pathways such as

ERK-1/2 and JAK-2 (64). Interestingly, a recent study has

demonstrated that EPO/EPOR could reduce the variability of

myeloma cell lines and malignant primary plasma cells (65). And

ANXA1/FPR1 interaction within the ANNEXIN signaling pathway

was specific to GLUL+SQSTM1+ macrophage cells, and ligand

ANXA1 was specific to GLUL+SQSTM1+ macrophage, while

receptor FPR1 was in CD4+ T, CD8+ T, B, NK and epithelial cells

(Figure 9B). FPR1, previously reported to promote chemotherapy-

induced antitumor immune response (66), was demonstrated to act

as a receptor for ANXA1, promoting cell death through the

necroptosis pathway (67). Furthermore, we identified the IL10/

IL10RA interaction within the IL10 signaling pathway, which was

specific to HSP90AA1+HSP90AB1+ mast cell, in which ligand IL10

was expressed in CD4+ T, CD8+ T, B, NK, and epithelial cells, while

the receptor IL10RA was specific to HSP90AA1+HSP90AB1+ mast

cell (Figure 9C). IL10- and IL10R-dependent signaling have been

reported to play critical roles in controlling immune responses in

both innate and adaptive immune systems (68). Finally, TNF-a
(TNF)/TNFR1 (TNFRSF1A) interaction was found to be specific to
Frontiers in Immunology 14232
JAK3+TLR4+ CD16 monocytes. In this interaction, the ligand TNF

was specific to JAK3+TLR4+ CD16 monocytes, while receptor

TNFR1 was expressed in CD4+ T, CD8+ T, B, NK and epithelial

cells (Figure 9D). TNF-a signaling meditated by TNFR1 in the TME

has been reported to promote gastric tumor development and

maintain tumor cells in an undifferentiated state (69). Taken

together, the intercellular interactions revealed a close relationship

between immune cell and cancer cell dynamics, as well as the

molecular features of novel clusters (Figure 10). These interactions

may play a crucial role in determining the prognostic and

therapeutic response in PDAC.
Validation of the existence of the
novel clusters

We proceeded to validate the presence of GLUL-SQSTM1-

RTM, HSP90AA1+HSP90AB1+ mast cell, and JAK3+TLR4+ CD16

monocyte cellular clusters in other PDAC cohorts. To accomplish

this, we analyzed publicly available scRNA-seq data from the

CRA001160 dataset (26). In this dataset, 1,047, 3,098, and 1,464

cells were annotated as RTM, mast cells, and CD16 monocytes,

respectively (Figure S1). To focus specifically on RTM, mast cells,
A B
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FIGURE 9

Cluster-specific interaction network. Signaling pathway network of ligand-receptor pairs that were specific in (A) GLUL-SQSTM1- RTM,
(B) GLUL+SQSTM1+ macro, (C) HSP90AA1+HSP90AB1+ mast, (D) JAK3+TLR4+ CD16 Mono.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1263633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2023.1263633
and CD16 monocytes, we distinguished these cell types based on the

expression of GLUL/SQSTM1 (RTM), HSP90AA1/HSP90AB1

(mast cell), and JAK3/TLR4 (CD16 monocytes), respectively

(Figure 11A). Consequently, we obtained 49 GLUL-SQSMT1-

RTM, 2,151 HSP90AA1+HSP90AB1+ mast cells, and 1,234

JAK3+TLR4+ CD16 monocytes (Figure 11A).

Although GLUL-SQSMT1- RTMwas specifically present in PDAC

tumor tissues, it was noteworthy that the majority of RTM in the TME

are characterized by the expression of GLUL and SQSTM1. Given the

prevalence of GLUL+SQSTM1+RTM cells in PDAC tumor tissues, and

their interaction with CD8+T cells revealed by the cell chat analysis, it

becomes apparent that a deeper exploration is warranted. To validate

the expression of these genes at single-cell level, visualize their spatial

distribution within complex tissue structures and validate co-

expression patterns, functional gene interactions, we performed RNA

fluorescence in situ hybridization (FISH) on paraffin sections of PDAC

tumor tissue (Figure 11B).Our analysis revealed frequent overlap of the

GLUL, SQSTM1 and S100A4, providing evidence for the existence of

the GLUL+SQSTM1+ RTM. Additionally, we conducted further

investigations and confirmed the adjacent spatial relationship

between the GLUL+SQSTM1+ RTM and CD8+ T cells in PDAC

solid tumors. This observation suggests potential functional

interactions between these cell populations within the

tumor microenvironment.
Discussion

It is well-established that necroptosis, a programmed form of

necrosis or inflammatory cell death (70), has gained significant
Frontiers in Immunology 15233
attention in cancer research due to its implications in pathogenesis

and therapy (40, 71, 72). The involvement of necroptosis in recruiting

immune cells, regulating pro- or anti-tumor components in TME,

and modulating immune responses through the release of DAMPs,

chemokines and other cytokines. However, the specific roles of

necroptosis in PDAC have not been systematically described and

remain to be deciphered. In this study, public scRNA-seq data from

Gene Expression Omnibus (GEO) database was downloaded, which

covered more than 124,000 cells of 16 PDAC patients across multiple

immune-relevant tissue sites (24). Our analysis focused on

charactering major myeloid cell lineages, and identifying three

necroptosis-associated subsets of myeloid-derived cells. These

findings provide a valuable resource for comprehensively

understanding multi-dimensional characterization of the tumor

microenvironment in PDAC.

In this study, we identified HSP90AA1+HSP90AB1+ mast cells

that exerting anti-tumorigenic effects in PDAC, contributing to

better clinical outcomes. the Heat shock protein 90 (HSP90) protein

family, including HSP90AA1 andHSP90AB1, plays prominent roles

in various biological processes such as protein folding (73),

apoptosis (74), cell-cycle regulation (75), as well as signal

transduction (76). Of note, previous studies have suggested that

HSP90 can influence the activation and stability of crucial

regulators involved in the necroptosis process, such asRIPK1,

RIPK3 and MLKL, thereby contributing to immune cell

recruitment and immunogenic cell death of tumor cells (77–79).

In addition, necroptosis is deemed to trigger an adaptive immune

response by releasing cytokines (80). The novel mast cells were

predicted to interact with CD8+ T cells via IL10 signaling pathway,

and highly expressed AVP and CTSG. Consistently, AVP (57) and
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FIGURE 10

The crosstalk between novel myeloid-derived novel clusters, CD8+T cells Macrophage (A), GLUL-SQSTM1-Macrophage (B), HSP90AA1+ HSP90AB1+

Mast (C) and JAK3+ TLR4+ CD16+ Monocyte (D), and CD8+T cells that mediate immunity. Schematic for cellular crosstalk and corresponding
signaling pathways in PDAC TIMs that contribute to immunity or immune suppression. The novel clusters secrete various cytokines and ligands that
signal to their respective receptors, thus activating the corresponding signaling, respectively. Red arrows indicate up-regulated cytokines while green
arrow indicates down-regulated cytokines.
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CTSG (58) have been reported to play important roles in

inflammation and immune response, and IL10 has been shown to

potentiate IFN-g and induct the cytotoxicity of CD8+ T cells (68,

81–83), thereby triggering anti-tumor immune responses. These

findings collectively suggested that HSP90AA1+HSP90AB1+ mast

cells are functionally important in necroptosis process and are

involved in immune cell recruitment through the IL10 signaling

pathway. Future research should focus on designing effective drugs

that modulate HSP90 activity and developing diagnostic tools for

accurate patient stratification for therapy with HSP90 agonists or

HSP90 antagonist.

Another cluster of special interest is the GLUL-SQSTM1- RTM

subpopulation, which is enriched in PDAC tumor tissues and acts

as a positive regulator of immunity. Glutamine synthetase (GLUL)

has been associated with RIP3-mediated necroptosis (41), and the

p62/SQSTM1 complex binding to necroptosis-related proteins

RIP1 and RIP3 facilitates the transition from autophagy to

necroptosis (84). Moreover, it has been reported that both GLUL

and p62/SQSTM1 may influence the recruitment, activation and

polarization of macrophage. GLUL is known to be associated with

the differentiation and function of macrophage, more specifically,

enhancing M2- polarization (85, 86). Exogenous p62/SQSTM1 has

been shown to induce M1 polarization of macrophage through

activation of the NF-kB pathway (87). Given the potential roles of
Frontiers in Immunology 16234
GLUL and p62/SQSTM1 in macrophage polarization, we evaluating

the expression levels of molecular markers in macrophages. For

example, CCL2/CCR2 axis is a major player in macrophage

polarizing towards to M2 phenotype (88, 89). Stimulation of

CXCL13 may activate Akt pathway, suggesting an increase in M2

macrophage in renal cell carcinoma (90). The vascular endothelial

growth factor (VEGF) family, including VEGFA and VEGFB, can

contribute to M2 polarization in the decidua (91). MIF (92), SPP1

(93) and ADM (94) have all been previously reported to be

associated with a dominant M2 polarization and a loss of M1

function. In our study, the deficiency of these chemokines in GLUL-

SQSMT1- RTM cells may suggest the pro-inflammatory M1-

polarized phenotype, thereby modulating the antitumor response.

These results indicated that the GLUL-SQSMT1- RTM cells with a

pro-immune profile may evade programmed necroptosis and

abundantly infiltrate in the PDAC TME of patients with superior

efficacy. The combination of GLUL and SQSTM1 inhibitors in

precisely characterized patients may have superior effects against

cancer compared to immunotherapy alone.

The novel JAK3+TLR4+ CD16 monocyte subset exhibits anti-

immune properties and is associated with unfavorable clinical

outcomes. Janus Kinase 3 (JAK3) is a tyrosine kinase that belongs

to the Janus family of kinases. Hyper-activation of the JAK3-STAT

signaling pathway has been linked to tumor development and
A

B

FIGURE 11

Detection and validation of the cellular clusters. (A) t-SNE plot combing GLUL+SQSTM1+ RTM (n = 998, in purple), HSP90AA1+HSP90AB1+ mast cells
(n = 2,151, in blue), and JAK3+TLR4+ CD16 monocyte (n = 1,234, in orange) from PDAC (Peng et al., 2019). (B) RNA FISH staining in the PDAC tissues.
One representative image for each gene is shown. Spectrum orange dots indicate GLUL, spectrum red dots indicate SQSTM1, spectrum green dots
indicate S100A4, spectrum gold indicate CD8A. Scale bars, 90 mm.
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progression by inducing factors associated with suppressive

immune cell recruitment, angiogenesis and neo-vascularization

(95–99). TLR4, a member of the toll-like receptor (TLR) family,

can lead to the activation of NF-kB pathway, which is essential for

necroptosis signaling, as well as the production of pro-

inflammatory cytokines and angiogenetic factors (100, 101). In

addition, we observed that this novel monocyte subset was

predicted to interact with CD8+ T cells via TNF-TNFR1 signaling

pathway and expressed high levels of pro-tumor cytokines CAT,

HDGF, CECER1, GPI and MIF. NFR1-dependent TNF signaling

has been reported to impair the accumulation of tumor-infiltrating

lymphocyte (TILs) and induce significant death of activated CD8+ T

cells (102, 103). HDGF is considered as an angiogenic and anti-

apoptotic factor, contributing to tumorigenesis in several malignant

diseases (104–106). MIF plays an essential role in inhibiting

cytotoxic T lymphocytes (CTLs) and regulating lymphocyte

transmigration (107, 108). CAT, CECR1 and GPI have all been

previously associated with promoting tumor progression (60–62).

Altogether, these results align with our observations. We

hypothesized that this monocyte subset (JAK3+TLR4+ CD16

monocyte) contributes to shaping pro-tumor immunity in TME,

ultimately accelerating malignant transformation and tumor

progression. However, further investigation is needed to elucidate

the underlying mechanisms. Compared to other JAKs, JAK3 has a

more restricted expression profile, primarily confined to immune

system. Therefore, selective targeting of JAK3 represents a potent

immunosuppressant strategy that could minimize potential adverse

effects. Inhibition of TLR4-related pathways has shown promising

results in clinical trials for disease treatment with excessive immune

response (109–111). Current study supports the notion that the

discovery of JAK3 and TLR4 antagonists could be an ideal strategy

for cancer treatment.

A major limitation of the current finding is the lack of sufficient

experimental validation. For instance, the proposed NPA gene network

was supposed only based on the expression profiles, and the underlying

regulatory mechanism of necroptosis pathway in tumor progression

remains obscure in real world. In addition, our study illustrated the

indispensable roles of three novel myeloid subpopulations in tumor

microenvironment and their associations with necroptosis, however,

the underlying mechanisms need further investigation. And the

expression profiles of GLUL and SQSTM1 of macrophages in

normal samples were not explored. The implementation of advanced

biological techniques and bioinformatics analysis in mammalian

models of human pathological samples will be critical for gaining a

better understanding of these subpopulations in the context of

molecular mechanism and drug targeting.

Given the robust immunosuppressive and desmoplastic TME in

PDAC, which contributes to adaptive or acquired resistance to

therapy, investigating the relationship between necroptosis and

tumor immunology holds promise for future treatment solutions.

The identification of necroptosis-associated myeloid lineages can

potentially serve as targets for therapeutic intervention, allowing for

dynamically monitoring of the anti-tumor immune response and

improvement of patient outcomes. Our findings provide a valuable

resource for further investigation to gain deeper biological insights

into the role of necroptosis in cancer. Considering the exceedingly
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complex and individually unique immune microenvironment of

tumors, necroptosis signaling may generate a diverse array of

inflammatory responses, ranging from facilitation of anti-tumor

to pro-tumor signaling. The three novel necroptosis-associated

myeloid subpopulations uncovered in our research may

communicate with other cells to mediate ECM degradation and

remodeling, signaling pathway regulation and immune cell

polarization. These cells and their respective products hold

potential as therapeutic targets in PDAC and other types of

cancers, enabling the establishment of effective necroptosis-based

cancer therapy regimens.
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SUPPLEMENTARY FIGURE 1

Heterogeneity of TME in PDAC. (A) t-SNE plots of cells from 39 samples

profiled in this study. Colored by cell types. (B) The proportion of 11 cell types
among primary tumors, metastatic tumors and paratumor samples,

respectively. (C) The histogram of 11 cell types among clinical-stage I-IV.
(D) The percentage of cell types between PBMCs from PDAC Patients and

PBMCs from healthy controls. (E) The proportion of 11 cell types compared

between primary tissues and metastatic tumor tissues of PDAC patients with
PBMC samples from PDAC patients.

SUPPLEMENTARY FIGURE 2

Functional analysis of B cells in PDAC. (A) Top 100 genes were used to
calculate the cox coefficient for each cluster using TCGA (PAAD, n = 183)

data. (B) t-SNE plots showing the expression of BCL11A and DNASE1L3. (C)
Scatterplots showing the correlation between BCL11A, DNASE1L3, and CD8A
using TCGA (PAAD, n = 183) data. (D) The body maps showing the expression

of BCL11A and DNASE1L3 between tumor and normal samples via GEPIA 2
(http://gepia2.cancer-pku.cn/#index). (E) Kaplan-Meier overall survival

analysis of the high and low groups of BCL11A (top) and DNASE1L3
(bottom). (F) DFS (Disease-Free Survival) analysis of the high and low

groups of BCL11A (top) and DNASE1L3 (bottom). The hazard ratio was

calculated based on Cox PH Model, and 95% CI (Confidence Interval)
was applied.

SUPPLEMENTARY FIGURE 3

Differential gene and pathway analysis for peripheral blood. (A) t-SNE plots of
myeloid lineages of PBMC from healthy individuals and PDAC patients. (B)
Frontiers in Immunology 18236
Proportion of eachmyeloid cell lineage in PBMC samples from PDAC patients
and healthy controls. (C) Tissue prevalence estimated by Ro/e score of

primary tumor/metastatic tumor/paratumor tissues from PDAC patients

(left), tissue/PBMC (middle) from PDAC patient, and PBMCs from PDAC
patient/healthy controls (right). (D) Top 10 differential up- or down-

regulated genes across myeloid lineages of PBMCs from PDAC patient and
normal samples. Red dots indicate statistically significant genes (adjusted p-

value < 0.01). (E–I) Pathways enriched by DEGs of each cell type between
PBMCs from PDAC patients and PBMCs from healthy controls.

SUPPLEMENTARY FIGURE 4

Differential genes and pathways between tumor and paratumor tissue of

PDAC. (A) Differential gene expression analysis shows up- and down-
regulated genes across all cell types between tumor and paratumor tissue

from PDAC patients. The top 10 DE genes were shown, and the points dotted
in red indicate significant genes. An adjusted p-value < 0.01 is indicated in red,

while an adjusted p-value ≥ 0.01 is indicated in black. (B–F) Differential

pathway enriched in tumor and paratumor from PDAC tissue for each
cell type.

SUPPLEMENTARY FIGURE 5

Differential genes and pathways between PDAC tissue and peripheral blood.
(A) Differential gene expression analysis showing up- and down-regulated

genes across all cell types between tumor tissue samples and PBMC from

PDAC patients. The top 10 DE genes were shown, and the points dotted in red
indicate significant genes. An adjusted p-value < 0.01 is indicated in red, while

an adjusted p-value ≥ 0.01 is indicated in black. (B–E) Differential pathway
enriched in tissue and PBMC from PDAC patients for each cell type.

SUPPLEMENTARY FIGURE 6

Visualization of overlapped necroptosis-associated DE genes. Violin plots

showing overlapped up-regulated (A) and down-regulated (B) necroptosis-
associated genes (denoted in ) in tumor. *P < 0.05, **P < 0.01, ***P < 0.001.

SUPPLEMENTARY FIGURE 7

The novel immunological RTM has no direct correlation with epithelial cells.

(A) Scatterplots showing the correlation between the expression of GLUL-

SQSTM1-RTM cluster-specific genes (denoted in ) and EPCAM. (B) TCGA

validation of the correlations. Data are from TCGA-PAAD (n = 178).

SUPPLEMENTARY FIGURE 8

HSP90AA1-HSP90AB1- mast cells are anti-immune. (A) Scatterplot showing
the correlations between the rest of HSP90AA1+HSP90AB1+ mast cluster-

specific genes (shown in ) and CD8A in this study. (B) Violin plots showing
the expression of HSP90AA1-HSP90AB- mast cluster-specific genes. (C)
Scatterplots showing the correlations between HSP90AA1-HSP90AB1-

mast cluster-specific genes and CD8A in this study. (D) Expression
profiles of CD8A in HSP90AA1+HSP90AB1+ mast cells vs. HSP90AA1-

HSP90AB1- mast cells.

SUPPLEMENTARY FIGURE 9

JAK3-TLR4- CD16 monocytes are pro-immune. (A) Violin plots showing the
expression of JAK3-TLR4- mast cluster-specific high expression genes. (B)
Scatterplots showing the correlations between the expression of JAK3, TLR4,
and CD8A in this study.

SUPPLEMENTARY FIGURE 10

Several myeloid subsets may act as pro/anti-immune regulators in a non-

necroptosis way. Workflow showing the procedures to distinguish CD14
monocyte (A), CD16 monocyte (B), and DCs (C) by BIRC3, PPIA, and

CHMP1B, respectively.
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Garcıá-Bueno B, et al. Toll-like receptor 4 agonist and antagonist lipopolysaccharides
modify innate immune response in rat brain circumventricular organs. Neuroinflamm
(2020) 17(1):6. doi: 10.1186s12974-019-1690-2

110. Ledeboer A, Liu T, Shumilla JA, Mahoney JH, Vijay S, Gross MI, et al. The glial
modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic
pain. Neuron Glia Biol (2006) 2(4):279–91. doi: 10.1017/S1740925X0700035X

111. Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS,
et al. The cortical innate immune response increases local neuronal excitability leading
to seizures. Brain (2009) 132(Pt 9):2478–86. doi: 10.1093/brain/awp177
frontiersin.org

https://doi.org/10.1038/leu.2016.13
https://doi.org/10.1038/leu.2012.74
https://doi.org/10.1097/CJI.0b013e3181b7a0a4
https://doi.org/10.1038/nri1703
https://doi.org/10.1158/1078-0432.CCR-18-1955
https://doi.org/10.4049/jimmunol.1002902
https://doi.org/10.3389/fonc.2019.00211
https://doi.org/10.2147/CMAR.S215341
https://doi.org/10.1186/1746-1596-5-58
https://doi.org/10.4049/jimmunol.166.2.747
https://doi.org/10.3389/fimmu.2013.00115
https://doi.org/10.1186s12974-019-1690-2
https://doi.org/10.1017/S1740925X0700035X
https://doi.org/10.1093/brain/awp177
https://doi.org/10.3389/fimmu.2023.1263633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Takaji Matsutani,
Maruho, Japan

REVIEWED BY

Zhirui Zeng,
Guizhou Medical University, China
Shunwang Cao,
The Second Affiliated Hospital of
Guangzhou University of Chinese
Medicine, China

*CORRESPONDENCE

Zhengdong Deng

dzd0915@tjh.tjmu.edu.cn

Jianming Wang

wjm18jgm@aliyun.com

RECEIVED 21 September 2023

ACCEPTED 24 November 2023
PUBLISHED 19 December 2023

CITATION

Shi Y, Feng Y, Qiu P, Zhao K, Li X, Deng Z
and Wang J (2023) Identifying the
programmed cell death index of
hepatocellular carcinoma for prognosis
and therapy response improvement by
machine learning: a bioinformatics analysis
and experimental validation.
Front. Immunol. 14:1298290.
doi: 10.3389/fimmu.2023.1298290

COPYRIGHT

© 2023 Shi, Feng, Qiu, Zhao, Li, Deng and
Wang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 December 2023

DOI 10.3389/fimmu.2023.1298290
Identifying the programmed cell
death index of hepatocellular
carcinoma for prognosis and
therapy response improvement
by machine learning: a
bioinformatics analysis
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Background: Despite advancements in hepatocellular carcinoma (HCC)

treatments, the prognosis for patients remains suboptimal. Cumulative

evidence suggests that programmed cell death (PCD) exerts crucial functions

in HCC. PCD-related genes are potential predictors for prognosis and

therapeutic responses.

Methods: A systematic analysis of 14 PCD modes was conducted to determine

the correlation between PCD and HCC. A novel machine learning-based

integrative framework was utilized to construct the PCD Index (PCDI) for

prognosis and therapeutic response prediction. A comprehensive analysis of

PCDI genes was performed, leveraging data including single-cell sequencing and

proteomics. GBA was selected, and its functions were investigated in HCC cell

lines by in vitro experiments.

Results: Two PCD clusters with different clinical and biological characteristics

were identified in HCC. With the computational framework, the PCDI was

constructed, demonstrating superior prognostic predictive efficacy and

surpassing previously published prognostic models. An efficient clinical

nomogram based on PCDI and clinicopathological factors was then

developed. PCDI was intimately associated with immunological attributes, and

PCDI could efficaciously predict immunotherapy response. Additionally, the

PCDI could predict the chemotherapy sensitivity of HCC patients. A multilevel

panorama of PCDI genes confirmed its stability and credibility. Finally, the

knockdown of GBA could suppress both the proliferative and invasive

capacities of HCC cells.
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Conclusion: This study systematically elucidated the association between PCD

and HCC. A robust PCDI was constructed for prognosis and therapy response

prediction, which would facilitate clinical management and personalized therapy

for HCC.
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Introduction

Hepatocellular carcinoma (HCC) continues to be a leading cause

of cancer-associated mortality, with its incidence increasing annually

at a rapid rate. It is projected that by 2025, nearly one million new

cases will be reported (1, 2). Standardized treatments such as surgical

resection or liver transplantation for early-stage tumors, transarterial

chemoembolization (TACE) for intermediate-stage tumors, and

systemic therapies, including tyrosine kinase inhibitors (TKIs) and

immune checkpoint inhibitors (ICIs) for advanced-stage tumors (3),

have enhanced the prognosis of patients with HCC. However, the

outcomes are still often short of expectations. Historically, clinical

staging systems, such as the Barcelona Clinic Liver Cancer (BCLC)

staging system, have played a central role in HCC management,

serving as routine tools for clinicians to evaluate the conditions and

therapeutic requirements of patients in practice (4). Nevertheless, the

current clinical staging systems have limitations that may hinder their

capacity to provide optimal therapeutic interventions to patients.

They only focus on clinicopathological characteristics and do not take

into account an individual’s molecular biological characteristics (5).

Therapeutic decisions relying solely on them were obviously

unilateral and could lead to potential over- or undertreatment,

contributing to suboptimal therapeutic outcomes. For HCC, which

is characterized by high heterogeneity, the realization of personalized

treatment is essential to improving patient prognosis (6, 7). Thus, it is

imperative to identify novel biomarkers that can clarify the molecular

biological profile of patients, aid in risk stratification, and ultimately

optimize HCC treatments and prognosis.

Programmed cell death (PCD), also referred to as regulated cell

death, is the gene-regulated autonomous process employed by cells

to maintain homeostatic balance. The progression and treatment

response of tumors are intricately associated with PCD. Broad

crosstalk exists in the initiation and regulation of various PCD

types, and this interaction has emerged as a prominent focus in

tumor research. Alongside the recently identified disulfidptosis and

cuproptosis, the mainly recognized types of PCD include apoptosis,

necroptosis, ferroptosis, pyroptosis, autophagy, parthanatos,

entosis, NETosis, lysosome-dependent cell death, alkaliptosis, and

oxeiptosis (8). Disulfidptosis was discovered in UMRC6 cells

characterized by high SCL7A11 expression. It occurs under

conditions of glucose deficiency, resulting in the accumulation of

disulfide bonds, which cause abnormal cross-linking between actin

and cytoskeletal proteins. Consequently, this leads to cytoskeletal
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contraction and the collapse of the actin network, ultimately

resulting in cell death (9). Cuproptosis is induced by an overload

of copper ions, and its regulation is closely tied to mitochondrial

metabolism and the sulfuric acid pathway (10, 11). Apoptosis is the

most classical form of PCD and is the primary target of current

antitumor strategies (12). Anoikis is a specific case of intrinsic

apoptosis, triggered by the loss of cellular contact with the

extracellular matrix or other adjacent cells. It serves as an

important inhibitor in the growth and metastasis of tumors (13–

15). Necroptosis is considered an alternative mechanism to

apoptosis, primarily mediated by RIPK1, RIPK3, and MLKL, and

can be inhibited by Nec-1. Necroptosis plays a dual role in tumors,

as it can inhibit tumor growth while promoting metastasis and

immune suppression through inflammatory responses induced (16,

17). Ferroptosis is a cell death type resulting from iron-dependent

lipid peroxidation. Targeting ferroptosis represents a promising

antitumor strategy (18, 19). Pyroptosis is mediated by the

gasdermin protein family and is also associated with tumor

proliferation and metastasis (20). The potential anti-tumor effects

of pyroptosis have gained increasing attention (21). The occurrence

of autophagy relies on lysosomal degradation, and its role in tumors

is complex (22). On the one hand, autophagy is an important

mechanism for suppressing tumor formation, but once a tumor is

established, the activation of autophagy could promote further

progression (23). Parthanatos is a cell death reliant on PARP-1

and is widely implicated in pathological processes such as

inflammatory damages and neoplasms leading to aberrant

activation of PARP-1 (24). Entosis, initially discovered in certain

tumors, is described as a phenomenon of cell cannibalism (25).

NETosis is a specialized mechanism in neutrophils for resisting

pathogens, characterized by the formation of neutrophil

extracellular traps (NETs) through the release of chromatin

covered with antibacterial proteins (26, 27). Lysosome-dependent

cell death is often induced by an imbalance in the cellular internal

environment, marked by lysosomal membrane permeabilization

and the release of lysosomal contents into cytoplasm (28).

Alkaliptosis was discovered during antitumor molecular screening

of G protein-coupled receptors, and it is regulated by an elevation of

intracellular pH levels (29, 30). Oxytosis is cell death mediated by

reactive oxygen species, with KEAP1-PGAM5-AIFM1 as the key

axis regulating this process (31).

Owing to its close association with tumors, PCD has become a

central focus in the field of oncology research. However,
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comprehensive studies elucidating the relationship between PCD and

HCC remain lacking. In the study, we performed a summative

analysis of 14 PCD modes within HCC and developed the

programmed cell death index (PCDI) using a machine learning

algorithms-integrated framework. The PCDI could effectively

characterize the heterogeneity of HCC patients, enabling risk

stratifications among them and accurate prediction of their clinical

prognosis and therapeutic response. This, in turn, could facilitate the

personalized treatment and clinical management for HCC.
Materials and methods

Data collection and processing

The regulatory factors that govern 14 PCD modes were

identified as PCD-related genes (Supplementary Table S1). These

genes were sourced from the GSEA gene sets, KEGG, previous

studies (32), and the Gene-Cards online platform (https://

www.genecards.org/). A total of 1,937 nonredundant PCD-related

genes were included for analysis.

Three independent HCC datasets containing clinical and

transcriptomic data of patients, TCGA-LIHC, GSE76427, and ICGC-

LIRI-JP, were acquired from TCGA database (https://

portal.gdc.cancer.gov/), GEO database (https://www.ncbi.nlm.nih.gov/

geo/), and ICGC database (https://icgc.org/), respectively. The

transcriptomic data underwent conversion into TPM values using

the “limma” package, followed by the removal of batch effects using the

“SVA” package. Subsequently, the log2 transformation was conducted.

A total of 711 HCC samples were included for analysis: 365 from

TCGA-LIHC dataset, 231 from the ICGC-LIRI-JP dataset, and 115

from the GSE76427 dataset (Supplementary Table S2). TCGA-LIHC

dataset served as the training dataset, while the GSE76427 and ICGC-

LIRI-JP datasets were employed as validation datasets for the

construction and evaluation of the PCDI.
Analysis of expression patterns and
mutation characteristics of PCD-
related genes

The “limma” package was employed to identify differentially

expressed genes (DEGs) with these criteria of p < 0.05 and |log2FC|

> 1. A univariate Cox analysis was performed to identify prognostic

genes, which were used in subsequent analyses. Mutation

characteristics of prognostic PCD genes were described using the

“mafTools” package. The copy number variation (CNV)

characteristics of these genes were visualized through the GISTIC

algorithm and the “RCircos” package.
Identification of PCD clusters

Unsupervised clustering analysis was performed to identify the

distinct PCD clusters in HCC patients. PCA, t-SNE, and UMAP

analyses were utilized to illustrate the differences in sample
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distribution between PCD clusters. The survival analysis was

performed using the R packages “survival” and “survminer”. The

“Pheatment” package was utilized to visualize the expression

patterns of PCD-related genes, immune checkpoint genes (ICGs),

chemotherapy resistance-related genes (CRRGs), and

clinicopathological characteristics between different PCD clusters.

ICGs and CRRGs were obtained from previous studies (33, 34) and

the Gene-Cards website. The “ESTIMATE” package was applied for

calculating the TME score of patients, and their immune cell

infiltration levels were evaluated through the ssGSEA algorithm.
Functional enrichment analysis

We employed various methods to elucidate the biological

functional differences among HCC patients. For HCC patients in

different PCD clusters, Gene Set Variation Analysis (GSVA), Gene

Set Enrichment Analysis (GSEA), and GO/KEGG functional

enrichment analyses were all used. The same methods were

employed in the analysis of patients with different PCDI scores.

GSEA was also applied to explore the potential functions of PCDI

genes in patients with HCC. The criteria for GSVA and GO/KEGG

analyses were both p-value < 0.05 and FDR < 0.05; for GSEA, the

criteria were p-value < 0.05, FDR < 0.25, and NES > 1.
Construction and prognostic predictive
value evaluation of the PCDI

To develop an accurate and robust PCDI, the following steps

were adopted:
1. Using the univariate Cox analysis, 87 prognostic PCD genes

were introduced for prognostic model construction.

2. We employed a machine learning algorithm integrated

framework that incorporated 10 machine learning

algorithms, such as random survival forest (RSF), partial

least squares regression for Cox (plsRcox), supervised

principal component (SuperPC), generalized boosted

regression modeling (GBM), support vector machine

(SVM), elastic net (Enet), LASSO, ridge, stepwise Cox,

and CoxBoost. Via 10-fold cross-validation, we generated

88 algorithm combinations within TCGA-LIHC dataset for

training prognostic models, and further validation was

carried out in the GSE76427 and ICGC-LIRI-JP datasets.

Upon comparison, the model that exhibited the highest

average C-index among these three datasets was thus

determined as the PCDI.

3. In this study, the PCDI was constructed through

the combination of CoxBoost and RSF algorithms. The

CoxBoost model was instantiated utilizing the “CoxBoost”

software package, engineered to facilitate the estimation of

Cox proportional hazards models through componentwise

likelihood-based boosting techniques. For this model, the

optimal regularization parameter, signifying the extent of

shrinkage, was rigorously identified by employing the 10-
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Fron
fold cross-validation strategy within the framework of the

CoxBoost penalty function. The “RandomForestSRC”

package was employed for the RSF model. This model

comprised two parameters. Ntree was indicative of the

number of trees constituting the forest, and mtry

represented the quantity of arbitrarily selected variables

designated for bifurcation at every individual node. A

meticulous grid search was conducted on both ntree and

mtry, assisted by the 10-fold cross-validation mechanism.

All possible pairings of (ntree, mtry) were formulated, with

the pairing boasting the superior C-index value recognized

as the optimized parameters.

4. A comprehensive evaluation was subsequently carried out

to assess the prognostic value of PCDI. Patients were

categorized into dichotomous groups based on their

PCDI score. Survival curves were generated to compare

the prognosis between the two groups. ROC curves were

applied to assess the predictive accuracy of PCDI, while chi-

square analysis was performed to explore the correlation

between PCDI and other clinicopathological features. The

independent prognostic value of PCDI and other

clinicopathological factors was compared through

univariate and multivariate Cox analyses. The predictive

efficacy of PCDI and other clinicopathological attributes

was assessed through C-index curves and DCA curves.

Additionally, the predictive efficacy of PCDI was compared

with 102 other published prognostic models using C-index

curves (Supplementary Table S12).
Construction and evaluation of the
clinical nomogram

The “rms” and “regploy” packages were used to develop a

c l i n i c a l nomogram bas ed on the PCDI and o the r

clinicopathological factors, predicting the overall survival (OS) of

patients with HCC. Calibration and ROC curves along with DCA

were used to evaluate the predict ive efficacy of the

clinical nomogram.
Correlation analysis of PCDI with
immunological, gene mutation, and
stemness characteristics

Using various algorithms, including CIBERSORT-ABS,

TIMER, and XCELL, we assessed the differences in immune cell

infiltration levels between these two groups. The “ESTIMATE”

package was utilized to calculate the tumor microenvironment

(TME) score, while Gene Set Variation Analysis (GSVA) and

single sample gene set enrichment analysis (ssGSEA) were

performed to further explore the immunological functional status.

Additionally, the correlation between PCDI and ICG expression

patterns was investigated.
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The “maftools” package was applied to describe different

mutation statuses of patients between both groups. We also

compared their different TMB and microsatellite instability (MSI)

statuses. Moreover, we extracted the stemness index of HCC

patients from “StemnessScores_RNAexp_20170127.2.tsv”.

Subsequent correlation analysis was performed between the PCDI

and tumor stemness features.
Predictive value evaluation of the PCDI in
immunotherapeutic responses

Employing the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm (http://tide.dfci.harvard.edu/) and multiple

immunotherapy cohorts, we discussed the value of the PCDI in

immunotherapeutic response prediction. In TCGA-LIHC dataset, we

calculated and compared the TIDE, dysfunction, and exclusion scores

of HCC patients in the two groups. A correlation analysis between

immunotherapeutic response and PCDI score was then performed.

Subsequently, the predictive capability of PCDI for immunotherapeutic

response was further validated in 10 cohorts: IMvigor210 (35),

Checkmate (36), GSE175307, GSE179351, GSE165252, GSE103668,

GSE78220, GSE91061, GSE35640, and GSE120644, which included the

immunotherapeutic response data from tumor patients. Moreover, the

GSE109221 cohort (sorafenib treatment for HCC) and GSE104580

cohort (TACE treatment for HCC) were included for an extensive

assessment of the predictive value in HCC treatments.
Correlation analysis between PCDI and
chemotherapeutic drug sensitivities

In TCGA-LIHC dataset, we detected the different expression

patterns of CRRGs between patients in the high and low PCDI score

groups. Furthermore, the “OncoPredict” package was applied in

predicting various chemotherapeutic drug sensitivities between the

two groups.
PCDI gene analysis based on single-cell
transcriptomic data

GSE125449 was obtained from the GEO database, which

encompassed single-cell transcriptomic profiles from 19 liver cancer

patients. The “Seurat” package was employed for the initial data

processing. For the GSE125449 dataset, quality control was conducted

according to these criteria: (1) genes expressing in fewer than three

cells were excluded; (2) cells expressing fewer than 500 genes were

excluded; (3) cells expressing 500 to 10,000 genes were retained; (4)

cells with mitochondrial gene expression exceeding 20% were

excluded; and (5) cells with ribosomal gene expression exceeding

20% were excluded. The “NormalizeData” function was applied to

normalize the data passed quality control measures. Highly variable

genes were identified by the “FindVariableFeatures” function. The

“ScaleData” function was utilized for scaling gene expression profiles.
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Dimensionality reduction was executed using the “RunPCA” function,

and the first 20 principal components (PCA) were selected for cluster

analysis. The main cell types were annotated utilizing the “SingleR”

package, with subsequent corrections based on markers in the original

literature (37). The “CellChat” package was employed to assess cellular

communication among different cell populations.
PCDI gene analysis based on proteomic
and immunohistochemistry data

The HCC proteomic dataset PDC-000198 was obtained from the

CPTAC database (https://pdc.cancer.gov/pdc/), with 151 samples with

complete clinical information and proteomic data included. Using the

“limma” package and the criteria of p < 0.05 and |log2FC| > 0.585, we

assessed the different expression patterns of PCDI genes between

tumor and adjacent tissues at the protein level. Survival analysis was

performed as described before. And immunohistochemistry data of

PCDI genes was acquired from the Human Protein Atlas(HPA)

database (https://www.proteinatlas.org/) for further analysis.
Cellular cultivation and transfection

The human HCC cell lines MHCC97H andHuH-7 were acquired

from the Hepatic Surgery Center at the Affiliated Tongji Hospital of

Huazhong University of Science and Technology. All cells underwent

rigorous STR analysis to ensure they were free from mycoplasma

contamination. HCC cells were cultured with Dulbecco’s modified

Eagle’s medium (DMEM) (Cibco, Massachusetts, USA) added the

10% fetal bovine serum (FBS) (Gibco, USA) under the conditions of

37°C and 5% CO2 atmospheric composition.

SiRNAs were transfected into MHCC97H and HuH-7 cells to

downregulate GBA expression. The negative control siRNA (si-

NC), si-GBA-1, si-GBA-2, and si-GBA-3 were designed and

synthesized by Hippo Biotechnology (Huzhou, China), with

detailed sequences provided in Supplementary Table S3. HCC

cells under optimal conditions were seeded uniformly into six-

well plates. Upon cell adhesion and achieving approximately 50%

confluency, transfection was executed utilizing Lipofectamine 2000

(Invitrogen, Massachusetts, USA).
HCC tissue sample collection

Five paired HCC tumors and adjacent tissue samples were

obtained from the Affiliated Tongji Hospital of Huazhong University

of Science and Technology with the ethical authorization conferred by

the Tongji Hospital Research Ethics Committee. The information on

HCC patients is delineated in Supplementary Table S4.
Quantitative real-time PCR and
Western blotting

The total RNA extraction was conducted with the TRIzol

reagent (Vazyme, Nanjing, China). CDNA synthesis was carried
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out with ABScript III RT Master Mix (ABclonal, Wuhan, China).

Quantitative real-time PCR (qRT-PCR) analysis was performed

with Universal SYBR Green Fast qPCR Mix (ABclonal) in the

CFX96 Touch™ Real-Time PCR Detection 203 System (Bio-Rad,

California, USA). GAPDH served as the internal negative control,

and the relative mRNA expression levels of target genes were

quantified with the 2−DDCT method.

Western blotting (WB) was carried out following the published

protocols previously (38), and Image Lab software (Bio-Rad,

California, USA) was used in data analysis. GAPDH served as the

internal negative control for the comparison of protein expression

levels across various groups. The primers and antibodies involved in

this study are listed in Supplementary Table S5.
Functional experiments on proliferation,
invasion, and migration in vitro

Cell Counting Kit-8 (CCK-8, ABclonal, Wuhan, China) assay

and colony formation test were utilized for assessing the

proliferative capacity of HCC cells. For the CCK-8 assay,

MHCC97H and HuH-7 cells were seeded in 96-well plates at

3,000 cells/well density. Upon cell adhesion, the medium was

substituted with DMEM supplemented with CCK-8 reagent (100

µL DMEM + 10 µL CCK-8 per well). Each group had five duplicate

wells. The absorbance at 450 nm was measured after a 2-h

incubation at 37°C. The CCK-8 assay spanned 3 days. For the

colony formation test, HCC cells were seeded in six-well plates at

500 cells/well density. The culture medium was replaced every 3

days, following the same cell cultivation procedure as previously

described. Cultivation was terminated after 2 weeks, and the cell

colonies were fixed with paraformaldehyde (Solarbio Science and

Technology Co., Beijing, China) for 25 min, followed by staining

with the crystal violet dye (G1014, Servicebio, Wuhan, China) for

25 min. Cell colonies were counted under a microscope.

The Transwell assay and wound-healing test were both used for

assessing the migratory and invasive capacity of HCC cells. For the

transwell assay, MHCC97H and HuH-7 cells were cultured in a

serum-free medium for 8 h. Subsequently, 5*104 cells were

resuspended in 200 µL of serum-free medium and uniformly

seeded to the upper chamber of Transwell inserts (Corning, New

York, USA), with Matrigel coating (BD Bioscience, New Jersey,

USA) for invasion or with no Matrigel coating for migration. The

lower chamber was filled with 700 µL of complete DMEMmedium.

After culturing for 36 h, the chambers were harvested. Cells that

invaded or migrated to the lower surface of the chamber were fixed

and stained as previously described. Cellular migration or invasion

was quantified with ImageJ software, with the calculation of average

cell counts from five randomly selected fields of view.

For the wound-healing test, HCC cells were uniformly seeded in

six-well plates. Upon reaching a cellular confluence exceeding 95%,

scratches were performed with a 200-µL pipette tip. At 0 h, 12 h,

24 h, and 48 h, nonadherent cells were removed carefully, and

photographs were captured. The scratch closure rates were analyzed

with ImageJ software.

All experiments were independently replicated three times.
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Statistical analysis

In this study, statistical analysis was accomplished with R 4.3.0

and GraphPad Prism 8.0.1 software. The findings of in vitro

experiments were typified by representative images from three

independent replicates, conveyed as the mean ± standard

deviation (SD). The Spearman’s correlation coefficient was

conducted for the correlation test between continuous variables.

The Chi-square test was utilized to assess the correlation between

categorical variables. The differences between groups were

determined by the Wilcoxon rank-sum test, independent

Student’s t-test, or analysis of variance for continuous variables.

The survival analysis was performed employing the Kaplan–Meier

(KM) method, and the log-rank test was applied for the assessment

of statistical significance. A p-value of < 0.05 indicated

statistical significance.
Results

Landscape of expression and mutation in
PCD-related genes

The comprehensive framework for this present study is

depicted in Supplementary Figure S1.

By analyzing PCD-related gene expression profiles, we

identified 756 DEGs. Among these, 721 genes exhibited

upregulated expression in tumor tissues, while only 35 genes

displayed downregulated expression (Supplementary Table S6).

We further conducted univariate Cox regression analysis,

revealing 87 prognostic PCD-related genes. Among these, 85

genes correlated with an unfavorable prognosis in HCC, while

ADRA1A and FABP4 were protective factors for patients

(Supplementary Table S7). A subsequent analysis of the 87

prognostic PCD genes was conducted. As shown in Figure 1A,

these PCD-related genes frequently exhibit CNVs. The top 5 genes

with the highest amplification frequencies were GBA, SQLE, USP21,

GSDMC, and NDRG1, while SFN, E2F2, CDKN2A, BRCA2, and

CDX2 displayed the highest frequencies of copy number loss. The

chromosomal locations of CNVs are presented in Figure 1C.

Additionally, we observed that PCD-related genes exhibited

mutations in 125 samples, with CDKN2A exhibiting the highest

mutation frequency (Figure 1B). Figure 1D depicts the expression

network of the aforementioned PCD-related genes.
Identifying PCD clusters with distinct
characteristics of clinicopathology,
molecular patterns, and functions

In accordance with the expression profiles of the 87 prognostic

PCD genes, we identified two PCD clusters (Supplementary Figures

S2A–D). PCA, t-SNE, and UMAP analysis substantiated notable

disparities in the distribution of patient samples between the two

PCD clusters (Supplementary Figures S2E–G). As illustrated in
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Supplementary Figure S3A and Figure 2A, we found patients in

cluster A exhibited higher expression levels of PCD-related genes

and suffered advanced clinical stages and pathological grades. In

Figure 2C, survival curves clearly demonstrate that patients in

cluster A experienced worse survival outcomes. Concurrently, it

was demonstrated that the expression levels of most ICGs and

CRRGs increased in cluster A (Figure 2B; Supplementary Figure

S3B). Furthermore, we observed notable variations in immune

characteristics between patients in the two clusters. As depicted in

Figures 2F, G, patients in cluster A displayed higher immune scores

and immune cell infiltrations. For example, the infiltration levels of

MDSCs, macrophages, monocytes, and Treg cells were elevated in

cluster A, whi le only eosinophi ls exhibi ted reduced

infiltration levels.

Distinct molecular biological functions were observed across

the PCD clusters. GSVA (Supplementary Figures S4A, B) and GSEA

results (Supplementary Figures S4C, D) revealed the activation of

numerous tumor-associated biological processes and signaling

pathways in cluster A. These processes encompassed epithelial-

mesenchymal transition (EMT), cell proliferation (MYC targets,

G2M checkpoints, E2F targets, cell cycle), and signaling pathways

like WNT/b-Catenin, TGF-b, and PI3K/AKT. In contrast, cluster B

exhibited the activation of several metabolism-associated biological

processes, such as fatty acid metabolism and bile acid metabolism.

These findings were corroborated by the results of the GO/KEGG

analysis (Supplementary Figures S5A–D). In addition to disparities

in tumor biological attributes, significant differences in various

biological functions associated with PCD, such as apoptosis,

necroptosis, and autophagy, were observed between the

two clusters.
Construction and evaluation of the
prognostic predictive value of PCDI

Based on 87 prognostic PCD genes, we employed a machine

learning algorithms integrated framework that combined 10

different machine learning algorithms through 10-fold cross-

validation. The PCDI was constructed by integrating CoxBoost

and RSF algorithms, which demonstrated the highest average C-

index across three datasets among 88 algorithm combinations

(Figure 3A). With the CoxBoost algorithm, we identified GBA,

G6PD, ETV4, KIF20A, LAPTM4B, TRAF5, and SLC2A1 as the seven

most valuable PCD-related genes (Figure 3B; Supplementary Table

S8). Furthermore, the RSF algorithm enhanced the reliability of this

model (Figure 3C). We observed elevated expression levels of seven

PCDI genes in HCC tissues (Supplementary Table S6), all of which

were associated with an unfavorable prognosis (Supplementary

Table S7; Supplementary Figures S16A–G). Concurrently, through

GSEA, we detected that PCDI genes could trigger the activation of

crucial tumor-associated biological processes, such as proliferation,

invasion, and metastasis. Moreover, TRAF5 and SLC2A1 may be

linked to immunological regulation, such as inflammation

responses, and chemokine and T-cell receptor signaling pathways

(Supplementary Figures S6A–G).
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Subsequently, a comprehensive evaluation was performed for

the prognostic predictive value of PCDI. In TCGA-LIHC dataset,

survival curves demonstrated the PCDI could effectively predict the

clinical outcomes of HCC patients, as indicated by survival metrics.

Patients in the high PCDI score group suffered poor OS, PFS, DFS,

and DSS compared to others (Figures 3D–G). ROC curves

illustrated the accuracy of PCDI in prognostic prediction

(Figure 4A). Notably, the highest accuracy was observed when

utilizing the PCDI to predict OS, with the AUC values of 0.963 (95%

CI: 0.945–0.981), 0.960 (95% CI: 0.926–0.983), and 0.946 (95% CI:

0.905–0.986) at 1 year, 3 years, and 5 years. Particularly, we found

that PCDI scores for HCC patients in cluster A were significantly

higher than those in cluster B, indicating congruence in terms of

sample distribution (Figures 2D, E).

Afterward, we conducted a correlation analysis between PCDI

and clinicopathological attributes. The PCDI exhibited a significant
Frontiers in Immunology 07246
association with the advanced clinical stage, T stage, pathological

grade, and vascular invasion status among HCC patients

(Figures 4B, C). Independent prognostic analysis revealed PCDI

as an independent risk factor for the OS, PFS, DFS, and DSS in HCC

patients (Figures 4D, E). Through C-index and DCA curves, we

observed that the PCDI exhibited superior predictive performance

compared to other clinicopathological attributes in predicting OS,

PFS, DFS, and DSS (Figures 4F, 5A–C; Supplementary Figure S7A–

I). Additionally, when compared with 102 published prognostic

predictive models, a C-index analysis affirmed the superiority of

PCDI (Figures 6A–D).

Finally, the prognostic predictive value of PCDI was validated in

the GSE76427 and ICGC-LIRI-JP datasets. Survival curves

substantiated the capacity of PCDI to effectively predict the

clinical outcomes of HCC patients in both datasets, indicating a

worse OS in patients with higher PCDI scores (Figures 3H, I). In the
B C

D

A

FIGURE 1

Mutation characteristics of PCD-related genes in HCC. (A) Characteristics of CNVs in PCD-related genes. (B) Characteristics of genetic variation in
PCD-related genes. (C) Location of CNVs in PCD-related genes on chromosomes. (D) Expression correlation among PCD-related genes.
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GSE76427 dataset, ROC curves presented the AUC values of PCDI

as 0.629 (95% CI: 0.517–0.761), 0.631 (95% CI: 0.531–0.772), and

0.659 (95% CI: 0.556–0.790) at 1 year, 3 years, and 5 years in

predicting OS (Supplementary Figure S8A), and in the ICGC-LIRI-

JP dataset, the values were 0.757 (95% CI: 0.630–0.890), 0.726 (95%

CI: 0.661–0.858), 0.692 (95% CI: 0.549–0.818) (Supplementary

Figure S9A). In both datasets, Chi-square analysis revealed a

significant correlation between PCDI and advanced clinical stages

(Supplementary Figures S8B, C, S9B, C). Independent prognostic

analysis demonstrated that the PCDI served as an independent risk

factor for worse outcomes in HCC (Supplementary Figures S8D, E,

S9D, E). C-index and DCA curves indicated excellent prognostic

predictive performance of the PCDI in both datasets
Frontiers in Immunology 08247
(Supplementary Figures S8F–I, S9F–I). When compared with

published predictive models, the PCDI consistently demonstrated

exemplary performance (Supplementary Figures S10A, B).
Construction and evaluation of the
predictive efficacy of clinical nomograms

Owing to the remarkable prognostic predictive value of PCDI, we

developed a clinical nomogram to facilitate the utilization of PCDI. In

TCGA-LIHC dataset, the PCDI was integrated with other

clinicopathological factors to establish a clinical nomogram for

predicting the OS of patients. As shown in Figure 5D, the PCDI
B
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A

FIGURE 2

The correlation between PCD clusters, clinicopathological characteristics, and molecular patterns. (A) Different clinicopathological characteristics and
PCD-related gene expression patterns between the two PCD clusters. (B) Different clinicopathological characteristics and ICG expression patterns
between the two PCD clusters. (C) Different OS statuses of HCC patients between the two PCD clusters. (D) Correlation analysis between PCDI scores
and PCD clusters. (E) Distribution of patients with different OS statuses across PCD clusters and PCDI score groups. (F) Different TME scores between
the two PCD clusters. (G) Different immune cell infiltration patterns between the two PCD clusters. (*p < 0.05; **p < 0.01; ***p < 0.001.).
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score emerged as a significant variable in the clinical nomogram.

Calibration and ROC curves indicated the exceptional predictive

efficacy of this nomogram (Figures 5E, F). Furthermore, DCA curves

validated the superior predictive efficacy of this clinical nomogram for

OS compared to other clinicopathological factors (Figures 5G–I).

