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Significance of pyroptosis-
related gene in the diagnosis
and classification of
rheumatoid arthritis

Jian Li1, Yongfeng Cui1, Xin Jin1, Hongfeng Ruan1,2,
Dongan He1, Xiaoqian Che1, Jiawei Gao1, Haiming Zhang1*,
Jiandong Guo1* and Jinxi Zhang1*

1Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China,
2Department of Orthopaedics, The First Affiliated Hospital of Zhejiang University of Chinese Medicine,
Hangzhou, China
Background: Rheumatoid arthritis (RA), a chronic autoimmune inflammatory

disease, is often characterized by persistent morning stiffness, joint pain, and

swelling. Early diagnosis and timely treatment of RA can effectively delay the

progression of the condition and significantly reduce the incidence of disability. In

the study, we explored the function of pyroptosis-related genes (PRGs) in the

diagnosis and classification of rheumatoid arthritis based on Gene Expression

Omnibus (GEO) datasets.

Method: We downloaded