Subsequently, we applied a similar method to construct clinical

nomograms in the GSE76427 and ICGC-LIRI-JP datasets. In the

GSE76427 dataset, the PCDI score was the significant variable in the

clinical nomogram (Supplementary Figure S11A), and a similar result

was observed in the ICGC-LIRI-JP dataset (Supplementary Figure

S12A). Calibration and ROC curves clearly demonstrated the favorable
Frontiers in Immunology 09248
predictive performance of these clinical nomograms in predicting OS

(Supplementary Figures S11B, C, S12B, C). Additionally, DCA curves

affirmed the nice predictive performance of clinical nomograms for OS

(Supplementary Figures S11D–F, S12D–F).
Clarifying the characteristics of
immunology and biological function based
on the PCDI score in HCC

To explore the correlation between PCDI and immunological

features in HCC patients, we conducted a comprehensive
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FIGURE 3

Construction of the PCDI based on an integrated framework for machine learning. (A) Combining 88 machine learning algorithms for prognostic
models via 10-fold cross-validation and identifying the best one by C-index as the PCDI. (B) Determination of seven PCDI genes via the CoxBoost
algorithm. (C) Determination of PCDI with minimal error and the importance of seven PCDI genes via the RSF algorithm. (D–G) Differences between
patients in the high and low PCDI score groups for the OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (H, I) Differences between patients in the high
and low PCDI score groups for the OS in the GSE76427 and ICGC-LIRI-JP datasets.
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investigation. Using multiple immunological algorithms such as

TIMER, CIBERSORT, and XCELL, we observed notable differences

in immune cell infiltration levels between the high and low PCDI

score groups (Figures 7A, B). Furthermore, we found that the

infiltration levels of Treg cells, neutrophils, and M0 and M2

macrophages exhibited a significant positive correlation with

PCDI scores, whereas CD8+ T cells, CD4+ T cells, and M1

macrophages displayed a significant negative correlation

(Figures 7C–I). Employing the ESTIMATE algorithm, we found

that the stromal and estimate scores of patients with higher PCDI

scores were significantly decreased compared to those with lower
Frontiers in Immunology 10249
PCDI scores. However, no statistically significant differences were

observed in the immune scores between these two groups

(Figure 7K). Additionally, we noticed that, compared to patients

with lower PCDI scores, patients with higher PCDI scores exhibited

significant suppression of type I/II IFN responses, T-cell co-

stimulation, cytotoxic responses, and proinflammatory processes

(Figure 7L). These findings indicated a potential suppressive

immune microenvironment in the high PCDI score group and

enhanced stromal cell infiltration in the TME of the low PCDI score

group. Furthermore, a significant positive correlation was detected

between stemness score and PCDI score, suggesting the potential
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FIGURE 4

Validation of the prognostic predictive value of PCDI. (A) Evaluating the predictive accuracy of the PCDI for the OS, PFS, DFS, and DSS in TCGA-LIHC
dataset with ROC curves. (B, C) Correlation analysis between clinicopathological characteristics and PCDI in TCGA-LIHC dataset. (D) Univariate Cox
analysis revealing the impacts of PCDI and clinicopathological characteristics on OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (E) Multivariate Cox
analysis revealing the impacts of PCDI and clinicopathological characteristics on OS, PFS, DFS, and DSS in TCGA-LIHC dataset. (F) Comparing the
prognostic predictive efficacy of PCDI and clinicopathological characteristics for the OS, PFS, DFS, and DSS in TCGA-LIHC dataset with C-index curves.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1298290
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1298290
presence of active cancer stem cells in the TME of patients with

higher PCDI scores (Figure 7J).

Subsequently, we compared the biological functional attributes

between HCC patients in the high and low PCDI score groups.

Through GSVA (Supplementary Figures S13A, B) and GSEA

(Supplementary Figures S13C, D), we observed a significant

activation of tumor-associated biological processes such as EMT,

cell proliferation (MYC targets, E2F targets, G2M checkpoints, and

cell cycle), and signaling pathways like WNT/b-catenin and PI3K/
Frontiers in Immunology 11250
AKT/MTOR pathways in the high PCDI score group. Conversely,

metabolic-associated processes, such as fatty acid metabolism and

bile acid metabolism, were notably activated in the low PCDI score

group. Furthermore, between these two groups, GO/KEGG analysis

(Supplementary Figures S14A–D) revealed notable differences in

various oncological biological functions and numerous cellular

processes associated with cell replication, such as nuclear division

and chromosomal disjunction regulation. Additionally, various

metabolic-related processes exhibited distinct patterns.
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FIGURE 5

Construction and evaluation of the nomogram based on PCDI and clinicopathological characteristics. (A–C) Comparing the prognostic predictive
efficacy of PCDI and clinicopathological characteristics for OS with DCA curves in TCGA-LIHC dataset. (D) Construction of a nomogram with PCDI
and clinicopathological characteristics for predicting OS in TCGA-LIHC dataset. (E) Evaluating the predictive accuracy of a nomogram for the OS
with calibration curves in TCGA-LIHC dataset. (F) Evaluating the predictive accuracy of a nomogram for the OS with ROC curves in TCGA-LIHC
dataset. (G–I) Comparing the predictive efficacy of nomogram and clinicopathological characteristics for the OS in TCGA-LIHC dataset with
DCA curves.
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Clarifying ICG expression patterns and
gene mutation statuses based on the PCDI
score in HCC

We explored the correlation between PCDI and gene mutation

statuses along with ICG expression patterns. We found a higher

frequency of gene mutations in the high PCDI score group.

Missense mutations were the predominant mutation type

observed. TP53 emerged as the most frequently mutated gene in

the high PCDI score group, displaying the greatest disparity in

mutation frequency between the two groups. Moreover, CTNNB1

mutations were most prevalent in the low PCDI score group

(Figures 8A, B). Further analysis indicated an obvious increase in

TMB levels among patients in the high PCDI score group.

Concurrently , pat ients with higher TMB levels were
Frontiers in Immunology 12251
predominantly classified as cluster A (Figures 8C, D). Similarly,

we observed a positive correlation between MSI levels and PCDI

scores. Patients with high MSI levels were primarily clustered in the

high PCDI score group (Figures 8E, F). Moreover, correlation

analysis of PCDI and ICG expression patterns revealed that the

expression of the majority of ICGs exhibited a significant positive

correlation with PCDI scores (Figure 8G; Supplementary Table S9).
Evaluation and valuation of the predictive
value of PCDI in immunotherapy responses

Considering the correlation between PCDI and TMB, MSI, and

ICG expression patterns, we examined the predictive value of PCDI

in patients’ responses to immunotherapy.
B C DA

FIGURE 6

Comparison of the predictive value between PCDI and other models in TCGA-LIHC dataset. (A) Comparing the prognostic predictive efficacy of
PCDI and other published models for OS by C-index analysis. (B) Comparing the prognostic predictive efficacy of PCDI and other published models
for PFS by C-index analysis. (C) Comparing the prognostic predictive efficacy of PCDI and other published models for DFS by C-index analysis. (D)
Comparing the prognostic predictive efficacy of PCDI and other published models for DSS by C-index analysis.
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In TCGA-LIHC dataset, we calculated the TIDE, dysfunction,

and exclusion scores for HCC patients through the TIDE algorithm.

We found the TIDE and dysfunction scores exhibited a notable

reduction in the high PCDI score group, while the exclusion score

demonstrated an increase (Figures 9A–C). These results suggested

patients with higher PCDI scores could respond to immunotherapy

easily. Further analysis indicated a significant relationship between

higher PCDI scores and an increased response rate to
Frontiers in Immunology 13252
immunotherapy. More patients responding to immunotherapy

were found in the high PCDI score group (Figures 9D, E). These

results reaffirmed our earlier findings, indicating that patients with

higher PCDI scores were more responsive to immunotherapy.

PCDI could be employed for immunotherapy response prediction

in HCC patients.

Subsequently, we analyzed multiple immunotherapy cohorts to

further validate the predictive efficacy of PCDI for immunotherapy
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FIGURE 7

The correlation between immunological characteristics and PCDI. (A, B) Different immune cell infiltration patterns between the high and low PCDI
score groups. (C-I) Correlation analysis of the immune cell infiltration levels and PCDI scores. (J) Correlation analysis of the stemness scores and
PCDI scores. (K) Different TME scores between the high and low PCDI score groups. (L) Different immune function statuses between the high and
low PCDI score groups. (*p < 0.05; **p < 0.01; ***p< 0.001).
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responses. In the IMvigor210 cohort, we found a higher PCDI score

was significantly associated with a better response rate to

immunotherapy, and more patients responding to immunotherapy

were in the high PCDI score group (Figures 10A–E). Furthermore, we

observed that the median levels of immune cell infiltration were

elevated in patients with higher PCDI scores, but there was no

significant difference. Additionally, there was no significant

correlation between immune microenvironment statuses and PCDI

scores, while tumor cell infiltration levels were positively associated

with PCDI scores (Figures 10F–H). Moreover, in the GSE176307,

Checkmate, GSE179351, GSE103668, and GSE78220 cohorts,
Frontiers in Immunology 14253
patients in the higher PCDI score group demonstrated a greater

likelihood of responding to immunotherapy (Supplementary Figures

S15A–G); and in the GSE35640 and GSE120644 cohorts, patients in

the low PCDI score group were more responsive to immunotherapy

(Supplementary Figures S15I, J). In the GSE91061 cohort, PCDI

appeared to have no association with the immunotherapy responses

(Supplementary Figure S15H). Overall, the PCDI can effectively

predict patients’ responses to immunotherapy, and it can guide

immunotherapy for patients based on PCDI scores. Particularly for

HCC patients, those with higher PCDI scores could be better

candidates for immunotherapy.
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FIGURE 8

The correlation between mutation characteristics, ICG expression patterns, and PCDI. (A, B) Different genetic mutation characteristics between the
high and low PCDI score groups. (C) Different TMB levels between the high and low PCDI score groups. (D) Correlation analysis of TMB, PCD
clusters, and PCDI scores. (E) Correlation analysis of MSI statuses and PCDI scores. (F) Distribution of patients with different MSI statuses across PCDI
score groups. (G) Correlation analysis of ICG expression levels and PCDI. (*p < 0.05; **p < 0.01; ***p< 0.001).
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Additionally, as shown in Supplementary Figures S15K, L, PCDI

can also predict the responses of HCC patients to sorafenib and TACE

treatments. Patients in the low PCDI score group were more likely to

respond to sorafenib and TACE therapies, suggesting that patients with

lower PCDI scores could be better candidates for these treatments.
Evaluation of the predictive value of PCDI
in chemotherapy sensitivity for HCC

We further investigated the predictive value of the PCDI in

chemotherapy. As depicted in Figure 11A, we found a significant

positive correlation between the PCDI scores and the expression

levels of most CRRGs. The results suggested the PCDI could be used

for assessing the drug resistance of HCC patients, and PCDI genes

may represent promising targets for overcoming chemotherapeutic

resistance in HCC (Supplementary Table S10). Figure 11B visualizes

the first nine CRRGs exhibited a positive correlation with the PCDI

score. We employed the “OncoPredict” package to further validate

the capability of PCDI in drug sensitivity prediction. As illustrated

in Figure 11C, in the low PCDI score group, the imputed sensitivity

score of oxaliplatin was significantly reduced, indicating a

heightened sensitivity in patients with lower PCDI scores.

Conversely, in the high PCDI score group, several drugs such as

paclitaxel, docetaxel, vinblastine, cediranib, and bortezomib

displayed lower imputed sensitive scores, implying a potential

increase in sensitivity to these drugs in these patients.
Frontiers in Immunology 15254
Comprehensive analysis of the PCDI genes

To acquire a deeper understanding of the PCDI, we performed a

comprehensive analysis of the PCDI genes in HCC.

At the single-cell level, we investigated the expression patterns

and cellular communication characteristics of PCDI genes.

Employing the t-SNE method for cluster analysis, we identified 21

cell clusters, which were annotated as eight primary cell populations

(Figures 12A, B). Subsequently, we explored the expression patterns

of seven PCDI genes across different cell populations (Figures 12C,

D). We observed stable expression of PCD genes in malignant cells,

with LAPTM4B, G6PD, SLC2A1, and GBA exhibiting the highest

expression levels. Notably, besides malignant cells, PCDI genes are

also expressed in immune and stromal cells. G6PD is mainly

expressed in TAMs, LAPTM4B is predominantly expressed in

tumor endothelial cells (TECs), GBA is expressed in both cell

populations, and TRAF5 is primarily expressed in cancer-

associated fibroblasts (CAFs). Moreover, we conducted a cellular

communication analysis. Given the limited research on GBA in

HCC and its high expression level in malignant cells and

suppressive immune cells, we selected it as the focal point of this

analysis. We divided malignant cells into two groups: GBA+ and

GBA−, based on their GBA expression levels (GBA+ indicating high

expression, GBA− indicating low expression). We then compared

the cellular communication characteristics between the two groups.

The communication network among all cell populations is

displayed in Figures 12E, F. Among all cell populations,
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FIGURE 9

Evaluation of the predictive value of PCDI in immunotherapy responses based on TIDE algorithms. (A) Different TIDE scores between the high and
low PCDI score groups. (B) Different dysfunction scores between the high and low PCDI score groups. (C) Different exclusion scores between the
high and low PCDI score groups. (D) Correlation analysis of immunotherapy response statuses and PCDI scores. (E) The distribution of patients with
different immunotherapy response statuses across the PCDI score groups.
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malignant cells exhibited the most extensive cell communication

and showed the highest signal output intensity. TAMs, TECs, CAFs,

and HPCs exhibited similar numbers of cellular interactions, with

TAMs demonstrating the highest signal input strength. Notably,

GBA+malignant cells exhibited more extensive cell communication

in terms of both quantity and strength. For specific cellular

communication pathways, GBA+ malignant cells exhibited higher

activation levels in pathways such as SPP1, GDF, ANGPTL, PARs,

and PROS (Figure 12G). This suggested more active biological

processes in GBA+ malignant cells, including cell proliferation,

invasion, metastasis, angiogenesis, and inflammatory responses.
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At the protein level, we explored the expression patterns and

prognostic correlations of the PCDI genes. Utilizing the

proteome dataset PDC-000198, we observed a significant

upregulation in the expression of GBA, G6PD, and KIF20A in

HCC tissue, which was associated with unfavorable clinical

outcomes. Although SLC2A1 and TRAF5 exhibited no

significant expression difference between HCC and adjacent

tissues, they still displayed an association with a poor

prognosis. Unfortunately, data for LAPTM4B and ETV4 were

not available in this dataset (Supplementary Table S11;

Supplementary Figures S16H–L).
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FIGURE 10

Validation of the predictive value of PCDI for immunotherapy response in the IMvigor210 cohort. (A, B) Correlation analysis of immunotherapy
response statuses and PCDI scores. (C, D) The distribution of patients with different immunotherapy response statuses across the PCDI score
groups. (E) The distribution of patients with different immunotherapy responses and OS statuses across the PCDI score groups. (F) Correlation
between the levels of immune cells and PCDI scores. (G) Correlation between the levels of tumor cells and PCDI scores. (H) Correlation between
TME characteristics and PCDI scores.
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We subsequently acquired IHC data for PCDI genes from the

HPA database. Among them, GBA, G6PD , and KIF20A

demonstrated remarkably elevated expression levels in HCC tissue.

Similarly, SLC2A1 and TRAF5 also displayed a modest difference

between HCC tissue and normal tissue. Additionally, LAPTM4B

exhibited notably heightened expression in HCC tissue, while ETV4

exhibited slightly higher expression in HCC tissue (Figures 13A–G).
Functional evaluation of the PCDI genes

We then aimed to provide experimental evidence elucidating

the involvement of PCDI genes in HCC. Building upon prior

findings, a sequence of functional investigations focused on GBA

was undertaken.
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As shown in Figures 14A, B, both qRT-PCR and WB analyses

consistently revealed a significant upregulation of GBA in tumor

tissues. Afterward, we downregulated GBA expression levels in

MHCC97H and HuH-7 through transfection of siRNAs. GBA

knockdown was validated at both the mRNA and protein levels,

and three distinct siRNAs, si-NC (control), si-GBA-1, and si-

GBA-2, were selected for subsequent experiments (Figures 14C,

D). The results of the CCK-8 assay and colony formation test

revealed GBA knockdown significantly suppressed the

proliferative capacity of MHCC97H and HuH-7 cells

(Figures 14E, F). Simultaneously, WB analysis demonstrated

GBA knockdown substantially reduced the expression levels of

CDK1, CDK2, CDK4, and c-MYC in both two HCC cell lines

(Figure 14G). These results indicated the integral role of GBA in

the regulation of the cell cycle and tumor proliferation.
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FIGURE 11

Correlation between CRRG expression patterns, chemotherapeutic drug sensitivities, and PCDI. (A) Correlation analysis of CRRG expression levels
and PCDI. (B) Correlation analysis of multiple CRRG expression levels and PCDI scores. (C) Different drug sensitivities between the high and low
PCDI score groups. (*p < 0.05; **p < 0.01; ***p< 0.001).
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Furthermore, our results suggest that GBAmay also be involved in

the invasive processes of the tumor. The wound-healing test

revealed that the downregulation of GBA significantly

attenuated the scratch closure rates of MHCC97H and HuH-7

cells (Figure 15A), suggesting a reduced migratory capacity of

HCC cells. The Transwell assay further validated that GBA

knockdown resulted in a diminished migratory and invasive
Frontiers in Immunology 18257
capacity of HCC cells (Figure 15B). WB analysis illustrated that

in both MHCC97H and HuH-7 cell lines, GBA knockdown

notably decreased the expression levels of N-cadherin, Vimentin,

Snail, and MMP2. Conversely, the expression levels of E-cadherin

increased with the downregulation of GBA (Figure 15C). These

findings suggested GBA was involved in the EMT in HCC cells,

thereby enhancing their invasive and metastatic potential.
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FIGURE 12

Expression patterns and cellular communication characteristics of the PCDI genes at single-cell level. (A, B) The results of cell clustering and
annotation for the GSE125449 dataset. (C, D) The expression patterns of seven PCDI genes in different cell populations. (E, F) The cellular
communication network among different cell populations. (G) The activated state of specific pathways in different cell populations.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1298290
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1298290
Discussion

Despite notable advancements in HCC therapies, the clinical

prognosis for patients remains unsatisfactory. Surgical

interventions, such as resection and transplantation, are the

optimal therapeutic strategies for early-stage HCC patients.

However, over half of them experience a relapse within 5 years

following a hepatectomy. While the recurrence rate is lower for liver

transplant recipients, the widespread adoption of liver

transplantation is constrained by the limited availability of donors

(1, 39). For the majority of patients diagnosed with advanced-stage
Frontiers in Immunology 19258
HCC, systemic treatments are the primary therapeutic approach.

The application of TKIs and ICIs represents a significant

transformation in the current systemic treatment for HCC.

However, these treatments have only resulted in modest

improvements in survival time, ranging from 1.2 to 5.8 months,

which falls short of expectations (40–45). This may be attributed to

the limited success of personalized treatment owing to tumor

heterogeneity. Although clinical staging systems provide a

foundation for HCC management, they are incapable of assessing

the molecular biological characteristics of patients. This limitation

is a significant hindrance to the implementation of personalized
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FIGURE 13

Immunohistochemistry results for the PCDI genes. (A–G) Different protein expression levels of PCDI genes between tumor and normal tissues in the
HPA database.
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treatments for HCC. Thus, there is an imperative requirement to

identify potent biomarkers as complementary tools to existing

staging systems for guiding therapeutic decisions, which could

elevate the level of personalized treatment and enhance the

clinical management of HCC, thus improving the prognosis.

Distinct from accidental cell death, PCD is a complex process

characterized by intricate regulation and diverse operational
Frontiers in Immunology 20259
patterns. Accumulated evidence has implicated various cell death

modes as pivotal hallmarks of tumorigenesis, potentially serving as

a theoretical foundation for innovative anticancer strategies (8). In

this study, we presented a comprehensive examination of the

correlation between 14 distinct PCD modes and the clinical

characteristics along with the biological patterns of HCC for the

first time. Initially, we investigated the expression patterns of PCD-
B

C D
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G

A

FIGURE 14

Experimental validation of GBA on proliferation. (A) Relative expression of GBA in HCC tumor tissues and para-tumor tissues at the mRNA level. (B)
Expression of GBA in HCC tumor tissues and para-tumor tissues at the protein level. (C, D) Verification of GBA knockdown efficiency with siRNA at
the mRNA and protein levels in MHCC97H and HuH-7 cells. (E, F) Effects of GBA knockdown on the proliferation capability of both cell lines
detected with CCK-8 and colony formation assays. (G) Effects of GBA knockdown on cell cycle-associated markers in both cell lines detected by
WB. (*p < 0.05; **p < 0.01; ***p < 0.001.).
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related genes in HCC. We identified 756 differentially expressed

PCD-related genes, with 721 of them exhibiting increased

expression in tumor tissues. Among these genes, we further

identified 87 prognostic PCD genes, with 85 of them associated

with an unfavorable prognosis. These findings indicated a potential

role for PCD-related genes in HCC. Among the 87 prognostic-

related PCD genes, CNVs were frequently observed, and

approximately one-third of patients experienced mutations of
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these genes. Indeed, there is some evidence suggesting that

mutations in specific genes could participate in PCD regulation

and influenced tumorigenesis. For example, mutations in the TP53

gene could disrupt various PCD pathways, playing a crucial role in

HCC progression (46).

Subsequently, we identified two PCD clusters in HCC patients.

These two PCD clusters exhibited notable differences in sample

distribution, clinical attributes, and biological features. HCC patients
B

C

A

FIGURE 15

Experimental validation of GBA on invasion and migration. (A) Effects of GBA knockdown on the migration capability of both cell lines detected with
a wound healing test. Scale bar: 100 µm (×40). (B) Effects of GBA knockdown on the migration and invasion capability of both cell lines detected
with a Transwell assay. Scale bar: 100 µm (×200). (C) Effects of GBA knockdown on EMT-associated markers in both cell lines detected by WB.
(*p < 0.05; **p < 0.01; ***p < 0.001.).
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in cluster A displayed more severe clinical manifestations, such as

advanced clinical stage, pathological grade, and poor prognosis. In

addition to higher expression levels of PCD-related genes, HCC

patients in cluster A also demonstrated elevated expression of ICGs

and CRRGs compared to those in cluster B. Drug resistance

mechanisms in HCC have been categorized into seven types,

encompassing drug uptake and export, drug metabolism, alterations

in drug targets, DNA repair, disruption in apoptosis/survival signals,

adaptation to the TME, and phenotypic transition. These mechanisms

can elucidate the roles of most CRRGs in regulating drug sensitivity in

HCC (34). Similarly, ICGs could be categorized into three types: tumor

cell dominant, immune cell dominant, and balanced type. HCC

patients with higher expression of ICGs exhibited a favorable

prognosis and were more likely to benefit from immunotherapy (33).

These findings indicated a potential association between treatment

responses for HCC patients and the expression patterns of ICGs and

CRRGs, which could cause variable treatment responses. Despite

patients in cluster A exhibiting higher immune scores and enhanced

immune cell infiltration, the presence of cells including MDSCs,

macrophages, monocytes, and Treg cells suggested the existence of

an immunosuppressive microenvironment (47). In addition, we

observed a significant activation of numerous tumor-associated

biological functions and pathways in cluster A, such as EMT, cell

proliferation (MYC targets, G2M checkpoints, E2F targets, and cell

cycle), WNT/b-catenin, TGF-b, and PI3K/AKT signaling pathways.

The characteristics of these HCC patients, including an unfavorable

prognosis, increased proliferation, heightened invasiveness, and

pathway activation, align with the proliferative subtype in the

classical classification of HCC. Additionally, the activation of the

WNT/b-catenin pathway has been defined as a hallmark of the

nonproliferative subtype of HCC, which correlates with enhanced

immune infiltration (48, 49). Notably, these features were also

observed in HCC patients in cluster A. Our findings substantiate the

close association between PCD clusters and the clinical and biological

characteristics of HCC patients. We posited that focusing on PCD

could offer a novel perspective for comprehending the pathogenesis,

evolution, and treatment of HCC.

Afterward, we constructed the well-performing PCDI model,

which could serve as a tool for prognostic prediction and

therapeutic guidance in HCC. Indeed, with the advancements in

gene sequencing and bioinformatics techniques, there has been an

exponential increase in genomic and molecular data from both

tissues and single cells. This abundance of data has led to the

identification of numerous gene signatures (referred to as

prognostic models) similar to the PCDI model. These gene

signatures could be used to assess patients at a molecular level

and group them based on shared phenotypes, such as clinical and

molecular biological characteristics and responses to specific

treatments. Thus, these signatures can assist clinicians in patient

risk stratification and screening potential beneficiaries of certain

treatments. For example, He et al. reported a coagulation pathway

subtype in HCC with distinct immunological and prognostic

features. They further developed a coagulation-related gene risk

score to predict patient prognosis and treatment responses (50).

Zeng et al. developed a hypoxia-driven gene signature for predicting

and improving outcomes for HCC patients (51). Liu et al.
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established a prognostic model for HCC with cuproptosis-related

genes and the RSF algorithm, which was used for patient risk

stratification and treatment beneficiary selection (52). In diseases

with complex etiologies and heterogeneity, such as HCC, these gene

signatures, which were composed of multiple genes, demonstrated

greater reliability compared to biomarkers such as AFP, PD-L1, and

TMB (53). However, most gene signatures were constructed using a

single algorithm, typically a regression algorithm (e.g., LASSO

regression) or a machine learning algorithm (e.g., the RSF

algorithm). This often resulted in decreased stability and

generalizability, manifesting as a significant decrease in accuracy

when tested on validation or external datasets. Furthermore, these

studies frequently lack lateral comparisons among prognostic

models, hindering the further validation of their predictive

efficacy. These limitations may compromise the ability of most

gene signatures to accurately predict and guide personalized

treatment for HCC patients. In this study, we employed a novel

framework that integrated 10 machine learning algorithms and

generated 88 prognostic models via algorithmic combinations. The

model composed of a CoxBoost and RSF algorithmic combination

was identified as the best one, referred to as the PCDI. Compared to

singular algorithms, the integration and combination of multiple

algorithms could effectively reduce the dimensionality of variables,

optimize stability and generalizability, and thereby enhance the

performance of prognostic models. Furthermore, through extensive

lateral comparisons, the superior performance of the PCDI model

has been further substantiated. This also highlighted the potential

utility of integrating and combining multiple algorithms in

developing high-performance gene signatures.

In this study, the PCDI was comprised of seven genes: GBA,

G6PD, ETV4, KIF20A, LATPM4B, TRAF5, and SLC2A1. G6PD, an

essential rate-limiting enzyme of the pentose phosphate pathway,

exhibits notable upregulation in HCC patients. G6PD was reported

as a promoter in tumor growth, invasion, and metastasis,

correlating with a poor prognosis. Concurrently, G6PD suppresses

ferroptosis by downregulating POR expression. Targeting G6PD

could potentially inhibit the progression of HCC (54, 55). ETV4

expression was upregulated in HCC tissues, involved in the

modulation of numerous oncogenes, proteins, and signaling

pathways, thereby contributing to HCC progression (56).

Increased KIF20A expression has been observed in mouse HCC

models and could promote tumor proliferation. Knockdown of

KIF20A in human HCC cell lines could also suppress cell growth

and enhance their sensitivities to sorafenib and cisplatin (57, 58).

LATPM4B, which was overexpressed in HCC, induced malignant

behaviors, including proliferation, migration-invasion, and stem

cell phenotypes (59, 60). TRAF5 enhanced the ability of HCC in

proliferation and invasion-metastasis. Reduction of TRAF5 could

induce necroptosis, thereby impeding HCC progression (61, 62).

SLC2A1 expression was upregulated in numerous solid tumors,

including HCC. SLC2A1 could promote HCC progression, and

suppressing SLC2A1 could induce immunogenic cell death in HCC

(63, 64). Currently, few studies have addressed the role of GBA in

HCC. One study suggested that GBA may be implicated in the

antineoplastic activity of artemisinin against HCC (65). These

results illuminated the complex involvement of the PCDI genes in
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HCC. In our study, we also performed a multilevel investigation of

PCDI genes based on single-cell transcriptomic data, transcriptomic

data, proteomic data, and IHC data. At the single-cell level, we

provided a possible explanation for the correlation between PCDI

and biological characteristics in patients with HCC. PCDI genes are

primarily expressed in malignant cells and are also observed in

certain immune and stromal cells such as TAMs and CAFs. These

findings suggested the presence of massive active tumor cells and a

suppressive immune microenvironment in the tumor tissues of

patients with high PCDI scores. This was consistent with the TME

characteristics of patients in the high PCDI score group. At the

mRNA and protein levels, our findings further validated the

oncogenic potential of PCDI genes. Furthermore, we investigated

the role of GBA in HCC. Single-cell analysis revealed that GBA is

predominantly expressed in malignant cells, TAMs, and TECs.

Concurrently, GBA promoted the formation of cellular

communication between malignant cells and other cells,

particularly between malignant cells and TAMs, TECs, and CAFs.

Upon activation of specific signaling pathways, GBA could enhance

malignant behaviors such as proliferation, invasion, metastasis, and

angiogenesis. These observations provided preliminary evidence for

the oncogenic role of GBA in HCC. In addition, we conducted more

deep experimental studies subsequently. In HCC patient specimens,

we validated the expression pattern of GBA, observing a significant

upregulation of GBA expression in tumor tissues at both mRNA

and protein levels. This result was consistent with relevant

transcriptomic, proteomic, and IHC data. Next, we found GBA

was intricately engaged in biological processes, including cell cycle

regulation and EMT. Functional experiments and WB analysis

further substantiated that GBA knockdown notably diminished

the proliferative, migratory, and invasive capacity of HCC cells,

which aligned with the results of single-cell analysis. Therefore, our

findings exhibited novel evidence regarding the role of GBA in

HCC. GBA promoted the malignant behaviors in HCC, including

proliferation, invasion, and metastasis. In summary, our findings

extended the understanding of PCDI genes in HCC and thereby

enhanced the credibility of PCDI as a biomarker.

Subsequently, the PCDI was further validated. The PCDI

exhibited robust predictive efficiency for clinical prognosis. In

TCGA-LIHC dataset, we observed a significant correlation

between the PCDI and clinical staging, pathological grade, T

staging, and vascular invasion status among patients. The PCDI

also emerged as an independent risk factor for the OS, PFS, DFS,

and DSS. The accuracy and stability of the PCDI in predicting

prognosis were assessed by ROC curves, C-index curves, and DCA

curves, obviously outperforming other clinical indicators. These

findings were independently validated in both the GSE76427 and

ICGC-LIRI-JP datasets. Moreover, we compared the PCDI with 102

different prognostic models published in recent years. Most models

exhibited good performance in the training dataset (TCGA-LIHC).

However, the predictive performance obviously declined in the

validation datasets (GSE76427 and ICGC-LIRI-JP). This decline

should be attributed to overfitting in models developed through a

single algorithm, resulting in reduced model generalizability.

Notably, despite the decreased predictive performance in the

validation datasets, the PCDI maintained superior performance
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over nearly all other models during the comparative analysis. This

suggests that dimension reduction through the combination of

machine learning algorithms is an effective approach for

improving model generalizability. To assess the practical utility of

PCDI in clinical settings, we developed clinical nomograms across

the three datasets. Moreover, we observed a significant correlation

between PCDI score groups and PCD clusters. Patients in the high

PCDI score group and in PCD cluster A demonstrated a substantial

overlap in sample distribution, indicating similar unfavorable

prognoses and biological functional features. The alignment

between PCDI score groups and PCD clusters undeniably

bolstered the credibility of PCDI. In conclusion, these findings

highlighted the superior predictive performance of the PCDI in

clinical prognosis, affirming its suitability as a novel biomarker for

prognostic evaluation in HCC patients.

The PCDI exhibited robust predictive efficiency for the

immunotherapeutic responses of HCC patients. In the high PCDI

score group, we observed a conspicuous immunosuppressive

microenvironment characterized by enhanced immunosuppressive

cell infiltration, including M2 macrophages, Treg cells, and

neutrophils, along with impaired antitumor immune functions such

as IFN response and T-cell co-stimulation, resembling the

immunological features of cluster A. In addition, we discerned a

significant positive correlation between stemness score and PCDI

score, aligning with a previous study associating tumor stem cell

status with immunological characteristics in solid tumors. This stem

cell phenotype was found to inhibit anti-tumor immune functions (66).

Given the close relationship between PCDI and immunological

characteristics in HCC patients, we further investigated the potential

of PCDI for predicting immunotherapeutic responses. Our results

indicated that HCC patients in the high PCDI score group displayed

elevated gene mutation frequencies. TP53 was the most frequently

mutated gene in the high PCDI score group, while CTNNB1 was the

most frequently mutated one in the low PCDI score group. Studies

have shown that TP53 and CTNNB1 mutations are common in HCC,

usually occurring in the early stages. TP53mutations lead to the loss of

P53 function and could promote the recruitment of

immunosuppressive cells, whereas CTNNB1 mutations could

enhance immune evasion and resistance to immunotherapy in tumor

cells (67). Furthermore, we found a significant positive correlation

between the PCDI score, TMB and MSI levels, and the expressions of

most ICGs. TMB, MSI, and ICG expression patterns were considered

crucial indicators for predicting immunotherapeutic responses in

tumor patients. It is widely accepted that increased levels of TMB,

MSI, and ICG expression correlated with a higher likelihood of positive

responses to immunotherapy (33, 68–70). Therefore, we posit that

HCC patients with higher PCDI scores could benefit more from

immunotherapy. Subsequently, we validated this hypothesis through

the TIDE algorithm. By calculating the TIDE scores, we observed that

patients in the high PCDI score group exhibited significantly decreased

TIDE scores. This suggested that patients with higher PCDI scores were

more responsive to immunotherapy. Subsequent correlation analysis

validated that the immunotherapeutic response rates of patients in the

high PCDI score group were significantly higher than those in the low

PCDI score group. These results provided more compelling evidence

that the PCDI could predict immunotherapy responses in HCC
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patients. Thereafter, a more comprehensive study was conducted to

assess the predictive ability of PCDI in immunotherapeutic responses

across multiple immunotherapy cohorts. Our findings revealed that in

the IMvigor210, GSE176307, Checkmate, GSE179351, GSE103668, and

GSE78220 cohorts, patients who responded to immunotherapy were

predominantly found in the high PCDI score group. In the GSE35640

and GSE120644 cohorts, patients who responded to immunotherapy

were primarily in the low PCDI score group. In the GSE91061 cohort,

immunotherapeutic responses seemed unrelated to PCDI scores. In

summary, the PCDI demonstrated excellent predictive capability

regarding immunotherapy responses. Higher PCDI scores were

associated with a greater likelihood of tumor patients benefiting from

immunotherapy. These results highlighted the PCDI as a valuable tool

for predicting the immunotherapy responses of tumor patients. In

particular, HCC patients with higher PCDI scores were more suitable

candidates for immunotherapy.

Additionally, we found that the PCDI could be employed to

predict the chemotherapeutic sensitivity of patients with HCC. The

expression levels of most CRRGs in patients with HCC showed a

significant positive correlation with the PCDI score. This

observation suggested that the PCDI could serve as an effective

indicator for assessing chemotherapeutic resistance. Patients with

higher PCDI scores may exhibit heightened resistance to

chemotherapy. In the two HCC treatment cohorts, GSE109211

and GSE104580, we observed that patients with lower PCDI scores

were more responsive to sorafenib and TACE treatments. When

comparing the imputed sensitivity scores of drugs, HCC patients

with lower PCDI scores demonstrated heightened sensitivity to

oxaliplatin, whereas those with higher PCDI scores exhibited

heightened sensitivity to inhibitors of cell mitosis and

proliferation, such as paclitaxel, docetaxel, and vinblastine, as well

as certain targeted drugs and small molecule inhibitors such as

cediranib, bortezomib, MIM1, MK-1775, and WIKI4. In summary,

the PCDI exhibited remarkable predictive efficacy in assessing the

responses of HCC patients to various therapies, including

immunotherapy. Overall, it holds promise as a novel biomarker

for guiding personalized treatment in HCC.

Although we have demonstrated the robust performance and

clinical value of the PCDI, it is necessary to recognize several

constraints inherent in this study. Firstly, the data used here

were all sourced from public databases, classifying it as a

retrospective study. During the data processing phase, we

excluded samples with incomplete clinical data, which reduced

the usage of samples and might have influenced the analytical

outcomes. Consequently, large-scale prospective studies are still

necessary to comprehensively evaluate the precise value of the

PCDI. Secondly, we provided a comprehensive landscape of the

PCDI genes across multiple levels, including the transcriptome,

proteome, and single-cell analyses. We also discussed the role of

PCDI genes in HCC development based on existing research.

Moreover, we contributed new experimental evidence supporting

the role of GBA in the progression of HCC. All of these enhance

the reliability of the PCDI as a biomarker for HCC. However,

further research is necessary to elucidate the detailed mechanisms

by which these genes regulate HCC progression and therapy

responses. Lastly, additional therapeutic cohorts involving HCC
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patients are needed to further validate the predictive value of the

PCDI in treatment responses among HCC patients.

In conclusion, we systematically analyzed the correlation between

14 programmed cell death modes and the clinical characteristics and

biological patterns of HCC. We constructed a precise and robust

PCDI model through a comprehensive array of machine-learning

algorithms. The PCDI demonstrated remarkable accuracy in

predicting the prognosis and treatment responses of HCC patients.

It served as an effective biomarker for heterogeneity delineation and

risk stratification. The application of PCDI has the potential to

facilitate personalized treatment and clinical management for HCC

patients, representing a significant contribution to clinical practice.
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Introduction: Tubulin epsilon and delta complex 2 (TEDC2) is widely

expressed in various human tissues and primarily governs centriole stability.

However, the biological significance of TEDC2 in pan-cancer is unclear.

Methods: In this study, we employed R software and various online

bioinformatics analysis tools to investigate the functional attributes of

TEDC2 in human tumours and its potential involvement in immune

response. The status of TEDC2 expression was evaluated in samples from

the TCGA and GEO datasets, as well as in tumour and corresponding normal

samples from the TCGA database. Subsequently, Kaplan-Meier estimates,

clinical correlations, and univariate Cox regressions were used to analyze the

33 types of tumors from TCGA and determine the prognostic significance of

TEDC2. Moreover, nomogram models were formulated using three distinct

tumours, namely kidney renal clear cell carcinoma (KIRC), lung

adenocarcinoma (LUAD), and liver hepatocellular carcinoma (LIHC), to

evaluate the prognostic significance of TEDC2 in tumours. Furthermore,

TEDC2 was investigated for its correlation with the levels of immune cell

infiltration, and a functional enrichment analysis was conducted to identify

potential signalling pathways involving TEDC2.

Results: Differential analysis revealed that 16 tumour types expressed TEDC2

to a greater extent than normal tissues. The abnormal expression of TEDC2

can predict survival outcomes in patients with adrenocortical carcinoma

(ACC), KIRC, kidney renal papillary cell carcinoma (KIRP), LUAD, LIHC, lower

grade glioma (LGG), and thymoma (THYM). Subsequent results indicated that

TEDC2 has the ability to influence ECM regulators, cell cycle, and Immune

checkpoint-associated signalling pathways, which could potentially lead to a

poor prognosis and tumour progression.
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Discussion: TEDC2 has been identified as a potential therapeutic target that

could predict the prognosis of multiple tumour types, making it a promising

target for reversing tumour development.
KEYWORDS

immune infiltration, tumor microenvironment, pan-cancer, prognosis, TEDC2
Introduction

Globally, tumors pose a serious threat to public health, with

incidence and mortality rates on the rise (1, 2). Despite significant

advancements in tumor diagnosis and treatment, the 5-year overall

survival rate for most tumors remains dismal (3). Therefore, there is

an urgent need for novel approaches to diagnose and treat tumors.

Currently, the utilization of tumor biomarkers has greatly enhanced

the prognosis in certain types of tumors (4–6).

The rapid advancements in next-generation sequencing

and bioinformatics have facilitated the accumulation of data,

enabling a comprehensive understanding of the intricate

biological characteristics of tumors from various perspectives.

Concurrently, a growing number of databases, such as the Gene

Expression Omnibus (GEO) and The Tumor Genome Atlas

(TCGA), have been established to comprehensively analyze the

pathogenesis of cancer. These databases have conducted molecular

characterizations on more than 20,000 primary tumors and their

corresponding normal samples, encompassing 33 different types of

cancer. In a recent study, Pan et al. employed a pan cancer analysis

approach to investigate the impact of abnormal expression of the

RUNX gene on the prognosis of diverse tumors (7). This analysis

involved the utilization of TCGA multi-omics data in conjunction

with various online tools. Similarly, Xie et al. developed a “FOXOs

score” system based on the TCGA database, which demonstrated a

correlation with multiple immune features and the ability to

accurately predict treatment efficacy across various GEO datasets

(8). Consequently, the utilization of these extensive and multi-

omics tumor datasets can serve as an effective means of identifying

potential tumor biomarkers.

Tubulin epsilon and delta complex 2 (TEDC2), also named

Chromosome 16 open reading frame 59 (C16orf59), is a protein

coding gene. Some studies reported that TEDC2 is involved in the

regulation of centriole stability, ciliary hedgehog signaling, and

might contribute to the tumorigenesis of LUAD (9, 10) and

central nervous system lymphoma (11), but no comprehensive

study have been conducted on the immune characteristics and

prognostic of TEDC2 in tumors. Furthermore, Meng et al.

employed the monozygotic twin-pair database to identify

alterations in DNA methylation subsequent to alcohol

consumption (12). Their findings revealed a significant

correlation between elevated methylation levels of cg07326074,
02267
situated within the TEDC2 gene, and alcohol intake. It is worth

noting that prolonged alcohol consumption has been associated

with immune dysfunction in the body (13), and it is widely

recognized as a prominent risk factor in the development of

diverse tumors (14–16). The observed methylation patterns linked

to alcohol consumption are hypothesized to impact the

functionality of the TEDC2 gene. Currently, there are no reports

on the role of TEDC2 in pan-cancer. Therefore, we investigated the

mechanisms of TEDC2 in tumors and its correlation with immune

infiltration. In our study, we found that the expression of TEDC2

was unregulated in the majority of tumors, thereby affecting the

prognosis of ACC, KIRC, KIRP, LUSC, LIHC, and MESO.

According to immune infiltration analysis, TEDC2 expression

was associated with multiple immune cells, and might affect

tumor survival. Furthermore, enrichment analysis indicated that

TEDC2may be involved in the tumorigenesis by the cell cycle, ECM

regulators, and Immune checkpoint-associated signaling pathways.

Collectively, these findings indicate that TEDC2 plays multifaceted

roles across tumors, can influence the prognosis and immune

infiltration of some tumors, and could become a novel biomarker.
Materials and methods

Data acquisition

Expression profile data for 33 tumors and corresponding clinical

data were obtained from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/). Additionally, the RNA-seq data of GSE10927

(10 normal tissues, 55 tumorous tissues), GSE15641 (23 normal tissues,

69 tumorous tissues), GSE36376 (193 normal tissues, 240 tumorous

tissues), GSE51575 (26 normal tissues, 26 tumorous tissues), GSE63514

(24 normal tissues, 28 tumorous tissues), GSE116959 (11 normal

tissues, 57 tumorous tissues), GSE13213 (117 tumorous tissues),

GSE3141 (111 tumorous tissues), GSE214992 (32 cell line samples)

and GSE91061 (37 tumorous tissues) were downloaded from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/). The 100

genes most closely related to TEDC2 were obtained from The Gene

Expression Profiling Interactive Analysis database (GEPIA2, http://

gepia2.tumor-pku.cn/#index). The protein–protein interaction (PPI)

network was analyzed in STRING (https://cn.string-db.org/).
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Expression analysis of TEDC2

The mRNA expression levels of TEDC2 in normal tissues and

tumors were analyzed and visualized using the ggplot2 package

(version 3.4.2). The representative immunohistochemical results of

TEDC2 in tumor tissues were obtained from the Human Protein

Atlas (HPA, https://www.proteinatlas.org/).
Diagnostic and prognostic value of TEDC2

Kaplan−Meier survival analysis was employed to assess the

association between TEDC2 expression and clinical outcomes,

including overall survival (OS), disease specific survival (DSS),

and progression free interval (PFI) in TCGA datasets. In addition,

a receiver operating characteristic curve (ROC) was drawn for

tumors in which TEDC2 affects prognosis. The ggplot2 package

(version 3.4.2) was used to analyze and visualize the correlation

between TEDC2 expression and multiple clinical parameters such

as age, gender and pathologic stage.

Univariate Cox regression analysis of factors related to OS was

performed for tumors in which TEDC2 affects prognosis. Tumors

with p < 0.05 and three representative tumors (KIRC, LUAD,

LIHC) were selected as the training set for constructing a

nomogram model. Calibration curves were generated to assess the

prediction accuracy of the nomograms at 1, 3, and 5 years.
Genetic alteration analysis

cBioPortal database (https://www.cbioportal.org/) (17, 18) was

used to estimate TEDC2 genetic alterations in tumors using data

from the TCGA Pan-Cancer Atlas Studies. According to the data set

of TCGA Pan-Cancer Atras Studies, we calculated the mutation

frequency and copy number change of TEDC2 gene in the “Cancer

Type Summary” module. A mutation site plot of TEDC2 was

created using the “Mutations” module.

To analyze the correlation between TEDC2 mutation status and

SKCM, BRCA, and UCES prognosis, the molecular profile was

selected as mutations based on “skin cutaneous melanoma (TCGA

Pan-Cancer)”, “breast invasive carcinoma (TCGA Pan-Cancer)”,

“uterine corpus endometrial carcinoma (TCGA Pan-Cancer)”, and

the survival plot was generated by dividing cases into altered and

unaltered groups.
Immune infiltration analysis

The GSVA package (version 1.48.0) was used to perform

Spearman correlation analysis of TEDC2 expression and immune

cell infiltration, including activated DC (aDC), DC, immature DC

(iDC), plasmacytoid DC (pDC), macrophages, mast cells,

neutrophils, eosinophils, cytotoxic cells, B cells, NK cells, NK

CD56bright cells, NK CD56dim cells, T cells, CD8 T cells, T

central memory (Tcm), T effector memory (Tem), T helper cells,
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T gamma delta (Tgd), T follicular helper (Tfh), Th1 cells, Th2 cells,

Th17 cells and Treg (19, 20).
Functional enrichment analysis and PPI
network analysis

The GEPIA2 database was used to obtain the 100 genes most

closely related to TEDC2. We performed Gene Ontology (GO)

analysis, which includes biological pathway (BP), and molecular

function (MF) and cellular component (CC) categories. We also

performed Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis based on the TEDC2 related genes to further explore the

potential functions of TEDC2. Additionally, a PPI network of the

100 TEDC2 related genes was created from the STRING database

(21), and the top 10 molecules were extracted by the cytoHubba

plugin in the Cytoscape (version 3.7.1) software.
Differential expression analysis and gene
set enrichment analysis

Samples were divided into high and low groups based on the

median expression level of TEDC2. DESeq2 package (version

1.40.1) was used to analyze differential expression of TEDC2 in

tumors in which can affect prognosis. Using | log2 (FC) |>2 and

p.adj<0.01 as conditions for screening significantly different genes.

Then, according to the results obtained from the differential

expression analysis of TEDC2 in different tumors, GSEA was

performed using the clusterProfiler package (version 4.8.0) (22,

23). Subsequently, these genes were enriched on the basis of the

Hallmark gene sets database. Gene sets with normalized enrichment

score (NES) > 1, and false discovery rate (FDR) < 0.05 were

considered significant results.
Cell culture and transfection

Human normal liver cell line L02, human LUAD cell line A549

and human LIHC cell line HepG2 were obtained from the Cell Bank

of the Chinese Academy of Sciences and cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Hyclone, USA) supplemented

with 10% Fetal bovine serum (FBS, Gibco) and 100 units/mL

penicillin at 37°C with 5% CO2. The small interfering RNAs

(siRNAs) targeting human TEDC2 and a negative control were

purchased from Shanghai Genechem Co., Ltd. The sequence of

TEDC2 siRNA (siTEDC2) were 5’- GCGCACAGCGACA

ATTGCAATTGGA-3’, 5’- GCCAGAAACTAATGGAGAGGA-3’

and the sequence negative control siRNA (siNC) was 5’-

GCGGACAGCAACGTTAACTTCAGGA-3 ’ . Trans i ent

transfections were conducted following the manufacturer’s

protocol (Entranster-R4000, Engreen Biosystem). A549 and

HepG2 cells were seeded in 12 well plates one day prior to

transfection and were transfected when the cell confluence

reached 40%. The culture medium was replaced with fresh
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medium after 6 hours of transfection. Finally, cells were harvested

for further experiments after 24 hours of transfection.
Cell proliferation assays

To ascertain cellular proliferation, a quantity of 1 × 104 cells was

introduced into a 24 well plate. The cells were cultivated in DMEM

supplemented with 10% Fetal bovine serum, with the medium being

refreshed on a daily basis. Subsequently, at 24, 48, 72 and 96 hour

intervals, the cells were harvested, diluted with a trypan blue

working solution, and enumerated using an automatic cell

counter Arthur (NanoEntek, Germany) to establish a growth

curve. Each measurement was performed in triplicate, and a

minimum of three independent experiments were conducted.
Real-time PCR

The SYBR Premix Ex Taq was employed for the purpose of gene

mRNA expression detection in various cell types through the

utilization of real-time PCR on the ABI7500 instrument. In order

to ensure consistency, three tests were conducted on each sample,

with b-Actin serving as the standardization control. The relative

mRNA concentration was determined by averaging the results of

the three replicates, and the 2-△△CT method was employed to

calculate the expression levels. The specific primer sequence can be

found in Supplementary Table 1.
Cell cycle assay

4 × 105 harvested cells were incubated in phosphate buffered

saline (PBS, Hyclone, USA) containing 0.1% Triton X-100 (Sigma,

USA) and 0.2 mg/mL RNaseA (Sigma, USA), followed by fixation in

75% alcohol at 4°C for 60 minutes. After three washes with cold

PBS, 7-amino dactinomycin (7-AAD, BD, USA) was added and

incubated at 37°C for 30 minutes. Subsequently, cell cycle analysis

was performed using flow cytometry (BECKMAN COULTER,

USA). Each measurement was repeated three times, and a

minimum of three experiments were conducted.
Wound healing assay

A density of 4 × 105 cells was inoculated into each well of a 6

well plate. Following overnight incubation, the cell monolayer was

scraped using sterile pipette tips. The floating cells were then

washed with PBS and cultured with DMEM. Migration images

along the scratch line were captured at intervals of 0, 6, and 12 hours

using an optical microscope. The measurement of wound area was

conducted using Image J software from the National Institutes of

Health in Bethesda, USA. The migration rate (%) was calculated as

((A - B)/A) × 100%, where A represents the wound area at 0 hours

and B represents the wound area at 6 and 12 hours. The

experiments were conducted in triplicates independently.
Frontiers in Immunology 04269
Transwell assay

Cell migration and invasion experiments were conducted using a

24 well plate with an 8 µm pore chamber (Corning, USA). For the

invasion experiment, the upper chamber of the Transwell pore

chamber was coated with a 1:8 dilution of Matrigel matrix gel (BD,

USA). Prior to experimentation, cells were cultured in DMEM

medium without FBS for 12 hours to induce starvation treatment.

Subsequently, the cells were suspended in DMEM medium without

FBS and added to the upper chamber at a concentration of 1 × 105

cells per well. Simultaneously, DMEM medium containing 10% FBS

was added to the lower chamber, and the plate was incubated in an

incubator for a duration of different time points. Following

incubation, the residual cells adhered to the filter membrane

surface should be delicately removed using a cotton swab.

Subsequently, the cells that migrated to the lower surface of the

filter membrane ought to be fixed with methanol for a duration of 20

minutes, followed by staining with a 0.1% Crystal violet solution for

the same duration. To ensure accuracy, the microscope should be

inverted to observe the lower surface and the counting process should

be repeated three times. It is important to note that the steps involved

in the cell migration experiment closely resemble those of the

invasion experiment, with the exception that no gel coating is applied.
Statistical analysis

Spearman rank test and Wilcoxon rank-sum test were

respectively performed to examine correlation between two

groups and the expression difference. Log-rank test was used to

compare survival differences between groups. Univariate and

multivariate Cox proportional hazard regression analyses were

performed to screen the factors influencing the prognosis.

Statistical analyses were performed using GraphPad Prism 9 and

R (version 4.3) software. P values < 0.05 were considered statistically

significant. (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001)
Results

The expression of TEDC2 across tumors

The workflow in the current study is demonstrated in Figure 1.

The aberrant expression of genes in tumor samples was related to

probably participate in tumorigenesis. To clarify the expression of

TEDC2 across tumors, normalized TCGA data were analyzed. The

results showed that TEDC2 was significantly upregulated in many

tumors compared to corresponding normal tissues, including KIRP,

KIRC, LIHC, STAD, LUAD and so on (Figure 2A). TEDC2

expression was also analyzed in 23 types of tumors and paired

normal tissues, and the result was roughly in consistent with the

unpaired samples (Figure 2B). Furthermore, the differential

expression of TEDC2 between tumors and normal tissues was

verified by the data sets GSE10927, GSE15641, GSE36376,

GSE51575, GSE63514 and GSE116959. The results showed that
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the expression of TEDC2 in many tumors was higher than normal

tissues (Figure 2C). In order to substantiate these findings, we

conducted an analysis of the immunohistochemistry of TEDC2

across various tumors within the HPA database, results

demonstrated that a noteworthy increase in the expression of the

TEDC2 protein within certain tumor samples (Figure 2D).
Genetic alteration analysis of TEDC2
across tumors

We observed the genetic alteration status of TEDC2 in different

tumor samples of the TCGA cohorts. We found that all

cholangiocarcinoma cases with genetic alteration (~3% frequency)

had miss mutation of TEDC2, and adrenocortical carcinoma tumor

samples had the highest TEDC2 genetic alteration frequency (>4%).

It is worth noting that amplification, deep deletion, and miss

mutation were the main types of frequent genetic alterations in

TEDC2. (Supplementary Figure 1A). A total of 76 TEDC2

mutations, including 13 truncating mutations, 57 missense

mutations, 4 splice mutation and 2 fusion mutations were

detected in TCGA tumor samples (Supplementary Figure 1B). In

addition, we assessed whether genetic variation of TEDC2 is

associated with clinical survival prognoses with different types of

tumor. The results showed that the altered TEDC2 did not cause a

significant difference in overall survival (Supplementary Figure 1C).

It is noteworthy that the occurrence of TEDC2 mutation is
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relatively infrequent in the majority of tumors, thus necessitating

additional validation through the inclusion of a larger dataset

comprising clinical patient information.
The association between TEDC2
expression and prognosis across tumors

To explore the prognostic value of TEDC2 across tumours,

Kaplan‒Meier survival analysis was performed to assess the

association between TEDC2 expression and clinical outcome. We

investigated the association between TEDC2 expression and OS in

tumours (Figure 3A), and the results showed that high expression of

TEDC2 was associated with significantly shorter OS in ACC (HR =

7.129, 95% CI 2.838–17.907, p < 0.001) , KIRC (HR = 1.843, 95% CI

1.358–2.5, p < 0.001), LUAD (HR = 1.681, 95% CI 1.256–2.251, p <

0.001) and LIHC (HR = 2.026, 95% CI 1.421–2.888, p < 0.001)

(Figure 3B). Subsequently, we investigated the association between

TEDC2 expression and DSS and PFI in tumours, which was roughly

in agreement with the result of OS (Supplementary Figure 2).
Construction and validation of a
nomogram on TEDC2

We further explored the relationship between TEDC2

expression and clinic pathological features in these tumors. The
FIGURE 1

Workflow diagram of this study.
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results showed that the expression of TEDC2 in KIRP, KIRC, ACC,

LUAD and LIHC was correlated with pathological stage

(Figure 4A). Moreover, the expression of TEDC2 in LUAD was

correlated with age and gender (Supplementary Figure 3). The ROC

curves were also presented for six tumors whose prognosis was

associated with TEDC2 expression (Figure 4B), suggesting the

diagnostic ability of TEDC2 in these tumors.

To establish a quantitative prognostic approach for diverse tumor

patients, we initially identified, via unvaried Cox analysis, a significant

association between the prognosis of multiple tumor patients and the

expression of TEDC2, age, and T stage (Supplementary Tables 2-7).
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Subsequently, we integrated these factors into a multivariate Cox

model and developed a nomogrammodel encompassing age, T stage,

and TEDC2 expression in three representative tumors (KIRC, LUAD,

and LIHC) to validate their prognostic significance. The findings

demonstrate that the nomogram model exhibits a high level of

accuracy in predicting OS (Figures 5A, C, E). We further used

calibration curves to evaluate the prediction accuracy of the

nomogram model at 1, 3, and 5-years. These results showed that

the nomogram models had high accuracy in predicting OS

(Figures 5B, D, F). Furthermore, in the external validation set,

individual risk scores were computed for each patient, and
A

B

D

C

FIGURE 2

The mRNA expression of TEDC2 in pan-cancer. (A) TEDC2 expression in 33 tumors in TCGA database. (B) TEDC2 expression in paired samples of 22
tumors in TCGA database. (C) TEDC2 expression in the six GEO database. (D) The IHC images of TEDC2 in tumor tissues extracted from the HPA.
(ns, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1272108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1272108
subsequently, they were categorized into high-risk and low-risk

groups based on the median. Comparative analysis of survival

curves revealed a significantly superior survival rate among patients

in the low-risk group as opposed to those in the high-risk group.

Additional ROC curves demonstrate that risk signatures possess

commendable diagnostic capabilities (Supplementary Figure 4A, B).
Functional enrichment analysis

To elucidate the biological function of TEDC2 in tumors, we

used GEPIA2 to obtain the top 100 genes with similar expression

patterns for TEDC2 in all tumor types. GO enrichment analysis

showed that TEDC2 related genes were closely related to nuclear

chromosome segregation, nuclear division, condensed chromosome

and ligand-gated ion channel activity. KEGG pathway analysis

indicated that TEDC2 related genes may participate in to the cell

cycle, neuroactive ligand-receptor and oocyte meiosis (Figure 6A).

Additionally, a PPI network of the 100 TEDC2 related genes

was created from the STRING database (Figure 6B), and the top 10

genes were extracted by the cytoHubba plugin in the Cytoscape

(version 3.7.1) software (Figure 6C). The top 10 genes deeply

involved in the regulation of cell proliferation and cell cycle (24–

27). Furthermore, we analyzed the correlation between the top 10

genes and TEDC2 expression in KIRC and LIHC. The top 10 genes

were plotted in heatmaps. On the right side of heatmaps, significant

pairs were identified by Spearman correlation analysis for each of

these genes with TEDC2 (Figure 6D). The results showed TEDC2

expression correlated positively with these genes, suggesting that

TEDC2 may be involved in tumor growth.
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In order to elucidate the function of TEDC2, differential gene

expression analysis on TEDC2 low (0-30%) and high (70-100%)

expression samples was conducted in KIRC, LUAD, and LIHC.

KIRC identified 280 genes with significant differential expression,

with 222 upregulated and 58 downregulated genes in the high

TEDC2 expression group. LUAD identified 755 genes with

significant differential expression, with 395 upregulated and 360

downregulated genes in the high TEDC2 expression group. LIHC

identified 400 genes with significant differential expression, with

351 upregulated and 59 downregulated genes in the high TEDC2

expression group (Supplementary Figure 5A). Subsequently, we

used all genes with log2(FC) values for GSEA analysis. Interestingly,

a high degree of similarity was found between the enriched gene sets

in the three tumors, which included cell cycle checkpoints, cell

cycle, cell cycle mitotic and mitotic prometaphase (Supplementary

Figure 5B).
Expression of TEDC2 combined with
immune infiltration affects overall survival

As we have known that tumor-infiltrated lymphocyte cells play

a key role in tumorigenesis and affect the prognosis of tumor

patients (28–30). Therefore, we next examine whether TEDC2 is

related with the immune infiltration level in specific tumors. We

found that TEDC2 expression was negatively correlated with most

infiltrated immune cells including CD8 T cells, macrophages,

eosinophils, DC cells, cytotoxic cells, and NK cells (Figure 7A,

Supplementary Figure 6). Noteworthy, TEDC2 expression in LIHC

was significantly negatively correlated with the enrichment of NK
A B

FIGURE 3

The correlation between TEDC2 expression and OS in pan-cancer. (A) Forest plots showed the effect of TEDC2 expression on OS in pan-cancer.
The presence of a red underline signifies an unfavorable prognosis for TEDC2, whereas a blue underline denotes a favorable prognosis for TEDC2.
(B) The effects of TEDC2 expression on OS in KIRC, LUAD, ACC and LIHC, respectively.
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cells (R = −0.208, p < 0.001), CD8 T cells (R = −0.272, p < 0.001)

and eosinophils (R = −0.374, P < 0.001). On the contrary, TEDC2

expression was significantly positively correlated with the

enrichment of Th2 cells (R = 0.671, p < 0.001) (Figure 7B).

Considering that TEDC2 may be a potential oncogene in LIHC,

the relationship between TEDC2 and various cytokines (IFNG,

TNF, GZMB, PRF1, IL2, IL4, IL4, IL10, TGFA, TGFB1, and
Frontiers in Immunology 08273
TGFB2) and immune checkpoints (PDCD1, CD274, TIGIT,

LAG3, HAVCR2, CTLA4, and PDCD1LG2) was assessed

(Figures 7C, D). As a result, we found that the expression of

TEDC2 is positively correlated with IFNG, but there is no

significant associated with the anti-tumor cytokines GZMB and

PRF1. Additionally, TEDC2 expression is positively associated with

the immunosuppressive factors IL4, IL10, TGFA and TGFB1.
A

B

FIGURE 4

The correlation between TEDC2 expression and clinic pathological parameters. (A) The expression of TEDC2 was correlated with pathologic in ACC,
KIRC, MESO, LUAD, LIHC and KIRP. (B) The time-dependent ROC curve of the diagnostic value of TEDC2 in patients with ACC, KIRC, MESO, LUAD,
LIHC and KIRP. (*p < 0.05, **p < 0.01, ***p < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1272108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1272108
Importantly, the expression levels of TEDC2 had a significant

positive correlation with PDCD1, CD274, HAVCR2, LAG3,

TIGIT, CTLA4 in LIHC. It is worth noting that we conducted a

concise examination of the TEDC2 expression and its prognostic

association within four cohorts pertaining to immunotherapy,
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specifically encompassing two adoptive T cell therapies

(Supplementary Figure 7A, B) and two immune checkpoint

blockade therapies (Supplementary Figure 7C, D). We found that

the expression of TEDC2 is comparatively diminished in the subset

of individuals responding to immunotherapy, and in contrast to
A B

D

E F

C

FIGURE 5

Nomogram models were constructed and evaluated in KIRC, LUAD and LIHC. (A) The establishment of a nomogram model combined with the
expression of TEDC2 in KIRC. (B) Calibration curves were generated to assess the prediction accuracy of the nomograms at 1, 3, and 5 years. (C) The
establishment of a nomogram model combined with the expression of TEDC2 in LUAD. (D) Calibration curves were generated to assess the
prediction accuracy of the nomograms at 1, 3, and 5 years in LUAD. (E) The establishment of a nomogram model combined with the expression of
TEDC2 in LIHC. (F) Calibration curves were generated to assess the prediction accuracy of the nomograms at 1, 3, and 5 years in LIHC.
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those with low TEDC2 expression, patients exhibiting high TEDC2

expression exhibit a markedly reduced survival rate. These results

suggested that TEDC2 might mediate the carcinogenic process of

tumor by influencing the immunosuppressive microenvironment.

Based on the above results, TEDC2 was associated with immune

infiltration of LIHC. We analyzed the effect on tumor survival by

combining the expression of TEDC2 and immune cell infiltration.

Then, we performed KM plotter analysis of TEDC2 expression in

LIHC following CD8 T cells, NK cells and Th2 cells. We found that

higher TEDC2 levels in LIHC in enriched CD8 T cells and NK cells

had a worse prognosis (Figure 7E). These results suggested that

immune infiltration might influence the prognosis of tumor with

high TEDC2 expression to some extent.
In vitro experimental verification

Based on the above bioinformatics analysis, TEDC2may be one of

the important factors driving the occurrence and development of

various tumors. It can activate cell proliferation, induce immune

dysfunction, and ultimately lead to poor prognosis. Then, we

validated whether knocking down TEDC2 can inhibit the malignant

biological behavior of tumor cells in two cell lines, A549 and HepG2.
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Based on the HPA database, our findings revealed that the A549

and HepG2 cell exhibited comparatively elevated levels of TEDC2

expression. Furthermore, when compared to the L02 cell line, which

represents the normal human liver, the expression of TEDC2 in both

A549 and HepG2 cell demonstrated a significant increase

(Supplementary Figure 8A, B). The knockdown efficiency of

siteDC2 was initially assessed using real-time PCR, which revealed

that siRNA effectively reduced the mRNA levels of TEDC2 in both

A549 and HepG2 cells (Figure 8A, Supplementary Figure 9A).

Additionally, the growth curve analysis demonstrated that the

reduction of TEDC2 significantly impeded the proliferation of

A549 and HepG2 cells (Figure 8B, Supplementary Figure 9B).

Following this, flow cytometry was employed to examine the

impact of TEDC2 knockdown on the cell cycle. The findings of

this study indicate that the TEDC2 knockdown group exhibited a

significant increase in the proportion of A549 and HepG2 cells in the

G1 phase of the cell cycle, accompanied by a significant decrease in

the S and G2 phases, when compared to the SINC group (Figure 8C,

Supplementary Figure 9C). These results suggest that the inhibition

of TEDC2 can impede the progression of tumor cells through the G1

phase, thereby inhibiting cell proliferation. Additionally, the

migration and invasion capabilities of A549 and HepG2 cells were

assessed using wound healing and transwell experiments after
A B

DC

FIGURE 6

Functional enrichment analysis of TEDC2 related genes. (A) GO enrichment (BP, MF and CC) and KEGG pathways analysis based on top 100 TEDC2
related genes. (B) PPI network diagram of the top 100 TEDC2 related genes. (C) PPI network diagram of the top 10 TEDC2 related genes. (D)
Correlation analysis of TEDC2 expression and top 10 TEDC2 related genes in KIRC and LIHC in the TCGA database. (**p < 0.01 and ***p < 0.001).
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TEDC2 knockdown. The outcomes revealed a significant reduction

in both migration and invasion abilities of the tumor cells following

TEDC2 knockdown (Figures 8D, E and Supplementary Figure 9D).

In conclusion, these findings strongly indicate that TEDC2

assumes a critical role in the etiology and progression of

various tumors.
Frontiers in Immunology 11276
Discussion

Tumors pose a grave threat to human lives. Despite significant

efforts being made to improve tumor diagnosis and treatment, the

5-year overall survival rate for most tumors remains very low (31,

32).. Thus, new methods for diagnosing and treating tumors are
A B

D

E
C

FIGURE 7

The correlation between immune cell infiltration and TEDC2 expression in LIHC. (A) The correlation of TEDC2 expression with the infiltration of
different immune cells by ssGSEA algorithm. (B) The correlation of TEDC2 expression with eosinophils, NK cells, CD8 T cells and Th2 cells,
respectively. (C) Correlation analysis of TEDC2 expression and immune related cytokines in LIHC. (D) Correlation analysis of TEDC2 expression and
immune checkpoint molecules in LIHC. (E) Correlations between TEDC2 expression and OS in different immune cell subgroups in LIHC patients
were determined by Kaplan–Meier survival plotter. (ns, *p < 0.05, **p < 0.01 and ***p < 0.001).
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urgently needed. The TCGA database utilized multi-omics data to

analyze 33 common tumor types, providing an unprecedented

opportunity to detect gene functions in different tumor types (33,

34). In recent years, numerous studies have been conducted to

identify and characterize pan-cancer molecular biomarkers and

their functions, thanks to the advancement of bioinformatics

algorithms and databases. In this study, we conducted a thorough

analysis by utilizing an open-access database to investigate the

prognostic significance and carcinogenic mechanism of TEDC2

across diverse tumor types.

After analyzing data from GEO and TCGA databases, we found

that TEDC2 expression was significantly upregulated in various types

of tumors, such as ACC, KIRC, LUAD, LIHC, MESO, STAD, and
Frontiers in Immunology 12277
more. To investigate whether TEDC2 could serve as a prognostic

marker for tumors, we examined the correlation between TEDC2

expression and the prognosis of different tumor patients. The Kaplan–

Meier survival analysis revealed that high TEDC2 expression was

associated with adverse survival outcomes in patients with ACC,

KIRP, KIRC, LUAD, LIHC, and MESO. These outcomes included

OS, PFS, and DSS. Using pan-cancer data, Cox regression analysis

identified TEDC2 high expression as an independent risk factor for

poor prognosis in tumors. Based on these results, it can be concluded

that TEDC2 not only is an overexpressed gene but also serves as a

significant prognostic factor for tumor patients.

Based on the above findings, we investigated its downstream

mechanisms for carcinogenesis and risk. Firstly, we performed
A

B

D

E

C

FIGURE 8

The in vitro proliferation and metastasis of A549 cells can be inhibited by the knockout of TEDC2. (A) The efficiency of siRNA knockout was
evaluated through PCR. (B) The survival curves of cells treated with various methods were analyzed. (C) Flow cytometry was employed to detect the
cell cycle of the Control, siNC, siTEDC2-1, and siTEDC2-2 groups. (D) The wound healing experiment was conducted to assess the impact of TEDC2
knockdown on cell migration, and the wound healing ratio was measured following 6 and 12 hours of incubation. (E) The Transwell experiment was
employed to investigate the influence of TEDC2 knockdown on cell invasion, and the quantitative findings were presented in the Bar chart located
on the right. The experiments were conducted in triplicates independently. (**p < 0.01, ***p < 0.001 and ****p < 0.0001).
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TEDC2 coexpression and functional enrichment analysis. This

result indicated that most genes coexpressed with TEDC2 were

mainly enriched in cell cycle progression such as nuclear division,

chromosome segregation and chromosome condensation,

suggesting that these genes could promote tumor growth via

accelerating the cell cycle phase. Then, we conducted GSEA

databases to analyze the biological functions of TEDC2 in KIRC,

LUAD and LIHC. Interestingly, the three tumors showed a high

degree of similarity between the enriched gene sets including ECM

regulators, cell cycle mitotic and cell cycle checkpoints. To ascertain

the precise contribution of TEDC2 in the advancement of tumors,

we conducted a comprehensive examination of the biological

attributes associated with TEDC2 knockdown in A549 and

HepG2 cell lines. Suppression of TEDC2 effectively impedes the

cell cycle progression of tumor cells during the G1 phase,

consequently impeding cell proliferation. Concurrently, TEDC2

knockdown significantly curtails the migratory and invasive

capabilities of tumor cells. These findings further substantiate the

potential involvement of TEDC2 in the proliferation of tumor cells.

More and more evidence showed that tumor immune

microenvironment plays an important role in tumors. TEDC2

has been identified as a potential oncogenic gene linked to

immune infiltration in the tumor microenvironment in two

recent studies focusing on hepatocellular carcinoma and

laryngeal squamous cell carcinoma (35, 36). In our study, we

found that TEDC2 expression was negatively correlated with

most infiltrated immune cells, including DC cells, macrophages,

CD8 T cells, cytotoxic cells, NK cells and eosinophils, suggesting

that TEDC2 might induce tumor immunosuppression.

Subsequently, we conducted a detailed analysis in LIHC on the

correlation between tumor immune related cytokines and

immune checkpoints with TEDC2. The results showed that

TEDC2 expression was posit ively correlated with the

immunosuppressive factors IL4, IL10, TGFA, and TGFB1, and

with the immune checkpoint molecules such as PDCD1, CTLA4,

LAG3, CD274 and HAVCR2. PDCD1 is a negative regulator of T

cell function that promotes disease progression in patients with

many types of tumors (37, 38). HAVCR2 and LAG3 can work

synergistically to promote the exhaustion of effector T cells and

inhibit anti-tumor function (39–41). However, the molecular

mechanisms underlying TEDC2 and these immune checkpoint

molecules are unknown, and require further research. These

results suggested that TEDC2 may be involved in modulating the

tumor immune microenvironment, suggesting that TEDC2

could be used to develop a new targeted immunotherapy for

certain tumors and benefit a large number of tumor patients.
Conclusions

In conclusion, we found that TEDC2 is associated with

prognosis and funct ions by modulat ing the immune

microenvironment and cell proliferation of various tumors.

Admittedly, there are limitations to our study. On the one hand,
Frontiers in Immunology 13278
since all data in this study were obtained from online databases,

data heterogeneity is inevitable. On the other hand, some

uncommon tumor types have relatively small sample sizes, which

can lead to inaccurate results. Finally, this study solely employed

bioinformatics methods to analyze the association between TEDC2

and different tumors, and simple experimental verification was

conducted. To determine the precise molecular function of

TEDC2 in tumor development, additional experiments

are required.
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UniversitéClaude Bernard Lyon 1,
France

*CORRESPONDENCE

Shengni Hua

huashengni0401@163.com

†These authors have contributed equally to
this work

RECEIVED 06 September 2023

ACCEPTED 26 December 2023
PUBLISHED 11 January 2024

CITATION

Zhang Z, Ju M, Tang Z, He Z and Hua S
(2024) DNAJC8: a prognostic marker and
potential therapeutic target for
hepatocellular carcinoma.
Front. Immunol. 14:1289548.
doi: 10.3389/fimmu.2023.1289548

COPYRIGHT

© 2024 Zhang, Ju, Tang, He and Hua. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 January 2024

DOI 10.3389/fimmu.2023.1289548
DNAJC8: a prognostic marker
and potential therapeutic target
for hepatocellular carcinoma
Zhibo Zhang †, Mingxiu Ju †, Zhongming Tang, Zhen He
and Shengni Hua*

Department of Radiation Oncology, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan
University, Zhuhai, China
Background: Hepatocellular carcinoma (HCC) is the most common type of liver

cancer, accounting for ~90% of the total cases. DnaJ heat shock protein family

member C8 (DNAJC8), belonging to the heat shock protein 40 (HSP40) family, is

known to regulate cancer biology function. However, the role of DNAJC8 on

HCC development remains unknown.

Methods: The Cancer Genome Atlas, GTEx, cBioPortal, and Human Protein Atlas

were used to analyze the expression and clinical significance of DNAJC8 in HCC.

Two HCC cell lines, MHCC-97H and Huh-7, were utilized to determine the

biological function of DNAJC8.

Results:DNAJC8 expression was upregulated in HCC tissues and correlated with

poor clinical prognosis. It was closely related to spliceosome, nucleocytoplasmic

transport, and cell cycle and might be involved in the formation of tumor

immunosuppressive microenvironment. Knockdown of DNAJC8 severely

inhibited HCC cell proliferation and induced apoptosis.

Conclusion: Our study demonstrate that DNAJC8 functions as an oncogene in

HCC and hence may be used as a potential therapeutic target and prognostic

marker for HCC.
KEYWORDS

DNAJC8, hepatocellular carcinoma, bioinformatics analysis, apoptosis, tumor
immune microenvironment
Abbreviations: HCC, Hepatocellular carcinoma; DNAJC8, DnaJ heat shock protein family member C8;

HSP40, heat shock protein 40; EMT, epithelial mesenchymal transition; ROC, receiver operating

characteristic; GO, Gene Ontology; MF, molecular function; CC, cellular component; BP, biological

process; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene set variation analysis; CCK-8,

Cell Counting Kit-8; EdU, 5-Ethynyl-20-deoxyuridine; ANOVA, one-way analysis of variance.
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Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver malignancy, and surgical resection is still the main treatment

for it (1). However, due to the concealment of liver cancer, it is often

diagnosed at the advanced stage. Systemic treatment is the only

effective method for these patients (2). Unfortunately, drugs

targeting HCC are mostly multi-target kinase inhibitors, such as

sorafenib and lenvatinib (3). Furthermore, individual sensitivity and

drug resistance greatly limit their clinical application (4, 5).

Therefore, more and more attention are paid to non-kinase target

proteins, such as ASCT2, SPR (6, 7). Thus, exploring novel non-

kinase treatment targets of HCC is urgently needed.

Heat shock proteins (HSPs) are a type of evolutionarily highly

conserved proteins. They are induced by a range of environmental

stimuli, especially high temperature, and act as intracellular

homeostasis protectors (8). After binding to other proteins, HSP

help amino acid chains to fold correctly, eliminating damaged amino

acid chains, and avoid cell death (9, 10). The HSP40/DNAJ family is

the largest HSP family, containing at least 49 members, which can be

divided into three subclasses: DNAJA, DNAJB, and DNAJC (11).

Most of the members contain a “J” domain that can bind to HSP70

and activate its ATPase activity to regulate protein folding, unfolding,

translation, translocation, and degradation (12). It has increasingly

been shown that HSP40/DNAJ family is involved in the regulation of

cancer biological functions (13, 14); DNAJA3 can induce apoptosis of

breast cancer by regulating p53 (15), and reduce angiogenesis of

sarcoma and cervical cancer by destabilizing HIF-1 (16); DNAJB4

arrests lung cancer cell cycle through the STAT1/p21 signaling

pathway (17); DNAJB6 inhibits the epithelial mesenchymal

transition (EMT) process of breast cancer cells by up-regulating

DKK1 and inhibiting Wnt/b-catenin signaling pathway (18);

DNAJB1 suppresses p53-dependent apoptosis by destabilizing

PDCD5 (19); DNAJC6 can promote the metastasis of HCC via

enhancing EMT progression (20). Some studies have shown that

DNAJC8 is related to heat tolerance of bee and human

spinocerebellar ataxia 3 polyglutamine formation (21). DNAJC8 is

also involved in the glycolysis of cervical cancer cells under the

regulation of TIG1 (22). However, there is still a lack of research on

DNAJC8, especially on its role in cancer.

In this study, through bioinformatics analyses (sample

expression, clinical correlation, gene enrichment, and immune

infiltration) of data from multiple public databases and in vitro

cell experiments (siRNA interference), we detected the expression

features and function of DNAJC8 and proved that it can serve as an

oncogene in HCC. Thus, DNAJC8 may be a potential prognostic

and therapeutic target for HCC.
Materials and methods

DNAJC8 expression analysis

Paired HCC samples from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) were used. The

protein expression of DNAJC8 was obtained from UALCAN
Frontiers in Immunology 02281
database (https://ualcan.path.uab.edu/index.html). The

immunohistochemical results were obtained from The Human

Protein Atlas (www.proteinatlas.org/). Copy number and

methylation levels were evaluated using the Liver Hepatocellular

Carcinoma (TCGA, PanCancer Atlas) dataset of cBioPotal

(www.cbioportal.org/). The genetic variation information was

obtained from TCGA Liver Cancer dataset of UCSC XENA and

analyzed using the maftools package in R software (3.6.3).
Clinical prognostic analysis

Survival time and clinical pathological characteristics from

TCGA-LIHC datasets were analyzed using the survival (3.2.10) and

survminer (0.4.9) packages in R software, respectively. According to

the median expression level of DNAJC8, the patients were divided

into two groups: high expression group and low expression group. A

receiver operating characteristic (ROC) curve was obtained using the

pROC package (1.17.0.1). Survival analysis results were obtained

from GEPIA (http://gepia.cancer-pku.cn/).
Enrichment analyses of co-
expressed genes

Gene Ontology (GO) (molecular function [MF], cellular

component [CC], biological process [BP]) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

were performed using the clusterProfiler package (3.14.3) in R

software (3.6.3). Gene set variation analysis (GSVA) was done

using the GSVA package (1.40.1). Protein–protein interaction

network analysis was performed online by STRING database

(http://string-db.org).
Immune infiltration analysis

HCC sample expression data GSE98638 was analyzed online

through ImmuCellAI using ssGSEA. TCGA-LIHC expression data

(https://portal.gdc.cancer.gov/) was analyzed using estimate

(1.0.13) package in R software (3.6.3) via ssGSEA method.

Immune checkpoint analysis was performed online using the

“correlation analysis” function of GEPIA.
Immunohistochemistry

11 pairs of HCC tissues fixed with 4% paraformaldehyde were

dehydrated and paraffin-embedded and then sectioned. The

sections were put into an oven to dry at 63 degrees for 1 hour.

Dewaxing was performed with LEICAST5020 (Dako). After antigen

repair was completed, the sections were incubated with DNAJC8

antibody at 4 degrees overnight. Blocking, secondary antibody

binding, and DAB chromogenic staining was performed with

Autostainer Link 48 (Dako). After 1 minute of hematoxylin

staining, the sections were immersed in 0.25% hydrochloric acid
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alcohol for 10 seconds and washed with water for 5 minutes. After

sealing with neutral resin, the sections were photographed. The

score standard for the intensity of staining was as follows: 0,

negative; 1, weak; 2, medium; 3, strong. The extent of staining

was scored as: 0, 0%; 1, 1–25%; 2, 26–50%; 3, 51–75%; 4, 76–100%.
Cell culture

All cell lines in the experiments were obtained from Procell Life

Science & Technology Co., Ltd. MHCC-97H and Huh-7 cells were

cultured using Dulbecco’s modified Eagle medium (Gibco,

Waltham, MA, USA) with 10% fetal bovine serum (Gibco) in a

37°C incubator with 5% CO2 (Thermo Fisher Scientific, Waltham,

MA, USA).
siRNA transient transfection

Cells in rapid growth phase were collected and plated in 6-well

plates at a density of 200,000 cells per well. After 12 h of incubation,

the mixture containing 5 µL siRNA for DNAJC8 (RiboBio,

Guangzhou, China) and 5 µL RNAiMAX (Invitrogen, Carlsbad,

CA, USA) was added to every well. The cells were cultured in a 37°C

incubator with 5% CO2 for 48–72 h for further analysis. the

siDNAJC8-1 sequence was ‘GATTGAAGCTCAAGAAAAA’; the

siDNAJC8-2 sequence was ‘GCAGTTATCCATCTTGGTG’.
qRT-PCR

Total RNA was isolated from the cell lines using the RNA-

Quick Purification Kit (Yishan, Shanghai, China). Approximately 1

mg RNA was reverse-transcribed into cDNA, using the HiScript III

RT SuperMix (Vazyme, Nanjing, China), and qRT-PCR was

performed using the AceQ Universal SYBR qPCR Master Mix

(Vazyme). GAPDH was used as internal control. The primer

sequence of DNAJC8 was that the forward sequence was

‘CCAAACGGGAAAGAGAGTGGCA’; the reverse sequence was

‘ACTTTCGGTGGTCTCAGGAAGG’.
Western blotting

Western blotting was performed according to our previous

reports. The DNAJC8 antibody (ab138506) was obtained from

Abcam (1:1000; Abcam, Cambridge, UK). The Bax (50599-2-lg),

P53 (10442-1-AP), DNAJB1 (13174-1-AP), Hsp70 (10995-1-AP)

and Hsp90 (13171-1-AP) antibody was obtained from Proteintec

(Chicago, USA).
Cell Counting Kit-8 assay

Cells were plated in 96-well plates at a density of 3000 cells per

well, and CCK8 solution (Dojindo, Kumamoto, Japan; 10 mL/well)
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was added at 12, 24, 48, and 96 h. The mixture was incubated at 37°

C for 2 h, and the absorbance at 450 nm wavelength was recorded

(Thermo Fisher Scientific, Waltham, MA, USA).
Colony formation

Cells were plated in a 6-well plate at a density of 2000 cells per

well. When the clone was formed, the wells were fixed with 4%

paraformaldehyde for 2 h, washed with phosphate-buffered saline,

and stained with crystal violet for 24 h.
5-Ethynyl-20-deoxyuridine assay

The cells were plated in a 96-well plate at a density of 3000 cells

per well. Proliferating cells were examined using the Cell-Light EdU

Apol lo488 In Vitro Kit (RiboBio) , according to the

manufacturer’s protocol.
Apoptosis analysis

The cells were plated in a 6-well plate at a density of 200,000 cells

per well. Annexin V-FITC/PI Apoptosis Detection Kit (Vazyme)

were used to analyze the programmed cell death. All operations were

carried out according to the manufacturer’s protocol.
Statistical analysis

Data are presented as the mean ± standard error of the mean of

at least three independent experiments. All statistical analyses were

performed using SPSS software (Abbott Laboratories, Chicago, IL,

USA). The Student’s t-test was used to determine the significance

between groups. Comparisons among multiple groups were

analyzed using one-way analysis of variance (ANOVA) and

Dunnett’s multiple comparisons. For CCK-8 results, a multi-way

ANOVA was adopted. Two-sided p-values were calculated, and

different numbers of asterisks indicate different levels of statistical

significance (*p< 0.05, **p< 0.01, and ***p< 0.001).
Results

DNAJC8 expression is upregulated in HCC

TCGA cohort data showed that the DNAJC8mRNA level in HCC

tissues was considerably increased than that in adjacent or normal

tissues (Figure 1A). DNAJC8 protein expression was upregulated in

HCC tissues compared to that in normal liver tissues, according to

UALCAN (Figure 1B) andHuman Protein Atlas database (Figure 1C).

DNAJC8 expression was negatively correlated with promoter

methylation level (r=-0.3, p<0.0001) but positively related to gene

copy number (r=0.46, p<0.0001) (Figure 1D). Notably, 37% of patients

with high DNAJC8 expression had TP53 mutations, while CTNNB1
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mutations were the most common in patients with low DNAJC8

expression (Figure 1E; Supplementary Figure 1A). These results

suggested that DNAJC8 expression was higher in HCC and it may

serve as an oncogene.
DNAJC8 expression is closely associated
with HCC prognosis

Survival analysis showed that HCC patients with higher

DNAJC8 levels showed significantly poor prognosis in overall
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survival (HR=1.74, p<0.005), progression-free survival (HR=1.52,

p<0.05), and disease-specific survival (HR=1.59, p<0.05) in TCGA

cohort (Figure 2A). The ROC curve also indicated that DNAJC8

expression could distinguish tumors from non-tumors

(AUC=0.906) (Figure 2B). Survival analysis results from GEPIA

database verified the above results (Figure 2C). Furthermore, there

was an upward trend of DNAJC8 expression in patients with

advanced stage tumor (p<0.05) and vascular invasion (p<0.05)

(Figure 2D). Logistics regression analysis confirmed that the

expression level of DNAJC8 was correlated with T stage (p<0.05),

pathological stage (p<0.05), and vascular invasion (p<0.005)
A B

D

E

C

FIGURE 1

DNAJC8 expression is upregulated in HCC. (A) mRNA expression of DNAJC8 in paired samples from TCGA. (B) Protein expression of DNAJC8
between normal and tumor tissue from UALCAN. (C) Expression difference of DNAJC8 in Human Protein Atlas database. (D) The respective
relationship between DNAJC8 expression and methylation (left), copy number (right). (E) Relationship between gene mutation and DNAJC8
expression (left: high; right: low). ***: p<0.001.
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(Figure 2E). Therefore, DNAJC8 can be used as an independent

prognostic indicator for HCC patients.
Enrichment analysis of DNAJC8-
related genes

In order to identify the genetic alterations and enriched

biological functions mediated by DNAJC8, we first picked out
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the genes significantly correlated with DNAJC8 and found

differentially expressed genes, including zcchc17 (r=0.85, p<0.01),

rpa2 (r=0.82, p<0.01), ppp1r8 (r=0.83, p<0.01), capzb (r=0.80,

p<0.01), kdm1a (r=0.77, p<0.01), cdc42 (r=0.82, p<0.01), hnrnpr

(r=0.80, p<0.01), srsf4 (r=0.79, p<0.01), ythdf2 (r=0.76, p<0.01),

szrd1 (r=0.75, p<0.01), apoc2 (r=-0.41, p<0.01), c8g (r=-0.34,

p<0.01), hp (r=-0.38, p<0.01), c3 (r=-0.37, p<0.01), itih4 (r=-

0.36, p<0.01), APOA1 (r=-0.33, p<0.01), CFB (r=-0.28, p<0.01),

A1BG (r=-0.32, p<0.01), SERPINA3 (r=-0.21, p<0.01), APOC1 (r=-
A

B

D

E

C

FIGURE 2

DNAJC8 expression is closely associated with HCC prognosis. (A) Survival analysis of DNAJC8 expression (left: overall survival; middle: progression-
free survival; right: disease-specific survival) in TCGA. (B) The ROC curve of DNAJC8. (C) Survival analysis of DNAJC8 expression in GEPIA.
(D) Relationship between DNAJC8 expression and clinical characteristics. (E) Logistics regression analysis between DNAJC8 and clinical
characteristics. *: p<0.05; **: p<0.01.
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0.42, p<0.01) (Figure 3A). We then conducted enrichment

analyses in terms of MFs, CCs, and BPs and KEGG pathways

analyses (Figure 3B). GSVA correlation analysis was performed

(Figure 3C). They all showed that the signaling pathways

associated with DNAJC8 were spliceosome (KEGG, p<0.01),

nucleocytoplasmic transport (KEGG, p<0.01), DNA replication

(KEGG p<0.01), mRNA surveillance pathway (KEGG, p<0.01),

cell cycle (KEGG, p<0.01), mitotic spindle (GSVA, r=0.54, p<0.01),

G 2 M _ c h e c k p o i n t ( G S V A , r = 0 . 5 3 , p < 0 . 0 1 ) ,
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PI3K_Akt_mTOR_signal ing (GSVA, r=0.53 , p<0.01) ,

MYC_targets_V1 (GSVA, r=0.52, p<0.01), E2F_targets (GSVA,

r=0.50, p<0.01), spermatogenesis (GSVA, r=0.45, p<0.01),

fatty_acid_metabolism (GSVA, r=-0.30, p<0.01), coagulation

(GSVA, r=-0.30, p<0.01), bile_acid_metabolism (GSVA, r=-0.31,

p<0.01), and xenobiotic_metabolism (GSVA, r=-0.36, p<0.01).

Finally, through the string database analysis, we found that

DNAJB6 (score=0.746), CCT5 (score=0.782), HSPA14

(score=0.732), DNAJC18 (score=0.860), U2SURP (score=0.839),
A

B

DC

FIGURE 3

Enrichment analysis of DNAJC8-related genes. (A) The heat map of DNAJC8-related genes (left: positive correlation; right: negative correlation).
(B) GO and KEGG analysis about DNAJC8-related genes. (C) GSVA analysis of DNAJC8-related genes. (D) PPI analysis of DNAJC8.
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TRAP1 (score=0.811), SMNDC1 (score=0.940), SRSF1

(score=0.929), SRSF9 (score=0.751), and SF3A2 (score=0.885)

may have protein-protein interactions with DNAJC8 (Figure 3D;

Supplementary Figure 1B).
Abnormal expression of DNAJC8 affects
tumor immune microenvironment

The composition or function of stromal cells, especially

immune cells in tumor microenvironment can affect cancer
Frontiers in Immunology 07286
progression. GSE datasets analysis showed that the expression of

DNAJC8 was positively correlated with the enrichment of NK

CD56 bright (r=0.185, p<0.001), T helper (r=0.269, p<0.001), and

Th2 cells (r=0.382, p<0.001), while negatively correlated with the

enrichment of Th17 cells (r=-0.171, p<0.001), killer toxic cells (r=-

0.181, p<0.001), DC cells (r=-0.190, p<0.001), and pDC cells (r=-

0.231, p<0.001) (Figure 4A). TCGA data analysis revealed that

DNAJC8 expression was positively correlated with the infiltration

of B cells (r=0.24, p<0.0001), CD8_naive (r=0.16, p<0.005), DC

(r=0.16, p<0.005), Tr1 (r=0.18, p<0.001), nTreg (r=0.25, p<0.0001),

and iTreg cells (r=0.22, p<0.0001), while negatively correlated with
A

B

C

FIGURE 4

Abnormal expression of DNAJC8 affects tumor immune microenvironment. (A) Immune infiltration analysis using GSE datasets. (B) Immune
infiltration analysis using TCGA datasets. (C) Relationship between DNAJC8 and immune checkpoints.
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the infiltration of monocytes (r=-0.23, p<0.0001), NK (r=-0.16,

p<0.005), Th17 (r=-0.19, p<0.001), and MAIT cells (r=-0.29,

p<0.0001) (Figure 4B). In addition, DNAJC8 levels was positively

correlated with the expression of immune molecular checkpoint

TIGIT (r=0.17, p<0.01), CTLA4 (r=0.14, p<0.01), CD274 (r=0.13,

p<0.05), LAG3 (r=0.26, p<0.0001), and PDCD1 (r=0.13, p<0.05)

(Figure 4C). These data indicated that DNAJC8 may be involved in

the formation of tumor immunosuppressive microenvironment.
DNAJC8 knockdown inhibits HCC cell
proliferation and induces apoptosis

Consistent with the above results of TCGA, DNAJC8

expression in tumor tissues was much higher than that in

adjacent tissues in seven pairs of HCC patients’ samples
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(Figure 5A). Meanwhile, immunohistochemical result further

confirmed the upregulated DNAJC8 expression in the tumor

tissues (Figure 5C). In order to explore the biological roles of

DNAJC8, among the nine HCC cell lines, MHCC-97H and Huh-

7 with relatively high DNAJC8 expression were selected for

subsequent functional experiments (Figure 5B). DNAJC8 was

successfully knockdown as shown in Supplementary Figures 1C,

D. The proliferation ability of HCC cells with inhibited DNAJC8

expression was considerably impaired according to CCK-8

assays (Figure 6A), clone formation assays (Figure 6B), and

EdU assays (Figure 6C). Furthermore, interference with

DNAJC8 expression can induce apoptosis in HCC cells

(Figure 6D). The expression of pro-apoptotic protein Bax was

upregulated after DNAJC8 knockdown (Figure 6E). These

indicated that DNAJC8 could promote the proliferation and

inhibit apoptosis of HCC cells.
A

B

C

FIGURE 5

DNAJC8 expression in patients and cell lines. (A) Expression of DNAJC8 in paired samples from HCC patients. (B) Expression of DNAJC8 in HCC cell
lines. (C) Immunohistochemical staining of HCC patient tissues (n=11). *: p<0.05; **: p<0.01; ***: p<0.001.
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Discussion

DNAJC8, a member of HSP40 family, reports about its

functional effects especially in tumor are scarce. Our study found

that DNAJC8 expression was upregulated in HCC and has

prognosis implications, indicating it may mediate the regulation

of biological functions in HCC. HSP40 binds to HSP70 and

activates its ATPase activity, which is mainly performed by His-
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Pro-Asp (HPD) motif in the conserved J region (23). Except for the

conserved J region, there is no sequence similarity between DNAJCs

and DNAJAs/DNAJBs (24). Hence, it is difficult to predict the

function of DNAJCs according to DNAJAs and DNAJBs. Based on

the context, it is necessary to analyze the function of DNAJC8 using

bioinformatics analyses.

Analysis of TCGA data showed that HCC patients with higher

expression of DNAJC8 have higher TP53 mutation frequencies. The
A

B

D
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C

FIGURE 6

DNAJC8 knockdown inhibits HCC cell proliferation and induces apoptosis. (A) Growth curve of Huh-7 and MHCC-97H. (B) Colony formation assay
of Huh-7 and MHCC-97H. (C) EDU assay of Huh-7 and MHCC-97H. (D) Apoptosis analysis of Huh-7 and MHCC-97H. (E) The up-regulation of Bax
caused by the knock down of DNAJC8. *: p<0.05; **: p<0.01; ***: p<0.001.
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relationship between HSP40 family and TP53 has been extensively

verified. DNAJA1/HDJ2 directly binds to mutant TP53 (R175H,

C176F) to prevent its ubiquitin-proteasome degradation (25).

DNAJA3/Tid1 can bind to wild-type or mutant TP53, promoting

its mitochondrial translocation, and thus inducing apoptosis (26).

DNAJC7 can bind to the DNA binding region of TP53, stabilizing

TP53 and further activating it to promote apoptosis (27). However,

DNAJC2/ZRF1 promotes tumor development by inhibiting the

function of wild-type TP53 (28). Thus, TP53 pathway most likely

participate in the mechanistic regulation of DNAJC8. Moreover,

DNAJC8 co-expressed gene sets analysis showed these significantly

correlated genes were mainly involved in the regulation of

chromatin and spindle regions, and their functions were mostly

related to DNA binding. GO and KEGG analyses showed that

DNAJC8 was associated with DNA replication, spindle function,

and chromosome segregation. GSVA analysis showed a strong

positive correlation between DNAJC8, mitotic spindle and G2/M

checkpoint. These analyses suggest that the abnormal expression of

DNAJC8 is associated with cell cycle. Combined with the fact that

TP53 is an important regulatory protein in G2/M phase (29, 30), we

hypothesized that DNAJC8 regulates HCC cell proliferation

mediated by the TP53 pathway. However, we detected the

expression of P53 protein after DNAJC8 knockdown, but no

significant difference was found (Supplementary Figure 2B).

A c c o r d i n g t o t h e C e l l o s a u r u s d a t a b a s e ( h t t p s : / /

www.cellosaurus.org/), both Huh-7 (c.659A>G) and MHCC-97H

(c.151G>T) have P53 mutation, so it may not be appropriate to

explore the regulatory relationship between DNAJC8 and P53 using

these two cell lines. We will use HCC cells with different states of

P53 in the future to explore the detailed regulatory mechanism.

The relationship between HSP40 family and tumor immune

microenvironment remains unclear. Thus, exploring the interaction

between DNAJC8 and immune cell infiltration will help us further

understand the underlying mechanism of DNAJC8. Our analysis

verified that the infiltration of killer cells (mononuclear-

macrophages, NK, CD8+T, and MAIT cells) decreased, while the

infiltration of helper cells (Th2, Tr1, nTreg, iTreg, NK CD56

bright), playing an immunomodulatory role and inhibiting the

function of killer cells, increased in HCC tissues with higher

DNAJC8 expression. These indicate that DNAJC8 is associated

with tumor immunosuppressive microenvironment. However, the

infiltration trend of DC cells was not consistent between the two

databases analyses. Therefore, further verification in the follow-up

study is needed. In addition, immune checkpoint molecular

expression analysis also confirmed that five immune checkpoint

molecular were significantly positively correlated with DNAJC8

expression, suggesting that DNAJC8 may promote tumor immune

escape through checkpoint pathway. Therefore, the high expression

of DNAJC8 is significantly related to immunosuppression

microenvironment of cancer and detailed experimental

investigation is needed in the future.

In order to investigate the function of DNAJC8, we used

siRNA technology to knockdown DNAJC8 in MHCC-97H

(TP53:c.151G>T) and Huh-7 (TP53:c.659A>G) cell lines. The
Frontiers in Immunology 10289
results demonstrate that cell proliferation was inhibited and

apoptosis was induced. In fact, clinical correlation analysis

indicated that DNAJC8 expression was closely related to

vascular invasion, and the HSP40 family had been proved to

play an important role in tumor metastasis. Zhang et al. found that

DNAJB6 promote rectal cancer cell invasion through IQGAP1/erk

signaling pathway (31). It has been reported that DNAJA1 can

stabilized the expression of EF1A1 by binding miR-205-5p to

enhance the metastasis progress (32). Therefore, DNAJC8 is also

likely to be involved in modulation of cancer metastasis. As

DNAJC8 knockdown significantly injured cells in vitro,

migration-related experiments were not explored.
Conclusions

DNAJC8 expression is upregulated in HCC and can serve as a

prognostic indicator for HCC. DNAJC8 promotes the proliferation

and inhibits apoptosis of HCC cells and interferes with the tumor

immune response. Undoubtedly, DNAJC8 is worthy of further

exploration as a therapeutic target for HCC.
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5Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical
University, Taipei, Taiwan, 6Navi Bio-Therapeutics Inc., Taipei, Taiwan, 7The Center of Translational
Medicine, Taipei Medical University, Taipei, Taiwan, 8Department of Pathology, School of Medicine,
College of Medicine, Taipei Medical University and Taipei Medical University Hospital, Taipei, Taiwan,
9Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
Background:Nectin-4 is a novel biomarker overexpressed in various types of

cancer, including breast cancer, in which it has been associated with poor

prognosis. Current literature suggests that nectin-4 has a role in cancer

progression and may have prognostic and therapeutic implications. The

present study aims to produce nectin-4-specific single-chain variable

fragment (scFv) antibodies and evaluate their applications in breast cancer

cell lines and clinical specimens.

Methods: We generated recombinant nectin-4 ectodomain fragments as

immunogens to immunize chickens and the chickens' immunoglobulin

genes were amplified for construction of anti-nectin-4 scFv libraries using

phage display. The binding capacities of the selected clones were evaluated

with the recombinant nectin-4 fragments, breast cancer cell lines, and

paraffin-embedded tissue sections using various laboratory approaches.

The binding affinity and in silico docking profile were also characterized.

Results: We have selected two clones (S21 and L4) from the libraries with

superior binding capacity. S21 yielded higher signals when used as the primry

antibody for western blot analysis and flow cytometry, whereas clone L4

generated cleaner and stronger signals in immunofluorescence and
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immunohistochemistry staining. In addition, both scFvs could diminish

attachment-free cell aggregation of nectin-4-positive breast cancer cells. As

results from ELISA indicated that L4 bound more efficiently to fixed nectin-4

ectodomain, molecular docking analysis was further performed and

demonstrated that L4 possesses multiple polar contacts with nectin-4 and

diversity in interacting residues.

Conclusion: Overall, the nectin-4-specific scFvs could recognize nectin-4

expressed by breast cancer cells and have the merit of being further explored

for potential diagnostic and therapeutic applications.
KEYWORDS

phage display, single-chain variable fragment antibody, nectin-4, tumor marker,
breast cancer
1 Introduction

The recombinant antibody molecule single-chain variable

fragment (scFv) has emerged as a compelling variant of intact

monoclonal antibodies (mAb) due to its reduced molecular size and

lower production cost. scFv is an engineered antibody fragment

comprising the heavy and light chains' variable domains (VH and

VL) joined by a short flexible peptide linker. It retains complete

monovalent targeting affinity and specificity (1), rendering it

theoretically viable for all bench and bedside applications

currently relying on intact mAb. Moreover, as a minimized

antibody lacking the fragment crystallizable (Fc) domain, scFv

exhibits superior pharmacokinetic properties, notably enhanced

tumor penetration and low retention rates in non-target organs

(2, 3). Furthermore, with regard to production, there is relative ease

in and preference for constructing scFv due to the advancement in

genetic engineering and phage display technology (3), an in vitro

method that can produce highly diverse libraries for high-affinity

antibody selection (4). scFv can also be efficiently and economically

produced in bacteria expression systems since they do not require

glycosylation (5). Finally, scFv has excellent potential to be modified

and developed into diverse immunoconjugates with varied and

enhanced functionality for clinical and laboratory uses (3). As a

promising alternative to intact mAb, scFv variants have entered

clinical development, representing about 40% of clinically evaluated

antibody fragments (6), with cancer being the top target of patented

scFvs (3).

Nectin-4, also known as poliovirus receptor-related 4 (PVRL4),

is an immunoglobulin (Ig) superfamily member of the nectin family

which regulates the formation of cell-cell junctions (7). This

adhesion junction protein has three Ig-like domains in its

extracellular portion, including one variable (V) type domain and

two constant (C) type domains. In contrast to the other members of

the nectin family, nectin-4 is highly expressed in the placenta (hence
02292
also an embryonic protein) but modestly expressed in the trachea

and skin and is absent in most normal human tissues (8). Recently,

nectin-4 has been identified as a tumor marker in several types of

carcinoma, including lung (9), breast (10), ovarian (11), esophageal

(12), gastric (13), pancreatic (14), liver (15), colon (16), and bladder

(17) cancers, and has been suggested to promote carcinogenesis

(18–22). The upregulation of nectin-4 was first reported in breast

cancer, especially in ductal carcinomas, and positively correlated

with basal-like markers, which often implies poor prognosis (10).

This observation was further supported by a bigger dataset where

nectin-4-high triple-negative breast cancer patients had shorter

metastasis-free survival (23). Nectin-4 expression is also related to

shorter disease-free survival and relapse-free survival in luminal A

(24) and luminal B human epidermal growth factor receptor 2

(HER2)-negative (25) breast cancers, suggesting that nectin-4 could

be a potential prognostic marker and a therapeutic target of

breast cancer.

Given the high level of expression and importance of nectin-4 in

cancers, including breast cancer, and the benefits of scFv as an

emerging diagnostic and therapeutic tool, we produced anti-nectin-

4 scFvs using phage display and characterized their use for detecting

nectin-4 in breast cancer cell lines and tissue sections. Their impact

on breast cancer cells were also evaluated.
2 Materials and methods

2.1 Construction and purification of
nectin-4 protein fragments

Two recombinant protein fragments, r342p and r864p, were

constructed based on the extracellular region of human nectin-4

(accession number: NM_030916). Fragment r342p contained only

the membrane-distal V-type domain, while r864p contained all
frontiersin.org
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three Ig-like domains. The nucleotide sequence of r342p and r864p

were amplified from vectors containing nectin-4 (26) and cloned

into the pET-21a vector. The plasmids were amplified in Escherichia

coli (E. coli) with broth containing 50 ml/ml ampicillin and induced

by 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) at 37°C

overnight for protein expression. Pellets were then collected and

resuspended in histidine (His) binding buffer containing 6 M urea.

The cell membrane was disrupted by sonication and precipitated to

release the proteins. Recombinant nectin-4 fragments were purified

from the supernatants using Ni Sepharose High Performance (GE

Healthcare Life Science, Pittsburgh, PA, USA) according to the

manufacturer’s instructions. The purified nectin-4 fragments were

further analyzed with sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) and western blot.
2.2 Immunization and purification of
chicken polyclonal IgY

The experimental protocol for chicken immunization was

approved by the Institutional Animal Care and Use Committee of

Taipei Medical University (TMU). Purified nectin-4 fragments

r342p or r864p were dissolved in phosphate buffered saline (PBS)

and mixed with complete (for the first immunization) or

incomplete Freund’s adjuvant (Sigma-Aldrich, St. Louis, MO,

USA). The solutions were then intramuscularly injected into

female Leghorn (Gallus domesticus) hens for four (r864p) or five

(r342p) dosages at the interval of 7 days as previously described

(27). Eggs were collected before and after each immunization.

Polyclonal IgY were then purified from the egg yolks using the

previously reported dextran sulfate method (28) and analyzed for

their binding capacity to the recombinant nectin-4 fragments using

western blot and enzyme-linked immunosorbent assay (ELISA).
2.3 Construction of scFv libraries

Monoclonal scFv antibodies were generated using the

previously described phage display method (29, 30) with a few

modifications. To establish the cDNA libraries, the immunized hens

were sacrificed after the final immunization, and total RNA was

extracted from the spleens using Trizol Reagent (Invitrogen,

Carlsbad, CA, USA) following the manufacturer’s instructions.

After reverse transcription-PCR (RT-PCR), the synthesized cDNA

was used to amplify the variable regions of light chains (VL) and

heavy chains (VH) of chicken immunoglobulin genes with the

primers (Supplementary Table S1): CSCVHo-F and CSCG-B were

used to amplify VH with a short linker (GQSSRSS), CSCVHo-FL

and CSCG-B were used to amplify VH with a long linker

(GQSSRSSGGGGSSGGGGS), and CSCVK and CKJo-B were used

to amplify VL. This would generate a short linker library and a long

linker library for each immunogen. The purified VH and VL DNA

fragments were then pooled and further amplified with CSC-F and

CSC-B primers to generate full-length scFv genes. These full-length

scFv genes were cloned into a pComb3X vector with SfiI (New

England Biolabs, Ipswich, MA, USA) to generate constructs that
Frontiers in Immunology 03293
encoded a 6x His tag and a HA tag in their C terminus. The purified

plasmids were electroporated into E. coli, and the transformed

bacteria were then infected with M13 helper phages. Recombinant

phages in the supernatant were collected by precipitation with 4%

polyethylene glycol 8000 (PEG-8000; Sigma-Aldrich) and 3% NaCl

(Merck, Darmstadt, Germany) and resuspended in PBS.

To isolate and amplify the phage-displayed scFv libraries with

high specificity, the biopanning steps were carried out using a

similar method as previously described (27). Four rounds of

biopanning were performed to selectively amplify the phages that

displayed nectin-4-specific scFv antibodies. After the fourth round

of biopanning, total DNA from the amplified phages was purified

and used to transform the heat-shock competent TOP10F’ E. coli.

Colonies were picked and amplified, after which 0.5 mM IPTG was

added to induce scFv expression. Bacterial cultures were then

collected, resuspended in His-binding buffer (20 mM sodium

phosphate, 0.5 M NaCl, 20 mM imidazole, pH 7.4), and lysed by

sonication to release the His-tagged scFvs, which were purified

using Ni2+ Sepharose columns as previously described (27). The VL

and VH genes of the scFv clones were sequenced by Genomics

(Taipei, Taiwan) using the OmpA primers. Amino acid sequences

of the clones were then determined and aligned to those of the

chicken immunoglobulin germline using the BioEdit

alignment program.
2.4 Cell culture

MCF-7, MDA-MB-231, BT-474, MDA-MB-453, and Vero cells

were acquired from the American Type Culture Collection (ATCC;

Manassas, VA, USA). All cells were maintained in Dulbecco’s

Modified Eagle Medium (Gibco, Thermo Fisher Scientific,

Waltham, CA, USA) containing 10% fetal bovine serum (FBS;

Gibco), 10 µg/ml of gentamicin (Gibco) and 0.5 µg/ml of

Amphotericin B (Gibco). Vero cell overexpressing human nectin-

4 (Vero-hNectin-4) was generated using a retroviral transduction

method and cultured in the above medium containing additional

1 mg/ml of G418 (InvivoGen, San Diego, CA, USA).
2.5 Western blot analysis

Purified proteins or whole cell lysates were analyzed using

standard western blot analysis. Briefly, samples were separated by

SDS-PAGE, and the gel was then stained with Coomassie blue for

protein visualization or transferred to a polyvinylidene fluoride

(PVDF) membrane for blocking and antibody incubations. For the

detection of recombinant nectin-4, the membrane was incubated

with mouse anti-His IgG (1:3000; Bioman Scientific, New Taipei

City, Taiwan) and secondary horseradish peroxidase (HRP)-

conjugated rabbi t ant i -mouse IgG (1 :5000 ; Jackson

ImmunoResearch, West Grove, PA, USA). The membrane was

then visualization by 3, 3’-diaminobenzidine tetrahydrochloride

(DAB) staining. For the detection of endogenous nectin-4 from

whole cell lysates using scFv, the membrane was incubated with

scFv (10 µg/ml), mouse anti-HA secondary antibody (1:5000; Cat#
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66006-1, Proteintech, Rosemont, IL, USA), and HRP-conjugated

anti-mouse tertiary antibody (1:5000; Cat# 7076, Cell Signaling

Technology, Danvers, Massachusetts, USA). Finally, the membrane

was stained with Clarity Western ECL Substrate (Bio-Rad) and

visualized by ImageQuant™ LAS 4000 (GE Healthcare

Life Science).
2.6 Indirect ELISA

For the indirect ELISA, 96-well half-area plates were coated

with either recombinant nectin-4 fragment or BSA (0.25 µg per

well) and blocked with 5% skim milk. To determine the binding

capacity of IgY, the coated wells were incubated with serially diluted

chicken IgY and incubated with HRP-conjugated donkey anti-

chicken IgY (1:5000; Jackson ImmunoResearch). To determine

the expression of nectin-4-specific scFvs on the phages after

biopanning, 2x diluted phages were added to the wells and

further incubated with HRP-conjugated mouse anti-M13 phage

antibody (1:3000; GE Healthcare Life Science). To determine the

binding capacity of scFvs, the coated wells were incubated with

serially diluted scFv primary antibody, goat anti-chicken light chain

secondary antibody (1:3000; Bethyl, Montgomery, TX, USA), and

the tertiary HRP-conjugated donkey anti-goat IgG (1:5000). All

incubations were carried out at 37°C for 1 h, and washing steps with

PBST were included between all incubations. After the final

incubation, the wells were washed and stained with 3,3’,5,5’-

tetramethylbenzidine (TMB; Sigma), and the reaction was

stopped by 1 N HCl before the absorbance was read at 450 nm

using a Synergy HT plate reader (BioTek, Winooski, VT, USA).
2.7 Competitive ELISA

Free nectin-4 fragment r864p was serially diluted and mixed with

S21 (20 mg/ml, approximately 666.67 nM) or L4 (1 mg/ml,

approximately 33.33 nM) and incubated at 25°C for 1 h, before the

mixture was added to plates coated with r864p and incubated at 37°C

for 1 h. The blocking, washing, staining, and detection steps were

performed using the abovementioned methods. The dissociation

constant KD is approximately equal to the concentration of free

antigen when the half-maximal ELISA signal is acquired (31). KD

values were calculated with variable slope nonlinear regression

analysis using GraphPad 9.
2.8 Cell-based ELISA

Cells seeded in 24-well plates (2 x 105 cells/well) were washed and

fixed with 4% paraformaldehyde (PFA; Affymetrix, Santa Clara, CA,

USA) before incubation in 3% BSA in PBS blocking buffer for 1 h at

37°C. The cells were then incubated with various concentrations of

scFvs and goat anti-chicken light chain secondary antibody (1:5000).

Subsequently, the cells were washed and further incubated with the

tertiary HRP-conjugated donkey anti-goat IgG (1:10000). All

incubations were carried out at 37°C for 1 h. After the final
Frontiers in Immunology 04294
incubation, the cells were washed and stained with TMB as

described above.
2.9 Flow cytometry

Cells (5 x 104 cells/sample) were fixed with 10% ethanol and

blocked in 3% FBS in PBS blocking buffer. For detection of cell

surface nectin-4 using scFv, cells were incubated with scFv primary

antibody (37.5 mg/ml), goat anti-chicken light chain secondary

antibody (1:400), and rabbit anti-goat IgG Fluor 488-labeled

tertiary antibody (1:400; AnaSpec, Fremont, CA, USA). Staining

with the commercial PE-conjugated anti-Nectin-4 antibody

(FAB2659P, R&D Systems) and its isotype control (IC0041P,

R&D Systems) were performed following the manufacturer's

instructions and included for comparison. Data were acquired

with the BD FACSCalibur Cell Analyzer (BD Biosciences, San

Jose, CA, USA).
2.10 Immunofluorescence staining

Cells seeded in 96-well plates (2 x 104 cells/well) were washed

and fixed with 4% PFA for 10 min at room temperature, then

incubated in 3% BSA in PBS blocking buffer for 1 h at room

temperature. After which, cells were incubated with scFv primary

antibody (0.1 mg/ml), mouse anti-HA secondary antibody (1:500),

and goat anti-mouse Alexa Fluor 488 (1:300; Thermo Fisher

Scientific) tertiary antibody. All antibody dilutions were prepared

in 3% BSA blocking buffer. Finally, the cells were stained with

Hoechst nuclear stain (1:500; Sigma-Aldrich) and examined using

Invitrogen EVOS™ FL Cell Imaging System (Thermo

Fisher Scientific).
2.11 Immunohistochemistry staining

Paraffin sections of breast ductal carcinomas and adjacent

non-tumor tissues were obtained from Taipei Medical University

Joint Biobank as approved by the TMU-Joint Institutional Review

Board. Informed consent was waived. Before staining, sections

were deparaffinized with xylene and ethanol, and antigen retrieval

was performed using the heat-induced method at 121°C for 10

min. Endogenous HRP was inactivated by treating the sections

with 3% hydrogen peroxide for 5 min. The sections were then

blocked with Background Sniper (Biocare Medical, Pacheco, CA,

USA) for 15 min at room temperature. For scFv staining, the slides

were incubated with scFv primary antibody (10 mg/ml), mouse

anti-HA secondary antibody (1 mg/ml), and the Starr Trek

Universal HRP Detection System (Biocare Medical, Pacheco,

CA, USA), and counter-stained with hematoxylin. For the

commercial anti-nectin-4 antibody staining, the slides were

incubated with a polyclonal rabbit anti-nectin-4 antibody (1:600;

Cat# HPA010775, Sigma-Aldrich) and visualized with the Starr

Trek Universal HRP Detection System and hematoxylin as

described above.
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2.12 Clustering assay

Self-clustering of breast cancer cells was analyzed as previously

reported (18). Cells were first detached with enzyme-free cell

dissociation buffer (Thermo Fisher Scientific) and resuspended in

complete medium. Then 1 x 105 cells were transferred to an

Eppendorf tube and incubated in 1 ml complete medium with or

without scFv (10 mg/ml) at room temperature. After 1 h, cells were

poured into 6-well plates and visualized using Invitrogen EVOS™

FL Cell Imaging System for counting. A total of 5 random fields

were analyzed for each well, and clusters with over 5 cells

were counted.
2.13 Protein-protein docking analysis

The homology model of the scFv L4 was created using SWISS-

MODEL (Swiss Institute of Bioinformatics; Basel, Switzerland)

based on a scFv template (PDBID: 5VF6) (32). Protein-protein

docking was performed using ClusPro 2.0’s antibody docking mode

(33). The nectin-4 crystal structure was obtained from the PDB
Frontiers in Immunology 05295
database (PDBID: 4FRW) and used as the ligand molecule, whereas

the scFv homology model was used as the receptor molecule. All

models were analyzed using the PyMOL Molecular Graphics

System (Version 1.7.4, Schrödinger, LLC; Portland, OR, USA) (34).
3 Results

3.1 Generation of nectin-4-specific
polyclonal IgY from immunized chickens

Like the other members in the nectin family, nectin-4 has three

Ig-like domains in its extracellular portion, including one V-type

and two C-type domains (8). To generate polyclonal antibodies

against nectin-4, we immunized chickens with recombinant nectin-

4 fragments r342p (V domain) and r864p (V-C-C domains). The

nectin-4 fragments, after SDS-PAGE and Coomassie blue staining,

appeared at the positions of approximately 15 kDa (r342p;

Figure 1A) and 35 kDa (r864p; Figure 1B), respectively.

Polyclonal IgY antibodies purified from the immunized chickens

were used as primary antibodies to detect these protein fragments
A

B D

C

FIGURE 1

Binding analyses of polyclonal IgY against recombinant nectin-4 fragments r342p and r864p. Hens were immunized with nectin-4 fragments r342p
or r864p for 5 or 4 cycles, respectively, and polyclonal IgY was purified from the egg yolks after each immunization cycle. (A, B) The r342p and
r864p fragments were visualized on SDS-PAGE gel with Coomassie blue staining or transferred to PVDF membrane and immunoblotted with the IgY
collected before (“Pre”) or after each immunization cycle. The molecular weight marker (M) is shown on the left. Representative data are shown.
(C, D) Pre-immunization IgY (“Pre IgY”) or IgY collected after the last immunization cycle (“5th anti-r342p IgY” or “4th anti-r864p IgY”) were serially
diluted and evaluated by immunogen- or BSA-coated plate-based indirect ELISA. BSA served as a negative control antigen (mean ± SD, N=2).
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on western blots. As shown in Figure 1A, the presence of anti-r342p

antibodies became prominent after 4 cycles of immunization. On

the other hand, anti-r864p antibodies were generated after 2 cycles

of immunization (Figure 1B). The binding specificity of these

antibodies was further evaluated with ELISA. As shown in

Figures 1C, D, the anti-r342p and anti-r864p antibodies were

specific and bound robustly to their immunogens (O.D. > 1.0 for

anti-r342p IgY, and O.D. > 1.5 for anti-r864p IgY) with minimal

reactivity to BSA. In contrast, the pre-immunization IgY did not

show specific binding to the nectin-4 fragments or BSA. These

results indicate that we successfully generated nectin-4-specific

polyclonal IgY, which were used for the following construction of

scFv phage libraries.
3.2 ScFv clones in the anti-r342p long
linker and anti-r864p short linker phage
libraries demonstrate the best nectin-4-
binding ability

We next attempted to produce anti-nectin-4 scFv antibodies using

the phage display method. Four scFv phage libraries were generated
Frontiers in Immunology 06296
based on the amplified chicken antibody sequences, namely the anti-

r342p short linker library, anti-r342p long linker library, anti-r864p

short linker library, and anti-r864p long linker library. These four

libraries were subjected to four rounds of biopanning to amplify the

phages that expressed nectin-4-specific scFv antibodies. Phages

collected before and after each round of biopanning were then

analyzed with ELISA for their binding capacity to r864p, the

recombinant nectin-4 fragment containing all three extracellular Ig-

like domains. As shown in Figure 2A, after 3 rounds of biopanning, the

binding capacity of the anti-r342p long linker and anti-r864p short

linker libraries substantially increased. In contrast, the anti-r342p short

linker and anti-r864p long linker libraries had low binding activity to

the nectin-4 fragment. None of the libraries reacted to BSA.

To express the scFv antibodies from the anti-r342p long linker and

anti-r864p short linker libraries, total DNA from the phages were

extracted after the fourth-round biopanning and used to transform

TOP10F’ E. coli cells. Thirteen and 26 colonies were randomly picked

from the anti-r342p long linker and anti-r864p short linker libraries,

respectively, for protein purification. Seven colonies from the anti-

r342p long (L) linker library and 12 colonies from the anti-r864p short

(S) linker library were then selected for sequence analysis based on their

specific binding to nectin-4. The VL and VH amino acid sequences of
frontiersin.or
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FIGURE 2

Construction of anti-nectin-4 scFv libraries. (A) Anti-r342p and anti-r864p phages from each biopanning cycle were diluted 10x and evaluated for
their binding capacity to r864p using plate-based indirect ELISA. BSA served as a negative control antigen (mean ± SD, N=2). (B) Purified scFvs from
the representative clones were serially diluted (starting concentration: 10 mg/ml) and evaluated for their binding capacity by r864p-coated plate-
based indirect ELISA. BSA served as a negative control antigen (mean ± SD, N=2).
g

https://doi.org/10.3389/fimmu.2023.1292019
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1292019
each clone were aligned to those of the chicken immunoglobulin

germline. Based on the alignment results, the mutations were mainly

found in the complementarity-determining regions (CDR), which

generate the paratope for antigen binding. The 7 colonies from the

anti-r342p long linker library shared identical amino acid sequences

(representative clone: L4), and the 12 colonies from the anti-r864p

short linker library resulted in 5 different sequences (representative

clones: S2, S4, S17, S21, and S24). After assessing the binding capacity

of the representative clones as primary antibodies using ELISA

(Figure 2B), clones L4 and S21 were selected for subsequent

characterization due to their superior activity of recognizing nectin-4

fragment r864p. Clone S2 was not further pursued due to its lower

production yield.
3.3 Clones L4 and S21 successfully
recognize nectin-4 expressed on breast
cancer cells

To evaluate the application of L4 and S21, we next examined

whether these scFvs could detect endogenous nectin-4 expressed in
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human breast cancer cell lines, including MCF-7 (luminal type A),

BT-474 (luminal type B HER2-positive), and MDA-MB-453 (triple

negative) (10, 26, 35). The nectin-4-negative MDA-MB-231 breast

cancer cells served as a negative control. When used in western

blotting as primary antibodies, S21, but not L4, successfully detected

nectin-4 in the whole cell lysates at approximately 60 kDa

(Figure 3A). Both clones could recognize the endogenous nectin-4

in MCF-7 cells using cell-based ELISA, with S21 generating higher

signals than L4 after serial dilutions (Figure 3B). In flow cytometry

analysis, S21 also produced a comparable staining pattern to the

commercial PE-conjugated anti-nectin-4 antibody FAB2659P

(Figure 3C). When used for immunofluorescence surface staining,

both L4 and S21 could stain nectin-4 on MCF-7 cells (Figure 4A).

Notably, L4 produced little background in the nectin-4-negative

MDA-MB-231 breast cancer cell (Figure 4B), whereas S21

generated higher background (data not shown). L4 could also

stain the other nectin-4-positive breast cancer cell lines (including

BT-474 and MDA-MB-453) and Vero-hNectin-4 cells. These

results suggest that the two clones, S21 and L4, could have

different research applications, with L4 having the additional

advantage for cell staining.
A B

C

FIGURE 3

In vitro binding analyses of the anti-nectin-4 scFvs S21 and L4. (A) The scFvs (10 mg/ml) were used as primary antibodies to detect endogenous
nectin-4 in MCF-7, BT-474, and MDA-MB-453 cells in western blot. MDA-MB-231 served as a negative control. Representative data are shown.
(B) The scFvs were used as primary antibodies to stain MCF-7 cells in cell-based ELISA (mean ± SD, N=2). RTS3 (an anti-snake venom scFv) served as
an unrelated control. A control with only the secondary and tertiary antibodies (‘Blank’) was included. (C) The scFvs were used as primary antibodies
to stain MCF-7 cells in flow cytometry (37.5 mg/ml). Black and red solid lines indicate unstained and stained samples. The blank and RTS3 controls
were also included. The commercial PE-conjugated anti-nectin-4 antibody (FAB2659P, R&D Systems; red solid line) and its isotype control (IC0041P,
R&D Systems; tinted with black line) were included for comparison. Representative data are shown.
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3.4 Immunohistochemistry staining of
paraffin-embedded breast cancer tissue
sections using scFv L4

To validate the feasibility of using the nectin-4-specific scFv

L4 on clinical samples as a diagnostic tool, we further performed

immunohistochemistry (IHC) staining of breast ductal

carcinoma paraffin-embedded tissue sections with the scFv. As

shown in Figure 5, L4 yielded comparable staining results to the

commercial anti-nectin-4 antibody HPA010775 (Sigma-

Aldrich), with minimal background on the non-tumor tissues

(NT) and strong signals on the tumor tissues (T1-T5) of different

molecular subtypes. This suggests the high sensitivity of scFv L4

binding to native nectin-4 molecule, which supports its potential

to be further developed as a tumor-marker-specific diagnostic

and/or therapeutic agent.
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3.5 Assessment of the scFvs’ anti-breast
cancer effect in vitro

Given that nectin-4 plays a vital role in the carcinogenesis of breast

cancer, we further explored whether the scFvs could inhibit cell growth

in vitro. Our initial results indicated that the scFvs are not significantly

cytotoxic to nectin-4-positive and nectin-4-negative breast cancer cell

monolayers (Supplementary Figure S1). Nonetheless, considering

nectin-4’s contribution to cell-to-cell attachment and tumor cells’

anchorage-independent growth (18), we then performed a clustering

assay to evaluate whether the scFvs could inhibit breast cancer cell

aggregation, which is important for tumor formation (18). As shown in

Figure 6, nectin-4-positive breast cancer cells easily formed cell clusters

in suspension. More importantly, such self-clustering phenomenon

was decreased by the treatment of both scFvs (Figure 6), indicating

their ability to inhibit nectin-4-positive tumor cell aggregation.
A

B

FIGURE 4

Immunofluorescence staining of breast cancer cell lines with anti-nectin-4 scFv clones. Clone L4 or S21 was used as the primary antibody (0.1 mg/ml) to
detect endogenous nectin-4 in (A) MCF-7, (B) BT474, and MDA-MB-453 cells. Scale bar = 200 mm. Representative data are shown. MDA-MB-231 served
as a negative control, and Vero-hNectin-4 served as a positive control. A control with only the secondary and tertiary antibodies (‘No primary antibody’)
was included. Staining with the commercial anti-nectin-4 antibody (HPA010775; Sigma-Aldrich) was included for comparison.
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3.6 Characterizing the interaction between
scFvs and the ectodomain of nectin-4

We next attempted to characterize the interaction between the

scFvs and nectin-4. A binding curve analysis using non-competitive
Frontiers in Immunology 09299
ELISA indicated that L4 binds to the recombinant nectin-4

fragment r864p efficiently, reaching 50% and 100% binding at

1.14 nM and 41.67 nM, respectively (Figure 7A). Subsequently, a

competitive ELISA was conducted to determine the dissociation

constant KD, which was approximately 4.17 mM. In contrast, a
FIGURE 5

Anti-nectin-4 scFv L4 staining of breast cancer clinical specimens. ScFv L4 was used as the primary antibody (10 mg/ml) for immunohistochemistry
staining of breast ductal carcinoma paraffin-embedded tissue sections (T1-T5 from five different patients) and compared with the commercial anti-
nectin-4 antibody HPA010775. Non-tumor (NT) tissues were included as a negative control. Scale bar = 100 mm.
FIGURE 6

Self-clustering of breast cancer cells with or without anti-nectin-4 scFvs. Nectin-4-positive cells MCF-7, BT474, and MDA-MB-453 were dissociated and
allowed to aggregate in medium with or without scFv (10 mg/ml). Cells were then poured into 6-well plates and visualized for counting. Five random
fields in the wells were counted for clusters (more than 5 cells) using bright-field microscopy (4X objective lens magnification). Nectin-4-negative MDA-
MB-231 cells served as a negative control. Data presented are mean ± SD (N=3). One-way ANOVA with Dunnett’s multiple comparisons test was
performed to determine the difference between Mock and scFv treatment groups of each cell line. (****p ≤ 0.0001; ns, not significant).
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higher concentration of S21 was required to reach 50% binding

(130.5 nM) and saturation in the non-competitive ELISA

(Figure 7B), although the estimated KD (4.09 mM) is similar to

that of L4.

To further predict possible binding sites between scFv and nectin-

4, we selected L4 as an example to perform a protein-protein docking

with the ectodomain of nectin-4. The sequence of scFv L4 is shown in

Supplementary Figure S2. The homology model of L4 was generated

and docked onto the nectin-4 homodimer structure (PDBID: 4FRW;

Figure 8A). Our docking analysis indicated that L4 returned a probable

binding frame on the tip of nectin-4 dimer and targeted the amino

acids 57Asp, 58Ser, 85Lys, 88Leu, 100Gln, 101Pro, 105Arg, and

106Asn on nectin-4 (Figure 8B). This diversity in binding residues

between L4 and nectin-4 potentially contributes to the efficient

recognition of the soluble nectin-4 ectodomain by L4 as observed in

the ELISA analyses (Figure 7).
4 Discussion

Multiple studies have suggested that nectin-4 may contribute to

carcinogenesis. The extracellular portion of nectin-4 interacts with

nectin-1 on the adjacent cell to promote cell-to-cell attachment, and

it also interacts with integrin b4 on the same cell to activate the Src

family kinases (SFKs) that sustain anchorage-independent growth
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of human mammary epithelial cells (18). Given the pleiotropic role

of SFKs in cellular events, including cell cycle progression, cell

survival, adhesion, and migration, and in pathophysiological

disorders, including cancers (36), activation of SFKs by nectin-4

could contribute to cancer transformation from multiple pathways.

The soluble nectin-4 ectodomain, which could be detected in the

sera of breast cancer (37), lung cancer (9), and ovarian cancer (11,

38) patients, has been shown to interact with endothelial integrin b4
to promote angiogenesis in breast cancer through the Src-regulated

PI3K/Akt pathway (19). This suggests that targeting or neutralizing

the soluble nectin-4 in patient sera may be a potential therapeutic

approach. In addition, nectin-4 is also considered a breast cancer

stem cell marker, as its presence enhances cell invasion and

epithelial-mesenchymal transition and activates the Wnt/b-
catenin pathway through the PI3K/Akt axis (20). More recently, a

study further identified nectin-4 as a cancer-specific ligand of the

inhibitory receptor T-cell immunoreceptor with Ig and ITIM

domains (TIGIT), and their interaction was found to inhibit the

antitumor activity of nature killer (NK) cells (21). Consistent with

these findings, clinical nectin-4 expression positively correlates with

tumor size, histopathological grading, angiogenic markers,

metastasis, and recurrence (22).

Given the importance of nectin-4 in tumor initiation and

progression, antibodies against nectin-4 could be a helpful

diagnostic/therapeutic tool. In the current study, we successfully
A B

DC

FIGURE 7

Binding curve and affinity determination of anti-nectin-4 scFvs. (A) Indirect ELISA showing the binding curve of L4 to nectin-4 ectodomain r864p
fixed on plates. (B) Competitive ELISA of L4 to determine the dissociation constant (KD). Free r864p was serially diluted and incubated with L4
before the mixture was added to plates coated with r864p. (C) Indirect ELISA showing the binding curve of S21 to nectin-4 ectodomain r864p fixed
on plates. (D) Competitive ELISA of S21 to determine the dissociation constant (KD). Free r864p was serially diluted and incubated with S21 before
the mixture was added to plates coated with r864p. Mean ± SD are shown (N=2).
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generated nectin-4-targeted scFv libraries using the phage display

technique (Figures 1, 2). Selected clones L4 and S21 recognized the

recombinant ectodomain of nectin-4 (Figure 2B) and successfully

detected the endogenous nectin-4 in several breast cancer cell lines.

Specifically, S21 demonstrated better performance in western blot

and flow cytometry analyses (Figure 3), whereas L4 displayed high

sensit iv i ty and produced l i t t le background signal in

immunofluorescence staining of 4% PFA-fixed cells (Figure 4)

and IHC staining of paraffin-embedded breast cancer tissue

sections (Figure 5). This could possibly be explained by molecular

docking results indicating that L4 has a predicted binding site on the

V loop junction of the nectin-4 dimer (Figure 8), which would only

appear in its native conformation. S21, on the other hand, might

recognize an epitope on the nectin-4 monomer that would be

exposed upon cell dissociation. L4 is also more efficiently bound

to fixed nectin-4 ectodomain in the non-competitive ELISA

(Figure 7). These results suggest that S21 may be useful for

laboratory applications such as flow cytometry and western blot

detection, whereas L4 may be suitable for immunostaining, IHC,

and potential development into a clinical diagnostic tool. Since the

immunogens were based on the ectodomain, these scFvs could be

utilized for both staining of the dissected tissues (Figure 5) and

measuring the shed or soluble nectin-4 in patient sera and ascites,

which can be indicative of disease status, therapeutic effect, and

prognosis (9–11). In addition, since nectin-4 has been proposed as a

new therapeutic target for antibody-based cancer treatment (39)

and oncolytic measles virotherapy, which utilizes nectin-4 as a

receptor (40–42), the scFvs could also be useful for screening

suitable candidates to receive such nectin-4-targeted treatments.

Antibody-based therapeutics have been extensively studied in the

past few decades, especially in the field of cancer treatment (43). Well-

known examples include the HER2-directed mAbs, their derivatives

conjugated with chemotherapeutic or immunotherapeutic drugs (44),

and mAbs that target the vascular endothelial growth factor (VEGF)

(45) for breast cancer treatment. Supporting the role of nectin-4 in
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cancer progression, it has been shown that blocking nectin-4 with

antibodies could inhibit the growth of cell line-derived (18) and

patient-derived (23) breast cancer mouse xenografts and augment

the antitumor activity of NK cells (21). Importantly, our results also

demonstrate that the scFvs can reduce the formation of attachment-

free breast cancer cell aggregation (Figure 6), which can disrupt cell-

cell contact and slow down tumor growth (18). Further analyses of the

scFvs’ impact on tumor sphere formation and in vivo tumor

suppression are underway. In addition, although the scFvs alone are

not directly cytotoxic (Supplementary Figure S1), they can be explored

through other strategies. For example, their anti-clustering effect could

be useful in combination with cytotoxic anticancer agents to boost the

anticancer effect. Moreover, conjugation with drugs or reporters is

another popular strategy to increase the applicability of non-cytotoxic

antibodies. For instance, in the therapeutic antibody-drug conjugate

(ADC) enfortumab vedotin, the microtubule-disrupting agent

monomethyl auristatin E (MMAE) was conjugated to the non-

cytotoxic nectin-4-directed mAb AGS-22M6E to increase its tumor-

killing effect. It was shown that enfortumab vedotin could inhibit

breast, bladder, pancreatic, and lung cancer xenografts in mouse

models (17) and has been further evaluated in multicenter phase 2

(EV-201; NCT03219333) and global phase 3 (EV-301; NCT03474107)

trials, with preliminary results showing 44%-52% objective response

rate (ORR) (46, 47) and prolonged survival compared to

chemotherapy (48) in metastatic urothelial cancer patients who

previously received platinum chemotherapy and anti-PD-1/PD-L1

immunotherapy. Based on the above observations, enfortumab

vedotin has been granted accelerated approval by the U.S. Food and

Drug Administration (FDA) for the treatment of metastatic urothelial

cancer (39). It has also been shown that anti-nectin-4 antibody

conjugated with the zirconium isotope 89Zr ([89Zr]AGS-22M6)

could serve as a reagent for positron emission tomography (PET)

evaluation of nectin-4-positive tumors and metastases in vivo (49).

Nectin-4-targeting mAb conjugates 99mTc-HYNIC-mAbNectin-4 and

mAbNectin-4-ICG (Indocyanine green) were also developed for
A B

FIGURE 8

Molecular docking analysis of the interaction between scFv L4 and nectin-4. (A) Structure of human nectin-4 homodimer (4FRW) showing its one
variable (V) and two constant (C-C) regions. (B) A representative docking frame showing the interaction between scFv L4 and nectin-4 homodimer
structure. Polar contacts on the scFv (red) and nectin-4 (magenta) are shown.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1292019
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1292019
immuno-single photon emission computed tomography (SPECT)

diagnostic imaging and photothermal therapy in TNBC-bearing

mice (50). With a smaller size and faster clearance compared to

intact mAbs, scFvs are highly suitable for the development of

therapeutic or diagnostic purposes (2). Taking advantage of the

better penetration of scFvs in target tumors (3), more scFv

conjugates are being evaluated in clinical trials for cancer

indications (51). Given that scFv L4 displayed high sensitivity and

specificity in recognizing the native form of nectin-4 on breast cancer

cell monolayer and tissue sections (Figures 4, 5) and its ability to

prevent nectin-4-positive tumor cell cluster formation (Figure 6), the

scFv and its derivatives may be further developed and investigated for

their diagnostic and therapeutic values. As scFv L4 was derived from

chicken provenance, potential issues of immunogenicity and the scFv’s

binding affinity to human nectin-4 could be further improved by

humanization procedures (52).

Based on the protein-protein docking, we predicted multiple

interacting residues on scFv L4 with the physiologically relevant

nectin-4 homodimer (Figure 8). The amino acids’ diversity and the

number of polar contacts that scFv L4 possesses in its interaction

with nectin-4 homodimer (Figure 8) could, in theory, provide

stability of the complex. In addition, the physical structure of L4

also has a non-occluded cleft between the light and heavy chains,

which is broad and could potentially contribute to its binding

affinity to nectin-4; whether this is because of the increased

flexibility of the longer linker or because of the intra-sequence

interactions warrants further analysis. Likewise, further in-depth

examination of the quantitative binding energy and molecular

dynamics simulation combined with biophysical analyses could

also help better characterize L4’s complete protein binding profile.

In conclusion, we produced nectin-4-specific scFvs based on

chicken IgY using the phage display method in this study. Two

selected scFv clones could capture the ectodomain of nectin-4 and

recognize endogenous nectin-4 on several breast cancer cell lines, with

scFv L4 demonstrating better sensitivity and specificity to identify

nectin-4 in its native form. Importantly, while the scFvs are non-

cytotoxic, they could inhibit the self-clustering of nectin-4-positive

breast cancer cells. Molecular docking analysis further revealed that the

scFv L4 possibly binds to the tip of the nectin-4 homodimer junction.

These results highlight the potential of developing the scFv clones for

laboratory or clinical uses, either as a diagnostic tool or a therapeutic

candidate for combination or drug conjugation to target nectin-4-

positive cancers, including breast cancer.
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Background: Renal cell carcinoma (RCC) accounts for 90% of renal cancers,

of which clear cell carcinoma (ccRCC) is the most usual histological type. The

process of alternative splicing (AS) contributes to protein diversity, and the

dysregulation of protein diversity may have a great influence on

tumorigenesis. We developed a prognostic signature and comprehensively

analyzed the role of tumor immune microenvironment (TIME) and immune

checkpoint blocking (ICB) treatment in ccRCC.

Methods: To identify prognosis-related AS events, univariate Cox regression

was used and functional annotation was performed using gene set

enrichment analysis (GSEA). In this study, prognostic signatures were

developed based on multivariate Cox, univariate Cox, and LASSO

regression models. Moreover, to assess the prognostic value, the

proportional hazards model, Kruskal–Wallis analysis, and ROC curves were

used. To obtain a better understanding of TIME in ccRCC, the ESTIMATE R

package, single sample gene set enrichment analysis (ssGSEA) algorithm,

CIBERSORT method, and the tumor immune estimation resource (TIMER)

were applied. The database was searched to verify the expression of C4OF19

in tumor and normal samples. Regulatory networks for AS-splicing factors

(SFs) were visualized using Cytoscape 3.9.1.

Results: There were 9,347 AS cases associated with the survival of ccRCC

patients screened. A total of eight AS prognostic signatures were developed

with stable prognostic predictive accuracy based on splicing subtypes. In

addition, a qualitative prognostic nomogram was developed, and the

prognostic prediction showed high effectiveness. In addition, we found

that the combined signature was significantly associated with the diversity

of TIME and ICB treatment-related genes. C4ORF19 might become an

important prognostic factor for ccRCC. Finally, the AS-SF regulatory

network was established to clearly reveal the potential function of SFs.

Conclusion: We found novel and robust indicators (i.e., risk signature,

prognostic nomogram, etc.) for the prognostic prediction of ccRCC. A new

and reliable prognostic nomogram was established to quantitatively predict
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the clinical outcome. The AS-SF networks could provide a new way for the

study of potential regulatory mechanisms, and the important roles of AS

events in the context of TIME and immunotherapy efficiency were exhibited.

C4ORF19 was found to be a vital gene in TIME and ICB treatment.
KEYWORDS

clear cell renal carcinoma (ccRCC), alternative splicing (AS), tumor immune
microenvironment (TIME), prognosis, immunotherapy
1 Introduction

Over the past decades, the global incidence of renal cell

carcinoma (RCC) is increasing (1, 2). Among urinary cancers, the

mortality rate of renal cell carcinoma ranks first in the world (2). As

the main subtype of renal cell carcinoma, clear cell renal carcinomas

(ccRCCs) are among the most malignant tumors in urology,

responsible for approximately 90,000 deaths annually (3).

Approximately 30% of patients with ccRCC have metastases at

the first diagnosis, and 20%–40% have recurrence after tumor

resection (4, 5). In traditional clinical work, there are some good

prognostic biomarkers developed in RCC. However, these

approaches may be unreliable due to heterogeneity within the

patients (6). Consequently, there is an urgent need for a new

approach to predict clinical results more accurately, so as to

provide help in choosing treatment strategies.

In recent years, more and more evidence has emphasized the role

of immune response as an essential feature of the occurrence and

development of ccRCC and therapeutic outcomes (3).

Immunotherapy has attracted great attention because of its
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encouraging results in a variety of malignant tumors (7). Therefore,

the most effective strategies were identifying ccRCC patients with

molecular signatures, improving prognostic accuracy, and optimizing

immunotherapy based on molecular risk distributions.

Alternative splicing (AS) is defined as the process of producing

different mRNA splicing isomers from pre-mRNA by different

splicing methods (8). AS events were well known for involving AT,

AP, AD, AA, ME, ES, and RI. In post-transcriptional regulation,

alternative splicing plays a critical role, and more and more studies

indicate that alternative splicing is closely linked to cancer cell invasion

and metastasis (3, 9, 10). In addition, we learned that splicing factors

had a great influence on the regulation of AS events (11). There was a

need to mention that abnormal splicing factors could contribute to

oncogenic splicing isoforms (12, 13). Unfortunately, there was a lack

of adequate understanding of the relationship between the prognostic

signature, immunotherapy, and TIME.

In this study, as a result of an integrated analysis of AS events, we

characterized TIME and discovered potential molecular mechanisms

involved in tumorigenesis. The AS pattern of the KIRC cohort in

TCGA was described, and the correlation between AS events and

survival was verified using comprehensive bioinformatic analysis.

Afterward, the predictive prognostic signatures based on AS events

were built and then proven. Next, to meet the clinical application and

promote development, we made an AS-clinicopathologic nomogram

which could effectively predict the prognosis and guide clinical work.

After that, we comprehensively analyzed the association of the

prognostic signature newly established with TIME complexity and

immune checkpoint blocking (ICB) treatment outcomes. Furthermore,

we found a new key gene—C4ORF19, and the underlying role of

C4ORF19 in ccRCC was investigated. In the end, we established the

AS-SF regulatory network to clarify the underlying mechanisms of

ccRCC occurrence and development. The AS-SF networks could

provide a new way for the study of potential regulatory mechanisms.
2 Materials and methods

2.1 Multiomics data acquisition

The transcriptome and survival data of the ccRCC patients in

this study came from The Cancer Genome Atlas portal website
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(TCGA). Also, the AS data of TCGA came from SpliceSeq, and the

SF expression data were obtained from the SpliceAid 2 database

(www.introni.it/spliceaid.html). All analyses strictly followed

TCGA’s published guidelines, and the detailed analysis flowchart

can be found in Figure 1.
2.2 AS profile recognition process

When setting the PSI value above 0.75 as the point for filtration,

samples were partitioned. Using the UpSetR software package, the

UpSet plot was drawn and seven subtypes of AS events were found.

We named AS by splicing types, ID numbers in splicing sequences,

and corresponding parental gene names. There was a case that

C4orf19 was the corresponding parent gene name, 69001 was the ID

number in SpliceSeq, and AT was the splicing type in “C4orf19|

69001|AT”.
2.3 Screening AS events associated
with survival

When we detected the PSI standard deviation less than 0.01, the

data of AS events were deleted. The connection between the overall

survival (OS) and AS events was found in the univariate Cox

regression analysis (Additional file 1: Table 1), which was

exhibited in the UpSet map and volcano map. In addition, each

bubble chart of the seven subtypes summarized the 20 most

important AS events.
2.4 Prognostic signature and nomogram

Firstly, candidate models for each splicing pattern were

determined by least absolute shrinkage and selection operator

(LASSO) regression analysis, in which way we could also avoid

model overfitting. Next, multivariate Cox regression analysis was

applied to screen prognostic predictors from the identified AS

events. Because the pattern of AS events in post-transcriptional
Frontiers in Oncology 03307
modification was independent of each subtype, the AS events

identified in each of the splicing subtypes described above were

integrated and then another prognostic feature was generated.

Afterward, risk scores were calculated according to the formula:

risk score = bAS event1 × PSIAS event1 +⋯ + bAS eventn × PSIAS

eventn. The specific formulas for each prognostic signature can be

found in Additional file 1: Table 2. Consequently, the low-risk

group and the high-risk group were born by the calculated median

risk scores. The “survival” R package was employed to analyze K–M

survival curves. The predictive value of this prognostic signature

was validated by using time-dependent receiver operating

characteristic (ROC) curves. Then, univariate and multivariate

Cox regression analyses were exploited to ascertain whether this

signature could be used as an independent prognostic factor. In

addition, stratified survival analysis further verified whether

prognostic performance in patients was independent of clinical

data including age; sex; pathological grade; T, N, and M categories;

and tumor stage. Then, we calculate the AUC from the ROC curve

to systematically measure the value of the accuracy of the model for

1-, 2-, and 3-year OS. Finally, to accurately calculate the OS of

ccRCC patients, we established prognostic nomograms to obtain

the survival probabilities of 1, 2, and 3 years. Then, there was a

calibration curve showing the prognostic value of the AS-

constructed nomogram. It should be noted that the model was

highly predictive when the calibration curve was close to 45°.
2.5 Risk score and characteristics of
tumor-infiltrating immune cells

Information on immune infiltrates such as B cells from each

specimen was downloaded from TIMER. The ssGSEA algorithm of

the R package “GSEAbase” was performed to elucidate the

enrichment of two different risk subgroups in 29 gene sets related

to immune function. Subsequently, we calculated the purity of the

tumor and the degree of cell invasion (stromal and immune cells)

using the R package “ESTIMATE” to validate the significantly

different characteristics of the TIME between the low-risk and

high-risk groups. The proportion of 22 immune cell types in the
FIGURE 1

Overall research design. Flow process diagram presenting the process of comprehensive analysis.
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tumor sample was recognized by assessing the relative subsections

of RNA transcripts from CIBERSORT.
2.6 ICB treatment

According to existing research, the expression level of key genes

associated with immune checkpoint blockade might have a close

relationship with the clinical results of ICB treatment (14, 15). Six

key genes (PD‐L1, IDO1, PD‐L2, PD‐1, CTLA‐4, and TIM‐3) of

immune checkpoint blockade therapy in ccRCC (16, 17) were

obtained. Afterward, to investigate the potential role of risk score

in immune checkpoint blockade therapy of ccRCC, AS-based

prognostic characteristics were significantly related to the

expression levels of four key genes for immune checkpoint

blockade. At last, the expression levels of 47 immune checkpoint

genes (i.e., CTLA4, BTLA, etc.) were compared in low-risk and

high-risk patients.
2.7 Splicing regulatory network

A total of 404 SFs derived from a previous study (18) are

exhibited in Additional file 1: Table 3, and the RNA-seq profiles of

SFs can be found in the TCGA database. In addition, we conducted a

Spearman correlation analysis to assess the connection between SFs

and survival-related AS events. p <0.001 and correlation coefficient

>0.6 were the cutoff values. In the end, Cytoscape (version 3.9.1) was

applied to build an underlying SF-AS regulatory network.
2.8 Experimental proof

2.8.1 Immunohistochemistry
From Outdo Biotech (Shanghai, China), we purchased one

ccRCC tissue microarray (TMA, Cat. HKid-CRCC060PG-01).

TMA HKID-CRCC060PG-01 contained 30 paired adjacent tissues

and 30 ccRCC tissues. Moreover, Outdo Biotech (Shanghai, China)

also provided detailed clinicopathological features of this TMA, and

TMA was approved ethically by the Clinical Research Ethics

Committee, Outdo Biotech (Shanghai, China).

On TMA samples of ccRCC tissues, immunohistochemistry

(IHC) was performed according to the standard procedure. For

antigen retrieval, EDTA was used, and the primary antibodies were

incubated overnight at 4°C. The primary antibody used in the study

was anti-C4ORF19 (1:500 dilution; Cat. PA5-60368, RRIDP:

AB_2639064, Thermo Fisher Scientific). Lastly, using Aperio

Digital Pathology Slide Scanners, stained TMA was scanned to

visualize antibody staining and hematoxylin counterstaining.
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2.8.2 Real-time polymerase chain reaction
Human renal cancer tissue and adjacent/normal tissue came

from the biological sample library of the Second Affiliated Hospital

of Wenzhou Medical University (Yuying Children’s Hospital of

Wenzhou Medical University). The sample numbers were

KI220001, KI220002, KI220003, LI220005, and KI220006.

Quantitative real-time polymerase chain reaction (qRT-PCR) was

performed (approval nos. 2022-K-151-01, 2022-K-151-02, and

2022-K-151-03 by the ethics committee).

According to the extraction standards provided by the reagent

manufacturer, TRIzol kit (Invitrogen, Carlsbad, CA, USA) was used to

extract total RNA (tRNA). We used a NanoDrop 2000

spectrophotometer to determine RNA concentration and purity. In

the following steps, total RNA was reverse-transcribed into cDNA

using the RevertAid First Strand cDNA Synthesis Kit (TaKaRa:Tokyo,

Japan). SYBR Green detection reagent (TaKaRa) and LightCycler® 96

Real-Time PCR System (Roche, IN, USA) were used for quantitative

polymerase chain reaction (qPCR). Finally, the 2−DDCq method was

used to examine gene expression data. All primers were synthesized by

Sangon Biotech (Shanghai, China). The sequences of all primers used

in qPCR are shown in Table 1.
2.9 Statistical analysis

In this study, for comparisons between two different groups, we

used the Wilcoxon test, and for comparisons between more than

two groups, we used the Kruskal–Wallis test. OS was the time

between diagnosis and death. The K–M log-rank test was employed

to plot the survival curse. Moreover, the Pearson correlation test

was applied to explore the correlation between risk score, clinical

variables, and degree of immune cell infiltration and immune

checkpoint. When the result of the CIBERSORT algorithm p ≥

0.05, further study was abandoned. Then, in order to verify the

independent prognostic prediction abilities of risk signatures,

univariate and multivariate analyses were carried out by the Cox

regression model. For 1-, 2-, and 3-year OS, we used ROC curves to

evaluate their prognostic value. p <0.05 was regarded as statistically

significant. All statistical analyses were performed using R software

in version 4.1.2.
3 Results

3.1 Basic information on patients and AS
events in ccRCC

Five hundred thirty-seven patients with ccRCC were obtained

from the TCGA database, and 11 patients without complete
TABLE 1 Sequences of all primers used in qPCR.

Genes Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

C4orf19 CAGCCTGGGTGACAGTGCAA AACCAGCTCGGTCCCTTCCT

GADPH GCGGGGCTCTCCAGAACATC TCCACCACTGACACGTTGGC
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information were rejected. Therefore, 526 patients in total were

included. Table 2 presents the basic clinical data of all ccRCC

patients. In addition, by using the UpSet plot (Figure 2A), we

analyzed the AS event profiles comprehensively and displayed gene

intersections among the seven subtypes of AS events. It could be

seen that ES was the most frequent splicing pattern, while ME was

the least frequent.
3.2 Finding survival-related AS events

Univariate Cox regression analysis showed that 9,347 AS events

were significantly associated with survival (p < 0.05). Furthermore, a

detailed record of the data can be found in Additional file 1: Table 1.

In Figure 2B, the gene interactions among the seven types of

survival-related AS events are shown. Moreover, ES was still the

main splicing pattern. On the other hand, the volcano map was

designed to present the distribution of AS events (Figure 3A), and

the top 20 AS events with significant survival correlation from seven

subtypes were summarized by using the bubble graphs

(Figures 3B–H).
3.3 Establishment of the verified
prognostic signature

In this study, the prognostic abilities of the survival-related AS

events found in the previous step were evaluated by using the
Frontiers in Oncology 05309
stepwise LASSO algorithm and multivariate Cox regression

analysis. Moreover, the LASSO regression analysis results of

ALL AS events and seven AS event subtypes are exhibited in

Figures 4A, B, 5A–G, 6A–G. Next, the best survival-related AS

events, which were determined by multivariate Cox analysis, were

performed to build eight AS prognostic signatures, namely, AA,

AD, AP, AT, ES, ME, RI, and ALL. The formulas for each

prognostic signature are detailed in Additional file 1: Table 2.

Using the median risk score as a standard for further study, ccRCC

patients were ranked into low- and high-risk groups. The

distribution of eight different AS events (AA, AP, AT, AD, ME,

RI, ES, and ALL) and their PSI values in the two subgroups and

patients was exhibited in the heatmap (Figures 4C, 7A, D, 8A, D,

9A, D, 10A). In the same way, the distribution of risk score

(Figures 4D, 7B, E, 8B, E, 9B, E, 10B) and the dot plot of

survival status (Figures 4E, 7C, F, 8C, F, 9C, F, 10C) indicated a

lower overall survival in the higher-risk patients. Furthermore, the

Kaplan–Meier curve also confirmed that in the low-risk subgroup,

patients had a significantly better prognosis than those in the high-

risk subgroup (Figures 4A, 11A, C, E, G, 12A, C, E, G; all P < 0.05).

The results showed that the areas under the risk score curves of 1-,

2- and 3-year survival were all greater than 0.70, indicating that

the established prognostic signature had highly sensitive and

specific survival prediction ability (Figures 4G, 11B, D, F, G,

12B, D, F, G). Moreover, the risk score might become an

independent prognostic signature of the ccRCC (univariate Cox

model in Figures 4H and 13A, C, E, G, I, K, M and multivariate

Cox regression analysis in Figures 4I and 13B, D, F, H, J, L, N).
3.4 Construction of the verified nomogram

According to the difference in the risk score in different subtypes

of clinical variables, clinical significance was explored. With the

progression of tumor grade (most p < 0.05, Figure 14A);

clinicopathological stage (most p < 0.05, Figure 14B); and T, M, and

N stages (most p < 0.05, Figures 14C–E), the risk score significantly

rose, suggesting that prognostic risk score had a positive correlation

with tumor progression. Next, the prognostic nomogram established

for forecasting the prognosis of ccRCC patients is exhibited in

Figure 14F. It was well known that there was a great prognostic

capability of 1-, 2-, and 3-year OS in the nomogram plot when the

calibration curve was close to the diagonal (Figures 14G–I).
3.5 Risk score and TIME characterization

In order to further investigate the possibility of using risk score

as an immune indicator, we performed correlation analyses between

risk score and immune score (from the ESTIMATE algorithm),

ssGSEA characteristics, and TIC subtypes and levels (from the

CIBERSORT method). The high-risk patients achieved a higher

immune score and ESTIMATE score and lower tumor purity

(Figures 15A–C), which suggested higher immune infiltration.

However, there was no significant difference in stromal score

(Figure 16). Then, in Figures 15D, E, immune-related signatures
TABLE 2 Baseline data of all ccRCC patients.

Characteristics Type N Proportion

Age ≤65 352 65.55%

>65 185 34.45%

Gender Female 191 35.57%

Male 346 64.43%

Grade G1–2 244 45.44%

G3–4 285 53.07%

Unknown 8 1.49%

Stage I–II 326 60.71%

III–IV 208 38.73%

Unknown 3 0.56%

T stage T1–2 344 64.06%

T3–4 193 35.94%

M stage M0 426 79.33%

M1 79 14.71%

Unknown 32 5.96%

N stage N0 240 44.69%

N1 17 3.17%

Unknown 280 52.14%
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were shown to differ between the two subgroups, where

immunological scores corresponding to immune-related

signatures were exhibited for each patient in the low-/high-risk

group. The results revealed that the infiltration of immune cells

such as CD8+ T cells, macrophages, T helper cells, Tfh, Th1 cells,

Th2 cells, and TIL and the immune signatures such as

parainflammation, T-cell co-inhibition, T-cell co-stimulation,

checkpoint, inflammation-promoting, and cytolytic activity were

significantly increased with increased risk score (Figure 15F). On

the contrary, iDCs, mast cells, and type IIIFN response were

significantly decreased with increased risk score (Figure 15F). The

CIBERSORT algorithm results showed that the proportion of CD8+

T cells, activated CD4 memory T cells, follicular helper T cells,
Frontiers in Oncology 06310
Tregs, and M0 macrophages was positively associated with risk

score, and the proportion of naive B cells, memory B cells, M1

macrophages, M2 macrophages, resting dendritic cells, and resting

mast cells was negatively associated with risk score (Figure 15G). In

conclusion, the ALL prognostic signature could be a kind of new

method to clarify the ccRCC immunoregulatory network.
3.6 Correlation between the ALL
prognostic signature and ICB key therapy

With the increasing attention paid to ICB therapy in clinical

work, immune checkpoint inhibitors have greatly changed the
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FIGURE 2

(A) The UpSet plot of gene interactions among the seven types of AS events in the TCGA KIRC cohort. (B) The UpSet plot of gene interactions among
the seven types of prognostic relevant AS events.
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FIGURE 3

The survival-relevant alternative splicing (AS) events. (A) The volcano plots of survival-relevant AS events. The most significant survival-relevant AAs,
ADs, APs, ATs, ESs, MEs, and RIs in the TCGA KIRC cohort (B–H).
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FIGURE 4

Confirmation of the ALL AS-based prognostic signature. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the whole
AS events. (B) Ten times cross‐validation for tuning parameter selection in the LASSO regression. (C) Heatmap of the percent spliced index (PSI)
value of ALL signature AS events in clear cell renal carcinoma (ccRCC). The colors from red to green show a trend from high expression to low
expression. (D) Distribution of the ALL signature risk score. (E) The survival status and duration of ccRCC patients. (F) The K–M curve presenting
survival in the high-risk and low-risk sets. (G) ROC analysis of the risk scores for overall survival prediction. The AUC was calculated for ROC curves,
and sensitivity and specificity were calculated to assess score performance. Proportional hazards model results. (H) Univariate Cox regression results.
(I) Multivariate Cox regression results.
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FIGURE 5

LASSO coefficient of prognostic relevant AS events. (A) AA. (B) AD. (C) AP. (D) AT. (E) ES. (F) ME. (G) RI.
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FIGURE 6

A graph of the error rate of cross-validation. (A) AA. (B) AD. (C) AP. (D) AT. (E) ES. (F) ME. (G) RI.
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FIGURE 7

(A) Heatmap of the PSI value of AA events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the AA prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the AA prognostic signature.
(D) Heatmap of the PSI value of AD events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(E) Distribution of the AD prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the AD prognostic signature.
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FIGURE 8

(A) Heatmap of the PSI value of AP events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the AP prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the AP prognostic signature.
(D) Heatmap of the PSI value of AT events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(E) Distribution of the AT prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the AT prognostic signature.
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FIGURE 9

(A) Heatmap of the PSI value of ES events in ccRCC. The colors from red to green show a trend from high expression to low expression. (B)
Distribution of the ES prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the ES prognostic signature. (D)
Heatmap of the PSI value of ME events in ccRCC. The colors from red to green show a trend from high expression to low expression. (E)
Distribution of the ME prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the ME prognostic signature.
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clinical decision-making of cancer oncology (19, 20). We screened

out six key immune checkpoint inhibitor genes (PDCD1, CD274,

PDCD1LG2, CTLA‐4, HAVCR2, and IDO1) (21, 22) for further

analysis. Then, to uncover the potential role of risk signature in ICB

therapy for ccRCC, we comprehensively analyzed the association

between the ALL prognostic signature and ICB key targets

(Figure 17A). The results showed that the ALL prognostic

signature had a significant positive association with PDCD1 (r =

0.3; p = 6.1e−12; Figure 17B) and CTLA4 (r = 0.33; p = 8.8e−15;

Figure 17D) and a significant negative association with HAVCR2

(r = −0.13; p = 0.0035; Figure 17C) and CD274 (r = −0.13; p =

0.0025; Figure 17E). Furthermore, 36 of the 47 (i.e., HHLA2, CD44,

etc.) ICB key gene expression levels between the low- and high-risk

groups were significantly dysregulated in the further correlation

analysis (Figure 17F). These results suggested that the level of the
Frontiers in Oncology 10314
ALL prognostic signature does affect the expression changes of ICB

key genes, which could be a valuable factor.
3.7 Role of C4ORF19 in the prognosis and
ICB treatment of vital genes

In this study, we found only one prognostic AS-related gene,

C4ORF19, whose expression level was significantly downregulated.

According to the TCGA database, the expression level of C4ORF19

in normal adjacent tissues was higher than that in tumor tissues

(Figure 18A). The IHC experiment showed that the expression level

of C4ORF19 in ccRCC tissue was significantly lower than that in

normal tissue, and the experimental results of qPCR also confirmed

this point (p = 0.0115) (Figure 19). It could be clearly seen that the
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FIGURE 10

(A) Heatmap of the PSI value of RI events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the RI prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the RI prognostic signature.
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expression levels of C4ORF19 in different tumor grades (Figure 18C,

almost p < 0.05), different pathological stages (Figure 18D, almost

p < 0.05), T state, M state, and gender (Figures 18E–G, almost p <

0.05) had significant statistical significance. In order to further
Frontiers in Oncology 11315
assess the prognostic value of C4ORF19 in ccRCC, K–M analyses

were performed between patients with low and high expression of

C4ORF19. A higher C4ORF19 expression level significantly

correlated with a longer overall survival time, as illustrated in
A

B D

E

F

G

H

C

FIGURE 11

(A) Kaplan–Meier curve presenting survival in the AA prognostic signature. (B) ROC analysis of the risk scores in the AA prognostic signature. (C)
Kaplan–Meier curve presenting survival in the AD prognostic signature. (D) ROC analysis of the risk scores in the AD prognostic signature. (E)
Kaplan–Meier curve presenting survival in the AP prognostic signature. (F) ROC analysis of the risk scores in the AP prognostic signature. (G) Kaplan–
Meier curve presenting survival in the AT prognostic signature. (H) ROC analysis of the risk scores in the AT prognostic signature.
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FIGURE 12

(A) Kaplan–Meier curve presenting survival in the ES prognostic signature. (B) ROC analysis of the risk scores in the ES prognostic signature.
(C) Kaplan–Meier curve presenting survival in the ME prognostic signature. (D) ROC analysis of the risk scores in the ME prognostic signature.
(E) Kaplan–Meier curve presenting survival in the RI prognostic signature. (F) ROC analysis of the risk scores in the RI prognostic signature.
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Figure 18B (p < 0.001). Moreover, in 28 of 47 immune check

blockade-associated genes (i.e., PDCD1, CTLA4, etc.), there were

significant dysregulations in the expression levels between the low

C4ORF19 group and high C4ORF19 group in different subgroups

(Figure 18H). Then, a possible role for C4ORF19 in ICB treatment

of ccRCC was explored by analyzing the association between

C4ORF19 and ICB key targets adjusted for tumor purity

using TIMER. The TIMER results exhibited that C4ORF19 had a

significant positive correlation with CD274 (r = 0.361; p = 1.21e−15)

and HAVCR2 (r = 0.137; p = 3.15e−03) and a significant negative

correlation with PDCD1 (r = −0.129; p = 5.46e−03) and CTLA4 (r =

−0.095; p = 4.11e−02; Figure 18I), suggesting that C4ORF19 may

play a vital role in the ICB treatment of ccRCC.
3.8 C4ORF19 in TIME

Firstly, we classified ccRCC patients into high/low C4ORF19

groups for further study according to the median C4ORF19
Frontiers in Oncology 12316
expression level. The ESTIMATE results showed significantly

higher stromal and immune scores in the low C4ORF19 group

than in the high C4ORF19 group, suggesting more infiltration of

stromal and immune cells and lower tumor purity in the low

C4ORF19 group (Figures 20A–D). Moreover, the relationship

between the gene copy number of the different mutation types

and main immune cells is exhibited in Figure 20E. Afterward, a

positive correlation was found between C4ORF19 expression level

and B-cell infiltration, while a negative correlation was found

between C4ORF19 expression level and CD8+ T-cell infiltration.

There was no significant difference in the expression level of

C4ORF19 when CD4+ T cells, macrophages, and neutrophils

were infiltrated (Figure 20F). The consequences of ssGSEA

presented that the infiltration fraction of aDCs, CD8+ T cells,

DCs, macrophages, pDCs, Th1 cells, Th2 cells, NK cells,

parainflammation, T helper cells, Tfh, TIL, APC co-stimulation,

checkpoint, T-cell co-stimulation, CCR, cytolytic activity,

inflammation-promoting, and IFN-response type-I were

significantly increased when the C4ORF19 expression level was
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FIGURE 13

(A) Univariate Cox regression analyses in the AA prognostic signature. (B) Multivariate Cox regression analyses in the AA prognostic signature.
(C) Univariate Cox regression analyses in the AD prognostic signature. (D) Multivariate Cox regression analyses in the AD prognostic signature.
(E) Univariate Cox regression analyses in the AP prognostic signature. (F) Multivariate Cox regression analyses in the AP prognostic signature.
(G) Univariate Cox regression analyses in the AT prognostic signature. (H) Multivariate Cox regression analyses in the AT prognostic signature.
(I) Univariate Cox regression analyses in the ES prognostic signature. (J) Multivariate Cox regression analyses in the ES prognostic signature.
(K) Univariate Cox regression analyses in the ME prognostic signature. (L) Multivariate Cox regression analyses in the ME prognostic signature.
(M) Univariate Cox regression analyses in the RI prognostic signature. (N) Multivariate Cox regression analyses in the RI prognostic signature.
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FIGURE 14

Correlation of risk score with clinical features and construction of nomogram. (A) Correlation of risk score with tumor grade. (B) Correlation of risk
score with clinicopathological stage. (C) Correlation of risk score with T status. (D) Correlation of risk score with M status. (E) Correlation of risk
score with N status. (F) A nomogram was constructed by stage and risk signature for predicting the survival of ccRCC patients. (G) One‐year
nomogram calibration curves. (H) Two‐year nomogram calibration curves. (I) Three‐year nomogram calibration curves.
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FIGURE 15

Correlation between infiltrating immune cells and the ALL AS-based prognostic signature. (A) Comparison of tumor purity between the low- and high-
risk groups. (B) Comparison of immune score between the low- and high-risk groups. (C) Comparison of ESTIMATE score between the low- and high-
risk groups. (D) Heatmap exhibited enrichment of 29 immune signatures of the low-/high-risk groups. Blue represents low activity and red represents
high activity. (E) Heatmap of 29 immune signatures and immune scores of two different risk score groups. Blue represents low activity and red
represents high activity. (F) Difference of enrichment of immune-related signatures between the low-risk and high-risk groups. (G) Distinction of
infiltrating immune cell subpopulations and levels between the low-/high-risk groups. * means p<0.05, * * means p<0.01, * * * means p<0.001.
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declining (Figure 20G). The consequences of the CIBERSORT

analysis of the TCGA cohort presented that the proportions of

plasma cells, Tregs, activated memory CD4 T cells, and M0

macrophages were significantly higher and the proportions of

monocytes and resting dendritic cells were significantly lower in

patients with low C4ORF19 expression (Figure 20H).
Frontiers in Oncology 14318
3.9 Establishment of the SF-AS
regulatory network

The upregulated and downregulated genes were the results of

the correlation analysis with the corresponding gene expression

levels in tumor samples (Additional file 1: Table 4). Finally, to better

explain the underlying mechanisms of AS regulation, we used 351

upregulated AS events (yellow diamond), 88 downregulated AS

events (green triangle), and 31 SFs (blue hexagon; Figure 21) to

establish the correlation network between SF expression level and

PSI value of prognostic AS events. In the regulation network, the

most important four nodes (Additional file 1: Table 4) consisting of

two upregulated AS events (METTL3|26596|RI and FADS3|16305|

RI) and two SFs (DDX39B and LUC7L) were identified. As a result,

these SFs had great potential to further mediate the occurrence and

development of tumors in ccRCC as key regulatory factors involved

in abnormal AS regulation.
4 Discussion

Among urinary cancers, the mortality rate of renal cell

carcinoma ranks first in the world (2). In addition to being one of

the most malignant urologic tumors, ccRCC is also one of the most

common subtypes of renal cell carcinoma (3). Genetic, molecular,

and clinicopathological characteristics of ccRCC could not
FIGURE 16

Comparison of the stromal score between the low-/high-
risk groups.
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FIGURE 17

Association between the ALL AS-based prognostic signature and key immune checkpoint genes. (A) Correlation analyses between immune
checkpoint inhibitors CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1 and risk score. (B) Correlation between risk score and PDCD1.
(C) Correlation between risk score and HAVCR2. (D) Correlation between risk score and CTLA4. (E) Correlation between risk score and CD274.
(F) Comparison of immune checkpoint blockade-related gene expression levels between the low-risk group and high-risk groups. *means p<0.05, *
* means p<0.01, * * * means p<0.001.
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FIGURE 18

The clinical significance of C4ORF19 in ccRCC. (A) C4ORF19 was of lower expression in ccRCC tumor tissue than in normal tissue. (B) Higher
ZDHHC16 expression levels revealed longer overall survival. (C) Correlation of C4ORF19 expression with tumor grade. (D) Correlation of C4ORF19
expression with major pathological stages. (E) Correlation of C4ORF19 expression with T status. (F) Correlation of C4ORF19 expression with M
status. (G) Correlation of C4ORF19 expression with gender. (H) Comparison of immune checkpoint blockade-related gene expression levels
between the low C4ORF19 group and high C4ORF19 group. (I) Correlation of C4ORF19 with CD274, PDCD1, CTLA4, and HAVCR2. *means p<0.05,
* * means p<0.01, * * * means p<0.001.
FIGURE 19

Expression levels of C4ORF19 in ccRCC tissues. (A) Representative microphotographs revealed C4ORF19 expression in tumor tissues using IHC
staining. Brown, C4ORF19. Blue, hematoxylin. Bar = 200 mm. (B) Representative microphotographs revealed C4ORF19 expression in paratumor
tissues using IHC staining. Brown, C4ORF19. Blue, hematoxylin. Bar = 200 mm. (C) qPCR showed low expression of C4ORF19 in ccRCC tissue.
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accurately forecast clinical therapy outcomes and the prognosis of

patients (23). RCC has dissimilar immunological features in

pathogenesis and treatment. Thus, there is a great need to further

investigate powerful prognostic tools to predict immunotherapeutic

outcomes and to recognize patients for whom immunotherapy

might be effective.

Growing studies have proven that AS, which refers to a post-

transcriptional modification procedure, functions in physiological

and pathological processes (8). The irregular regulation of AS

generally indicated that tumors occurred and developed,

including ccRCC (10). Therefore, dysregulated expressed genes

have the potential to be utilized as new prognostic indicators and
Frontiers in Oncology 16320
effective therapeutic targets. Unfortunately, we still lacked enough

understanding of the relationship of the AS prognostic signature

with TIME and immunotherapy results in ccRCC.

In this study, we made full use of univariate Cox regression

analysis. As a result, we found 9,347 AS events to be significantly

associated with survival, in order to further explore the prognostic

value of AS events. Afterward, based on a comprehensive

bioinformatics analysis, we summarized and validated eight (AP,

AD, AA, AT, ME, RI, ES, ALL) prognostic predictive signatures, all

of which showed strong predictive abilities in ccRCC. In addition,

when c cRCC pa t i en t s we r e g rouped a c co rd ing to

clinicopathological stage and tumor grade, these signatures still
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FIGURE 20

The role of C4ORF19 in TIME features. (A) Comparison of stromal score between the low/high C4ORF19 groups. (B) Comparison of immune score
between the low/high C4ORF19 groups. (C) Comparison of ESTIMATE score between the low/high C4ORF19 groups. ESTIMATE score.
(D) Comparison of tumor purity between the low/high C4ORF19 groups. (E) Copy number of immune cells in ccRCC. (F) Relationship between
C4ORF19 expression level with B cells, CD8+ T cells, CD4+ T cells, macrophages, and neutrophils. (G) Comparison of ssGSEA enrichment between
the low/high C4ORF19 groups. (H) Comparison of CIBERSORT results between the low/high C4ORF19 groups. *means p<0.05, * * means p<0.01, *
* * means p<0.001.
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had excellent predictive ability. We drew a nomogram to better

serve the clinic. As expected, the predicted results of the nomogram

were in good agreement with the actual results. As mentioned

above, we developed and presented the SF-AS regulatory network to

interpret the underlying mechanisms of AS regulation.

Although our new nomogram shows good predictive ability, we

believe that the nomogram we created using risk score and stage

cannot replace the IMDC score model and the nomograms based

on clinical data at present (24, 25). This is because we did not

classify renal clear cell carcinoma into metastatic and non-

metastatic types, making it difficult to make accurate

comparisons. Therefore, external validation of big data may be a

more acceptable method to assess the effectiveness of our

nomogram. However, this does not mean that our new

nomogram is an invalid effort. Our proposed risk score has the

potential to be an independent factor in predicting the prognosis of

renal clear cell carcinoma.

By exploring the role of AS events in TIME with the method

described above, we found that there was generally a high level of

infiltration and a more active immune state in the high-risk group,

which indicates that immune recognition and antitumor effects are

present. Moreover, these results suggested that risk scores could

facil itate the prediction of immunotherapy outcomes.

Unfortunately, we had no way to explore the association between

risk score and ICB treatment outcomes because there was no ICB

treatment dataset in the ccRCC cohort. Then, risk score had a

significantly positive relationship with PDCD1 and CTLA4 and a

significantly negative relationship with HAVCR2 and IDO1.

Furthermore, it was worth mentioning that risk score was

significantly connected with 36 (i.e., HHLA2, etc.) ICB gene
Frontiers in Oncology 17321
expression levels. These results above confirmed that risk scores

did have the potential to help develop more scientific and

personalized immunotherapy strategies.

C4ORF19 (Chromosome 4 Open Reading Frame 19) is a

protein-coding gene. Wang W. et al. reported that regulated

C4ORF19 could promote colon adenocarcinoma cell proliferation,

invasion, and migration (26). However, our understanding of the

role of C4ORF19 in clear cell renal carcinoma is not clear so far.

This study indicated that C4ORF19 was significantly downregulated

in cell lines, largely suggesting a poor prognosis for ccRCC. In ICB

immunotherapy for ccRCC, the C4ORF19 expression level

correlated significantly with clinicopathological stage, tumor

grade, and key genes (i.e., IDO1). However, the potential

biological role of C4ORF19 was unclear and required further study.

In general, ccRCC patients with higher risk scores or lower

levels of C4ORF19 expression had higher levels of immune cell

i nfi l t r a t i on in the tumor env i ronmen t , sugge s t ing

immunophenotypic activation, but shorter overall survival.

Therefore, we hypothesized that the ICB pathways might

influence the antitumor effect of immune cells, and the risk score

was related to the expression of immune checkpoint

blockade targets.

This study had the following advantages in exploring new

prognostic factors for ccRCC. First of all, as a result of this study,

we were able to uncover the role of AS events in the formation of

TIME diversity and complexity as well as their role in the prediction

of ICB therapy outcomes, which had not been clarified. In addition,

to uncover the comprehensive landscape of TIME in ccRCC, the

ESTIMATE R package, ssGSEA algorithm, CIBERSORT method,

and TIMER database exploration were employed. Finally, the study
FIGURE 21

The regulatory network between SFs and survival-related AS events. The yellow or green nodes indicated that the AS events were positively or negatively
correlated with survival. Blue hexagons symbolized SFs. The positive/negative correlations (r > 0.6 or r ≤ 0.6) between SFs and AS events were shown
with red/blue lines.
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emphasized the biological function of C4ORF19 in clear cell renal

carcinoma for the first time.

The current research also had several shortcomings. First of all,

the AS events in ccRCC were investigated using the public TCGA

cohort, which was not validated using the in-house cohort. In

addition, the effectiveness of prognostic indicators including the

ALL prognostic signature and prognostic nomogram still needed to

be verified through clinical trials. Furthermore, the conclusion that

the key gene C4ORF19 was downregulated in ccRCC tumor tissue

still required a larger number of experiments.
5 Conclusion

All in all, we systematically analyzed the prognostic value of

RNA splicing patterns in order to strengthen the prognostic

prediction of ccRCC. The nomogram we developed using risk

score and stage is not as effective in predicting prognosis

compared with the nomogram based on clinical data. Despite this,

our proposed risk score has the potential to be an independent factor

in predicting the prognosis of ccRCC. In addition, the promising

targets for ccRCC antitumor therapy were identified from the AS-SF

regulatory network. After comprehensive bioinformatics analysis of

AS events, the AS atlas was closely correlated with the TIME

characteristics and immunotherapy of ccRCC. However, these

findings still required more experimental and clinical exploration

to verify. At the same time, the mechanism of tumor occurrence and

development of ccRCC and the impact of these AS events still need

to be further explored.
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Prognostic biomarker DARS2
correlated with immune
infiltrates in bladder tumor
Hailang Yang1†, Li Ma2†, Wen Deng1,3, Bin Fu1,3*,
Jianqiang Nie1* and Xiaoqiang Liu1,3*

1Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University,
Nanchang, China, 2Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang, China, 3Jiangxi Institute of Urology, Nanchang, China
Background: DARS2 is a pivotal member of the Aminoacyl-tRNA synthetases

family that is critical for regulating protein translation. However, the

biological role of DARS2 in bladder cancer remains elusive.

Methods: We analyzed the correlation between DARS2 expression and

prognosis, tumor stage, and immune infiltration in bladder cancer using

The Cancer Genome Atlas (TCGA) database. We validated findings in clinical

samples from The First Affiliated Hospital of Nanchang University and

explored the biological functions of DARS2 using cell and animal models.

Results: We found DARS2 to be upregulated in bladder cancer, associated

with tumor progression and poor prognosis. Immune infiltration analysis

suggested that DARS2 may facilitate immune evasion by modulating PD-L1.

Cell and animal experiments validated that DARS2 knockdown and

overexpress can inhibit or increase cancer cell proliferation, metastasis,

tumorigenesis, immune escape, and PD-L1 levels.

Conclusions: Our study reveals DARS2 as a potential prognostic biomarker

and immunotherapy target in BLCA.
KEYWORDS

DARS2, bladder cancer, prognosis, immune infiltration, PD-L1
1 Introduction

Bladder cancer (BLCA) is the most common malignancy of the urinary tract and

one of the most prevalent cancers worldwide (1). Globally, it is the ninth most prevalent

cancer, and among males, it ranks sixth most common (2). Approximately 70-80% of

patients are diagnosed with non-muscle-invasive BLCA at the initial diagnosis.

However, up to 20% of patients progress to advanced, high-grade muscle-invasive

BLCA, with a 5-year survival rate of less than 50% (3). Despite significant advancements

in the treatment of BLCA, including targeted therapies and immunotherapy, the

survival rates for BLCA have not shown significant improvement over the past three
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decades (4, 5). Therefore, investigating the underlying mechanisms

of BLCA development and identifying novel therapeutic targets is of

paramount importance for improving patient prognosis.

aminoacyl-tRNA synthetases (ARS) are critical enzymes that

catalyze the synthesis of proteins by transferring amino acids onto

their corresponding homologous transfer RNAs (tRNAs) (6–8). ARS

constitutes an evolutionarily conserved and essential enzyme family

responsible for catalyzing the linkage of tRNA with its cognate amino

acid, facilitating translation (9).ARS was once considered a family of

‘housekeeping’ enzymes; however, it is now known that they play

diverse roles, including involvement in transcription, translation,

splicing, inflammation, angiogenesis, and apoptosis. ARS also

serves as regulators and signaling molecules in various immune

diseases, infectious diseases, and tumor immunity (9–11).

The gene encoding mitochondrial Aspartyl-tRNA synthetase 2

(DARS2), DARS2 encodes mitochondrial ARS, which specifically

catalyzes the aminoacylation of aspartyl-tRNA. Mutations in this

gene are associated with leukoencephalopathy with brainstem and

spinal cord involvement and lactate elevation, a white matter brain

disorder characterized by brainstem and spinal cord involvement

and elevated lactate levels (12, 13). DARS2 is a significant member

of the ARS family and is implicated in tumorigenesis (14, 15).

Sukru’s group discovered that the deficiency of DARS2 leads to the

activation of various stress responses in a tissue-specific manner.

Depletion of DARS2 in the heart and skeletal muscles results in a

severe disruption of mitochondrial protein synthesis (14, 15). It has

been discovered that HBV inhibits NFAT5 via the miR-30e-5p/

mitogen-activated protein kinase signaling pathway upstream of

NFAT5. Furthermore, HBV enhances hepatocellular carcinoma

tumor development by suppressing NFAT5 through downstream

target genes, including DARS2 (16). It reported an upregulation of

DARS2 expression in lung adenocarcinoma and highlighted its role

in regulating the proliferation, invasion, and apoptosis of lung

adenocarcinoma cells. Moreover, DARS2 overexpression was

associated with poor prognosis in lung adenocarcinoma (17).

However, the biological role of DARS2 in BLCA has not yet been

completely researched.

In this study, we investigated the expression levels of DARS2 in

BLCA and corresponding adjacent tissues, analyzing the infiltration

of immune cells. We further explored the association between

DARS2 expression and overall survival. Additionally, we delved

into the impact of DARS2 interference on tumor cell proliferation,

invasion, migration, and PD-L1 expression. To gain a more

comprehensive understanding of its role in tumor immune

regulation, we conducted co-culture experiments with DARS2 and

Jurkat cells, with further validation through animal experiments.

Collectively, all these research findings affirm the potential of DARS2

as a novel prognostic marker guiding BLCA treatment.
2 Methods

2.1 Data source

mRNA expression data and clinical information for BLCA were

downloaded from The Cancer Genome Atlas (TCGA) (https://
Frontiers in Immunology 02325
portal.gdc.cancer.gov), while pan-cancer data for DARS2 were

obtained from TIMER2 (http://timer.cistrome.org/) (18).To further

validate the protein expression of DARS2 in BLCA, we collected

surgical specimens of BLCA and normal bladder tissues from six

patients during surgery. Additionally, we selected pathological

specimens from 37 BLCA samples and 10 normal bladder tissue

samples at the First Affiliated Hospital of Nanchang University for

immunohistochemistry (IHC) and collected clinical information

from these patients. All patient specimens underwent histological

diagnosis by two pathologists. This study was approved by the Ethics

Committee of the First Affiliated Hospital of Nanchang University,

Ethics license number (2022):CDYFYYLK (11–031); CDYFY-

IACUC-202308QR018.
2.2 Survival analysis

Patients were stratified into high-expression and low-expression

groups based on DARS2 expression levels in the TCGA dataset and

IHC expression in specimens collected from the First Affiliated

Hospital of Nanchang University. OS (Overall Survival) analysis

was performed using the ‘survival’ and ‘survminer’ R packages to

analyze and visualize survival information for both the TCGA

dataset and patients collected from the First Affiliated Hospital of

Nanchang University.
2.3 Immunoinfiltration and gene
expression correlation analysis

TIMER2 is a comprehensive resource for studying molecular

features of tumor-immune interactions across various cancer types

(https://cistrome.shinyapps.io/timer/) (18). We utilized TIMER2 to

analyze the correlation between DARS2 expression and the

infiltration of seven immune cell types, including CD4+T cells,

CD8+T cells, B cells, NK (Natural Killer) cells, macrophages,

MDSCs (Myeloid-Derived Suppressor Cells), CAFs (Cancer-

Associated Fibroblasts), macrophages, and Treg (Regulatory

T) cells.

We also analyzed the genes of three immune checkpoints,

including PD1 (Programmed Cell Death 1, also known as

PDCD1), PD-L1 (Programmed Cell Death 1 Ligand 1, also

known as CD274), and CTLA4 (Cytotoxic T-Lymphocyte-

Associated Protein 4), using the Genetic correlation module on

TIMER2 (adjusted for tumor purity) with statistical methods based

on Spearman’s rank correlation coefficient. Furthermore, we

conducted preliminary validation of DARS2 and PD-L1

expression using five pairs of BLCA tissues.
2.4 Gene set enrichment analysis

Performing Gene Set Enrichment Analysis (GSEA) using gene

sets from the MSigDB collection between the high and low DARS2

expression groups (19). Identifying potential signaling pathways

regulated by DARS2 using the ‘clusterProfiler’ package.
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2.5 Cell culture and transfection

The human urothelial carcinoma cell lines T24, J82, EJ, and the

normal urothelial cell line SV-HUC were obtained from the Cell Bank

of the Shanghai Institute of Cell Biology, Chinese Academy of Sciences,

China. T24, J82, EJ, and SV-HUC cells were cultured in DMEM,

RPMI-1640, and F12K media, respectively, supplemented with 10%

fetal bovine serum (FBS, Hyclone) and 100 U/mL penicillin/

streptomycin, and were grown at 37°C with 5% CO2. T24 and EJ

cells were seeded in six-well plates at a density of 2x105 cells per well.
2.6 Primers and SiRNA
knockdown fragments

DARS2:

Forward Primer: CGAGATGAAGGTTCAAGACCAGA

Reverse Primer: GCCAGGAATACTGGAGCAAACC

b-Actin:
Forward Primer: TCTTCCAGCCTTCCTTCCT

Reverse Primer: AGCACTGTGTTGGCGTACAG

DARS2 SiRNA Interference Fragments:

si-1: GCGTAGTTTCCAAATGCAGTA

si-2: GCCACCTATGGAACTGATAAA

si-3: GCCAACACTATGACTTGGTTT

Lentiviral Interference Fragment (shRNA):

shRNA: GCGTAGTTTCCAAATGCAGTA

Lentiviral Vector: pLV3-U6-MCS-shRNA-EF1a-CopGFP-Puro

Overexpression DARS2:

Forward Primer: TGCTCGCCTTCCTCTTTCAG

Reverse Primer: AGGGAGGCTAAGCGAGGTTT
2.7 Jurkat cell co-culture system

Tumor cells were seeded onto a 12-well plate and allowed to

adhere. Following attachment, Jurkat cells, pre-cultured for 24

hours with 1ug/mL PHA and 50ng/mL PMA, were introduced

into the upper chamber of a migration apparatus. The semi-

permeable membrane of the migration chamber, featuring a pore

size of 0.4um, adeptly prevented reciprocal cell transmigration

between the upper and lower compartments. Maintaining a

proportion of 1:8 for tumor cells to Jurkat cells, a 24-hour co-

cultivation ensued, with subsequent collection of culture medium

for IL-2(Human IL-2 ELISA Kit EK102, MULTISCIENCES) level

assessment through ELISA. Concurrently, CCK-8 reagent was

employed to evaluate the cell viability of tumor cells in both the

control group (without Jurkat cells group) and the co-culture group.

Finally, the co-cultured tumor cells were subjected to crystal violet

staining to portray any remaining cells visually.
2.8 Other reagents

DARS2 antibody: Sourced from Wuhan Boster Biotechnology

Co., Ltd., Catalog Number A06034-1.GAPDH antibody: Obtained
Frontiers in Immunology 03326
from Wuhan Sanying Biotechnology Co., Ltd., Catalog Number

60004-1-Ig.Ki67 antibody:Obtain from Wuhan Servicebio,

GB151142-100. Anti-mouse HRP-conjugated secondary antibody:

Supplied by Wuhan Sanying Biotechnology Co., Ltd., Catalog

Number KFA025.Anti-rabbit HRP-conjugated secondary

antibody: Provided by Wuhan Sanying Biotechnology Co., Ltd.,

Catalog Number KFA005.PD-L1 antibody: Procured from

Wuhan Sanying Biotechnology Co., Ltd., Catalog Number

28076-1-AP.Lipo 2000 transfection reagent: Purchased from

Sigma-Aldrich, Massachusetts, USA.PEI transfection reagent:

Obtained from Wuhan Sanying Biotechnology Co., Ltd. DAB

staining solution: Sourced from Background Soledad Technology

Co., Ltd.
2.9 Ethical approval

This study was approved by the Ethics Committee of the First

Affiliated Hospital of Nanchang University, Ethics license number

(2022):CDYFYYLK (11–031); CDYFY- IACUC-202308QR018.
3 Results

3.1 Upregulation of DARS2 expression
in BLCA

We analyzed TCGA data to investigate the expression of

DARS2 in tumor and normal tissues. Our findings revealed that

DARS2 expression was significantly higher than that in normal

tissues across 25 types of tumors, such as BLCA, BRCA, CESC,etc

(Figure 1A). Furthermore, our analysis of TCGA data demonstrated

a significant upregulation of DARS2 expression in BLCA (P<0.001,

Figure 1B). Additionally, analysis of paired mRNA expression data

from TCGA showed a significant increase in DARS2 expression in

tumor tissues (P<0.001, Figure 1C).

Subsequently, qPCR was performed to validate the mRNA

expression levels of DARS2 in BLCA using paired samples from

five patients. The results showed an increase in DARS2 mRNA

expression in four pairs of cancer tissues compared to adjacent

normal tissues (Figure 1D). Protein immunoblotting results further

demonstrated elevated expression of DARS2 in both cancer cell

lines and tumor tissues (Figures 1E, F). We employed Ki67 to assess

the malignancy level of ten pairs of bladder cancer tissues, because a

higher proportion of Ki67-positive cells correlates with increased

malignancy. Immunohistochemical (IHC) analysis of the ten pairs

of bladder cancer tissues indicated a heightened expression of

DARS2 in bladder cancer compared to normal bladder mucosal

epithelial tissues (P<0.05, Figures 1G, H). Additionally, we observed

that high-grade bladder cancer exhibited elevated levels of DARS2

expression compared to low-grade bladder cancer. This trend was

consistent with the Ki67 staining results, where high-grade bladder

cancer showed a higher proportion of Ki67-positive cells compared

to the low-grade counterpart.

Subsequently, patients were grouped based on clinical

characteristics to determine the correlation between DARS2
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expression levels and clinical features. TCGA analysis results

revealed significant differences in higher DARS2 expression across

histological grade (P < 0.001), pathological stage (P < 0.05), T stage

(P < 0.05), and M stage (P < 0.01) (Supplementary Table 1).

Furthermore, to further confirm the relationship between clinical

features of tumors and DARS2 protein expression, we conducted

clinical baseline data analysis based on the results of IHC analysis in
Frontiers in Immunology 04327
37 patient samples. The patients were divided into high and low

DARS2 expression groups based on the median DARS2 expression.

The analysis showed significant differences in higher DARS2

expression concerning N stage (P < 0.05), M stage (P < 0.05), and

histological grade (P < 0.05) (Supplementary Table 2). Notably, the

results for M stage and histological grade from IHC analysis were

consistent with the TCGA results.
B C D

E

F

G H

A

FIGURE 1

DARS2 Expression in BLCA. (A) DARS2 Pan-Cancer Analysis. (B) TCGA Analysis of DARS2 Expression in BLCA. (C) The expression of DARS2 in paired bladder
cancer in TCGA. (D) qPCR analysis of DARS2 expression in 5 pairs of bladder cancer tissues. (E) Expression of DARS2 in bladder cancer cells and normal
urothelial cells by western blot. (F) Western blot analysis of DARS2 expression in 5 pairs of bladder cancer tissues. (G) Immunohistochemistry of DARS2 and
Ki67 in bladder cancer tissues. (H) Immunohistochemical analysis of DARS2 in 10 pairs of bladder cancer tissues. *P<0.05, **P<0.01, ***P<0.001. ns, no
statistical difference.
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In summary, these findings suggest that DARS2 expression is

upregulated in BLCA at both the transcriptional and

translational levels.
3.2 DARS2 as an independent prognostic
factor in BLCA

To determine the prognostic value of DARS2 in BLCA, we divided

patients in the TCGA dataset into DARS2 low-expression and DARS2

high-expression groups based on the median DARS2 expression for

survival analysis. High DARS2 expression was associated with poorer

overall survival (OS) in BLCA (HR = 1.48, P < 0.01) (Figure 2A).

To further validate the prognostic role of DARS2, we analyzed

follow-up data from collected patients. Based on IHC analysis

results, patients were categorized into high-expression and low-

expression groups. The analysis revealed that patients in the high-

expression group had worse OS (HR = 3.02, P < 0.01) (Figure 2B).

Next, we performed univariate and multivariate Cox regression

analyses on clinical data from TCGA to determine the correlation

between overall survival in BLCA and multiple factors.

Univariate analysis showed that six clinical features, including T3

stage (HR = 1.970, P < 0.001), T4 stage (HR = 2.987, P < 0.001),

N stage (HR = 2.250, P < 0.001), M stage (HR = 3.112, P < 0.005),

age >70 (HR = 1.424, P < 0.05), and DARS2 expression (HR = 1.480,

P < 0.005), were significantly associated with patient overall survival
Frontiers in Immunology 05328
(Supplementary Table 3; Figure 2C). Multivariate analysis data

revealed that DARS2 expression (HR = 1.953, P = 0.022) is an

independent prognostic factor (Supplementary Table 3).
3.3 Identification and enrichment analysis
of differentially expressed genes

Through gene differential analysis, a total of 466 genes were

identified as differentially expressed genes (DEGs) between the high

DARS2 group and the low DARS2 group (Figure 3A). To identify

signaling pathways regulated by abnormal DARS2 expression, we

compared the DARS2 high-expression and low-expression groups

using a signature gene set based on the TCGA dataset.

The analysis results indicated the top five upregulated pathways

as follows: Formation of the cornified envelope; WP retinoblastoma

gene in cancer; G2 mDNA damage checkpoint; Processing of DNA

double-strand break ends; Meiosis (Figure 3B)

Conversely, the top five downregulated pathways were

identified as Initial triggering of complement; Complement

cascade; Scavenging of heme from plasma; Creation of C4 and C2

activators; and CD22 mediated by regulation (Figure 3C)

These findings provide insights into the potential pathways and

processes influenced by DARS2 dysregulation in BLCA, offering

valuable information for further mechanistic investigations and

therapeutic targeting.
B

C

A

FIGURE 2

DARS2 as an Independent Prognostic Factor in BLCA. (A) Kaplan-Meier analysis of OS in the TCGA BLCA. (B) Kaplan-Meier analysis of OS in the 37
cases of BLCA immunohistochemistry. (C) DARS2 expression distribution and survival status.
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3.4 DARS2 regulates bladder cancer cell
proliferation, migration, and invasion

The above results indicate that DARS2 is upregulated in BLCA,

suggesting its crucial role in BLCA tumorigenesis. Therefore, we

used siRNA to knock down DARS2 expression (Figure 4A) to

observe its biological effects on T24 and EJ cells. We chose Si-1 and

Si-2 for cell experiments. We assessed the impact of DARS2 on cell

proliferation using CCK8 and EDU assays. Our results showed that

knocking down DARS2 inhibited cell proliferation (Figures 4B, C).

Furthermore, we found that migration and invasion abilities

were reduced in T24 and EJ cells with reduced DARS2

expression (Figure 4D).

In addition, we conducted an overexpression experiment of

DARS2 in bladder cancer cells and assessed relevant indicators. Our

research revealed that the overexpression of DARS2 significantly

promotes cell proliferation, invasion, and migration, in stark

contrast to the experimental results of DARS2 knockdown

(Supplementary Figures 1A-D).

In summary, these results indicate that DARS2 can affect cell

proliferation, migration, and invasion.
3.5 DARS2 expression correlates with
immune infiltration and PD-L1 expression

Our analysis using TIMER2 showed that DARS2 expression

was negatively correlated with immune-active cells, including CD4+

T cells (R= -0.251, P < 0.001) and NK cells (R= -0.067, P < 0.001).

Conversely, DARS2 expression was positively correlated with

immunosuppressive cells, such as MDSCs (R= 0.372, P < 0.001)

and macrophages (R= 0.196, P < 0.01). Interestingly, DARS2

expression was positively correlated with CD8+T cells (R= 0.203,

P < 0.001) (Supplementary Figure 2A).

It is known that blocking immune checkpoint receptors such as

PD-1/PD-L1 and CTLA-4 can alleviate CD8+T cell exhaustion and

reactivate immune cell cytotoxicity to eliminate antigen-expressing

tumor cells (20). Therefore, we analyzed the correlation between

DARS2 expression and the expression of PD-1, PD-L1 (CD274),
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and CTLA-4 using TIMER2. We found that DARS2 expression was

positively correlated with PD-L1 expression (R= 0.202, P < 0.001),

but showed no significant correlation with PD-1 and CTLA-4

(Supplementary Figure 2B).

To validate the expression patterns of DARS2 and PD-L1, we

conducted protein immunoblotting on five pairs of clinical samples

derived from patients. The results revealed elevated expression of

both DARS2 and PD-L1 in cancer tissues compared to adjacent

non-cancerous tissues across all five sample sets. Furthermore,

correlation analysis of the results from 10 samples demonstrated

a positive association between the expression levels of DARS2 and

PD-L1 (Figure 5K).

Subsequently, we performed knockdown and overexpression

experiments targeting DARS2. Following interference or

overexpression of DARS2, we observed a corresponding

downregulation or upregulation of PD-L1 expression, respectively

(Figures 5A, B). In response to these findings, we designed co-

culture experiments to investigate the impact of cellular immunity

of DARS2 on PD-L1 expression.

We established a co-culture model. We induced Jurkat cell

activation with 50ng/mL PMA and 10ug/mL PHA for 24 hours,

resulting in increased IL-2 levels post-activation (Figure 5C).

Subsequently, using a 12-well plate, we co-cultured cells, either

solely Jurkat cells or Jurkat cells in a 1:5 ratio with tumor cells, for 24

hours. Previous research has indicated that high PD-L1 expression

can inhibit the function of Jurkat cells, leading to a reduction in IL-2

expression (21).Consistent with the mentioned study, we observed a

decrease in IL-2 levels in the co-culture medium containing tumor

cells (Figure 5D).

We then conducted co-cultures after knockdown and

overexpression of DARS2, maintaining conditions consistent with

the explored co-culture settings. Notably, the knockdown of DARS2

resulted in an increase in IL-2 levels in the co-culture medium,

while overexpression led to a decrease in IL-2 levels (Figures 5E, G).

Finally, we investigated the activity of residual tumor cells after

co-culture. In the co-culture setting, we observed lower activity in

tumor cells of the DARS2 knockdown group compared to the

control group. Conversely, overexpression of DARS2 resulted in

heightened activity of tumor cells in the co-culture (Figures 5F, H).
B CA

FIGURE 3

Identification and Enrichment Analysis of Differentially Expressed Genes. (A) Volcano plot for differentially expressed genes between high and low
expression of DARS2 in BLCA patients. (B) GSEA revealed the top five are positively correlated. (C) GSEA revealed the top five are poorly correlated.
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Crystal violet staining of residual live cells post-co-culture aligned

with the observed cell viability patterns (Figures 5I, J).

This indicates that in the immune microenvironment, elevated

expression of DARS2 can lead to a reduction in the cytotoxicity of

Jurkat cells against tumor cells. Conversely, lower expression of

DARS2 results in increased susceptibility of tumor cells to Jurkat

cell-mediated cytotoxicity. PD-L1 plays a crucial role in the

cytotoxic process of Jurkat cells against tumor cells. Moreover,

DARS2 has the ability to influence the expression of PD-L1.

Therefore, DARS2 expression plays a significant role in immune

infiltration and may serve as a potential biomarker for immune

therapy response in BLCA patients.
3.6 Knockdown of DARS2 inhibits tumor
formation in nude mice

In order to further study the impact of DARS2 on bladder

cancer, we used T24 cells to conduct tumorigenesis experiments in

nude mice.we found that T24 cells with DARS2 knockdown formed

smaller subcutaneous tumors in nude mice compared to the NC

group in animal experiments (Figures 6A, B). IHC images of tumor

tissues showed a decrease in both DARS2, cell proliferation markers
Frontiers in Immunology 07330
Ki67 and the immune marker PD -L1 after DARS2 knockdown

(Figure 6C). The above experiments show that DARS2 can affect the

proliferation and tumor formation of bladder cancer.
4 Discussion

BLCA remains one of the most common malignancies of the

urinary tract and one of the most prevalent cancers globally (1, 2).

Approximately 70-80% of patients are diagnosed with non-muscle-

invasive BLCA initially, but up to 20% progress to high-grade, high-

stage muscle-invasive BLCA, with a 5-year survival rate of less than

50% (3, 22). Despite the significant advances in BLCA treatment,

such as targeted therapies and immunotherapies, the survival rates

for BLCA have not significantly improved (1, 23). Therefore, it is

crucial to explore novel biomarkers for BLCA.

DARS2 is responsible for producing the enzyme that ensures

the correct translation of the genetic code by attaching amino acids

to their corresponding tRNA molecules in the mitochondria (9, 11,

24). Liu and colleagues discovered that DARS2 can serve as a

prognostic marker for non-adenocarcinomas and promote the

proliferation, invasion, and migration of lung adenocarcinoma

cells while inhibiting cell apoptosis (17, 25, 26). It suggests that
B

C

D

A

FIGURE 4

DARS2 Regulates Bladder Cancer Cell Proliferation, Migration, and Invasion. (A) DARS2 knockdown in T24 and EJ cells. (B, C) The impact of DARS2
on proliferation in T24 and EJ cells via CCK8, EDU. (D) The impact of DARS2 on migration and invasion in T24 and EJ cells. *P<0.05,
**P<0.01, ***P<0.001.
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DARS2 may be proposed as a new biomarker to distinguish

between multiple myeloma and lung adenocarcinoma (27). It has

been found that DARS2 is an oncogene in hepatocellular carcinoma

and can promote the progression of the hepatocellular carcinoma

cell cycle while inhibiting apoptosis in HCC cells (16, 17). Although

Wu’s team discovered that DARS2 can predict overall survival in

BLCA and serve as a predictive model for assessing clinical
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outcomes (28). However, there have been no reported studies on

the biological role of DARS2 in BLCA.

Our research findings indicate that patients with high DARS2

expression have a poorer prognosis. In terms of biological function,

interfering with DARS2 expression can inhibit the proliferation,

invasion, and migration of BLCA, while overexpression of DARS2 has

been demonstrated to promote the malignant progression of tumors.
B

C D

E F

G H

I

J

K

A

FIGURE 5

Bladder cancer cells and Jurkat cells co-cultured. (A, B) PD-L1 changes after interference and overexpression of DARS2. (C) Relative concentration of IL-2 in
culture medium after activation of jurkat cells by PMA and PHA. (D) Relative concentration of IL-2 in the culture medium after co-culture of activated Jurkat
cells and untreated bladder cancer cells. (E, G) Relative concentration of IL-2 in the co-culture system after knocking down and overexpressing DRAS2.
(F, H) Viability of residual surviving tumor cells in co-culture system after knockdown and overexpression of DRAS2 (I, J) Crystal violet staining of remaining
surviving tumor cells in the co-culture system after knocking down and overexpressing DRAS2. (K) Expression of DARS2 and PD-L1 in bladder cancer cells
and normal urothelial cells by western blot and analysis of the correlation between shigeDARS2 and PD-L1. *P<0.05, **P<0.01, ***P<0.001.
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Our investigation into PD-L1 reveals that both the

downregulation and upregulation of DARS2 may result in a

corresponding decrease or increase in PD-L1 expression. Recent

research has unveiled that knocking down DARS2 leads to a

diminished expression of p-ERK1/2, while DARS2 overexpression

prompts an elevation in p-ERK1/2 levels (29). Previous studies have

substantiated the role of the ERK-MAPK pathway in modulating

PD-L1 expression across diverse cell types, where the regulation of

p-ERK1/2 expression can intricately impact PD-L1 levels (30–34).

Drawing from these insights, we posit that DARS2 likely modulates

PD-L1 expression through the regulation of p-ERK1/2.

In addition, our immune infiltration analysis indicates a

positive correlation between the expression of DARS2 and CD8+

T cells. In the context of immunotherapy, CD8+ T cells play a

pivotal role, secreting cytokines such as IFN-g, TNF-a, and IL-2 to

exert cytotoxic effects on tumor cells (35). In studies of bladder

cancer prognostic markers, Wang found that CLIC1, as a

prognostic marker, showed a negative correlation with CD8+ T
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cells. Patients with low CLIC1 expression exhibited increased

infiltration of CD8+ T cells, correlating with a better prognosis

(36). However, our study revealed that in patients with high DARS2

expression, there is an increased infiltration of CD8+ T cells, but

paradoxically, a worse prognosis. Further classification of CD8+ T

cells identified precursor-exhausted and terminally exhausted

subtypes (37, 38). Precursor-exhausted CD8+ T cells typically

lack effector molecules for tumor cell cytotoxicity, while

terminally exhausted cells release cytokines for tumor killing but

express high levels of immune checkpoints such as PD-1 (39). In

contrast to Wang’s findings (36), we speculate that the upregulation

of PD-L1 induced by high DARS2 expression may weaken the

cytotoxicity of CD8+ T cells against tumor cells. Our experiments,

involving DARS2 knockdown and overexpression, confirm

concurrent upregulation or downregulation of PD-L1 with

DARS2. Additionally, DARS2 knockdown led to a smaller

decrease in IL-2 secretion by Jurkat cells in the co-culture system

compared to the control group. IL-2 is a critical factor for T cell
B

C

A

FIGURE 6

(A, B) subcutaneous tumor formation in nude mice. (C) Immunohistochemical staining of DARS2, PD-L1 and Ki67 in subcutaneous tumor samples
from nude mice. *P<0.05, **P<0.01, ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1301945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1301945
proliferation, survival, and immune function, while the binding of

PD-L1/PD-1 induces CD8+ T cell apoptosis and loss of anti-tumor

function (40–42). Therefore, highly infiltrated CD8+ T cells may

not fully exert their cytotoxic effects in tumors due to the high

expression of PD-L1 on the surface of tumor cells. Moreover, we

observed that tumor cells with high DARS2 expression exhibit

enhanced relative activity, while the knockdown group showed the

opposite, further confirming the stronger immunosuppressive effect

of tumor cells with high DARS2 expression.

On the other hand, we found a positive correlation between

DARS2 expression and macrophage infiltration. Tumor-associated

macrophages (TAMs) are immune cells in the tumor

microenvironment expressing various immune checkpoints

influencing immune function. TAMs can be classified into M1 and

M2 types, withM1 playing a crucial role in innate immunity, while M2

is considered to have a protective effect on tumors (43). Multiple

studies suggest that PD-L1 induces the conversion of M1macrophages

to the M2 phenotype, promoting tumor occurrence and development

(44–47). The correlation between high DARS2 expression and PD-L1

may induce the conversion of macrophages to the M2 type, thereby

weakening the immune cell’s cytotoxicity against tumors. In summary,

high DARS2 expression may promote tumor development by altering

the immune microenvironment of BLCA. Given DARS2’s impact on

PD-L1 expression, it could potentially serve as a novel predictive

indicator for immune therapy responses.

This study yielded several key findings. Firstly, we confirmed and

validated the association of upregulated DARS2 expression with poor

prognosis in BLCA. Secondly, we delved into the impact of DARS2

on the biological functions of bladder cancer cells, establishing a

connection between DARS2 expression and an immunosuppressive

tumor microenvironment, including its correlation with PD-L1

expression. This was further corroborated by our co-culture system,

demonstrating the influence of DARS2 on the cytotoxicity of immune

cells. Lastly, we conducted in vivo experiments to validate the impact

of DARS2 knockdown on tumor formation. However, our study has

some limitations. In one part, the sample size is relatively small, and

the correlation between DARS2 and PD-L1 expression needs further

validation in larger clinical cohorts. Another part, how DARS2

regulates the relationship between tumors and the immune

microenvironment is not yet clear. In-depth investigations into

these mechanisms may pave the way for novel immune therapy

strategies, such as combining DARS2 inhibitors with immune

checkpoint inhibitors to improve the prognosis of BLCA patients.
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Development and verification of
a combined immune- and
cancer-associated fibroblast
related prognostic signature for
colon adenocarcinoma
Jingsun Wei1,2,3†, Xiaoxu Ge1,2,3†, Yucheng Qian1,2,3, Kai Jiang1,2,3,
Xin Chen1,2,3, Wei Lu1,2,3, Hang Yang1,2,3, Dongliang Fu1,2,3,
Yimin Fang1,2,3, Xinyi Zhou1,2,3, Qian Xiao1,2,3, Yang Tang1,2,3*

and Kefeng Ding1,2,3*

1Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and
Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical
Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China, 2Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical
Research Center for Cancer, Hangzhou, Zhejiang, China, 3Department of Colorectal Surgery and
Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
Introduction: To better understand the role of immune escape and cancer-

associated fibroblasts (CAFs) in colon adenocarcinoma (COAD), an integrative

analysis of the tumor microenvironment was performed using a set of 12

immune- and CAF-related genes (ICRGs).

Methods: Univariate and least absolute shrinkage and selection operator (LASSO)

Cox regression analyses were used to establish a prognostic signature based on

the expression of these 12 genes (S1PR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4,

PCAT6, FABP4, KIF15, ZNF792, CD1B and GLP2R). This signature was validated in

both internal and external cohorts and was found to have a higher C-index than

previous COAD signatures, confirming its robustness and reliability. To make use

of this signature in clinical settings, a nomogram incorporating ICRG signatures

and key clinical parameters, such as age and T stage, was developed. Finally, the

role of S1PR5 in the immune response of COAD was validated through in vitro

cytotoxicity experiments.

Results: The developed nomogram exhibited slightly improved predictive

accuracy compared to the ICRG signature alone, as indicated by the areas

under the receiver operating characteristic curves (AUC, nomogram:0.838;

ICRGs:0.807). The study also evaluated the relationships between risk scores

(RS) based on the expression of the ICRGs and other key immunotherapy

variables, including immune checkpoint expression, immunophenoscore (IPS),

and microsatellite instability (MSI). Integration of these variables led to more

precise prediction of treatment efficacy, enabling personalized immunotherapy

for COAD patients. Knocking down S1PR5 can enhance the efficacy of PD-1

monoclonal antibody, promoting the cytotoxicity of T cells against HCT116

cells ((p<0.05).
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Discussion: These findings indicate that the ICRG signature may be a valuable

tool for predicting prognostic risk, evaluating the efficacy of immunotherapy, and

tailoring personalized treatment options for patients with COAD.
KEYWORDS

immune, CAF, prognosis, colon adenocarcinoma, TME
Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors worldwide, with China and the United States ranking

second and fourth, respectively, in incidence and fifth and second,

respectively, in mortality (1). In 2020, it was estimated that over 1.9

million patients would be newly diagnosed with CRC, including

anal cancer, resulting in approximately 935,000 deaths, accounting

for roughly 10% of both newly diagnosed cancers and cancer deaths

worldwide (2). CRC is mainly treated with surgery, radiation and

chemotherapy, although immune checkpoint inhibitors have played

an increasingly important role in its recent treatment. The

KEYNOTE-177 clinical study indicated that pembrolizumab

should be the standard first-line treatment for patients with

microsatellite instability-high or mismatch repair-deficient (MSI-

H/dMMR) metastatic CRC (mCRC) (3). Only 13% of CRC patients,

however, are MSI-H, with the remaining CRC patients being

insensitive to immunotherapy (4). These differences in treatment

outcomes may be attributed primarily to the heterogeneity and

complexity within the tumor microenvironment (TME) (5). A

prognostic signature specific to the TME of CRC patients may

therefore aid in the effective delivery of immunotherapy.

The TME consists mainly of blood vessels, cancer-associated

fibroblasts (CAFs), the extracellular matrix (ECM), and tumor-

infiltrating immune cells (6). CAFs in the TME have several critical

functions, including remodeling of the extracellular matrix (ECM),

engaging in reciprocal signaling interactions with cancer cells and

communicating with infiltrating leukocytes (7). Both the CAFs and

tumor-infiltrating immune cells in the TME are indispensable in

regulating the occurrence and development of tumors. CAFs can

secrete a variety of cytokines and regulate immune cells through a

variety of pathways. Signals from other cells within the TME can

also influence CAF function. For example, activation of T cells can

induce their production of interferon-gamma (IFNg), a cytokine

that can stimulate CAFs to increase the expression of programmed

death-ligand 1 (PD-L1), with PD-L1 subsequently inhibiting the

activity of T cells (8).

Prognostic predictive signatures based solely on immune-related

genes have been developed. For example, a prognostic signature

based on immune-related genes was found to predict survival in CRC

patients and may reflect the state of the TME (9). In addition, a
02336
prognostic signature was designed based on subsets of CAFs in CRC

and their interactions with nonspecific immune cells (10). These

findings indicate the importance of investigating the prognostic

implications of interactions between the immune system and CAFs.

The present study utilized RNA sequencing to assess differential

gene expression of CAFs stimulated with activated peripheral blood

mononuclear cells (aPBMCs) in patients with colorectal

adenocarcinoma (COAD). Immune- and CAF-related gene

signatures in COAD were subjected to systematic and

comprehensive integrative analyses, with the prognostic value of

these signatures were analyzed. A prognostic nomogram was

developed to provide a quantitative analytic tool for predicting

prognostic risk in patients with COAD.
Materials and methods

Data acquisition

Gene expression levels and clinical information of 476 patients

with COAD patients and 41 normal individuals were obtained from

the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). In addition, gene expression levels and

clinical information of 566 patients with COAD were obtained

from the GSE39582 dataset in the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The latter

patients were randomly allocated into two groups, a training

group (70%) and a testing group (30%). The testing group in the

TCGA-COAD cohort and the GEO cohort were used as internal

validation sets. Immune-related genes were obtained from the

ImmPort database (https://www.immport.org) (11). CAFs were

stimulated by aPBMCs, and changes in expression of CAF genes

were determined by RNA sequencing.
Preparation of primary cancer-
associated fibroblasts

CRC tumor tissue samples were collected from three patients of

the Second Affiliated Hospital of Zhejiang University, School of

Medicine. CRC tissue samples were obtained from fresh, surgically
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org
https://doi.org/10.3389/fimmu.2024.1291938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2024.1291938
resected samples and transferred to the laboratory in phosphate-

buffered saline (PBS; Gibco, Carlsbad, CA) containing 10%

povidone iodine within 30 min. The tissue samples were rinsed

three times in PBS containing 500 U/mL streptomycin and

penicillin, minced with surgical scissors into 2–4 mm3 pieces and

plated in 60 mm-culture plates in RPMI 1640 containing 10% fetal

bovine serum (FBS; Gibco, Brazil), 100 U/mL streptomycin and

penicillin and 2.5 mg/mL amphotericin B. To ensure adherence to

the culture plate, the tissue specimens were not submerged in

culture medium. The tissue samples were cultured at 37°C in an

atmosphere containing 5% CO2, with the culture medium changed

every 3–4 days. One to three weeks after plating, the proliferating

fibroblasts could be observed near the minced tissue. The primary

CAFs were subsequently passaged and the remaining tissues were

discarded. The study protocol was approved by the ethical review

board of our institution (Approval number 2022-1130), and all

patients provided written informed consent for tumor resection.
Preparation of peripheral blood
mononuclear cells

Withdraw 6 ml of peripheral blood from one healthy individual,

placed it in an anticoagulant tube with Ethylene Diamine

Tetraacetic Acid (EDTA), and gently mixed by rocking it back

and forth to prevent blood coagulation. The blood samples were

collected from the Second Affiliated Hospital of Zhejiang

University, School of Medicine. Fresh anticoagulant-treated blood

samples were diluted 1:1 with PBS, with each sample layered onto 3

mL of Ficoll-Paque plus solution (Sigma). After centrifugation at

400 g for 15 min, the lymphocyte layer was collected and washed in

PBS. Erythrocytes were eliminated with red blood cell lysis buffer,

and the cells were again washed in PBS. The samples were

centrifuged, and the pellets, consisting of peripheral blood

mononuclear cells (PBMCs), were resuspended in RPMI1640

supplemented with 10% FBS and 1% penicillin/streptomycin and

incubated overnight in a Petri dish to allow monocyte adherence.

The following day, the cells in suspension were transferred to a

second culture bottle. PBMCs were activated by incubation with

anti-CD3/anti-CD28 dynabeads (Thermofisher, US) for 24 hours,

yielding preparations of aPBMCs.
Co-culture of CAFs and aPBMCs

PBMCs in DMEM were prepared as described above. Following

centrifugation and resuspension, a 20 µl aliquot was transferred to cell

counting plate (Counter Star Company) and counted with a cell

counter (Counter Star Company). The PBMCs were diluted to a

concentration of 150,000 cells/100 µl, with a 100 µl aliquot of diluted

PBMCs transferred to each well of a 96-well plate. A suitable volume of

anti-CD3/anti-CD28 Dynabeads (Gibco, Human) was washed with a

magnet stand, followed by removal of the supernatant, resuspension in

DMEM culture medium, and addition of a 3 µl aliquot of suspended

Dynabeads to each well of the 96-well plate containing PBMCs. The
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experimental group co-cultured CAFs and aPBMCs in a 6-well plate

for 24 hours. 2 x 105 aPBMCs were placed in the upper transwell

chamber (6-well plate chamber, 0.4mm pore size), with 2 x 105 CAFs in

the lower chamber. The control group co-cultured unactivated PBMCs

with CAFs for 24 hours. The experiment was conducted with 3

biological replicates.Subsequently, samples from both groups of CAFs

were collected for RNA sequencing to detect the expression level of

differential genes. And the P-value<0.05 and |log2 (fold change) > 1|

were considered as CAF-related differentially expressed genes (CRGs).
Clustering of non-negative
matrix factorization

Non-negative matrix factorization (NMF) is a matrix

factorization technique used to divide a matrix into two non-

negative matrices. DEGs in tumor and normal samples were

screened out based on a |log2 (fold change) > 1| and a false

discovery rate (FDR) < 0.05. DEGs correlating with prognosis

were screened out by univariate COX regression analysis, and the

COAD samples were classified based on the expression of

prognostic relevant genes using the “NMF” package. The number

of clusters K was set in the range of 2 to 10.
Development of the combined immune-
and CAF related prognostic signature

Prognostic genes in the TCGA training cohort were identified by

univariate Cox regression analysis, followed by least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

using the “glmnet” package. Based on the median risk score (RS), the

training cohort was divided into two groups, a low-risk and a high-

risk group. The results obtained from the TCGA training cohort were

subsequently validated in the TCGA test cohort and the GEO cohort.

After the construction of the ICRG prognostic signature, the resulting

RS was combined with the clinicopathological information obtained

from patient records, and a prognostic nomogram predicting

outcomes in patients with COAD was constructed. The predictive

ability of the nomogram was assessed by determining survival risks.

The calibration curves were drawn using the “rms” package.
Evaluation of the responses
to immunotherapy

Comprehensive immunogenomic data were obtained from the

Cancer Immunome Database (TCIA) (https://tcia.at/home). The

relationships between ICRG signatures and predicted responses to

treatment were analyzed based on four immune checkpoints: PD1,

PD-L1,PD-L2 and CTLA4.In addition, the association between

ICRG signatures and MSI was assessed to determine the efficacy

of immunotherapy.
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T cell cytotoxicity assay

The plates were incubated for 48 hours to obtain aPBMCs, the

anti-CD3/anti-CD28 Dynabeads were removed magnetically, and

the cells were resuspended in DMEM containing IL-2 (10 ng/ml)

for another 5 days. This process can cool aPBMC to prevent non-

specific killing. HCT116 cells were transfected with negative control

short interfering RNA (si-NC) or si-S1PR5 for 48 hours and plated

at 10,000 cells per well in 96-well plates. The siRNA sequences are as

follows (5’→3’): si-NC: UUCUCCGAACGUGUCACGUTT;si-

S1PR5-1:CCGCUAUCUGUGCACUCUA(dT)(dT); si-S1PR5-2:

CAUCGUGCUAGAGAAUCUA(dT)(dT).The next day, 40,000

aPBMCs and anti-PD1 monoclonal antibody (4 mg/ml) were

added as appropriate to each well. Killed HCT116 cells were

measured after 48-72 hours, with the results verified by

microscopy and crystal violet staining.
ELISA assay for IFNg expression

After co-culturing PBMCs with HCT116, the supernatant was

collected and centrifuged to remove the cells. The Human IFNg
ELISA kit (Code: EK0373, Boster, China) was used to detect the

expression of IFNg in the supernatant. The supernatant was added

to each well of the enzyme-labeled plate in 100ul aliquots. The plate

was then covered with a sealing membrane and incubated at 37°C

for 90 minutes. After the liquid was removed from the enzyme-

labeled plate, the working solution of biotinylated anti-human

IFNG antibody (excluding the TMB blank colorimetric wells) was

added, and the plate was sealed for another 90 minutes at 37°C.

Following a wash, 100ul of ABC working solution was added to each

well (excluding the TMB blank colorimetric wells), and the plate

was sealed for 30 minutes at 37°C. After the wash, 90ul of TMB

color development solution was added to each well and incubated at

37°C in the dark for 25 minutes. Subsequently, 100ul of stop

solution was added to each well. The OD value at 450nm was

measured using an enzyme immunoassay analyzer, with the TMB

blank colorimetric well set as the control.
Statistical analysis

Univariate and multivariate Cox hazard regression analyses were

performed using the “survival” package of R software. Pearson

correlation analysis was performed using the “corrplot” package of

R software. Differences between two groups were evaluated using the

Wilcoxon test, and receiver operator characteristic (ROC) curves and

areas under the curve (AUC) analyzed using the “timeROC” package

in R sofware. Survival outcomes were determined by the Kaplan-

Meier method and compared by log-rank tests. All statistical analyses

were performed using R software (version 4.2.1), with P-values <0.05

considered statistically significant.
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Results

Classification of COAD subtypes according
to the NMF algorithm

CAFs and aPBMCs were co-cultured for 24 hours, and gene

expression levels in CAFs were measured by RNA-sequence analysis.

A total of 2013 CRGs were identified, and 2483 immune-related

genes (IRGs) were obtained from https://www.immport.org/

(Supplementary Table 1). These CRGs and IRGs were combined,

with 3415 ICRGs screened during follow-up. Analysis of the levels of

expression of these ICRGs in normal and colon cancer samples from

the TCGA database, resulted in the selection of 1095 significantly

DEGs with FDR<0.05 and |log2 (fold change) > 1|. The NFM

algorithm was applied to these 1095 DEGs to identify three

molecular subtypes (Figure 1A). The appropriate rank values were

determined by analyzing the cophenetic, silhouette, and dispersion

metrics (Supplementary Figures 1, 2), with a heatmap showing the

expression of genes in the different clusters (Figure 1B). Kaplan–

Meier analysis showed that overall survival (OS) (P=0.05) and

progression free survival (PFS) (P=0.002) were significantly lower

in Cluster 2 than in Clusters 1 and 3 (Figures 1C, D). Evaluation of

the status of the TME showed that immune cell infiltration and

stromal infiltration were significantly higher in Cluster 1 than in

Clusters 2 and 3 (P<0.001) (Figure 1E). Furthermore, analysis of the

infiltration of 10 types of immune cells showed that immune cell

infiltration was highest in Cluster 1 and lowest in Cluster 2

(Figure 1F). The higher level of immune cell infiltration in Cluster

1 may indicate that this cluster was associated with a stronger

immune response than the other clusters. A heatmap showed that

the infiltration of endothelial cells, fibroblasts, myeloid dendritic cells

and cells of the monocytic lineage was higher in Cluster 1 than in the

other two clusters (Figure 1G).
Construction of an ICRG prognostic
signature by LASSO Cox regression analysis

The TCGA-COAD cohort was randomly split into two

subgroups, a training cohort (70%) and a testing cohort (30%),

which showed no significant differences in clinical characteristics

(Supplementary Table 2). Based on the above results, we performed

univariate analysis on 1905 significantly different ICRGs and

selected 47 prognostic-related ICRGs, followed by application of

the LASSO-Cox regression algorithm to the selected ICRGs in the

TCGA training cohort. Based on coefficients of independent

variables and optimal log values of lambda in LASSO regression

analysis, 23 genes were identified (Figures 2A, B). Risk scores (RS)

were subsequently calculated by multivariate Cox regression

analysis, resulting in an ICRG signature based on 12 genes

(SIPR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4, PCAT6, FABP4,

KIF15, ZNF792, CD1B and GLP2R) (Figure 2C), along with their

corresponding coefficients (Supplementary Table 3).
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FIGURE 1

Identification of molecular subtypes of colon adenocarcinoma (COAD) using a non-negative matrix factorization (NMF) algorithm. (A) Heatmap of an
NMF consensus matrix of K = 3. (B) Unsupervised clustering of the immune- and CAF-related genes (ICRGs) expression profiles of the three clusters.
The heatmap displayed the expression levels of ICRG within the three clusters based on NMF classification. (C, D) Analysis of the differences in
survival among the three clusters based on the NMF algorithm. Kaplan–Meier analysis of the (C) overall survival (OS) and (D) progression-free survival
(PFS) of patients with the three subtypes of COAD. (E) Comparison of the TME scores of the three subtypes using the estimate algorithm. The TME
scores were divided into stromalscore, immunescore, and estimatescore, with cluster 2 having the lowest scores, showing significant discrepancies
(P<0.001). (F) Comparison of MCP counter algorithm-derived immune scores of the three subtypes. The bar chart showed the infiltration levels of
immune cells in the tumor immune microenvironment of three subgroups. (G) Immune scores of immune cells for ESTIMATE and MCP counter
algorithms displayed on the heatmap. P < 0.05, **P < 0.01, ***P <0.001, ****P<0.0001.
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Based on the median RS, the TCGA training cohort was divided

into two groups, those with high RS and low RS, to predict the

prognosis of patients with COAD. A risk plot was generated to show

played the distribution of RSs and their relationship to survival

outcomes and a heatmap showed the levels of expression levels of

risk genes in the high and low RS groups (Figures 2D, E,

Supplementary Table 4). Kaplan–Meier analysis showed that

patient prognosis was significantly lower in the high than in the

low RS group (P<0.001) (Figure 2F). Analysis of the areas under the

curve (AUCs) of the ICRG risk model showed that the 1-, 3, and 5-
Frontiers in Immunology 06340
year AUCs were 0.868, 0.810 and 0.770, respectively (Figure 2G).

These results showed that this prognostic model based on ICRGs

had good predictive performance in patients with COAD.
Validation of the ICRG
prognostic signature

To further evaluate the predictive value of this ICRG risk model,

it was used to analyze the TCGA testing cohort and TCGA-COAD
A B

D E
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C

FIGURE 2

Determination of a prognostic signature for ICRGs by LASSO Cox regression analysis of the TCGA training cohort. (A) Determination of the
coefficients of independent variables by LASSO Cox regression analysis. (B) Calculation of the optimal lambda value, as indicated by the first black
dotted line from the left on the logarithmic scale. (C) Bar chart showing the correlation coefficients of each gene that constituted the ICRG
prediction signature. (D) Distribution of risk score (RS) and survival status according to the ICRG prediction signature. (E) Heat map depicting the
gene expression profiles of the ICRGs included in high-risk and low-risk groups based on the prognostic signature. (F) Kaplan-Meier analysis
comparing survival rates in the high-risk and low-risk groups, which were classified based on the median RS. The prognosis of patients in the high-
risk group was significantly lower than that of the low-risk group, with statistical significance (P<0.001). (G) ROC curves showing the predictive
accuracy of the ICRG prognostic signature at 1, 3, and 5 years.
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cohort for internal validation and the GEO cohort for external

validation. Each of these cohorts was divided into two groups, those

with high and low RS. The relationships between the distribution of

risk groups and patient survival status are shown in Figures 3A–C,

with a heatmap showing the expression of ICRGs in this risk model

(Figures 3D–F). Kaplan-Meier analysis of survival in the testing
Frontiers in Immunology 07341
cohorts was also performed to validate the prognostic value of this

ICGR risk model. Patient prognoses were significantly higher in the

low than in the high RS groups in the TCGA testing cohort

(P=0.011), the TCGA-COAD cohort (P<0.001) and the GEO

cohort (P<0.001) (Figures 3G–I). Moreover, the 1-year AUCs of

the risk model in the TCGA testing cohort, the TCGA-COAD
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FIGURE 3

Internal and external validation of the prognostic value of the ICRG signature in the TCGA testing cohort (A, D, G, J), the entire TCGA-COAD cohort
(B, E, H, K), and the GEO cohort (C, F, I, L). (A-C) Distribution of risk scores (RS) and survival status in the internal and external cohorts. (D-F) Heat
maps showing the gene expression profiles of the ICRGs in high-risk and low-risk groups. (G-I) Kaplan-Meier analysis comparing the survival rates in
the high-risk and low-risk groups based on ICRG signature. (J-L) ROC curves showing the predictive accuracy of the IMRG prognostic signature at 1,
3, and 5 years.
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cohort and the GEO cohort were 0.707, 0.821 and 0.655,

respectively, validating the good predictive performance of this

model in patients with COAD (Figures 3J–L).
Relationships between the ICRG
prognostic signature and
clinical characteristics

To further explore the associations between the ICRG

prognostic signature and patients’ clinical characteristics, RSs

were compared in the TCGA-COAD cohort using independent t

tests. Based on their clinical characteristics, patients were grouped

into high and low risk groups and differences in prognosis were

determined. Prognosis was significantly worse in patients in the

high-risk than in the low-risk group based on clinical
Frontiers in Immunology 08342
characteristics, such as age (P<0.001), gender (P<0.001), T3-4

status (P<0.001) and stage (P<0.001) (Figures 4A–D). Analyses of

differences in RSs between groups classified by clinical features

showed that RS was not affected by age or gender (Figure 4E). In

contrast, RSs increased gradually and significantly as tumor stage

and TNM increased (Figures 4F, G). These results demonstrated

that this prognostic signature based on ICRGs showed a high degree

of overall predictive power across various clinical characteristics.

In addition, the entire TCGA-COAD cohort was subjected to

gene set enrichment analysis (GSEA) to identify gene sets

significantly associated with both the low-risk and high-risk

groups. Genes enriched in the low-risk group were associated

with chemokine and cytokine pathways, whereas genes enriched

in the high-risk group were associated with tumor-related

signaling pathways (Figure 4H). Pathway enrichment analysis

therefore showed that changes in signaling pathways and
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FIGURE 4

Correlations between the ICRG prognostic signature and clinical features in patients with COAD. (A–D) Kaplan-Meier analysis of overall survival (OS)
in COAD patients assorted by (A) age (<65 vs. ≥ 65 years), (B) sex (males vs. females), (C) TNM stage (TI-II vs. TIII-IV) and (D) tumor stage (I-II vs. III-
IV). (E–G) Relationships between risk scores (RS) and clinical characteristics, including age, sex, TNM stage and tumor stage. (H) Results of GSEA
enrichment analysis in both the high-risk and low-risk groups.
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chemokines could lead to differences in immune states in low- and

high-risk groups.
Comparison of the ICRG prognostic
forecasting model with other
published models

The relative predictive ability of the immune- and CAF-

associated model described in this study was compared with the

predictive ability of four previously-described prognostic models

(12–15). To ensure the comparability of these signatures, the same

method for calculating and converting the RS was applied to the

entire TCGA-COAD cohort. Three of the previously published

signatures were effective in categorizing the COAD samples into

high- and low-risk groups, with the differences being statistically

significant (Figures 5A–D). However, ROC curve analysis showed
Frontiers in Immunology 09343
that the AUCs in the present model were higher than those of the

four previously published signatures. Specifically, the present model

had AUCs of 0.821, 0.803, and 0.732 for 1-, 3-, and 5-year survival,

respectively (Figures 5E–H). In addition, the C-index of the present

model was highest at 0.78, whereas the four other signatures had C-

indices of 0.651 (16), 0.633 (17), 0.636 (18), and 0.609 (19). These

results suggest that the prognostic performance of the ICRG

prognostic signature consistently outperformed other evaluated

signatures (Figure 5I).
Development of a nomogram using the
ICRG prognostic signature and assessment
of its clinical relevance

The clinical suitability of the ICRG prognostic signature was

determined by Cox regression analyses of the TCGA-COAD
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C

FIGURE 5

Comparison of the predictive accuracy of the ICRG prognostic signature with that of four previously published signatures. (A-D) Kaplan–Meier
survival curve analysis of the four published signatures. (E-H) ROC curves showing the predictive accuracy of the four published signatures.
(I) Comparison of the C-indices of the ICRG prognostic model with that of the other four prognostic models.
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cohort. RS correlated significantly with prognosis on both

univariate (P < 0.001) (Figure 6A) and multivariate (P < 0.001)

(Figure 6B) regression analyses. A reliable nomogram predicting

survival risk for individuals was constructed based on multiple

regression analysis, which found that three variables, age, stage, and
Frontiers in Immunology 10344
RS, had P values <0.05 (Figure 6C). Moreover, calibration curves

suggested a strong correlation between the survival rates predicted

by the nomogram and the actual survival rates (Figure 6D).

Decision curve analysis (DCA) can be used to evaluate the

practical clinical benefit of the nomogram. These curves are based
frontiersin.o
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FIGURE 6

Construction of a nomogram based on the ICRG prognostic signature and evaluation of its clinical significance in the TCGA-COAD cohort.
(A, B) Univariate and multivariate Cox regression analyses assessing the relationships between risk scores (RS) and clinical characteristics of patients
in the TCGA-COAD cohort. (C) Development of a nomogram model predicting 1-, 3-, and 5-year overall survival (OS) in the TCGA-COAD cohort.
The nomogram assigned points to each variable, with the points added to calculate a total score for each patient. Based on this score, the bottom
scale was used to predict the probability of OS at the specified time points. (D) Calibration curve evaluating the agreement between the predicted
probabilities of survival at 1-, 3-, and 5-years generated by the nomogram and the actual survival outcomes. The graph visually displays the degree
of consistency between the predicted and observed survival rates. (E) DCA curve analysis of the clinical value of the nomogram model.
(F) Comparison the ROC curves of clinical factors and the risk model. The nomogram model demonstrates better accuracy and performance in
predicting the survival of patients with COAD.
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on a series of possible thresholds and can compare the net benefit of

the model with other decision strategies. If the net benefit of the

nomogram was higher than that of other decision strategies, then

this model was considered to have clinical value. DCA showed that

the nomogram had better predictive ability than any other
Frontiers in Immunology 11345
predictors (Figure 6E). In additionally, the nomogram had an

AUC of 0.838, outperforming other variables (Figure 6F). Thus,

these findings showed that the ICRG-based nomogram correlated

significantly with patient prognosis, suggesting that this nomogram

could effective aid in predicting cancer progression.
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FIGURE 7

Prognostic ability of the ICRG signature to predict patient response to immunotherapy. (A) Correlation analyses of RS, MSI, and immune-related
cells. (B) Comparative expression of immune checkpoint molecules (e.g. CD274, MSH6, MCM6, POLE2 and MSH2) in the high- and low-risk groups.
(C) Heatmap showing the correlations between RS and immune checkpoint expression. (D) Comparative immune cell infiltration in the high- and
low-risk groups. (E) Heatmap showing the correlations between RS and immune cell infiltration. (F) Correlation between RS and four IPS scores
associated with a single ICI (anti-CTLA4 or anti-PD1) or their combination.
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Ability of the ICRGs prognostic signature to
predict response to immunotherapy

To better understand the impact of the IMRG prognostic

signature on immunotherapy outcomes, the correlations between

RSs and the level of immune infiltration within the TME were

analyzed. RS showed a positive correlation with the infiltration of

cytotoxic lymphocytes and fibroblasts (Figure 7A). Moreover, the

levels of expression of immune checkpoint proteins, including

CD274, CTLA4, MSH6, MCM6, POLE2, andMSH2, were found to

differ significantly in the high- and low-risk groups (Figure 7B),

indicating a close relationship between RS and immune

checkpoint proteins (Figure 7C). The proportions of B cells,

monocytes, and myeloid dendritic cells were lower, whereas the

proportions of fibroblasts were higher, in the high- than in the

low-risk group (Figure 7D). Furthermore, correlation analysis

showed that RS correlated significantly with cytotoxic

lymphocytes and fibroblasts (Figure 7E). Analysis of the

correlation between RS and IPS, which are valuable predictors

of the effectiveness of immunotherapy, showed significant

differences in IPS and IPS-CTLA4 between the high- and low-
Frontiers in Immunology 12346
risk groups (Figure 7F). These results suggested that the

prognostic signature based on ICRGs could indicate immune

infiltration status and predict patient response to immunotherapy.
Downregulation of S1PR5 improved the
efficacy of anti-PD1 treatment in CRC

T cell killing experiments were performed to verify the role of

S1PR5 in CRC immunity. PBMCs from healthy donors were

activated for 48 hours with CD3/CD28 beads to obtain aPBMCs.

To reduce non-specific killing, aPBMCs were incubated in the cold

for 5 days and co-cultured with HCT116 cells in which S1PR5 had

been knocked down, followed by the addition of anti-PD1 to test the

effect of S1PR5 on T cell killing ability (Figure 8A). Western blotting

showed that transfection of S1PR5 siRNA downregulated S1PR5

protein expression in HCT116 cells (Figure 8B). Crystal violet

staining results showed that knock down of S1PR5 did not

significantly increase the cytotoxic capacity of T cells, whereas the

addition of anti-PD1 monoclonal antibody significantly enhanced

the cytotoxic capacity of T cells (P<0.01) (Figures 8C, D). IFNg was
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FIGURE 8

Effect of S1PR5 knockdown on the therapeutic efficacy of anti-PD1 monoclonal antibody. (A) Diagram of the T-cell killing assay. (B) Effect of si-
S1PR5 on the expression of S1PR5 protein, as shown by western blotting. (C-E) Effect of S1PR5 knockdown and anti-PD1 antibody on T-cell
cytotoxicity, as shown by crystal violet staining, with fewer tumor cells and a smaller staining area indicating stronger T-cell killing ability.
Knockdown of S1PR5 alone did not significantly enhance T-cell killing ability (p>0.05), whereas the combination of S1PR5 knockdown and treatment
with anti-PD1 antibody significantly enhancing T-cell killing ability (p<0.05). The expression level of IFNg in cell culture supernatants is detected using
ELISA method. Knocking down S1PR5 alone or using PD1 monoclonal antibody treatment did not significantly upregulate the expression levels of
IFNg, while the combination of s1PR5 knockdown with PD1 monoclonal antibody treatment significantly upregulated the expression levels of IFNg
(P<0.001). (F, G) Clonogenic assay, showing that S1PR5 knockdown did not affect the proliferation of HCT116 cells (p>0.05).
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one of the markers of T cell activation and can effectively reflect the

cytotoxicity of T cells. We concurrently performed an ELISA-based

detection of the protein expression level of IFNg in the cell

supernatant. The experimental results indicated a significant

upregulation in the expression of IFNg in the group with

knockdown of S1PR5 combined with PD1 monoclonal antibody

(P<0.001), suggesting that the knockdown of S1PR5 significantly

enhanced the efficacy of PD1 monoclonal antibody, thereby

promoting the cytotoxicity of T cells (Figure 8E). To exclude

cytotoxicity resulting from cell proliferation, the effects of S1PR5

on colorectal cancer cell proliferation were evaluated by testing

clone formation. S1PR5 knockdown did not affect clone formation

by HCT116 cells, suggesting that S1PR5 does not affect tumor

proliferation (P>0.05) (Figures 8F, G). Taken together, these results

indicate that knocking down S1PR5 can effectively enhance the

therapeutic efficacy of anti-PD1 and promote the killing ability of T

cells, suggesting that inhibition of S1PR5 could promote the

therapeutic effects of anti-PD1.
Discussion

The emergence of cancer immunotherapies and immune

checkpoint inhibitors (ICIs) has enhanced the ability to treat

cancer patients. To date, the programmed cell death-1 (PD-1)/

programmed cell death ligand-1 (PD-L1) signaling pathway has

been the most extensively studied pathway in tumor

immunotherapy (20). Activation of this pathway can inhibit T

cell proliferation, differentiation and secretion of cytokines, thus

inhibiting T cell activity, impairing tumor immunosurveillance and

triggering tumor immune tolerance and escape (21). Although ICIs

have changed the treatment pattern of many tumors, the

therapeutic effects of ICIs in some tumors are not obvious. One

of the main factors affecting the therapeutic effects of ICIs is the

complex TMEs, which are composed of CAFs and immune cells.

CAFs play an important role in tumor immunity. Activation of the

immune system and T cells can trigger the expression of multiple

inflammatory cytokines by CAFs (22). This can result in a polarized

imbalance of immune cells in the TME, making it difficult even for

existing immune cells to effectively attack tumor cells (22).

Simultaneously, CAFs can inhibit the function of immune cells,

reducing the effectiveness of immune responses (23). The

significant roles played by immune cells and CAFs in the TME

suggest that the model described in the present study, based on the

expression of immune and CAF-related genes, will accurately

predict prognosis in patients with COAD. A thorough evaluation

of immune and CAF-related genes in COAD can aid in the

identification of new methods and pathways that can improve the

efficacy of immunotherapy and enhance patient prognosis.

Co-cultivation of aPBMCs with CAFs enabled detection of

changes in gene expression levels in CAFs and identification of

CAF-related genes. Combining CAF-related genes with immune

genes enabled identification of ICRGs, including those differentially

expressed in the TCGA database. The TCGA-COAD cohort was

divided into three subtypes using the NMF algorithm, and 1095

DEGs were classified. Findings from the ESTIMATE (24) and MCP
Frontiers in Immunology 13347
counter showed that the degree of immune cell infiltration was higher

in Cluster 2 than in Clusters 1 and 3, a difference that may have

contributed to poorer prognosis in Cluster 2. These findings also

suggest that the TME in Cluster 2 may be immunosuppressive. A

prognostic signature based on 12 ICRGs was assessed in the TCGA

training cohort using univariate and LASSO Cox regression analyses.

The resulting predictive model categorized patients into high and

low-risk groups based on their median RS, with further analysis

showing that pathological and TNM stages were more advanced in

the high-risk group. Regardless of clinical factors, however, this

prognostic model showed exceptional predictive performance and

was successfully validated in both internal and external cohorts. The

C-index of this ICRG prognostic signature was notably better than

the C-indices of four previously described signatures. Overall, these

findings indicate that the prognostic signature based on ICRGs has

superior prognostic ability than other prognostic signatures.

The ICRG model described in this study was based on 12 genes,

all of which are involved in both tumors and the immune system.

For example, CD1B plays significant roles in antigen presentation in

the immune system (25) and in the progression of various solid

malignancies (18). The present study showed that the gene with the

highest coefficient was S1PR5 (0.90782435), suggesting that higher

levels of expression of S1PR5 in CRC patients were associated with

greater risk of progression and poorer prognosis. Sphingosine-1-

phosphate (S1P), a metabolite of cell membrane sphingolipids, is a

ubiquitous lysophospholipid signaling molecule that regulates

various biological functions through binding to five subtypes of

S1P receptors (S1PR1–S1PR5), all of which belong to the family of

G-protein coupled receptors (GPCRs). Inhibitors have been

developed against all S1PRs or specific S1PRs, with some of them

being utilized clinically as immunomodulators. For example,

fingolimod is an inhibitor that binds to S1PR1, 3, 4, and 5 (16).

Although S1PR5 was originally believed to be primarily located

in the nervous system, recent research has indicated that it is also

involved in the proliferation and migration of gastric and

esophageal cancer cell lines (17). For example, the level of

expression of S1PR5 was found to be significantly higher in

malignant than in benign colon tissues (19). However, the role of

S1PR5 in CRC immunity has not yet been determined. The results

of the present study suggested that knocking down S1PR5 can

significantly promote T cell killing ability and enhance the

therapeutic effect of anti-PD1 antibody. These results indicated

that S1PR5 played an important role in the development of CRC,

and may become a new target in the treatment of CRC.

The present study had several strengths. First, the prognostic

ICRG signature was validated in several datasets, including internal

and external cohorts, making it highly reliable and robust. Second, a

highly useful nomogram was developed to assist in quantitative

calculations, suggesting that this nomogram may be useful in

clinical applications. Third, this study found that S1PR5 could

affect T-cell cytotoxicity, making it a potential target for intervention.

This study also had several limitations. Most importantly, the

development of both the ICRG prognostic signature and the

nomogram was based on a retrospective analysis of data. This

prognostic signature and nomogram will therefore require

validation in large multicenter prospective patient cohorts.
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Conclusion

The present study described the development of an ICRG

prognostic signature, which incorporated immune- and CAF-

related genes. This signature was found to be more accurate in

predicting both prognostic risk and the efficacy of immunotherapy

in patients with COAD. This prognostic signature was subsequently

used to develop a personalized quantitative nomogram, which can

be valuable in designing personalized treatments of patients

with COAD.
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PSME3 plays a significant role in tumor progression. However, the prognostic

value of PSME3 in pan-cancer and its involvement in tumor immunity remain

unclear. We conducted a comprehensive study utilizing extensive RNA

sequencing data from the TCGA (The Cancer Genome Atlas) and GTEx

(Genotype-Tissue Expression) databases. Our research revealed abnormal

expression levels of PSME3 in various cancer types and unveiled a correlation

between high PSME3 expression and adverse clinical outcomes, especially in

cancers like liver cancer (LIHC) and lung adenocarcinoma (LUAD). Functional

enrichment analysis highlightedmultiple biological functions of PSME3, including

its involvement in protein degradation, immune responses, and stem cell

regulation. Moreover, PSME3 showed associations with immune infiltration and

immune cells in the tumor microenvironment, indicating its potential role in

shaping the cancer immune landscape. The study also unveiled connections

between PSME3 and immune checkpoint expression, with experimental

validation demonstrating that PSME3 positively regulates CD276. This suggests

that PSME3 could be a potential therapeutic target in immunotherapy.

Additionally, we predicted sensitive drugs targeting PSME3. Finally, we

confirmed in both single-factor Cox and multiple-factor Cox regression

analyses that PSME3 is an independent prognostic factor. We also conducted

preliminary validations of the impact of PSME3 on cell proliferation and wound

healing in liver cancer. In summary, our study reveals the multifaceted role of

PSME3 in cancer biology, immune regulation, and clinical outcomes, providing

crucial insights for personalized cancer treatment strategies and the

development of immunotherapy.
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1 Introduction

Cancer, a leading cause of mortality in the world, is a persistent

public health issue (1, 2). Immunotherapy has emerged as a

promising approach for treating various cancer types, such as

melanoma, lung cancer, and lymphoma (3–5). However, not all

patients respond equally to immunotherapy (6), and there is a need

for further identification of biomarkers and the development of

personalized approaches to maximize its effectiveness. Therefore,

pan-cancer studies of target genes are useful for analyzing molecular

abnormalities and potential associations in different types of cancer

(7). This facilitates advances in combination therapy and

individualized therapy.

PSME3, also known as Proteasome Activator Complex Subunit

3, plays a crucial role in regulating essential cellular processes. For

instance, PSME3 facilitates the breakdown of the cell cycle inhibitor

p21 to stimulate cell proliferation (8). It also serves as a regulator by

targeting the mouse double minute 2 homolog/P53 complex (9).

PSME3 mediates the secretion of tumor interleukin-1 and necrosis

factor-alpha as a transcriptional regulator (10). Furthermore, in

pancreatic cancer, PSME3 targets the cellular myelocytomatosis

oncogene (c-Myc) to stimulate lactate secretion (11). It also

regulates tumor biological functions such as tumor angiogenesis,

cell senescence or apoptosis, and lipid and energy metabolism (12–

16). For instance, PSME3 participates in angiogenesis by

influencing protein kinase (PKA) conversion in the cyclic

adenosine monophosphate/PKA signaling pathway (15).

Furthermore, it can control the growth of cells with cancer and

the onset of BRCA and lung cancer by degrading the steroid

receptor co-activators 3, P21, and P53 (8, 9, 17). It regulates

energy metabolism in mice by influencing Sirt1-mediated

autophagy (12).

The tumor microenvironment (TME) is an active facilitator of

cancer progression during tumor growth rather than a silent bystander

(18). An in-depth investigation of the dynamic regulatory mechanism

of stromal and immune components in the TME and elucidation of the

immune phenotype of tumor-immune interactions may provide new

cancer treatment targets (19). PSME3 can create a positive feedback

cycle with nuclear factor kappa-B (NF-kB), promote the development

of colitis and related colon cancer, and mediate the cross-linking

between NF-kB and Yes-associated protein pathways (10). Hence,

These findings suggest that PSME3 may have a potential role in the

immune microenvironment.

However, despite the previous reports on PSME3 in the

mentioned cancer types, there hasn’t been a comprehensive pan-

cancer study conducted to date. In this study, we conducted a

comprehensive investigation aimed at exploring the differential

expression of PSME3 in various cancers, its prognostic value,

clinical pathological staging, metastasis, and biological functions.

We also focused on the role of PSME3 in the tumor immune

microenvironment, which was further validated through flow

cytometry analysis to gain a deeper understanding of its

involvement in immune processes. Additionally, we predicted

potential drugs targeting PSME3. Finally, we established the

independent prognostic value of PSME3 in LIHC. These research
Frontiers in Immunology 02351
findings provide valuable clues for the development of new

targeted therapies.
2 Materials and methods

2.1 Data preparation and analysis of
differential expression

GTEx databases (https://commonfund.nih.gov/GTEx) was used

to gather the gene expression information for different tissues. The

TCGA transcriptome data were found using UCSC Xena (https://

xena.ucsc.edu/) On the expression data and matching tumor types,

a log2 transformation and t-test were run. Boxplots were created

using the “ggplot” R tool.
2.2 PSME3 immunohistochemical staining

The HPA database (https://www.proteinatlas.org/) provides the

expression and distribution patterns of approximately 26,000 types

of proteins in human tissues and organs. We downloaded

immunohistochemistry images of various types of tumor tissues

and their corresponding normal tissues from the HPA database.
2.3 Survival analysis

Overall Survival (OS) and Recurrence-Free Survival (RFS) were

visualized and analyzed using the KMPlot website (https://

kmplot.com/analysis/).
2.4 Gene set enrichment analysis

The top 100 co-expressed genes in the TCGA dataset were

obtained from GEPIA2.0 (http://gepia2.cancer-pku.cn). The

PSME3 protein-protein interaction (PPI) network was

constructed using the online network tool Search Tool for the

Retrieval of Interacting Genes and Proteins (STRING) (https://

www.string-db.org/). Enrichment analysis was performed using the

R package clusterProfiler (version 3.14.3).
2.5 Examination of the immune function of
PSME3 in the pan-
cancer microenvironment

We calculated immuneScore, stromalScore, and ESTIMATEScore

using the Sanegrbox website (http://sangerbox.com/) to evaluate the

immune and stromal components. To analyze the association between

PSME3 and immune cells, we employed six different immune

algorithms, including TIMER, xCell, MCP-counter, CIBERSORT,

EPIC, and QuanTIseq. The analysis of immune checkpoints was

also conducted using the Sanegrbox website. Additionally, we
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utilized the SpatialDB online tool to analyze spatial transcriptome data

of PSME3 in the mouse brain. We used the TISMO tumor immune

network tool (http://tismo.cistrome.org/) to compare gene expression

levels before and after cytokine treatment, as well as before and after

PDL1 and CTLA-4 treatments in cell lines.
2.6 Single-cell sequencing analysis

Using the Tumor Immune Single Cell Center (TISCH) (http://

tisch.comp-genomics.org/home/), a single-cell RNA (scRNA)-seq

database focused on the TME, we compared the LIHC PSME3

expression in various cell types.
2.7 Drug sensitivity of PSME3 in the pan-
cancer analysis

We downloaded the NCI-60 compound activity data and RNA-

seq from the Genomic of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) databases. Expression profiling

and the examination of PSME3 drug sensitivity in the pan-cancer

analysis were performed. The ‘limma’, ‘ggplot2’, and ‘ggpubr’ R

packages were used.
2.8 Univariate and multivariate
cox regression

We conducted univariate Cox regression analysis on liver

cancer patients, examining gene expression in relation to overall

survival. Multivariate Cox regression was employed to assess

independent risk factors within the same cohort. Genes and

factors with a false discovery rate (FDR) < 0.05 were deemed

significantly associated with patient survival. The outcomes of

both univariate and multivariate Cox regression were obtained

and visualized using the R package forestplot.
2.9 Development of a nomogram

This study employed the Cox regression model and the R

package rms to devise an OS prediction nomogram. The

nomogram was designed with endpoints set at 1, 2, 3, and 5-year

overall survival rates for liver cancer.
2.10 Cell culture

The human liver cancer cells (Hut7), human lung cancer cells

(A549), human bladder cancer cells (T24), and HEK 293T cells were

purchased from the ATCC cell repository. At 37°C and 5% CO2 in a

humid incubator, cells were grown in DMEM medium
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supplemented with 10% heat-inactivated fetal bovine serum,

penicillin (100 units/mL) from Gibco, and streptomycin (100 ug/

mL) from Gibco.
2.11 Plasmid construction and
lentivirus transfection

The primer sequences of shRNA were synthesized by Shanghai

Biotech. sh1-PSME3 target sequence is 5’-CGTGACAGAGA

TTGATGAGAA -3 ’ . sh2-PSME3 target sequence is 5 ’-

GCATCTTATCTGGACCAGATT-3’. sh2-PSME3 target sequence

is 5’-GCATCTTATCTGGACCAGATT-3’. The PCR instrument

was annealed using the combined primers, and the annealing

procedures were 37°C (30 min); 95°C (5 min); 95°C (1°C lower

per cycle, 1s lower 0.2°C, 20 cycles); 75°C (1°C lower per cycle, 1s

lower 0.1°C, 20 cycles); and 12°C (permanent). Finally, the annealed

product and vector backbone pLKO.1 were ligated using a high-

performance ligase.

Virus packaging was performed in HEK 293T cells according to

the ratio pMD2G: psPAX2: plasmid: PEI = 1:2:4:12 (ug:ug:ug:ul).

T24 cells were infected at a density of approximately 40%, and virus

and medium were added in equal proportions along with 1x of

infection reagent PB. Fluid was changed on day 2, and plasmid-

resistant drugs were started on day 3 of screening. The pCDNA3.1-

Flag-PSME3 overexpress ion plasmid originates from

our laboratory.
2.12 Western blotting

Cell lysates were used to obtain total proteins. Proteins were

electrotransferred onto polyvinylidene difluoride (PVDF)

membranes following SDS-PAGE, and the membranes were sealed

with 5% skim milk before being incubated. The membrane was then

incubated with Anti-PSME3 antibody (ab180829), Anti-Flag

antibody(ab95045), Alpha Tubulin antibody (11224-1-AP),

Proteintech, and anti-Actin antibody (ab197345). Incubate for 14–

16 hours after dilution at the corresponding ratio. Rabbit secondary

antibody (Abcam ab97051) diluted 1:4000 was incubated for 1 h at

room temperature, and burst scanning was performed using a high-

sensitivity ECL chemiluminescence test kit (Chengdu Gechi

Bio 2212ECL013).
2.13 Flow cytometry

We prepared cell flow antibodies (dilution ratio 1:100) using

Purified anti-human CD276 (B7-H3) antibodies (BioLegend Cat.

No. 331602). Resuspended cells were stained on ice for half an hour,

washed twice, and fixed using 1% paraformaldehyde. The samples

were obtained on the machine using BD Diva software (BD

Biosciences). And the data were analyzed using Flowjo 10.
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2.14 Cell proliferation analysis

To assess the effect of PSME3 silencing on Hut7 cell

proliferation, we conducted CCK-8 cell proliferation assays. Cells

were seeded in 96-well plates, and CCK-8 reagent was added at

different time points (24 hours and 48 hours). Cell proliferation

capacity was evaluated by measuring absorbance.
2.15 Scratch wound healing assay

Cells were seeded in 6-well culture plates and allowed to grow to

a uniform monolayer. Subsequently, a uniform scratch was created

in the cell monolayer using a 200mL pipette tip. The ability of cells to
heal in the scratched area was photographed, recorded, and

compared at different time points.
2.16 Data analysis

All experimental data were subjected to statistical analysis using

appropriate biostatistical methods, including t-tests and analysis of

variance. Experimental results were considered statistically

significant when the p-value was less than 0.05.
3 Results

3.1 Differential expression based on PSME3

We conducted an in-depth analysis of RNA sequencing data

from the TCGA and GTEx databases. The analysis of the TCGA

database reveals a significant upregulation of PSME3 gene mRNA

expression in 15 distinct cancer types compared to normal tissues.

These cancer types encompass bladder cancer (BLCA), breast

cancer (BRCA), cervical squamous cell carcinoma (CESC),

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),

esophageal cancer (ESCA), glioblastoma multiforme (GBM), head

and neck squamous cell carcinoma (HNSC), kidney renal clear cell

carcinoma (KIRC), LIHC, LUAD, lung squamous cell carcinoma

(LUSC) , rec tum adenocarc inoma (READ) , s tomach

adenocarcinoma (STAD), and uterine corpus endometrial

carcinoma (UCEC). Only two cancer types, kidney chromophobe

(KICH) and thyroid carcinoma (THCA), exhibit lower PSME3 gene

expression when compared to normal tissues (Figure 1A).

Considering the limited availability of normal tissue data within

the TCGA dataset, we conducted a comprehensive analysis by

seamlessly integrating gene expression data sourced from the

GTEx database, which offers a larger dataset of paired normal

tissues. The combined analysis demonstrates a prominent elevation

in PSME3 mRNA expression across several cancer types, including

BLCA, BRCA, CESC, CHOL, COAD, Diffuse Large B-Cell

Lymphoma (DLBC), ESCA, GBM, HNSC, KICH, Kidney Renal

Papillary Cell Carcinoma (KIRP), Acute Myeloid Leukemia

(LAML), Low-Grade Glioma (LGG), LIHC, LUAD, LUSC,
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Ovarian Cancer (OV), Pancreatic Ductal Adenocarcinoma

(PAAD), PRAD, READ, Skin Cutaneous Melanoma (SKCM),

STAD, Testicular Germ Cell Tumor (TGCT), Thymoma

(THYM), and UCEC. Only in adrenocortical carcinoma (ACC),

kidney renal clear cell carcinoma (KIRC), and kidney chromophobe

(KICH) do we observe a contrasting trend (Figure 1B).

We conducted a further analysis of the expression patterns of

PSME3 in different cancers concerning pathological staging and

metastasis. The data indicates a correlation between the expression

of PSME3 and the pathological staging as well as tumor metastasis

in cases of LUAD, LIHC, and KIRC (Figures 1C, D).

In the previously mentioned tumors exhibiting mRNA level

differences, we proceeded with an analysis of PSME3 protein

expression using the UALCAN database. The results revealed a

significant increase in PSME3 protein expression in LIHC, UCEC,

BRCA, OV, HNSC, PAAD, GBM, COAD, and LUAD. These

findings are consistent with our previous research outcomes

(Figure 2A). Furthermore, immunohistochemical data from the

HPA database provided additional support for our discoveries

(Figure 2B). These findings may contribute to a deeper

understanding of the biological functions of PSME3 in various

cancers and shed light on its potential clinical diagnostic value.
3.2 The prognostic significance of PSME3
expression in pan-cancer

We conducted a pan-cancer analysis using the Kaplan-plot tool

to assess the prognostic significance of PSME3. The results revealed

that in LIHC, HNSC, LUAD, OV, THCA, and CESC, high PSME3

expression was associated with poorer OS, with a hazard ratio (HR)

greater than 1 (Figure 3A; P < 0.05). However, in gastric cancer

STAD (Supplementary Figure 1A), high PSME3 expression was

correlated with better OS. Furthermore, in HNSC, LIHC, BLCA,

LUAD, LUSC, and PCPG, high PSME3 expression was linked to

worse RFS (Figure 3B; HR > 1, P < 0.05), while in STAD, ESCA,

KIRC, and OV, high PSME3 expression was associated with better

RFS (Supplementary Figure 1B).

In summary, the PSME3 particularly in LIHC and LUAD,

exhibits significantly elevated expression levels. This elevated

expression is associated with poor clinical prognosis and cancer

progression, indicating its potential clinical utility. Further research

into the biological functions of PSME3 will contribute to the

development of more effective cancer treatment strategies.
3.3 The biological functions of PSME3

Our study commenced by analyzing proteins that interact with

PSME3 and exploring co-expressed genes. Subsequently, we

conducted functional enrichment analysis. In the STRING

database, we identified ten proteins known to interact with

PSME3: PSME1, PSME2, PSMA5, PSMD8, PSMD14, PSMEIP1,

NCOA3, RXRA, TNF, and IFNG. These proteins collectively

constitute a PPI network (Figure 4A). Furthermore, we validated
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the co-expression patterns of PSME3 using GEPIA 2. This analysis

unveiled the top 100 genes closely associated with PSME3

(Supplementary Table 1), with the top 10 genes listed as follows:

LSM12P1 (R = 0.74), PIGW (R = 0.71), LSM12 (R = 0.67), CCDC43

(R = 0.67), RAB5C (R = 0.67), KPNA1 (R = 0.66), RABM12 (R =

0.66), CPSF2 (R = 0.66), URB2 (R = 0.67), and KPNB1 (R =

0.69) (Figure 4B).
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Through Go and KEGG functional enrichment analysis, our

research has unveiled the pivotal roles played by PSME3 and its

interacting proteins in a multitude of biological processes. These

processes encompass protein degradation, antigen processing and

presentation, immune rejection reactions, autoimmune diseases and

inflammation, regulation of hematopoietic stem cell differentiation, and

amino acid metabolism (Figures 4C, D). Additionally, the functional
A

B

D

C

FIGURE 1

Differential expression of PSME3 (A) PSME3 mRNA expression levels in 33 different tumor types derived from TCGA database. Red columns represent
cancer samples, and blue columns represent normal samples. *P<0.05, **P<0.01. (B) Comparison of PSME3 expression between tumor and normal
tissues, combining data from TCGA and GTEx. *P<0.05, **P<0.01, ****P<0.001, NS (no significant differences). (C) Violin plots illustrating PSME3
mRNA levels at pathological stages (stages I, II, III, and IV) in various cancers. (D) Relationship between PSME3 expression and metastasis in different
tumors [log2 transcript per million (TPM) + 1]; only cancers with statistically significant differences between pathological stages are presented.
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enrichment analysis of the top 100 genes co-expressed with PSME3 has

revealed a wide spectrum of cellular processes, including RNA

processing, protein synthesis, organelle functions, and signal

transduction pathways (Figures 4E, F). These findings underscore the

multifunctionality of PSME3 in cell biology, immunology.
3.4 Immune infiltration and immune cell
analysis based on PSME3

Research on PSME3 within the domain of tumor immunity has

been relatively limited in scope. However, given its potential
Frontiers in Immunology 06355
significance in this field, there is a critical need for further

exploration and expansion of PSME3 research. As immune

infiltrating cells play a pivotal role in cancer development, we

conducted an analysis to determine the estimated score, immune

score, and stromal score of PSME3 in various cancers (Figures 4E,

F). It’s worth noting that in specific cancer types such as COAD, KIRC,

READ, DLBC, PAAD, UVM, KICH, and LAML, PSME3 exhibited a

positive correlation with the Stromal Score. Additionally, a positive

correlation was observed between PSME3 and Immune Score in

COAD, DLBC, PAAD, UVM, KICH, and LAML. Furthermore, the

Immune Scores in COAD, READ, PAAD, UVM, KICH, and LAML

displayed a positive correlation with the estimates (Figures 5A–C).
A

B

FIGURE 2

(A) Differential expression of PSME3 protein in various tumor and normal tissues from the UALCAN database. (B) Immunohistochemical images
comparing PSME3 protein expression in normal (left) and tumor (right) tissues.
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Furthermore, we employed six different techniques to assess

immune cell involvement, aiming to elucidate the relationship

between PSME3 and immune cells. These methods included EPIC

(Figure 5D), QuanTIseq (Figure 5E), CIBERSORT (Supplementary

Figure 2A), TIMER (Supplementary Figure 2B), XCell (Supplementary

Figure 2C), and MCP-counter (Supplementary Figure 2D). Notably,

higher levels of PSME3 exhibited a robust positive correlation with
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neutrophils, B cells, CD4 T cells, CD8 T cells, and M2 macrophages in

cancers such as HNSC, KIRC, KICH, PRAD, and UVM. To further

validate these findings, we conducted a spatial transcriptional analysis

in the mouse brain, confirming the spatial co-expression of PSME3

with the M2 macrophage biomarkers CD68 and CD163. The

geographical distribution patterns of PSME3, CD68, and CD163

markers showed significant overlap (Figure 5F).
A

B

FIGURE 3

(A) Kaplan-Meier analysis of the relationship between high and low expression of PSME3 and OS(HR>1, P<0.05). (B) Kaplan-Meier analysis of the
relationship between high and low expression of PSME3 and RFS (HR>1, P<0.05).
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Furthermore, results from immune subtype analysis indicated that

elevated expression of PSME3 was associated predominantly with the

C2 subtype in BLCA, UCEC, STAD, and LUAD, suggesting a primary

association with IFN-gamma. Meanwhile, the increased presence of

PSME3 in the C4 subtype of LUSC and KIRC implied an association

with lymphocyte exhaustion (Figure 5G).
Frontiers in Immunology 08357
3.5 Association between PSME3 and
immune checkpoint

Antitumor immunity is a powerful predictor of immunotherapy

response associated with MSI (Microsatellite Instability), TMB

(Tumor Mutational Burden) (20). Immune checkpoint inhibitor
A B

D

F G

C

FIGURE 4

The enrichment analysis of PSME3 in pan-cancer: (A) Interaction network of PSME3’s interacting proteins as retrieved using the protein-protein
interaction search tool (STRING). (B) Correlation between PSME3 and the top 10 co-expressed genes. (C) Functional enrichment analysis of GO
pathways associated with PSME3 and its interacting proteins. (D) Functional enrichment analysis of KEGG pathways associated with PSME3 and its
interacting proteins. (E) Functional enrichment analysis of GO pathways associated with PSME3 and its co-expressed genes. (F) Functional
enrichment analysis of KEGG pathways associated with PSME3 and its co-expressed genes.
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therapy’s effects can be detected by MSI-H/dMMR and a high TMB

(TMB-H) (21). In our study, we utilized the Pearson correlation

coefficient to assess the association between the PSME3 gene

expression levels and TMB as well as MSI. We looked into the
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correlation between PSME3 expression levels and those of MSI,

TMB. The expression levels of PSME3 were positively correlated

with TMB in LUAD, UCEC, BLCA, UCEC, STAD, SKCM, OV,

LGG, and HNSC; this was negatively correlated with TMB in
A B

D

E

F

G

C

FIGURE 5

Correlation and Immune Cell Infiltration Analysis (A) Stick map illustrating the correlation between PSME3 and StromalScore. (B) Stick map illustrating
the correlation between PSME3 and ImmuneScore. (C) Stick map illustrating the correlation between PSME3 and ESTIMATEScore. (D) Immune cell
infiltration analysis conducted using EPIC. (E) Immune cell infiltration analysis conducted using QuanTiseq. *P<0.05, **P<0.01, NS (no significant
differences). (F) Spatial transcription sections displaying the spatial expression patterns of PSME3, CD68, CD276, and CD163 markers. Dot colors
represent the expression levels of the markers. (G) Correlations between PSME3 and immune subtypes were analyzed with the TSIDB online tool.
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THCA (Figure 6A). Furthermore, the expression of PSME3 was

negatively correlated with MSI in UCEC and UVM while being

positively correlated with MSI in COAD, DLBC, LGG, PRAD, and

THCA (Figure 6B). Based on the association between PSME3

expression and the mutation markers TMB and MSI, we further

investigated the link between PSME3 expression and mature MMR

genes. From the results, in 33 cancer types (excluding LGG), PSME3

was positively correlated with MMR gene expression (Figure 6C).
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Immunological checkpoints (ICPs) represent the most

promising targets for tumor immunotherapy since they regulate

the entry of immune cells into TME (21). When investigating the

relationship between immune checkpoint expression and PSME3,

we observed that among the 33 cancers, CD276 and CD274

exhibited the highest positive correlation with PSME3, followed

by VEGFA, HMGB1, THR4, BTNA2, and ENTDD1 (Figure 6D).

Spatial transcriptome results also indicated an overlap between
A B

DC

FIGURE 6

(A) Correlation Between PSME3 mRNA Expression and TMB. (B) Correlation Between PSME3 mRNA Expression and MSI. (C) Heatmap illustrating the
expression of PSME3 and MMR pathway genes. (D) Heatmap depicting the relationship between immune checkpoint genes and PSME3 expression in
pan-cancer analysis. *P < 0.05, **P < 0.01, ***P < 0.001.
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CD276 and PSME3 (Figure 5F). In summary, the correlation

between PSME3 and immune checkpoint expression offers crucial

insights into the intricate dynamics within the tumor

microenvironment. Continued research in this field could lead to

significant progress in personalized cancer treatment strategies.
3.6 To validate the involvement of PSME3
in the regulation of CD276

To further confirm the association between PSME3 and

immune checkpoints, we conducted flow cytometry analysis after

modulating PSME3 expression in 293T cells (Figure 7A) and

silencing PSME3 in liver cancer Hut7, lung adenocarcinoma

A549, and bladder cancer T24 cells (Figures 7B-D). The

experimental findings unequivocally demonstrated that PSME3

plays a positive regulatory role in CD276 expression. Intervening

to reduce the expression of CD276 by targeting PSME3 is a

promising treatment strategy that may contribute to enhancing

the efficacy of immunotherapy.
3.7 Immunotherapy response and sensitive
medication prediction

We initiated our study by employing the TISMO network tool,

which revealed that cytokine therapy, particularly interferons (IFNb
and IFNg), exhibited promising therapeutic effects in mouse models

with high PSME3 expression, especially in various cancer types such

as lung cancer, breast cancer, melanoma, and colorectal cancer

(Figure 8A). Additionally, our observations indicated that the

expression levels of PSME3 can predict the response to

immunothe rapy wi th PDL1 and CTLA4 in ga s t r i c

adenocarcinoma and breast cancer in mouse models (Figure 8B).

These findings provide crucial insights into the potential role of

PSME3 in immunotherapy and its association with treatment

responses, offering valuable information for future research and

the development of immunotherapeutic strategies.

Acetalax, sapitinib, and dasatinib were the top three

medications that were positively linked with PSME3 expression,

according to analyses of correlations between PSME3 expression

and drug sensitivity based on the GDSC dataset (Figure 8C).

Contrarily, the top three medications that were adversely linked

with PSME3 expression were TW 37, daporinad, and telomerase

inhibitor IX (Figure 8D).
3.8 PSME3 as an independent predictor
in LIHC

Our previous findings indicate a close correlation between high

PSME3 expression and the progression and prognosis of LIHC,

with a significant role in liver cancer immunity. For this reason, we

proceeded to explore the biological functions and independent

prognostic value of of PSME3 in LIHC. We identified PSME3 as

an independent prognostic indicator in LIHC through both
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univariate and multivariate COX regression analyses. (Figures 9A,

B). Additionally, we constructed a PSME3-based nomogram to

better assist in evaluating patient prognosis in clinical practice

(Figure 9C). The area under the curve (AUC) for the 1-year, 2-

year, 3-year, and 5-year OS in the line chart were 0.775, 0.709, 0.725,

and 0.699, respectively (Figure 9D). Moreover, calibration curves

were generated to evaluate the performance of the line chart

(Figure 9E). These curves demonstrated a close proximity

between the predictive curve of the model and the ideal

curve.These results indicate a robust predictive performance.

Meanwhile, we conducted independent survival prognosis

analyses in TCGA and ICGC databases to further confirm the

predictive capacity of high PSME3 expression for a poorer

prognosis in liver cancer patients (Figures 9F, G). Furthermore,

clinical relevance indicated an association between high PSME3

expression and specific tumor staging (T1-T4/I/II/III/IV stages),

irrespective of age (Supplementary Figure 3A).

To better elucidate the potential mechanisms through which

PSME3 influences patient prognosis, we analyzed single-cell

sequencing data and observed a noteworthy correlation between

PSME3 and CD4Tconv, CD8T, CD8Tex and Tprol i f

(Supplementary Figure 3B). Additionally, KEGG pathway

enrichment analysis revealed significant associations between

PSME3 expression and pathways related to neuroactive

l i gand receptor in terac t ions and pr imary b i l e ac id

biosynthesis (Figure 9H).

Finally, we conducted initial validation of the general functions

of PSME3 in liver cancer. Both CCK-8 assays and wound healing

assays provided confirmation of PSME3’s impact on Hut7 cell

proliferation. The results were unequivocal, demonstrating that

the knockdown of PSME3 significantly decreased the proliferation

capacity of Hut7 cells compared to the control group. Additionally,

the healing capacity of the PSME3 knockdown group remained

notably inferior to that of the control group (Figures 9I-K).
4 Discussion

Immune checkpoint inhibitors (ICIs) play a pivotal role in

cancer immunotherapy by modulating immune responses to help

restore the body’s immune response against tumors. Despite the

significant achievements of immune checkpoint inhibitors like PD-

1/PD-L1 inhibitors in some cancer treatments, resistance to therapy

in some patients and inconsistent efficacy remain challenges.

Therefore, the search for new immune checkpoints or biomarkers

to predict the effectiveness of immunotherapy becomes particularly

important. In our research, we have demonstrated that PSME3

could serve as a promising prognostic biomarker, especially in the

con t ex t o f fu tu r e cance r immunothe r apy , ho ld ing

potential significance.

Finding biomarkers useful for broad-spectrum cancer diagnosis

is aided by the analysis of differential gene expression. Protein

analysis offers compelling evidence for the identification of

prognostic biomarkers for early diagnosis (22, 23). Our research

results indicate that abnormal PSME3 mRNA expression is

observed in nearly all types of cancer within the TCGA dataset.
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Importantly, our immunohistochemical analysis provides further

confirmation, strongly supporting the high consistency between

PSME3 protein levels and mRNA expression across various cancer

types. Furthermore, we find associations between PSME3

expression and tumor staging as well as metastasis in kidney,

liver, and lung cancers. Most significantly, high PSME3

expression is significantly correlated with OS and RFS.
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Previous reports have also mentioned the abnormal expression

of PSME3 in various types of cancer, including thyroid cancer, head

and neck cancer, and osteosarcoma, which is consistent with our

research findings (24–29). The investigators found that the

prognosis of patients with PSME3-negative tumor tissue was

significantly better than that of the PSME3-positive group (30);

Roessler M. et al. identified PSME3 as a new serum tumor marker
A

B
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C

FIGURE 7

(A) CD276 Expression with PSME3 Overexpression in 293T Cells. (B) CD276 Expression with PSME3 Knockdown in A549 Cells. (C) CD276 Expression
with PSME3 Knockdown in Hut7 Cells. (D) CD276 Expression with PSME3 Knockdown in T24 Cells. Left: Western blot results; Center: Flow
cytometry histograms; Right: Quantified data in a bar graph. *P<0.05, **P<0.01, ****P<0.001.
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for colorectal cancer based on mass spectrometry analysis as early as

2006 (31). It further indicated that PSME3 is a potential prognostic

biomarker for various cancers.

PSME3 is a proteasomal activator that functions by activating

the 20S proteasome to degrade proteins (32–34). Our functional

enrichment analysis has revealed that PSME3 is involved in

multiple biological functions, such as protein degradation, lipid

metabolism, immune responses, and stem cell regulation, among

others. These findings align with previous research, for example,

PSME3 targets several key proteins involved in cell cycle regulation,

including the cell cycle arrest protein P21, and two cell cycle-

dependent kinase inhibitors, P16 and P14 (8, 35). Additionally, the

deficiency of PSME3 disrupts the function of MDM2, leading to the

stabilization of p53 and the upregulation of p21, consequently

resulting in cell cycle arrest (9). PSME3 regulates autophagy and

hepatocyte lipid metabolism by affecting Sirt1 (12).

The immune microenvironment plays a significant role in

the TME (36). Immune cell invasions can either inhibit or
Frontiers in Immunology 13362
promote the development and progression of tumors,

including tumor escape, invasion, metastasis, and treatment

(37, 38). Our results indicated an association between elevated

PSME3 expression and the presence of CD8T, and M2

macrophages. Our research also unveiled the association of

PSME3 with immune checkpoints , with experimental

validation demonstrating that PSME3 positively regulates

CD276 expression. This suggests that PSME3 might be a

potential therapeutic target in immunotherapy.

Additionally, we predicted sensitive drugs targeting PSME3,

providing crucial clues for future treatment strategies. In further

analyses, we discovered a close correlation between high PSME3

expression and adverse clinical outcomes and cancer progression in

LIHC. The independent prognostic value of PSME3 in LIHC was

validated, underscoring its significance in assessing the prognosis of

liver cancer patients. We also constructed a prognostic model based

on PSME3, which exhibited high predictive performance. Finally,

through experimental validation, we confirmed the impact of
A B

D

C

FIGURE 8

(A) Multiple boxplots illustrate the expression of PSME3 in cancer cell lines before and after cytokine treatment, as obtained from the TISMO web
tool. Significance levels are indicated as follows: *, **, and *** represent P values of < 0.05, < 0.01, and < 0.001, respectively. (B) Multiple boxplots
depict the expression of PSME3 in cancer cell lines before and after PDL1 or CTLA4 treatment, as obtained from the TISMO web tool. Significance
levels are denoted as follows: *, **, and *** denote P values of < 0.05, < 0.01, and < 0.001, respectively. Based on drug sensitivity analysis in GDSC
(Genomics of Drug Sensitivity in Cancer), the following are the top 15 drugs that are positively correlated (C) and negatively correlated (D) with
PSME3 expression, as shown in the figure. *P<0.05, **P<0.01, NS (no significant differences).
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FIGURE 9

PSME3 as an independent predictor in LIHC. (A, B) Prognostic implications of PSME3 in liver carcinoma through univariate and multifactorial COX
analysis. (C) Construction of a nomogram utilizing PSME3 expression. (D) Nomogram correction analysis diagram. (E) In the TCGA liver cancer
cohort, calibration plots illustrating the 1-year, 2-year, 3-year, and 5-year OS probabilities were displayed (*p<0.05; **p<0.01; ***p<0.001;
****p<0.0001; ns p>0.05). Independent survival prognosis analysis of PSME3 in TCGA (F) and ICGC (G) datasets. (H) GSEA was performed with the
KEGG signature of PSME3 in LIHC. Different color curves represent different functions or pathways. The peaks of the rising and falling curves indicate
positive and negative regulation of PSME3, respectively. (I) Evaluation of PSME3 expression in the Hut7 liver cancer cell line using the CCK-8 assay.
(J, K) Bar chart representing the quantified data of PSME3 expression in the Hut7 liver cancer cell line following scratch assay. *P < 0.05, **P < 0.01,
***P < 0.001 compared to the control group.
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PSME3 on liver cancer cell proliferation and wound healing, further

supporting its biological function in liver cancer.

In summary, our research revealed the multifaceted role of

PSME3 in cancer biology, immune regulation, and clinical

prognosis, providing crucial insights for the development of

personalized cancer treatment strategies and immunotherapy

research. PSME3 holds the potential to become a significant

target in future cancer therapies, but further research is needed to

elucidate its detailed mechanisms and application prospects.
5 Conclusion

PSME3 emerges as a key factor positively regulating the

immune checkpoint CD276 in various cancers, including LIHC,

LUAD, and BLCA. Therefore, it holds the potential to become a

promising target for immunotherapy. Additionally, PSME3 has

been confirmed as an independent prognostic factor in LIHC,

impacting not only immune regulation but also aspects like liver

cancer cell proliferation and wound healing. These discoveries

provide crucial insights for the development of future cancer

treatment strategies, with the potential to enhance the survival

rates and overall quality of life for cancer patients.
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SUPPLEMENTARY FIGURE 1

(A) Kaplan-Meier analysis of the relationship between high and low expression
of PSME3 and OS( HR<1, P<0.05 ). (B) Kaplan-Meier analysis of the

relationship between high and low expression of PSME3 and RFS ( HR<1,
P<0.05 ).

SUPPLEMENTARY FIGURE 2

Immune cell infiltration was assessed using various methods, including cell-

type identification by estimating the relative subset of RNA transcripts
(CIBERSORT) (A), TIMER (B), xCell (C), and MCP-counter (D). The results are

presented in the form of a heatmap.

SUPPLEMENTARY FIGURE 3

The clinical correlation analysis of PSME3 with different ages and pathological

stages. Single-cell analysis based on the LIHC-GSE98638 dataset: (left:)

Provides an overview of the distribution of CD4Tconv, CD8T, CD8Tex,
Tprolif, and Treg cells at the single-cell level. (center) Illustrates the

expression distribution of PSME3 in LIHC. (right) Presents a violin plot
depicting the single-cell expression profile based on PSME3.
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Construction of disulfidptosis-
based immune response
prediction model with artificial
intelligence and validation of
the pivotal grouping oncogene
c-MET in regulating
T cell exhaustion
Pengping Li1†, Shaowen Wang2†, Hong Wan3†, Yuqing Huang1,
Kexin Yin1, Ke Sun1, Haigang Jin1* and Zhenyu Wang1*

1Department of Thyroid and Breast Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan
Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China, 2Neuromedicine
Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China, 3Department
of General Surgery, Breast Surgery, The First Affiliated Hospital of Anhui Medical University,
Hefei, China
Background: Given the lack of research on disulfidptosis, our study aimed to

dissect its role in pan-cancer and explore the crosstalk between disulfidptosis

and cancer immunity.

Methods: Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745,

GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression,

andmultivariate Cox regression were used to construct the rough gene signature

based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed

by correlation analysis, were harnessed to explore the linkage between

disulfidptosis and cancer immunity. Weighted correlation network analysis

(WGCNA) and Machine learning were utilized to make a refined prognosis

model for pan-cancer. In particular, a customized, enhanced prognosis model

was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed

to validate the function of c-MET.

Results: The expression comparison of the disulfidptosis-related genes (DRGs)

between tumor and nontumor tissues implied a significant difference in most

cancers. The correlation between disulfidptosis and immune cell infiltration,

including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene

signature was constructed as the rough model for the glioma prognosis. A pan-

cancer suitable DSP clustering was made and validated to predict the prognosis.

Furthermore, two DSP groups were defined by machine learning to predict the

survival and immune therapy response in glioma, which was validated in CGGA.

PD-L1 and other immune pathways were highly enriched in the core blue gene

module fromWGCNA. Among them, c-MET was validated as a tumor driver gene

and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the

down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells.
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Conclusion: To summarize, we dissected the roles of DRGs in the prognosis

and their relationship with immunity in pan-cancer. A general prognosis

model based on machine learning was constructed for pan-cancer and

validated by external datasets with a consistent result. In particular, a

survival-predicting model was made specifically for patients with glioma to

predict its survival and immune response to ICIs. C-MET was screened and

validated for its tumor driver gene and immune regulation function (inducing

t-cell exhaustion) in glioma.
KEYWORDS

disulfidptosis, tumor immunity, prognosis prediction, artificial intelligence

(AI), glioma
1 Background

Regulated cell death (RCD) refers to a controlled and orderly

type of cellular death (1, 2). The subtypes of these death modalities

have been enriched with more and more RCDs uncovered, for

instance, apoptosis (3–5), autophagy (6–8), necroptosis (9),

ferroptosis (10), pyroptosis (11), cuproptosis (12), disulfidptosis

(13), etc. Disulfidptosis is the latest type of RCD proposed in 2023

by Gan et al. (13). What distinguishes it from other forms of cell

death is the feature that the aberrant accumulation of disulfides

without enough nicotinamide adenine dinucleotide phosphate

(NADPH) supply from glucose can induce this specific cell death

(13–17). Disulfidptosis holds potential as an alternative therapeutic

tactic for patients resistant to existing therapies.

Cancer is a notoriously formidable disease that is characterized

by abnormal growth and division. Many types of cancer can

metastasize to surrounding tissues or even distant organs. Until

now, 14 hallmarks of cancer have been discovered, which have been

summarized well by Douglas Hanahan (18). Resisting cell death, as

one of the classical hallmarks, is always the fundamental and final

objective for all other hallmarks. With each discovery of an

innovative modality of cell death from apoptosis to cuproptosis,

our understanding of cancer will be expanded further in that

perspective. Numerous RCD-related prognostic signatures have

been made and validated by different researchers. In the recent

decade, ferroptosis (19, 20), pyroptosis (21–23), cuproptosis (24–

27) have been well-explored in many types of cancer based on the

cancer genome atlas (TCGA), gene expression omnibus (GEO),

international cancer genome consortium (ICGC), etc. These studies

give us a deeper understanding of RCD in the context of cancer.

Machine learning (ML), a subdomain of artificial intelligence

(AI), can be divided into supervised, unsupervised, and

reinforcement learning. In the era of big data, it can be applied

everywhere (28, 29). And in oncology, ML techniques have also

been employed to gain insights into the complex interactions

between tumors and the immune system. For instance, in
02367
lymphoma, artificial neural networks were taken advantage of to

construct an immune-oncology panel to differentiate molecular

subtypes and predict prognosis (30). In solid tumors, ML-assisted

analysis based on genomics or radiomics also gives us better models

to identify treatment success rates (31–34).

However, to our knowledge, there are only limited studies on

disulfidptosis. Given the lack of research on this phenomenon, our

study aimed to delve into the role of disulfidptosis in pan-cancer

relying on well-recognized databases by constructing a prognostic

signature related to disulfidptosis. We mainly focused on

investigating the crosstalk between disulfidptosis and tumor

immune responses.
2 Methods

2.1 Data collection

Clinical features and gene expression of TCGA, ICGC, and

PCAWG patients were obtained in UCSC Xena (http://

xena.ucsc.edu). The validated transcriptomic data and clinical

characteristics from glioma were fetched from CGGA (http://

www.cgga.org.cn). The external gene expression and prognosis

datasets of LUAD, UVM, and HNSC (GSE30219, GSE31210,

GSE37745, GSE50081, GSE22138, GSE41613) were downloaded

from GEO (https://www.ncbi.nlm.nih.gov/geo/). DRGs (ACTB,

TLN1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6, FLNA,

MYH9, MYH10, PDLIM1, CD2AP, and INF2) were extracted

from Gan et al.’ disulfidptosis paper (13). Different immune cell

infiltration markers were obtained from the cancer immunome atlas

(TCIA) (35), Genecard (https://www.genecards.org/), GEPIA

(http://gepia2.cancer-pku.cn/#index), Cibersot (https://

cibersortx.stanford.edu/). The prognosis of different c-MET level

glioblastoma patients treated with anti-PD1 therapy was obtained

from Kaplan Meier-plotteR (http://kmplot.com/analysis/

index.php?p=background).
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2.2 Bioinformatic analysis

2.2.1 Pathway score calculation and immune
cell infiltration

ssGSEA was used to assess immune activity, function, and

programmed cell death pathways in each sample. Immune cell

marker genes were used for analysis. ESTIMATE calculated

immune, stromal, estimate scores, and tumor purity based on

immune and stromal cell proportions. TIMER and CIBERSORT

predicted infiltrating immune cell composition. Immune

checkpoint inhibitors were compared across clusters and risk

groups. By analyzing ssGSEA, ESTIMATE, immune cell

infiltration, and immune checkpoints, we gained a comprehensive

understanding of the tumor immune landscape. Infiltration

immune cell fractions were calculated in CIBERSORT in R4.2.0,

and the estimate package in R4.2.0 predicted the immune score.

2.2.2 Prognosis model construction
Univariate Cox regression, LASSO regression, and multivariate

Cox regression were used to construct the gene signature. The

previous survival and ROC analyses were made using survival and

survivalROC packages in R4.2.0.

2.2.3 DRGs-based subgroups identification
ConsensusClusterPlus package in R4.2.0 was used to perform

consensus clustering analysis based on the DRGs (parameter:

maxK=10, reps=50). AI modeling for DRGs-based prognosis

model was developed by six AI functions, including extreme

gradient boosting (XGboost, xgboost package in R4.2.0), support

vector machine (SVM, e1071 packages in R4.2.0), multi-logistic

(nnet packages in R4.2.0), random forest (RF, randomForest

package in R4.2.0), deep learning (DL, h2o package in R4.2.0)

and K-Nearest Neighbor (KNN, kknn package in R4.2.0). During

the model construction, randomly select 75% as the training cohort

and randomly select 25% as the testing cohort. Gene expression

value was standardized to range “0~1” with preProcess function

(caret and tidyverse packages).

2.2.4 Tumor mutation analysis
We analyzed somatic mutations in TCGA data using “maftools”

and calculated TMB for each group. Furthermore, we visualized

somatic mutations of selected genes in the signature using

cBioPortal. This analysis helped understand mutations and their

potential role in disulfidptosis.

2.2.5 Drug sensitivity prediction
Drug sensitivity prediction was performed by the oncoPredict

package in R4.2.0. This package leverages machine learning

algorithms trained on large datasets of cancer cell lines to

estimate the response of individual patient tumors to a wide

range of therapeutic agents. By analyzing the gene expression

profiles of the tumor samples, oncoPredict can identify potential

therapeutic targets and guide personalized treatment strategies.
Frontiers in Immunology 03368
2.3 Biological experiments

2.3.1 Cell culture and reagents
Ln299 and Jurkat cell lines were purchased from the Chinese

Academy of Science cell bank with STR matching analysis. Cells

were cultured in recommended conditions. Co-culture was done by

placing the transwell containing Jurkat cells (2.5 × 105) or

alive PBMC (2.5 × 105) in the 6-well plate seeded with ln299

cells (20 x 104). Cabozantinib (BMS-907351) was purchased

from Selleck.

2.3.2 SiRNA transfection
Ln299 cells were transfected with c-MET small interfering RNA

(siRNA) (5′-AAG GAC CGG UUC AUC AAC UUC-3′) or non-
targeting negative control siRNA (RiboBio, China) using

LipofectamineTM 3000 (Invitrogen, USA) according to the

manufacturer’s protocol.

2.3.3 5-ethynyl-2′-deoxyuridine and live/
dead staining

The live/dead staining kit was purchased from YEASEN

Biotech, the Edu staining kit was purchased from APExBIO

(K1077), and OPTI-MEM was purchased from (ThermoFisher,

Gibco). 1×105 ln299 cells were seeded into 24-well plates. The

treated cells were stained according to the kits’ instructions and

then observed under an inverted microscope.

2.3.4 Western blotting
Total cellular proteins were extracted using lysis buffer (5 mM

EDTA, 300 mMNaCl, 0.1% NP-40, 0.5 mMNaF, 0.5 mMNa3VO4,

0.5 mM PMSF, and 10 mg/mL each of aprotinin, pepstatin, and

leupeptin; Sigma-Aldrich). 30–50 mg protein was separated using

10% SDS-PAGE and transferred to polyvinylidene difluoride

membranes (Millipore, Bedford, MA, USA). Then immunoblotting

was performed using antibodies against c-MET (25869-1-AP,

Proteintech), PD-L1 (28076-1-AP, Proteintech), p-JAK3 (29101-1-

AP, Proteintech), JAK3 (80331-1-RR, Proteintech), p-STAT3 (#9145,

Cell Signaling Technology), STAT3 (#9139, Cell Signaling

Technology), GAPDH (AF7021, Affinity Biosciences), IL-2 (16806-1-

AP, Proteintech), INF-g (15365-1-AP, Proteintech), PD1 (18106-1-AP,
Proteintech), beta-tubulin (10068-1-AP, Proteintech). The

immunoblots were visualized using an enhanced chemiluminescence

detection system (Amersham Pharmacia Biotech, Uppsala, Sweden).

2.3.5 PBMCs extraction
Simply, PBMCs were isolated via Ficoll-Paque density gradient

centrifugation: 5 mL of peripheral blood was collected from healthy

female volunteers, diluted with PBS at a 1:1 ratio, followed by gentle

mixing. Add 10 mL of the diluted blood to 2 mL of Ficoll liquid

(density 1.077). The clear stratification of blood and Ficoll liquid

confirmed success. Carefully transferred the sample to the

centrifuge and spin at 500 g for 15 minutes. Removed the

centrifuge tube with care, aspirate the white thin film layer in the
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middle, representing individual nucleated cells. Wash the isolated

nucleated cells with 10 mL of PBS, centrifuge at 250 g for 10

minutes, and discarded the supernatant. Repeat the washing step

once and the suspended cells were frozen in vials at 100 million

cells/mL in HI FBS with 5% DMSO after washing. Stored in liquid

nitrogen, they were revived gradually and washed in pre-warmed

RPMI with FBS and pen/strep. Following a 4-5 hour incubation at

37°C, viability was assessed using Trypan blue (0.1%).

2.3.6 Flow cytometry
The co-cultured PBMC were stained with Fixable Viability Stain

(Thermo, L34965) and Fc receptor blocking reagent [Ultra-LEAF™

Purified anti-mouse CD16/32 (101320, BioLegend)]. Next, they

were stained with CD-3 (BD 557943), PD-1 (BD 561273), and

CD8 antibody (thermo, A15448). The prepared single-cell

suspensions were filtered through 40-mm nylon meshes (352340,

Corning). Results were then acquired using BD Calibur, BD

Fortessa, or Miltenyi MACSQuant systems. Data were analyzed

with FlowJo_V10 software (TreeStar).

2.3.7 ELISA
Supernatants from PBMC co-cultured with glioma cell line were

collected and analyzed using ELISA kits for IL2(Proteintech,

KE00017), IFN-g (Proteintech, KE00146), CXCR9 (Proteintech,

KE00165). The levels of each cytokine were compared between

the c-MET knockdown group and control groups.
2.4 Statistical analysis

Statistical analyses were performed with R (4.2.0) and

GraphPad Prism (version 8.0.1). Discontinuous data were

expressed as numbers/percentages, and continuous data were

expressed as mean ± standard deviation (SD). P < 0.05 was

considered a statistically significant difference.
3 Results

3.1 The expression landscape and
prognosis significance of DRGs in
pan-cancer

In TCGA, the 14 validated disulfidptosis-related genes (DRGs) -

ACTB, TLN1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6,

FLNA, MYH9, MYH10, PDLIM1, CD2AP, and INF2 - were

generally expressed in all 33 types of cancer (Figure 1A). The

correlation analysis between the DRGs indicated that MYH9 and

ACTN4 were the most positively related gene pair, while MYH10

and PDL1M1 were the most negatively related (Figure 1B). And the

DRGs’ expression comparison between tumor and nontumor

tissues implied a significant difference in most types of them

(Figure 1C). MYH10 showed the highest 2.34-fold change

between glioma and normal brain tissues among all the DRGs

(Figure 1D). Moreover, the univariate Cox regression of the DRGs
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showed that almost all 14 DRGs could predict prognosis well in

patients with glioma, kidney carcinoma (KCA), kidney renal clear

cell carcinoma (KIRC), etc. (Figure 1E). Interestingly, DRGs were

the completely hazardous factors in glioma (Figure 1F).
3.2 The correlation between immunity and
disulfidptosis in pan-cancer

Following the ssGSEA analysis of different immune cell

infiltration and programmed cell death, the correlation analysis

indicated a strong association between disulfidptosis and most

immune cells. For the most significant glioma, the R-value

between disulfidptosis and exhausted T cells (TEX_Genecard),

central memory CD8 T cell, effector memory CD8 T cell, gamma

delta T cell, regulatory T cell, macrophage was over 0.5 (Figure 2A).

Interestingly, the correlation between disulfidptosis and other

modalities of cell death like ferroptosis (R-value = 0.651),

necroptosis (R-value = 0.612), pyroptosis (R-value = 0.609),

immunogenic cell death (ICD) (R-value = 0.559) are also very

high in glioma compared with other types of cancer (Figure 2A).

The univariate Cox regression indicated that T cell exhaustion

(Tex), immature B cell infiltration, etc., were the dangerous

factors in glioma patients. In contrast, the activated NK cells’

infiltration was a beneficial factor for survival (Figure 2B). More

importantly, a higher T cell exhaustion (TEX_GEPIA or

TEX_Genecard) could predict a lousy prognosis in the glioma

cohort from TCGA (Figure 2C).
3.3 Gene signature construction based on
disulfidptosis for prognosis of patients
with cancer

The univariate Cox regression, least absolute shrinkage and

selection operator (LASSO) regression, and multivariate Cox

regression were used to construct a gene signature for each type

of cancer. Except for thyroid cancer (THCA) and uveal melanoma

(UVM), the gene signatures that could predict the prognosis for

patients with all other types of cancer, respectively, were

successfully made (Figure 3). For the top 6 gene signatures

ranked by c-index, i.e., the gene signature in adrenocortical

carcinoma (ACC), pheochromocytoma and paraganglioma

(PCPG), lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), prostate adenocarcinoma (PRAD), kidney chromophobe

(KICH), and thymoma (THYM), the receiver operating

characteristic (ROC) curves showed a very high area under the

curve (AUC) for 1-year, 2-year, 3-year, 4-year, and 5-year survival

(Figure 3). And in glioma that showed the most outstanding

relation between disulfidptosis and immune cell infiltration

(Figures 2A, B), its 7-gene signature (risk score = 1.56709174 *

APOBEC3C + (-3.2556028) * GLUD1 + (-2.0800874) *

KIAA1671 + 1.08729963 * KIF4A + (-7 .9141641) *

RPL3 + 1.83720741 * TAGLN2 + 1.89252831 * TSPAN31)

(Figures 4A–C) was further validated by dividing the TCGA

cohort into a training group and a testing group. And both the
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Kaplan–Meier (KM) analysis and ROC curve (0.5-year, 1-year, 3-

year, 5-year, and 10-year) indicated significant results in the

training group, testing group, and the whole group (Figures 4D,

E). Then, the multivariant Cox analysis of the gene signature and

the clinical characteristics implied that the gene signature was an

independent hazard factor for the prognosis of patients with glioma

(Figure 4F). The nomogram indicated the relation of age, gender,

DRGs gene signature, and the survival probability (0.5-year, 1-year,

3-year, 5-year, 7-year, and 10-year) for glioma patients (Figure 4G).

Furthermore, the model based on age, gender, and DRGs gene

signature was validated in the Chinese Glioma Genome Atlas

(CGGA) with AUC over 0.72 (Figure 4I). In both glioma patients

from TCGA and CGGA, there was a consistency between the

predictive model and survival rate in the real world (Figures 4J, K).
3.4 Unsupervised pan-cancer clustering
analysis based on DRGs and tumor
mutation burden comparison

The unsupervised clustering analysis based on the 14 DRGs’

expression was used to categorize the TCGA cohort into
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disulfidptosis (DSP)1, DSP2, and DSP3 groups (Figures 5A–E).

The KM analysis suggested the DSP groups had significantly

different survival in the disease‐free interval (DFI), disease‐

specific survival (DSS), overall survival (OS), and progression‐free

interval (PFI) (Figure 5F). In line with the KM analysis of pan-

cancer, the KM analysis or univariate Cox regression in individual

cancer type indicated that the 3 DSP clusters could serve as a

significant survival-related factor in colon adenocarcinoma

(COAD), CRCA [COAD + rectum adenocarcinoma (READ)],

glioblastoma multiforme (GBM), glioma, head and neck

squamous cell carcinoma (HNSC), kidney chromophobe (KICH),

kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma

(LUAD), lung carcinoma (LCA), stomach adenocarcinoma

(STAD), uterine corpus endometrial carcinoma (UCEC), and

uveal melanoma (UVM) (Figures 5G–I). Next, the top 10

mutated genes (TP53, TTN, MUC16, etc.) were listed and

compared among DSP1, DSP2, and DSP3 groups (Figures 6A, C).

Besides, the disulfidptosis, stromal score, immune score, tumor

purity, Tex, and tumor mutation burden (TMB) were significantly

different among the 3 DSP groups (Figure 6B). Since the previous 7-

gene model included APOEBC3C, the TMB between APOBEC-

enriched and APOBEC-unenriched groups was also compared in
A B

D
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C

FIGURE 1

The pan-cancer landscape of DRGs. (A) The expression of 14 validated DRGs in all types (36) of cancer from TCGA. (B) The expression correlation
analysis of DRGs, in which no significance of correlation was observed between MYH9 and MYH10, DSTN and TLN1, CD2AP and MYL6, IQGAP1 and
MYL6, DSTN and ACTB. (C) The expression difference of DRGs between tumor samples (TCGA) and non-tumor samples (para tumor from TCGA +
normal tissues from GTEx) in each type of cancer, expression difference existed in all DRGs in GBM, PAAD, PRAD, and TGCT. (D) The expression
comparison between glioma tissues from TCGA and normal brain tissues from GTEx. (E) Univariate Cox regression analysis of DRGs in each type of
cancer. (F) Univariate Cox regression analysis of DRGs in glioma, in which all DRGs were risk factors in glioma (HR>1, P<0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1258475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1258475
each DSP group (Figure 6D). Immune cell infiltration and immune

molecules differed greatly among the 3 DSP groups (Figures 6E, F).

Each cancer type’s total T-cell infiltration ratio was also listed to

give a whole landscape (Figure 6G). In particular, the glioma, in

which DRGs models showed the most significant relationship with

survival and immunity, implicated a significant difference in

disulfidptosis, Tex_GEPIA, Tex_genecard, CD8 (+) T cell

subtypes, immune score, and tumor purity between the two DSP

subgroups (Figures 6H–J).
3.5 Refined DSP models construction and
validation by WGCNA and machine
learning in pan-cancer

The weighted correlation network analysis (WGCNA) was used

to extract the gene module most associated with disulfidptosis,

immune cell infiltration, etc. (Figures 7A–C). Next, the ten hub

genes (PRSS8, CRB3, ILDR1, ELF3, TMEM184A, AP1M2, TMC4,

TJP3, CLDN7, HOXB7) within this cyan module were further

abstracted by the STRING database and cytoHubba (Figures 7D,

E). The refined DSP models based on the ten hub genes were then
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constructed by employing the best method of machine learning-

randomForest, in which the training and testing cohorts have the

highest AUC (Figure 7F). Moreover, compared with the original

DSP groups, it could better predict the prognosis in pan-cancer

patients (Figure 7G). The refined DSP models could differentiate the

prognosis more evidently in patients with glioma (Figure 7H). After

that, the new DSP model was also validated in pan-cancer cohorts

from PCAWG and ICGC, glioma from CGGA, LUAD from GEO

(GSE30219, GSE31210, GSE37745, GSE50081), and UVM from

GEO (GSE22138) with significant p-value (Figures 8A–F).
3.6 Enhanced refined DSP models
construction in glioma

Since the refined DSP model performed exceptionally well in

glioma among all the types of cancer, the unsupervised consensus

clustering and non-negative matrix factorization (NMF) clustering

were further utilized to categorize the DRGs into different groups

(Figures 9A, C). Finally, the more practical and evident two-DSP-

group classification by the NMF method was chosen for further

construction of gene signature. Compared with a lack of
A

B C

FIGURE 2

The correlation of immunity and other PCDs with disulfidptosis. (A) The correlation analysis between disulfidptosis and immune cell infiltration/other
PCDs, in which disulfidptosis score was positively correlated with PCDs, including ferroptosis, ICD, necroptosis, and pyroptosis, and disulfidptosis
was positive correlated with TEX, CD8+ T cells. (B) The univariate Cox regression of disulfidptosis, immune cell infiltration, and other PCDs in glioma,
LGG, GBM, and pan-cancer. (C) The Kaplan–Meier survival analysis of Tex_GEPIA and Tex_GeneCard in pan-cancer, a higher score of both
parameters was accompanied by worse prognosis in glioma (p<0.0001) evaluated by K-M analysis or unicox regression analysis.
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significance between the survival of some subtypes by the consensus

clustering (Figure 9B), the KM analysis indicated a significant

difference (p < 0.0001) between DSP1 and DSP2 with Hazard

Ratio (HR) equal to 5.47 (Figure 9D). Furthermore, the blue

module, most correlated with DSP subtypes classification and

immune cell infiltration, was extracted by WGCNA (Figures 9E–

G). Ten hub genes (IL2RB, CD96, CD3D, HOXC9, HOXC5,

SLAMF6, GZMH, CD3E, GZMK, and GZMA) from this module

were screened by cytoHubba to construct an enhanced refined DSP

clustering model by ML in glioma (Figure 9H). Surprisingly, the

glioma-customized DSP model trained from TCGA could predict

survival well in the glioma cohort from CGGA (Figures 9I, J).

Moreover, The DSP1 has a 3-fold immune therapy response rate

than the DSP2 group by oncoPredict package prediction (R.4.2.0).
3.7 The c-MET mechanism exploration
by experiments

The pathway enrichment of the blue gene module implied that

these genes might be involved in PD1 regulation (Figures 10A–C).

The c-MET inspired us to explore its function further since it was

one of the top 2 genes in both the blue module and tumor driver
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genes (TDG) (36) (Figure 10D). High expression of c-MET was

associated with poor survival among glioma patients from TCGA

and CGGA (Figures 10D, E). More importantly, the survival

tendency in glioblastoma patients receiving anti-PD1 therapy

agreed with the previous two cohorts (Figure 10F). Interestingly,

its expression differed significantly between tumor and nontumor

samples in over 90% of cancer types (Figure 10G). Interestingly,

most immune markers in glioma had an expression difference

between the high-c-MET and low-c-MET groups (Figures 10H,

I). The expression of c-MET was positively linked with PD-L1, PD2,

IL-10, IRF1, JAK3, and STAT3 (Figure 10J). Furthermore, the in-

vitro experiment results indicated that the knockdown of c-MET

could decrease the survival (Figure 11A) and proliferation

(Figure 11B) of glioblastoma cell line ln299, which could be

further enhanced by the combination treatment with cabozantinib

(2mM, a c-MET inhibitor) (Figures 11A, B). In line with our

previous data, the decrease of c-MET could down-regulated the

p-JAK3, p-STAT3, and PD-L1 (Figure 11C). Furthermore, the

Jurkat T cell co-cultured with the ln299 of c-MET knockdown

obtained a higher level of IL-2, IFN-g, and PD-1 (Figure 11D).

To further verify the regulation of c-MET on PD1/PDL1,

peripheral blood mononuclear cells (PBMC) were extracted from

healthy females. Through the co-culture of PBMC and glioma cells,

our data showed that down-regulation of c-MET in Ln299 significantly
FIGURE 3

DRGs-based prognosis model and ROC curve. The DRGs-based gene signature for prognosis was constructed for each type of cancer (the left part),
and the multi-gene-based model index was greater than 0.9 in ACC, DLBC, KICH, KIRP, PCPG, THYM, and TGCT. Multi-gene-based models for all
cancer types were significantly constructed. The 1-year, 2-year, 3-year, 4-year, and 5-year ROC curve of the abovementioned gene signature was
made for patients with ACC, PCPG, DLBC, PRAD, KICH, and THYM, respectively (the right part). * p<0.05, **p<0.01, ***p<0.001.
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decreased the activation of STAT3 and the expression level of PDL1 in

this cell (Figure 12A). In contrast, the expression level of IL2, IFN-g,
CD8 and CXCR9 were elevated in PBMC (Figure 12A). Furthermore,

extracellular level of IL2, IFN-g, and CXCL9 were also significantly

increased in the culturemedia (Figure 12B). Next, FACS was applied to

detect the c-MET-mediated CD8+ T cell immunity inhibition. In

Figure 12C, we found that the proportion of CD8+ T cells was

increased a little after co-culture with glioma cells while it could

return to normal level (Figure 12C). However, this phenomenon was

very marginal compared with the PD1 change in CD8+ T cells. The
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CD3+ CD8+ T cells with high PD-1 expression elevated from 8.8% to

16% after co-cultured with ln299 cells. In contrast, the knockdown of

c-MET almost reversed the T-cell exhaustion completely (Figure 12D).
Discussion

Disulfidptosis was a new modality of programmed cell death

coined by Gan et al. in 2023 (13), with very little further research on

cancer immunity. Our study explored the DRGs’ role in 33 types of
A

B

D

E

F

G

IH

J

K

C

FIGURE 4

The gene signature of prognosis based on DRGs in glioma. (A) The flow chart and the LASSO regression results were listed, after which 29 genes
were screened out, and (B) their effect on the prognosis of glioma was evaluated by univariate Cox, attached with HR and p-value. (C) The gene
signature of glioma prognosis was made by multivariate Cox regression, in which APOBEC3C, GLUD1, KIAA1671, KIF4A, RPL3, TAGLN2, and TSPAN31
were input into the model. (D) The Kaplan–Meier curves were made in the training, testing, and all glioma cohorts from TCGA, and all displayed a
similar result that a higher risk score was accompanied by a worse prognosis in glioma. (E) The ROC curves of 0.5-year, 1-year, 3-year, 5-year, and
10-year were presented in the training, testing, and all glioma cohorts from TCGA. (F) The gene signature based on DRGs and clinical characteristics
for glioma were shown with HR value, in which age, gender, and multi-gene-based risk score were input into the model. (G) The glioma nomogram
of gene signature based on DRGs and clinical characteristics. The glioma ROC curve of gene signature based on DRGs and clinical characteristics in
TCGA (H) and CGGA (I). The glioma nomogram prediction of gene signature based on DRGs and clinical characteristics in TCGA (J) and CGGA (K).
*p<0.05, **p<0.01, ***p<0.001.
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FIGURE 5

DRGs-based clustering and prognosis analysis in pan-cancer. (A) The unsupervised clustering of DRGs in pan-cancer based on the 14 DRGs (MYL6,
CD2AP, INF2, PDLIM1, ACTN4, FLNB, ACTB, MYH9, IQGAP1, CAPZB, DSTN, MYH10, FLNA, TLN1). (B) PCA analysis shows the sample distribution
amongst subgroups (DSP1, DSP2, DSP3). (C) DRGs expression profile feature in subgroups. (D) Tumor sample distribution amongst subgroups.
(E) Subgroup distribution proportion in 36 kinds of cancer. (F) OS, DSS, PFI, and DFI analysis among different DSP groups in pan-cancer were all
significant (p<0.001). (G) The univariate Cox regression (OS) of DSP clusters in every type of cancer from TCGA, in which significance was observed
in BLCA, CESC, COAD, CRCA, Glioma, HNSC, KICH, KIRC, LCA, LUAD, LUSC, PRAD, STAD, UCEC and UVM. OS analysis (H) and DSS analysis (I) in
COAD, CRCA, GBM, glioma, HNSC, LUAD, LCA, STAD, and UCEC. * p<0.05, **p<0.01, ***p<0.001.
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FIGURE 6

Gene mutation comparison among DSP groups in pan-cancer. (A) Gene mutation landscape among DSP groups in pan-cancer. (B) Pathways score
in DSP groups in pan-cancer. (C) Mutation comparison between every two DSP groups. (D) Mutation comparison between APOBEC-enriched and
non-APOBEC-enriched patients in each DSP group. Immune cell infiltration (E) Immune cell infiltration in DSP group, (F) Immunocheck points
expression in DSP groups. (G) Immune score status in 36 types of cancer. (H) Disulfidptosis score, TEX_GEPIA, and TEX_gencard were higher in
DSP2 in glioma (p<0.001). (I) Various types of CD8+ T cells infiltration differences in DSP groups in glioma (p<0.001). (J) Immune score and tumor
purity differences in DSP groups in glioma (p<0.001). **p<0.01, ***p<0.001; ns, significant.
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cancer in detail. The limma package and univariate Cox regression

indicated that the 14 validated DRGs did not only manifest

significantly different expressions between tumors and normal +

para tumor tissues, but they could also predict differential survival
Frontiers in Immunology 10375
in glioma, KCA, KIRC, MESO, and UVM (Figures 1C, E). In

particular, each gene of the 14 DRGs could play a significant role

in the prognosis of patients with glioma (Figure 1F). Although some

genes in the DRGs had been reported to be involved in glioma, our
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FIGURE 7

Refined prognostic model construction in pan-cancer by WGCNA and Machine learning. (A) Gene modules correlated with DSP pathways and
immune cell infiltration by WGCNA, in which (B, C) module gene cohorts were most linked with DSP grouping and disulfidptosis (Cor=0.79, p<1e-
200), while deep blue module gene cohorts were most correlated with immune cell infiltration (Cor=0.77, p<1e-200). (D) Gene interaction network
about top 50 DSP grouping related genes in cyan module gene cohorts (E) Hub genes of the cyan gene module. (F) Refined prognostic model
construction based on pan-cancer by supervised machine learning, in which random forest algorithm displayed as the most efficient (Training
AUC=0.9082). (G) K-M analysis indicated the prognosis differences amongst DSP groups in the training cohort, testing cohort (original groups), and
predicted group (AI-identified group using test cohort data). (H) Refined prognostic model performance in the OS analysis of COAD, CRCA, GBM,
glioma, HNSC, LUAD, LCA, STAD, and UCEC.
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results implicated how the disulfidptosis pathway is regulated by

these genes in glioma deserves more research (37–42).

Besides other types of PCDs, the correlation analysis showed that

the disulfidptosis was also closely related to immune cell infiltration,

including Tex_Genecard, Tex_GEPIA, CD8 (+) T cells, regulatory T

cells, and macrophages (Figure 2A). Our data even suggested that

disulfidptosis-postively-related Tex by both gene cards and GEPIA

was a harmful factor in the prognosis of glioma (Figure 2B). PCD of

different cells in the tumor microenvironment (TME) has been found

to complicate cancer therapy. On the one hand, evidence suggested

that cancer cells undergoing PCD in TME might render them more

difficult to survive (43–46). On the other hand, other immune

components undergoing RCD in the TME could alter immune

attacks on tumor cells. For instance, the necroptosis induced in the

TME was reported to enhance the immune surveillance from the

BATF3 (+) conventional dendritic cells 1 (cDC1) and CD8 (+) T

cells, leading to the release of many immunostimulatory cytokines

(47–51). However, necroptosis induction in pancreatic cancer was

found to protect the tumor cell from attacks by immune cells (52).

While pyroptosis could induce antitumor effects by increasing the

infiltration of dendritic cells (DC), CD4 (+) T cells, and CD8 (+) T

cells (53, 54). For ferroptosis, it was reported to promote

immunogenicity, induce DCs’ phenotypic development, and elicit a

vaccination-like response (55). The expression of cuproptosis-related

genes was positively correlated with PD-L1 expression and negatively

associated with regulatory T-cell infiltration in melanoma (56). To
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our knowledge, our study was the first to explore disulfidptosis and

tumor immune infiltration in pan-cancer patients and gave a

complete picture of disulfidptosis’ role in immune regulation.

Our study even constructed a rough gene signature based on

disulfidptosis genes to predict the survival of all patients of every

cancer from TCGA (Figure 3). In ACC, PCPG, DLBC, PRAD, KICH,

and THYM, the DRGs-based model could predict 1-year, 2-year, 3-

year, 4-year, and 5-year survival with over 0.9 AUC (Figure 3). The

gene signature based on PCD-related genes has always been a popular

research direction. However, there is still a lack of the DRGs-related

prognostic gene signature (57–62). Our research is the first to make a

gene signature for each type of cancer patient from TCGA.Moreover,

we further analyzed the DRGs-based model in glioma in which Tex

and immune cell infiltration was strongly associated with

disulfidptosis (Figure 2B). In both the TCGA and CGGA glioma

cohorts, the gene signature’s predictive effect was significant and

consistent (Figures 4D, E, H–K). To further dissect the role of

disulfidptosis in pan-cancer, we clustered the 14 validated DRGs by

their expression pattern in pan-cancer. The three DSP groups had

significantly different OS, DSS, PFI, and DFI in pan-cancer

(Figure 5F). More importantly, DSP groups also had disparate DFI

andOS in COAD, CRCA, GBM, glioma, HNSC, LUAD, LCA, STAD,

UCEC, and UVM (Figures 5F–I). The consistent survival significance

of DSP clustering indicated that this new form of PCD was important

in these types of cancer. Further tumor mutation burden (TMB)

analysis suggested that the TP53, TTN, and IDH1 mutations may be
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FIGURE 8

Validation of the refined prognostic model in external datasets. Expression of DRGs and validation of the refined prognostic model in pan-cancer
from (A, B) PCAWG (p<0.0001) or ICGC (p=0.022), both of them showed significant prognosis differences in AI-identified DSP subgroups. (C) The
Glioma cohort from CGGA manifested significant prognosis differences amongst AI-identified DSP groups (p=0.027). (D), LUAD from GEO datasets
(GSE30219, GSE31210, GSE37745, GSE50081) presented significant prognosis differences amongst AI-identified DSP groups (p=0.0013), (E) UVM
from GSE22138 showed significant prognosis difference amongst AI-identified DSP groups (p=0.019) (F) HNSC from GSE41613 (exhibited
insignificant prognosis difference amongst AI-identified DSP groups (p=0.8). ****p<0.0001.
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involved in the disulfidptosis. Despite the regulation on nearly all

previously reported PCD by TP53, no studies have explored its role in

disulfidptosis until now (63). Our data provided many possible

candidates to uncover more mechanisms of disulfidptosis.
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Consistent with the previous immune cell infiltration analysis, our

result showed that there was a higher Tex within the DSP2 than DSP1

in glioma patients (Figure 6G), which gave more evidence that

disulfidptosis was closely linked with Tex (Figure 6I).
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FIGURE 9

Enhanced prognostic model in glioma by WGCNA and machine learning. (A) Unsupervised consensus clustering of 14 validated DRGs (B) and its
survival analysis in the glioma cohort, which displayed a significant difference in prognosis (p=6.7e-10). (C) The clustering of 14 validated DRGs by
Non-negative Matrix Factorization (NMF) divided the glioma cohort into two groups with (D) significantly different prognoses (p=5e-44). (E) WGCNA
for NMF clustering DSP groups, in which blue module gene cohort was the most correlated to DSP grouping, immune cell infiltration, and
immunecheckpoint expression (p<0.0001). (F) The correlation analysis of the blue gene module from WGCNA and DSP subtypes. The blue gene
module (G) and its hub genes (H) network. (I) Enhanced prognostic model based on hub genes for patients with glioma by machine learning, among
which the xgboost algorithm showed the best accuracy (testing AUC=0.9480). (J) The validation of the enhanced prognostic model in glioma
patients from CGGA by KM analysis and immune checkpoint inhibitors response prediction (p<0.001).
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FIGURE 10

The pathway enrichment and tumor driver genes analysis from the blue gene module. Pathway enrichment of blue gene module by KEGG (A), Reactome
(B), and WikiPathways (C). (D) The tumor driver genes’ extraction from the blue module. (E) The c-MET survival analysis of patients with glioma from TCGA
and CGGA (HR>1.25, p=1.5e-20). (F) The c-MET prognosis analysis was validated in the glioblastoma cohort receiving anti-PD1 treatment from “Kaplan-Meier
Plotter” (http://kmplot.com/analysis/index). (G) The expression of c-MET in pan-cancer and non-tumor tissues(data from TCGA and GTEx). The immune
markers expression was based on the c-MET expression in the glioma cohort from TCGA (H) and CGGA (I). (J) The expression correlation analysis between
different immune markers (PDL1, PD2, IL10, IRF1, JAK3, STAT3) and c-MET in the glioma cohort from TCGA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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FIGURE 11

C-MET was a tumor driver gene and could inhibit the JAK3-STAT3 pathway. (A) The live and dead cell staining by Calcein and PI, in which siRNA-c-
MET treatment increases the dead cell proportion induced by cabozantinib treatment. (B) The Edu and DAPI staining of the ln299 cell line. (C) The
protein expression alteration after c-MET knockdown in the ln299 cell line, in which PDL1, p-JAK3, JAK3, and pSTAT3 were down-regulated, while
(D) the expression of IL2 and IFN-g were up-regulated in the Jurkat cell line in co-culture system. *p<0.05, ***p<0.001.
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To further obtain a refined DSP model, WGCNA, followed by

machine learning, was employed to explore the most relevant gene

modules with disulfidptosis. Ten hub genes, including PRSS8, CRB3,

ILDR1, ELF3, TMEM184A, AP1M2, TMC4, TJP3, CLDN7, and

HOXB7, were extracted from the most related gene module

(Figure 7E). Next, randomForest machine learning, dependent on
Frontiers in Immunology 14379
the ten hub genes, produced the best prognosis model by virtue of

categorizing different DSP groups in pan-cancer, which was even

validated in external databases (Figures 7G, 8A–F). Our study

proposed a generally effective prognosis model for pan-cancer.

Interestingly, it worked exceptionally well in glioma, LUAD, and

UVM. Combined with the abovementioned results, it inspired us to
A

B

D

C

FIGURE 12

Down-regulation of c-MET within glioma enhanced the PBMC-derived CD8+ T cell function and proportion in the co-culture system. Glioma cell line
Ln299 cells were treated with c-MET siRNA for 24h and co-cultured with PBMC for another 24h. (A) WB was used to detect the relevant protein
expression in Ln299 and PBMC, in which PDL1, STAT3, pSTAT3, and pSTAT3 were down-regulated in Ln299. At the same time, IL2, IFN-g, and CXCR9
were up-regulated in PBMC. (B) ELISA was applied to detect extracellular protein levels in the co-culture system, in which IL2, IFN-g, and CXCL9 were
higher in the si-c-MET group than those in the NC group. (C) The proportion of PD1+ PBMC was decreased by the down-regulation of c-MET in
ln299 a little. (D) PD1+ CD3+CD8+ T cells were reduced evidently in the si-c-MET group than those in the NC group. **p<0.01, ***p<0.001.
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continue analyzing disulfidptosis in glioma. A specific prognosis

model for patients with glioma was constructed based on ten hub

genes (IL2RB, CD96, CD3D, HOXC9, HOXC5, SLAMF6, GZMH,

CD3E, GZMK, and GZMA) (Figures 9H, I). Glioma was divided into

DSP1 and DSP2 groups, where the DSP1 group was predicted to

have a much higher response rate to immune checkpoint inhibitors

(ICIs) than the DSP2 group (Figure 9J).

Finally, our further mechanism exploration revealed that c-MET

might play a vital role in the interaction between disulfidptosis and

glioma immunity. The high expression of c-MET could even predict a

poor prognosis in glioblastoma patients receiving anti-PD1 treatment

(Figure 10F). This tumor driver gene also manifested a positive

relation with the JAK3-STAT3-PD-L1 pathway (Figure 10J). JAK/

STAT signaling is reported to play pivotal roles in tumor immunity,

including the maintenance of activated T cells (64–68). This

phenomenon was further validated in in-vitro experiments where

we co-cultured the c-MET-knockdown glioblastoma cell line with the

Jurkat T cell line (Figures 11A–D, 12A–D). The promotion of cell

death and inhibition of cell proliferation by c-MET knockdown

indicated that it could serve as a tumor driver gene. Its regulation

on JAK3-STAT3-PD1/PD-L1 in T cells indicated the crosstalk

between disulfidptosis and T-cell exhaustion. Targeting c-MET by

siRNA or cabozantinib might be a promising way to enhance the T

cell function implicated by the decreased high-PD1 T cells proportion

and the increased CXCR9, CXCL9, IL2, and INF-g (Figures 11D,

12A–D). Although we uncovered many potential and exciting

candidates for further research on disulfidptosis and cancer

immunity, more efforts are needed to validate their functions.

Conclusions

To summarize, we dissected the expression of DRGs between

cancerous and noncancerous tissues, their roles in the prognosis,

and their relationship with immunity in pan-cancer. A general

prognosis model based on machine learning was constructed for

pan-cancer and validated by external datasets with a consistent

result. In particular, a DSP prognosis model was made specifically

for patients with glioma to predict its survival and immune

response to ICIs. Many potential candidates were screened,

among which c-MET was validated for its TDG and immune

regulation roles (inducing t-cell exhaustion) in glioma.
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Glossary

ACC Adrenocortical carcinoma

AUC Area under the curve

AI Artificial intelligence

CGGA Chinese Glioma Genome Atlas

COAD Colon adenocarcinoma

cDC1 Conventional dendritic cells 1

CRCA COAD + rectum adenocarcinoma

DC Dendritic cells

DFI Disease-free interval

DSS Disease-specific survival

DSP Disulfidptosis

DRGs Disulfidptosis-related genes

Edu 5-ethynyl-2′-deoxyuridine

GEO Gene expression omnibus

GBM Glioblastoma multiforme

HR Hazard Ratio

HNSC Head and neck squamous cell carcinoma

ICIs Immune checkpoint inhibitors

ICD Immunogenic cell death

ICGC International Cancer Genome Consortium

KCA Kidney carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

LASSO Least absolute shrinkage and selection operator

LUAD Lung adenocarcinoma

LCA Lung carcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ML Machine learning

NADPH Nicotinamide adenine dinucleotide phosphate

NMF Non-negative matrix factorization

OS Overall survival

PBMC peripheral blood mononuclear cells

PCPG Pheochromocytoma and paraganglioma

PFI Progression-free interval

PRAD Prostate adenocarcinoma

ROC Receiver operating characteristic

RCD Regulated cell death

ssGSEA Single-sample Gene Set Enrichment Analysis

siRNA Small interfering RNA

(Continued)
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Continued

STAD Stomach adenocarcinoma

Tex T cell exhaustion

TCGA The Cancer Genome Atlas

TCIA The Cancer Immunome Atlas

THCA Thyroid cancer

THYM Thymoma

TDG Tumor driver genes

TME Tumor microenvironment

TMB Tumor mutation burden

UCEC Uterine corpus endometrial carcinoma

UVM Uveal melanoma

WGCNA Weighted correlation network analysis
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Background: Glioma pathogenesis related-2 (GLIPR2), an emerging Golgi

membrane protein implicated in autophagy, has received limited attention in

current scholarly discourse.

Methods: Leveraging extensive datasets, including The Cancer Genome Atlas

(TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA), and

Clinical Proteomic Tumor Analysis Consortium (CPTAC), we conducted a

comprehensive investigation into GLIPR2 expression across diverse human

malignancies. Utilizing UALCAN, OncoDB, MEXPRESS and cBioPortal

databases, we scrutinized GLIPR2 mutation patterns and methylation

landscapes. The integration of bulk and single-cell RNA sequencing facilitated

elucidation of relationships among cellular heterogeneity, immune infiltration,

and GLIPR2 levels in pan-cancer. Employing ROC and KM analyses, we unveiled

the diagnostic and prognostic potential of GLIPR2 across diverse cancers.

Immunohistochemistry provided insights into GLIPR2 expression patterns in a

multicenter cohort spanning various cancer types. In vitro functional

experiments, including transwell assays, wound healing analyses, and drug

sensitivity testing, were employed to delineate the tumor suppressive role

of GLIPR2.

Results: GLIPR2 expression was significantly reduced in neoplastic tissues

compared to its prevalence in healthy tissues. Copy number variations (CNV)

and alterations in methylation patterns exhibited discernible correlations with

GLIPR2 expression within tumor tissues. Moreover, GLIPR2 demonstrated

diagnostic and prognostic implications, showing pronounced associations with

the expression profiles of numerous immune checkpoint genes and the relative

abundance of immune cells in the neoplastic microenvironment. This

multifaceted influence was evident across various cancer types, with lung

adenocarcinoma (LUAD) being particularly prominent. Notably, patients with

LUAD exhibited a significant decrease in GLIPR2 expression within practical
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clinical settings. Elevated GLIPR2 expression correlated with improved

prognostic outcomes specifically in LUAD. Following radiotherapy, LUAD cases

displayed an increased presence of GLIPR2+ infiltrating cellular constituents,

indicating a notable correlation with heightened sensitivity to radiation-induced

therapeutic modalities. A battery of experiments validated the functional role of

GLIPR2 in suppressing the mal ignant phenotype and enhancing

treatment sensitivity.

Conclusion: In pan-cancer, particularly in LUAD, GLIPR2 emerges as a promising

novel biomarker and tumor suppressor. Its involvement in immune cell infiltration

suggests potential as an immunotherapeutic target.
KEYWORDS

pan-cancer analysis, GLIPR2, LUAD, tumor suppressor, immune infiltration
1 Introduction

Cancer constitutes a significant contributor to global mortality

and the profound compromise of well-being, exerting its impact on

a universal scale (1). Presently, the absence of a comprehensive

remedy for cancer is notably conspicuous. The year 2020 bore

witness to the encroachment of Coronavirus Disease 2019

(COVID-19), resulting in considerable impediments to both the

diagnosis and management of cancer (2). As a concrete illustration,

the restriction of healthcare access consequent to the closure of

medical facilities precipitated setbacks in the identification and

treatment of malignant conditions. These setbacks, in turn, led to

a transient decline in cancer incidence, succeeded by a subsequent

upsurge in disease progression, culminating in escalated mortality

rates. Despite substantial advancements in the sphere of oncological

intervention, including immunotherapy, precision-targeted

therapy, and radiation therapy (3–5), the 5-year overall survival

(OS) rate for afflicted patients persistently eludes attainment of

satisfactory levels.

Recent years have witnessed a revolutionary transformation in

cancer research with the emergence of high-throughput sequencing

technologies and comprehensive molecular analyses (6, 7). These

innovations have brought to light novel biomarkers and therapeutic

targets with the potential to profoundly impact the realms of cancer

diagnosis, prognosis, and treatment strategies. Amid these emerging

contenders, glioma pathogenesis related-2 (GLIPR2) has ascended

in significance as a hub gene, owing to its multifaceted involvement

across diverse domains of disease biology (8, 9).

GLIPR2, also recognized as Golgi-associated plant pathogenesis-

related protein 1 (GAPR1), stands as a multifunctional protein that

has garnered escalating attention due to its dual engagement in both

normal cellular processes and the intricacies of cancer biology.

GLIPR2 has been associated with a spectrum of cellular functions

encompassing the regulation of autophagy and its entwinement in

various neoplastic conditions (10, 11).
02385
To comprehensively elucidate the functional and clinical

implications of GLIPR2 across diverse cancer subtypes, this

investigation integrates a multitude of analytical methodologies.

Differential expression analysis, diagnostic curve evaluation,

mutation scrutiny, methylation analysis, and examination of

immune infiltration collectively depict the pivotal role of GLIPR2

in cancer pathogenesis. Moreover, validation of the discerned

findings through scrutiny of a cohort of non-small cell lung

cancer (NSCLC) patients from Nantong Tumor Hospital

augments the clinical pertinence of the study. Finally, several lines

of experiments indicated the tumor-suppressor function of GLIPR2

in suppressing malignant phenotype and facilitating the sensitivity

of treatments. By amalgamating disparate datasets and deploying an

array of bioinformatics techniques, this inquiry aspires to unravel

the intricate interplay between the dysregulation of GLIPR2 and the

evolution of malignancies. Furthermore, by illuminating the

molecular mechanisms underpinning its participation and its

potential as a diagnostic, prognostic, and therapeutic target, this

exploration contributes to a heightened comprehension of the

intricacies of cancer biology. It also charts a course for the

formulation of precision medicine approaches.
2 Methods and materials

2.1 Data collection and preprocessing for
pan-cancer patients

RNA sequencing data, along with survival information and

clinical phenotypic characteristics, were gathered from The Cancer

Genome Atlas (TCGA) repository (https://www.cancer.gov/ccg/

research/genome-sequencing/tcga), housed within the University

of California Santa Cruz (UCSC) Xena platform (http://

www.genome.ucsc.edu/). We utilized the STAR (Spliced

Transcripts Alignment to a Reference) pipeline to process the
frontiersin.org

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
http://www.genome.ucsc.edu/
http://www.genome.ucsc.edu/
https://doi.org/10.3389/fimmu.2024.1280525
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1280525
RNAseq data, extracting transcripts per million (TPM) values for

downstream analysis. Our data filtering strategy involved removing

samples lacking clinical information and the exclusion of duplicate

entries to ensure the integrity and reliability of the dataset.

Fol lowing these fi l tering criteria , we performed data

normalization using the log2 transformation of the TPM values,

with the addition of one to accommodate zero values (log2(value

+1)). After thorough data refinement and normalization

procedures, a comprehensive cohort comprising 10,924 samples

of malignant tumor tissues and 727 samples of adjacent

paracancerous tissues was assembled for analysis. Simultaneously,

non-neoplastic control tissues sourced from the Genotype Tissue

Expression (GTEx) project (https://www.gtexportal.org) were

procured to complement the dataset. Furthermore, a subset

encompassing 301 patients with NSCLC, all of whom possessed

pertinent clinical records related to their survival durations, was

curated from the clinical archives of the Affiliated Tumor Hospital

of Nantong University. Lastly, 18 paired samples (cervical

squamous cell carcinoma and endocervical adenocarcinoma:

CESC, lung adenocarcinoma: LUAD; lung squamous cell

carcinoma: LUSC) from Nantong third hospital were included to

describe the expression of GLIPR2. Written informed consent was

obtained from each participating patient in this study. The ethics

committee of the Affiliated Tumor Hospital of Nantong University

and Nantong Third People’s Hospital approved this study.
2.2 Expression analysis of GLIPR2

The architectural conformation and subcellular localization (A-

431, U-251MG and U20S cell lines) of GLIPR2 were inferred from

data accessible in the Human Protein Altas (HPA) repository

(https://www.proteinatlas.org/). To elucidate GLIPR2 RNA

expression profiles, we harnessed the integrated resources of

TCGA (https://www.cancer.gov/ccg/research/genome-sequencing/

tcga), coupled with the GTEx consortium, and employed

TIMER2.0 (http://timer.cistrome.org/) as a complementary

resource. Transforming the expression data through a logarithmic

base 2 conversion, we subjected the resultant values to t-tests.

Statistical significance was established at a threshold of P < 0.05,

delineating distinctions in expression patterns between malignant

and healthy tissue contexts. Computational analysis was executed

employing the R programming language (Version R4.2.1), while the

visualization of data distributions was facilitated by means of the

“ggpubr” package integrated within the R environment.

Furthermore, the HPA repository in conjunction with the Clinical

Proteomic Tumor Analysis Consortium (CPTAC) database

(https://ualcan.path.uab.edu/) were harnessed to scrutinize the

abundance and localization of GLIPR2 at the protein level.
2.3 Diagnostic analysis of GLIPR2

In the diagnostic analysis of GLIPR2, we leveraged data from

XENA database to assess the potential applicability of GLIPR2 in

cancer diagnostics. The evaluation involved the construction of
Frontiers in Immunology 03386
receiver operating characteristic (ROC) curves, aiming to discern

the area under the curve (AUC) values. Notably, an AUC exceeding

0.5 indicates substantial diagnostic efficacy. The ROC curve analysis

was performed using the Xiantao Academic Online Tool (https://

www.xiantaozi.com/), which integrates data from the XENA

database processed through the Toil pipeline. This approach

unifies samples from the GTEx project with cancer tissue samples

from TCGA.
2.4 Copy number variation and
methylation analysis of GLIPR2

The investigation of distinct neoplastic contexts has involved a

thorough examination of the mutational spectra inherent to

GLIPR2. To achieve this objective, the computational framework

provided by the cBioPortal tool (http://www.cbioportal.org/) was

utilized. The initiation of the analytical process entailed the input of

“GLIPR2” within the “Query” module, facilitating interaction with

the extensive dataset known as the “TCGA Pan Cancer Atlas

Studies” cohort. The interplay between the pertinent genetic

locus and the various malignancies within this dataset reveals

nuanced insights. Through the “cancer type summary” and

“mutation” modules, a comprehensive depiction of GLIPR2

genomic perturbations emerges, elucidating intricate details

regarding their spatial distribution, typological attributes, and

numerical prevalence.

The assessment of methylation status in GLIPR2 across diverse

cancer types and their corresponding adjacent tissues was

conduc t ed u s ing the UALCAN repos i t o r y (h t t p : / /

ualcan.path.uab.edu/analysis.html). Changes in DNA methylation

profiles could impact gene expression, with regulation primarily

influenced by methylation of CpG sites proximal to the promoters

(12). To ascertain differentially methylated promoter regions,

MEXPRESS was employed to calculate the association between

GLIPR2 express ion and DNA methy la t ion (ht tps : / /

mexpress.ugent.be/).
2.5 Immune infiltration analysis of GLIPR2

The ESTIMATE algorithm was employed to analyze the

disparity in stromal score and immune score utilizing the package

“estimate” (Version R4.2.1) (13). The examination of the

associations between GLIPR2 expression and the tumor mutation

burden (TMB), as well as homologous recombination deficiency

(HRD), across distinct tumors sourced from TCGA cohorts, was

conducted through the Sanger Box platform. Pearson’s rank

correlation test was executed, yielding both the partial correlation

(cor) and corresponding p-value. Explorations into the connections

between GLIPR2 expression and immunomodulatory genes,

alongside tumor-infiltrating immune cells (TIICs) across multiple

tumors. These immune cells encompass B cells, CD4+ T memory

cells, CD8+ T cells, NK cells, monocytes, macrophages, neutrophils,

among others. Subsequently, a series of algorithms were formulated

to quantify the extent of TIICs infiltration within the tumor
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microenvironment (TME), leveraging bulk RNA-seq data.

However, diverse algorithms and marker gene sets related to

TIICs may engender calculation discrepancies. In order to

circumvent these inconsistencies, we carried out a comprehensive

determination of TIICs infiltration levels using six distinct

independent algorithms: CIBERSORT (14), MCP-counter (15),

EPIC (16), quanTIseq (17), XCELL (18), and TIMER (19).
2.6 Immunotherapy alone and combined
with single-cell sequencing cohorts

The cohorts designated for immunotherapy, both in isolation and

in conjunction with single-cell sequencing, were retrieved from

authoritative databases. Immunotherapy cohorts were sourced from

the BEST database (https://rookieutopia.com/appdirect/BEST/) (20).

Single-cell expression profiles subsequent to immunotherapeutic

interventions were procured from the TISCH database (http://

tisch.comp-genomics.org/).
2.7 Tissue microarray construction
and immunohistochemistry

The real-world cohort study utilized a tumor and paracancer

tissue microarray (TMA) obtained from the Affiliated Tumor

Hospital of Nantong University (Supplementary Table S1). The

construction process of the TMA has been previously described

(21). For the immunohistochemical (IHC) staining, the primary

anti-GLIPR2 antibody (1:20, SantaCruz Biotechnology, sc-398529,

USA) was employed. Following three washes with phosphate-

buffered saline (PBS), the tissue sections were incubated with a

secondary antibody (Poly-HRP-goat-anti-mouse antibody) for 20

minutes at 37°C, followed by staining with a diaminobenzidine

solution. Subsequently, the TMA slides were scanned using the

Nikon microscopy system (Japan). The labeling intensity was

estimated as negative (0), weak (1), moderate (2) or strong (3).

The extent of staining, defined as the percentage of positively

stained cells, was scored as 1 (≤10%), 2 (11−50%), 3 (51−80%)

and 4 (>80%). The total immunoreactive score (IRS) was obtained

by multiplying the staining intensity score and the staining extent

score and ranked from 0 to 12 (22, 23). The evaluation of staining

intensity was carried out by two pathologists independently, who

were kept blinded to the associated clinical data.
2.8 Cell culture and plasmid transfection

Beas-2b, H1299, and PC9 cells were cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum (Gibco, Grand

Island, NY, USA), and 1% Penicillin-Streptomycin (NCM Biotech,

China). Similarly, A549 cells were nurtured in F-12K medium with

10% FBS. The maintenance of all cell lines in their respective culture

media ensured optimal growth and experimental conditions.
Frontiers in Immunology 04387
Additionally, regular screening for Mycoplasma species was

conducted prior to any experimental procedures.

The plasmids for GLIPR2 overexpression and control were

constructed by Shanghai Jikai Gene Technology Co. Ltd. Initially,

high-fidelity PCR amplification was employed to obtain the GLIPR2

cDNA, which was subsequently inserted into the Age I site of the

GV208 plasmid. Following this, the purified plasmid was

transformed into competent cells for amplification, followed by

plasmid extraction for subsequent use. H1299 cells in the

logarithmic growth phase were seeded in six-well plates at a

density of 5 × 105 cells per well, with three replicates per group.

Upon achieving 60%-70% confluence, H1299 cells were transfected

with the plasmid using Lipofectamine 3000 (Life Technologies).
2.9 Quantitative real-time PCR

The protocol for RNA extraction and quantitative real-time

PCR (qRT-PCR) followed established procedures as outlined in the

literature (21). Upon cell thawing, a minimum of three passages was

conducted before commencing experimental procedures.

Subsequently, cells underwent centrifugation at 12,000 × g and

were suspended in TRIzol reagent (Invitrogen, USA) for RNA

extraction. RNA purification involved chloroform extraction

followed by isopropanol precipitation. Post RNA extraction,

concentrations were determined and normalized through dilution

processes. A total of 500 ng of RNA was reverse transcribed into

cDNA utilizing the M-MLV kit per the manufacturer’s instructions

(Accurate Biology, China). QPCR were performed using iQ SYBR

green (AG11701, Accurate Biology, China) on a BioRad CFX97

instrument. A standard curve was generated by 1:10 dilutions of a

reference cDNA sample to amplify all target PCR products.

Transcript abundance was determined by normalization to

human GAPDH (Sangon Biotech, China). Experimental samples

were compared against this standard curve to ascertain relative

transcript abundance. The primer sequences used for GLIPR2

amplification are provided as follows: forward primer, 5′-
GAAGATGGGCGTGGGGAAGG-3’; reverse primer, 5′-TTACTT
CTTCG GCGGCAGGAC-3’.”.
2.10 Immunofluorescence

The immunofluorescence protocol for cellular analysis was

conducted in accordance with previously outlined procedures

(24). Briefly, the cells underwent a series of procedures including

three washes with PBS, fixation with 4% paraformaldehyde for 20

minutes, and treatment with 1% Triton X-100 for 10 minutes.

Subsequent to a 1-hour blocking step, the cells were incubated with

anti-GLIPR2 antibody sourced from Santa Cruz, diluted to 1:20,

and maintained at 4°C for 18 hours. Following this, the cells were

exposed to donkey anti-mouse 555 secondary antibody, diluted to

1:500 (Millipore, USA). DAPI staining of the nucleus was

conducted for 5 minutes. Finally, high-resolution images of the
frontiersin.org

https://rookieutopia.com/appdirect/BEST/
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://doi.org/10.3389/fimmu.2024.1280525
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1280525
stained sections were captured using a scanning microscope

(Nikon, Japan).
2.11 Cell invasion and wound healing assay

H1299 cell invasiveness was assessed utilizing 24-well transwell

chambers (8mm, Corning, Lowell, MA, USA). In a succinct

sequence, following a 24-hour incubation period, the chambers

underwent cleansing with cotton swabs, fixation with 4%

paraformaldehyde for 20 minutes, and subsequent staining with

crystal violet. The enumeration of cells was conducted in three

randomly selected fields within each chamber, and the resultant

values were averaged.

For the evaluation of migratory potential, a single-cell

suspension was introduced into a 6-well plate and cultivated until

cells reached 90%-100% confluency. Subsequently, a controlled and

vertical scratch was generated using a 200 µl pipette tip, creating a

wound. Detached cells were systematically purged with PBS, and

the medium was subsequently replaced with 1 ml of serum-free

medium. The 24-well plate was positioned in the Live Cell Imaging

System (Leica, Brunswick, Saxony, Germany), capturing images of

the wound at both 0 h and 24 h. Measurements of wound distances

were taken, and the rate of wound healing was evaluated.
2.12 Drug sensitivity analysis

H1299 cells were seeded into 96-well plates at a density of

5*10^3 cells per well. Following plasmid transfection, the cells were

exposed to varying concentrations of cisplatin (MedChemExpress,

USA) at 12.5, 25, and 50 µM, or subjected to irradiation with X-rays

at doses of 2, 4, 6, and 8 Gy, administered at a dose rate of 1 Gy.

After 48 hours, cell proliferation was assessed using a colorimetric

assay employing the cell counting Kit-8 (CCK-8; Bimake, Houston,

TX, USA), following the manufacturer’s instructions.
2.13 Statistical analysis

Data processing, statistical analysis, and visualization were

comprehensively performed using the R 4.2.1 software package.

For datasets exhibiting normal distribution, the unpaired Student t-

test was applied, whereas for datasets deviating from normal

distribution, the Wilcoxon test was employed. Pearson’s

correlation coefficients were utilized to evaluate the association

between two continuous variables. Considering the potential

impact of skewed data, Spearman’s correlation analysis was also

performed to ensure a comprehensive examination of the

relationship. The prognostic value was evaluated by Kaplan‐Meier

analysis. A significance level of P < 0.05 was considered indicative of

statistical significance. All reported p-values resulting from TCGA

data, were subjected to adjustment for multiple testing using the

Benjamini-Hochberg procedure to control the false discovery

rate (FDR).
Frontiers in Immunology 05388
3 Results

3.1 Procedural overview and expression
analysis of GLIPR2 in cancer

The study’s procedural overview is depicted in Figure 1.

Primarily, the current understanding underscored that the protein

structure of GLIPR2 comprised multiple a-folds, as delineated in

Figure 2A. It is predominantly distributed in the cytoplasm, and

intriguingly, its observation in the U-251MG cell line reveals co-

localization with microtubule proteins, suggesting its potential

involvement in the constitution of the cellular cytoskeleton

(Figure 2B). Analysis of GLIPR2 gene expression patterns was

executed using the TIMER 2.0 database. The derived outcomes

revealed a prevailing downregulation of GLIPR2 across a spectrum

of cancers (Figure 2C), inclusive of but not limited to bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),

colon adenocarcinoma (COAD), kidney chromophobe (KICH),

LUAD, LUSC, pancreatic adenocarcinoma (PAAD), prostate

adenocarcinoma (PRAD), CESC, and rectum adenocarcinoma

(READ). Employing the HPA database, the investigation into the

protein expression profile of GLIPR2 across various malignancies

transpired. As portrayed in Figure 2D, heightened expression of

GLIPR2 was conspicuous within tissues like the nasopharynx,

bronchus, lung, esophagus, rectum, prostate, cervix, appendix,

spleen, and bone marrow. Notably, a discernable trend emerged,

where most malignancies exhibited moderate cytoplasmic

positivity, whereas colorectal, breast, gastric, and pancreatic

cancers displayed a general lack of such positivity. To gain deeper

insights into GLIPR2 expression patterns, an exploration

encompassing TCGA, GTEx and CPTAC datasets was conducted.

These endeavors elucidated an augmented GLIPR2 expression in

BLCA, BRCA, cholangiocarcinoma (CHOL), amongst others, in

contrast to a diminution in breast, colon, ovarian cancers, among

others (Figures 2E, F). Cumulatively, these findings intimated that

GLIPR2 evinced dysregulation across diverse cancer types, thus

postulat ing its pivotal involvement in the sphere of

cancer diagnosis.
3.2 Genetic alterations and methylation
patterns of GLIPR2 in various cancers

The cBioPortal tool revealed noteworthy variations in the

genetic makeup of GLIPR2, exhibiting distinct patterns of

alteration frequencies across different malignancies. In the context

of acute myeloid leukemia (LAML), a deep deletion event was

detected at a prevalence rate of 0.5%. Furthermore, diffuse large B-

cell lymphoma (DLBC) demonstrated an amplification frequency of

2.08%, followed by uterine carcinosarcoma (UCS) at 1.75%, ovarian

serous cystadenocarcinoma (OV) at 1.03%, skin cutaneous

melanoma (SKCM) at 0.9%, testicular germ cell tumors (TGCT)

at 0.67%, PRAD at 0.61%, liver hepatocellular carcinoma (LIHC) at

0.27%, and brain lower grade glioma (LGG) at 0.19%. In addition,

the identified alterations encompassed diverse combinations of two
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or more mutational types within other implicated tumor types

(Supplementary Figure S1A). Notably, within GLIPR2, a total of 34

variants of uncertain significance (VUS) were identified

across various tumor contexts (Supplementary Figure S1B;

Supplementary Table S2).

Aberrant DNA methylation patterns are implicated in gene

dysregulation in cancer (25). To investigate the causal relationship

between aberrant expression patterns of GLIPR2 andmethylation, we

utilized the UALCAN database (26) along with OncoDB (27) to

explore abnormal GLIPR2 methylation patterns in both normal and

tumor tissues. Furthermore, we utilized MEXPRESS (28) to examine
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the correlation between GLIPR2 expression and CpG islands in

tumor tissues. By integrating gene methylation differences between

cancer and normal groups from the UALCAN database

(Supplementary Figure S2), we observed that the reduced

expression in LUAD, THCA, and PRAD may be associated with

increased methylation (Figures 2C, 3A–C). Conversely, in cancers

where methylation abnormalities are decreased, such as HNSC,

elevated expression appears to synchronize with decreased

methylation (Figure 2C; Supplementary Figure S2).

To further refine the macroscopic dysregulation of methylation

expression into microscopic differences at methylation sites, we
FIGURE 1

The flow chart of the study.
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conducted further validation through OncoDB database. We

identified that in comparison to adjacent normal tissues, LUAD

exhibited high methylation at the cg06484397 and cg13644528 sites,

THCA showed elevated methylation at cg14062007, and PRAD

displayed increased methylation at cg13644528 (Figures 3D–F). In

MEXPRESS database, changes in methylation sites cg06484397

(R = -0.115) and cg13644528 (R= -0.272) in LUAD were
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negatively correlated with GLIPR2 expression, while in PRAD,

methylation at cg13644528 (R= -0.166) showed a negative

correlation with GLIPR2 expression (Figures 3G–I). These

commonalities suggest that targeting cg06484397 and cg13644528

in LUAD, as well as cg13644528 in PRAD, may restore normal

GLIPR2 expression levels. Thus, these sites could serve as potential

therapeutic targets for gene therapy in LUAD and PRAD.
A
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FIGURE 2

Comprehensive overview of GLIPR2 in cancer. (A) Representation of the molecular structure of GLIPR2. (B) Visualization of GLIPR2’s subcellular
distribution within cells. (C) Analysis of GLIPR2 gene expression at the RNA level across diverse cancer types, providing insights into the transcriptomic
landscape. (D) Examination of GLIPR2 expression at the protein level, showcasing tissue-specific spatial distribution and prevalence among cancer
patients. (E) Comparative analysis of GLIPR2 expression at the RNA level, highlighting differences between normal and cancerous tissues.
(F) Comprehensive proteomic analysis depicting GLIPR2 expression across different cancers, complementing the preceding panels with a protein-level
perspective. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 3

Methylation analysis of GLIPR2. Methylation analysis of GLIPR2 in lung adenocarcinoma (LUAD, A), thyroid carcinoma (THCA, B), and prostate
adenocarcinoma (PRAD, C) and normal tissues was conducted using the UALCAN database. Exploration of GLIPR2 methylation status in LUAD (D), THCA
(E), and PRAD (F) was performed via the OncoDB database. Visualization of the methylation sites within the GLIPR2 DNA sequence associated with gene
expression was accomplished using MEXPRESS in LUAD (G), THCA (H), and PRAD (I). The GLIPR2 expression is represented by the blue line. Pearson’s
correlation coefficients and p-values for methylation sites and query gene expression are provided on the right side. **P < 0.01, ***P < 0.001.
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3.3 Advancing immune landscape
characterization and immunotherapeutic
potential of GLIPR2 in diverse cancers

The substantial influence exerted by the TME on the

progression of cancer is universally acknowledged. Comprising a

complex interplay of tumor cells, stromal elements, and immune

components, the TME orchestrates intricate and dynamic

interactions (29). The Estimation of Stromal and Immune cells in

Malignant Tumor tissues using ESTIMATE algorithm have

emerged as a robust computational tool for quantifying the

infiltration of stromal and immune cells, thereby revealing

immune scores and stromal scores. Our investigation into the

expression of GLIPR2 has uncovered a positive correlation with

immune scores in several cancer types, including low-grade glioma

(LGG), CESC, LUAD, as well as other neoplastic tissues. However,

it is important to note the observed negative correlation in GBM,

although the p-value of 0.07 and correlation coefficient (r) of -0.15

suggest that this association may not reach conventional levels of

statistical significance (Figure 4A).

Employing the metrics of TMB and HRD, the potential of

GLIPR2 as an indicator of immunotherapeutic responses across

diverse cancer types was ascertained. The examination revealed a

positive nexus between GLIPR2 expression and TMB in COAD (P <

0.001), READ (P < 0.001), and BRCA (P = 0.014). Conversely, an

inverse relationship transpired in LUAD (P = 0.007), PRAD (P =

0.002), LIHC (P = 0.016), UCS (P = 0.029), and CHOL (P = 0.043)

(Figure 4B; Supplementary Table S3). Moreover, a positive

correlation between GLIPR2 expression and HRD materialized in

LGG (P = 0.049), BRCA (P < 0.001), SARC (P = 0.006), LIHC (P =

0.003), OV (P = 0.002), BLCA (P < 0.001), and KICH (P = 0.005). In

contrast, a negative correlation was discerned in LUAD (P = 0.003),

stomach and esophageal carcinoma (STES, P < 0.001), stomach

adenocarcinoma (STAD, P < 0.001), HNSC (P = 0.008), LUSC (P <

0.001), THYM (P = 0.048), TGCT (P = 0.029), and SKCM (P =

0.037) (Figure 4C; Supplementary Table S4).

The TCGA dataset underwent deconvolution through a

composite application of computational algorithms, including

CIBERSORT, EPIC, MCP-counter, quanTIseq, XCELL, and

TIMER (Figures 5A–F). The findings underscored substantial

disparities in the inferred proportions of distinct cell populations

across these algorithmic methodologies. Nonetheless, a consistent

pattern emerged in the prevalence of M0 (naïve) macrophages and

uncharacterized cellular entities between adjacent and tumor

cohorts, aligning coherently across the entire spectrum of

accessible techniques. Notably, the neoplastic specimens were

conspicuously infiltrated by M1 macrophages and regulatory T

(Treg) cells. Of distinct significance, the estimates pertaining to M1

macrophages and Treg cells were uniquely achievable through

CIBERSORT, quanTIseq, and XCELL. The resulting revelations

collectively unveiled a marked augmentation in the incidence of

Treg cells and M1 macrophages within the tumor milieu, except for

the CIBERSORT algorithm which indicated a reduction in Treg cell

abundance. Concurrently, the abundance of CD8+ T cells, estimable

through CIBERSORT, MCP-counter, quanTIseq, XCELL, and

TIMER algorithms, exhibited a conspicuous elevation within
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tumor specimens, except for the EPIC estimate which indicated a

notable decline. Notably, QuanTIseq emerged as the solitary

technique enabling the quantification of cellular fractions, thus

facilitating comprehensive comparisons within and between

samples. Further elucidation of the statistical significance of inter-

algorithmic divergences is provided in Supplementary Table S5.

In the context of our comprehensive pan-cancer analysis aimed

at deciphering the immunological implications of GLIPR2, the

identification of specific malignancies conducive to anti-GLIPR2

immunotherapy holds paramount significance. Our findings

elucidated a discernible positive correlation of GLIPR2 with most

immunomodulatory elements across various cancers, including

kidney papillary cell carcinoma (KIRC), OV, pan-kidney cohort

(KIPAN), LIHC, BRCA, LUAD, THCA, PAAD and BLCA

(Supplementary Figure S3; Supplementary Tables S6, S7).

Notably, the emergence of immune checkpoint (ICP) blockade

proteins as promising candidates for cancer immunotherapy

prompted us to conduct a meticulous evaluation of the intricate

interplay between GLIPR2 expression levels and the expressions of

ICP genes across various malignancies. Remarkably, GLIPR2

exhibited a consistently positive correlation with the expression of

ICP genes across various cancers, including LUAD, KIPAN, LIHC,

BRCA, THCA, PAAD, KIRC, OV, BLCA (Figure 5G;

Supplementary Tables S8, S9).

Analysis of immunotherapy cohort data suggests that GLIPR2

expression level is closely related to the patient’s response to

immunotherapy (Figure 6A). To further reveal the underlying

mechanisms, we analyzed the immune cell types in the gene

profiles of pan-cancer receiving immunotherapy by single cell

sequencing. GLIPR2 expression was found to be enriched in

monocyte/macrophage, NK, and T proliferation cells, suggesting

potential roles in immune cell recruitment and alterations in the

immune microenvironment. Intriguingly, this expression pattern of

GLIPR2 was robust to pan-cancer (Figures 6B–H).

In concise summation, the prominent role of GLIPR2 in

shaping the landscape of immune infiltration across diverse

cancers is manifest, firmly positioning it as a compelling

candidate for pioneering immunotherapeutic interventions within

the realm of oncology.
3.4 Deciphering prognostic and diagnostic
significance of GLIPR2

Cancer diagnosis and prognosis monitoring are critical

elements in mitigating cancer-related mortality (30). Markers

demonstrating both prognostic and predictive value across diverse

cancers warrant meticulous investigation to substantiate their

clinical utility. In this study, we employed ROC curves to assess

the discriminative potential of GLIPR2 expression levels between

malignant and non-neoplastic tissues. In the context of evaluating

diagnostic performance, the AUC was selected as the principal

metric to measure the discriminative efficacy of our model. In

adherence to established conventions, an initial threshold of AUC >

0.5 was employed to delineate performance surpassing random

chance. The graphical representation of these ROC curves is
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illustrated in Supplementary Figure S4 (Supplementary Table S10).

The derived AUC values provided compelling evidence that

GLIPR2 exhibited a robust capacity to effectively discriminate

between malignancy and normalcy across diverse cancer types.

However, our primary emphasis is on highlighting exceptional

diagnostic accuracy. Consequently, we specifically emphasize

instances where the AUC exceeds the threshold of 0.9.

Noteworthy observations include CESC (AUC=0.977), CHOL
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(AUC=0.975), COAD (AUC=0.943), colorectal adenocarcinoma

(CEAD, AUC=0.988), KICH (AUC=0.924), LUAD (AUC=0.987),

LUSC (AUC=0.994), and PAAD (AUC=0.925), thereby reinforcing

the diagnostic potential attributed to GLIPR2 (Figure 7A).

Subsequently, KM analysis was employed to assess the prognostic

value of pan-cancer GLIPR2 levels in patients. In the majority of

cancers, such as BRCA, CESC, HNSC, LUAD, OV, SARC and

THYM, GLIPR2, acting as a protective factor, demonstrated a
A

B C

FIGURE 4

Immune assessment of GLIPR2: estimation, correlation, and association. (A) Estimate score. (B) Correlation with tumor mutation burden. (C) Correlation
with homologous recombination repair defects.
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reduced risk of death. Conversely, in cancers such as BLCA, KIRC,

KIRP, LUSC and STAD, an elevated expression of GLIPR2 was

associated with an increased risk of mortality (Figure 7B) Integrated

prognostic and diagnostic analysis identified LUAD, LUSC, and

CESC as cancers most likely to benefit from the GLIPR2 biomarker

(Figure 7C). Pathological validation revealed a pronounced decrease

in GLIPR2 expression in LUAD (Figure 7D; Supplementary

Figure S6).
3.5 Predictive merit of GLIPR2 infiltration
for NSCLC in a real-world cohort

NSCLC, known for its status as the most prevalent and lethal

cancer globally (31), became the primary focus of our investigation

following a comprehensive pan-cancer assessment of GLIPR2. Then

we embarked on a focused inquiry within a NSCLC cohort sourced
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from Nantong Tumor Hospital. Notably, within the context of

LUAD, IHC scores for GLIPR2 in stage III and IV cases exhibited

statistically significant decrease in comparison to stages I and II, a

trend that was not evident in LUSC specimens (Figures 8A–C).

In consideration of these compelling findings, we undertook

meticulous survival analyses predicated upon the levels of GLIPR2+

infiltration within the cohorts of LUAD and LUSC patients derived

from Nantong Tumor Hospital. Within the realm of LUAD,

heightened expression of GLIPR2 was associated with a favorable

prognosis, whereas discerning significant survival disparities of

GLIPR2 expression was not observed in the context of LUSC

(Figure 8D). Expanding our investigative scope to encompass the

extensively accessible TCGA dataset, we observed congruence

between outcomes derived from the Nantong Tumor Hospital

cohort and the TCGA dataset (Supplementary Figure S5). This

concordance substantially bolsters the veracity of our findings on a

broader scale.
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FIGURE 5

Algorithmic exploration of immune cell infiltration and immunomodulation. Immune cell infiltration was rigorously assessed through a series of
mRNA-based immune infiltration prediction algorithms, including CIBERSORT (A), EPIC (B), MCP-counter (C), quanTIseq (D), XCELL (E), and TIMER
(F). (G) Correlation of GLIPR2 expression levels with immune checkpoint-related genes, darker colors correspond to smaller p-values, indicating a
higher level of statistical significance in the correlation. *P < 0.05, **P < 0.01, ***P < 0.001.
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In an effort to comprehensively gauge the predictive potential of

GLIPR2 infiltration density to therapeutic responses, we delved into

various treatment modalities. Specifically, we dissected post-

radiotherapy LUAD patients, post-chemotherapy LUAD patients,

post-radiotherapy LUSC patients, and post-chemotherapy LUSC

patients. Notably, amidst post-radiotherapy LUAD patients, those

evincing augmented GLIPR2+ infiltration levels exhibited

correspondingly elevated levels of expression in radiation-

sensitive cases in comparison to their radiation-resistant

counterparts. This discernment underscores the latent utility of

GLIPR2 expression as a predictive biomarker within the context of
Frontiers in Immunology 12395
r a d i o t h e r a p y r e s p on s e w i t h i n t h e LUAD pa t i e n t

stratum (Figure 8E).
3.6 GLIPR2 acts as a tumor suppressor in
LUAD, suppress various malignant
phenotypes of H1299 cells in vitro

In order to substantiate the functional implications of GLIPR2,

a series of in vitro experiments were conducted. The mRNA

expression of GLIPR2 exhibited a noteworthy elevation in normal
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C

FIGURE 6

The expression of GLIPR2 predicts a more favorable immunotherapy outcome in patients. (A) Patients with high GLIPR2 expression have a better
clinical response to immune therapy. (B–H) Distribution of GLIPR2 expression in different clusters of cancer-resident immune cells at single
cell level.
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lung epithelial cells in comparison to LUAD cell lines (Figure 9A).

The H1299 cell line, characterized by the lowest GLIPR2 expression,

was subsequently selected for further invest igat ions.

Immunofluorescence staining demonstrated a diffuse cytosolic

distribution of GLIPR2 in H1299 cells (Figure 9B). Functional

gain experiments involving GLIPR2 overexpression in the H1299

cell line revealed a pronounced inhibition of migration (Figure 9C)

and invasion (Figure 9D). Moreover, augmentation of GLIPR2

attenuated radiotherapy resistance (Figure 9E) and concurrently

induced susceptibility to chemotherapy (Figure 9F) in H1299 cells.

Collectively, the culmination of these findings collectively

underscores the significant implications of GLIPR2 in the domain

of LUAD. These observations accentuate its potential as both a

prognostic and predictive marker, particularly in the context of

radiotherapy to predict treatment responses. The multifaceted

facets of GLIPR2 impact on therapeutic outcomes highlight its

promise for translational applications within the clinical

management of post-radiotherapy LUAD patients.
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4 Discussion

In this present investigation, we employed a comprehensive

array of bioinformatics analytical methodologies to investigate the

potential implications of the GLIPR2 gene in cancer progression.

Our findings reveal a marked reduction in GLIPR2 expression,

strongly associated with the clinical stage across a diverse spectrum

of malignancies Additionally, ROC curve analysis highlights the

latent potential of GLIPR2 as a promising diagnostic biomarker

across various cancer subtypes, including but not limited to CESC,

CHOL, COAD, CEAD, KICH, LUAD, and LUSC.

Genetic mutations, particularly when coupled with DNA

methylation alterations, exert profound influences on

tumorigenesis (32, 33). Our study observed a significant

downregulation of GLIPR2 expression in most types of cancer,

accompanied by a simultaneous increase in the mutation rates

associated with methylation events. This dual phenomenon

suggests a potential role of GLIPR2 in cancer pathogenesis and
A
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FIGURE 7

Diagnostic and prognostic value analysis of GLIPR2. (A) Prognostic value of GLIPR2 in pan-cancer. (B) Prognostic value of GLIPR2 in pan-cancer.
(C) The intersection of different cancer between the diagnostic and the prognostic value. (D) The protein expression of GLIPR2 among CESC, LUAD
and LUSC in Nantong Third People’ Hospital cohort, scale bar = 100 mm (n = 6, **P < 0.01).
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highlights the intricate relationship between gene expression

regulation and epigenetic modifications. The concurrent rise in

methylation mutation rates further underscores the intricate

epigenetic landscape in cancer progression. Methylation

alterations, particularly in the promoter regions of tumor

suppressor genes, can lead to transcriptional silencing and

contribute to tumorigenesis. The observed correlation between

GLIPR2 downregulation and increased methylation mutation

rates suggests a potential mechanism through which cancer cells

may evade the tumor-suppressive effects of GLIPR2. The

identification of this association opens avenues for exploring

GLIPR2 as a potential therapeutic target. Strategies aimed at

reversing or mitigating the methylation alterations linked to

GLIPR2 downregulation could represent novel therapeutic

interventions in cancer treatment. Genetic mutations involve

enduring alterations in the DNA sequence, modifying gene

functionalities, dysregulation, and anomalous activations or

inactivation, thereby contributing to tumor inception and
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progression (34–36). Such mutations include point mutations,

insertions, deletions, and inversions, leading to modifications in

the protein structure and function encoded by the genes (37).

Conversely, DNA methylation is an epigenetic modification

involving the addition of methyl groups to DNA molecules (38).

While DNA methylation regulates normative cells, aberrant

patterns are frequently encountered in cancerous cells. In

malignancies, methylation is frequently associated with gene

silencing, precipitating the subdued expression of normative

genes (39). These methylation alterations impinge upon tumor

suppressor genes and oncogenes, influencing cel lular

proliferation, survival, and invasive propensities. Within the

intricate milieu of diverse TME, a total of thirty-four mutations,

characterized by an indeterminate degree of significance, were

delineated via a comprehensive analysis of GLIPR2. Particularly

salient is the observation that amidst this collection of mutations, a

conspicuous elevation in the levels of GLIPR2 methylation was

discerned in LUAD, whereas a converse pattern was manifest in
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FIGURE 8

Protein expression and prognostic analysis of GLIPR2 in a real-world cohort. (A) Representative expression patterns of GLIPR2 in tumor and
peritumor regions, scale bar = 500 mm. (B, C) GLIPR2 expression in different stages of LUAD and LUSC, scale bar = 500 mm [(B), n = 194; (C), n =
83]. (D) Overall survival (OS) curves according to GLIPR2+ infiltration level of patients in Nantong Tumor Hospital cohort. (E) The predictive value of
GLIPR2 expression was explored in the context of therapeutic interventions, encompassing post-radiotherapy and post-chemotherapy LUAD
patients in Nantong Tumor Hospital cohort (Radiotherapy, n = 10-11; Chemotherapy, n = 29-31). *P < 0.05, ”ns“ means ”not significant“.
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LUSC. Galvanized by these discernments, the designation of

NSCLC as the focal point for subsequent validation endeavors

was judiciously warranted.

LUAD and LUSC represent prominent subtypes of lung cancer,

exhibiting both shared characteristics and distinguishing features.

Emerging within pulmonary tissues, these subtypes diverge in terms

of their cellular origins, molecular profiles, and clinical

presentations (40, 41). LUAD originates from lung glandular

cells, which contribute to mucus and other secretions, whereas

LUSC arises from lung squamous epithelial cells characterized by

their flattened morphology. Mutations in genes such as epidermal

growth factor receptor (EGFR) and anaplastic lymphoma kinase

(ALK) are frequently implicated in LUAD (42), while the p53 gene

mutations are prevalent in LUSC (43). In our study, upon subjecting

NSCLC tissues to rigorous in vitro experimentation, a pronounced

down-regulation in the expression of GLIPR2 became evident.

Strikingly, IHC scores associated with GLIPR2 in stage III and IV

LUAD instances displayed a statistically significant augmentation
Frontiers in Immunology 15398
compared to stage I and II. In contrast, such a trend was not

replicated within the context of LUSC specimens. Furthermore, a

focused scrutiny of LUAD revealed an intensified manifestation of

GLIPR2, correlating with a conspicuously improved prognosis.

Conversely, no overt discordance in consequential survival

outcomes emerged with respect to GLIPR2 expression within the

purview of LUSC. Particularly pivotal is the observation that among

LUAD patients subjected to post-radiotherapy, heightened levels of

GLIPR2+ infiltration correlated with an augmented frequency of

expression in radiation-sensitive cases, in contradistinction to their

radiation-resistant counterparts. Collectively, these findings

collectively posit the plausible implication of GLIPR2 in the

mechanistic underpinnings governing the genesis and

pathological progression of LUAD.

GLIPR2 was first discovered within the human genome,

displaying a broad expression profile. Notably, investigations into

GLIPR2’s interactions have uncovered a Tat-beclin 1 peptide

derived from beclin 1, demonstrating autophagy-inducing
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FIGURE 9

Functional experiments of GLIPR2 in vitro. (A) Distinct LUAD cell lines and normal lung epithelial cell lines exhibit varying patterns of GLIPR2
expression (n = 3). (B) Immunofluorescence analysis reveals predominant cytoplasmic distribution of GLIPR2 in H1299 cell, scale bar = 100 mm.
(C, D) GLIPR2 block cell migration (C, n = 3) and invasion (D, n = 3) in H1299 cell line. (E, F) Elevated expression of GLIPR2 in H1299 cells enhances
both radiosensitivity (n = 4) and chemosensitivity (n = 4). *P < 0.05, **P < 0.01.
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properties with potential therapeutic applications, particularly in

the context of HIV-1 Nef interaction (44). In the realm of colorectal

cancer (CRC), GLIPR2’s correlation with glycolysis-related genes

and its involvement in epithelial-to-mesenchymal transition (EMT)

suggested its pivotal role in tumor progression (45). Furthermore, in

hepatocellular carcinoma (HCC), GLIPR2’s upregulation in

hypoxia contributes to migration and invasion through the

hypoxia/GLIPR-2/EMT axis (46). In our study, we confirmed

GLIPR’ broad expression profile, notably elevated in lung,

prostate, colon, and rectum, while comparatively diminished in

cerebral cortex, parathyroid gland, epididymis, and soft tissues (10).

Additionally, our investigation extends GLIPR2’s relevance to

cancer immunity, emphasizing its role in the TME. Our results

aligned with previous studies, revealing positive correlations

between GLIPR2 expression and immune cell content in the TME

across various cancers (47). In particular, our analysis, consistent

with ESTIMATE analysis, establishes a positive association between

GLIPR2 and the infiltration levels of various immune cells in the

TME of LUAD, including CD4+ T cells, CD8+ T cells, MDSCs, NKT

cells, Tregs, B cells, myeloid dendritic cells, monocytes, and

macrophage M2. These findings position GLIPR2 as a potential

biomarker for LUAD immunotherapy, intricately linked to the

extent of immune cell infiltration. Collectively, these studies,

including our own, underscore GLIPR2’s versatile roles in

autophagy, cancer, and immune response, emphasizing its

significance as a diagnostic marker and therapeutic target across

diverse pathological conditions.

Our study explores the multifaceted role of GLIPR2 in NSCLC,

leveraging insights from a real-world cohort at Nantong Tumor

Hospital. The progressive reduction in GLIPR2 expression with

LUAD tumor progression suggests its potential involvement in

underlying mechanisms driving LUAD development. Notably,

GLIPR2’s prognostic relevance is histotype-specific, exhibiting

significance in LUAD but not in LUSC, indicative of distinct

molecular pathways governing these NSCLC subtypes. In-depth

analyses of treatment cohorts, particularly post-radiotherapy cases,

establish GLIPR2 as a prognostic indicator in LUAD. Furthermore,

our in vitro experiments, while acknowledging their limitations in

capturing the tumor immune microenvironment complexity,

demonstrate GLIPR2 augmentation sensitizing tumor cells to

radiotherapy. This aligns with clinical findings, emphasizing

GLIPR2’s potential as a predictive biomarker for radiotherapy

response. Discrepancies between clinical and in vitro results are

discussed within the clinical complexity of chemotherapy,

underscoring the challenges of interpreting in vitro findings in the

context of combination therapy and varied pharmacological

mechanisms. These insights necessitate cautious interpretation of

in vitro results and stress the importance of clinical validation.

Looking ahead, these findings lay the foundation for future

investigations into the underlying molecular mechanisms driving

observed correlations. Mechanistic studies and analyses of larger

patient cohorts will provide deeper insights into GLIPR2’s
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functional relevance in NSCLC pathobiology, potentially guiding

personalized therapeutic strategies.

In conclusion, this study utilized diverse bioinformatics

approaches to comprehensively investigate the roles of GLIPR2 in

NSCLC, highlighting its potential implications in cancer

development, diagnosis, mutation, methylation, and immune

infiltration. These findings not only provide novel perspectives on

our understanding of cancer biology but also offer crucial leads for

early LUAD diagnosis and therapeutic target development.
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SUPPLEMENTARY FIGURE 1

Mutation patterns of GLIPR2 across pan-cancer spectrum. (A) Representation
of GLIPR2 genetic alterations in various cancer types. (B) Illustration of
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GLIPR2 variants of uncertain significance (VUS) across diverse
tumor contexts.

SUPPLEMENTARY FIGURE 2

Promoter methylation patterns of GLIPR2 across pan-cancer types.

SUPPLEMENTARY FIGURE 3

Correlation of GLIPR2 expression levels with related immunomodulatory genes.

SUPPLEMENTARY FIGURE 4

Diagnostic potential of GLIPR2 across pan-cancer types. (A–X) Receiver
operating characteristic (ROC) curves depicting the performance of GLIPR2

in terms of its diagnostic value for PCPG, BLCA, BRCA, CESC, CHOL, COAD,
CEAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, HCC, LUAD, LUSC, SARC, PAAD,

PRAD, STAD, THCA, THYM, UCEC, and OSCC.

SUPPLEMENTARY FIGURE 5

Overall survival (OS) curves according to GLIPR2+ infiltration level of patients
in TCGA database.

SUPPLEMENTARY FIGURE 6

The intensity and positive cells of GLIPR2 among CESC, LUAD and LUSC in
Nantong Third People’ Hospital cohort (n = 6, *P < 0.05).
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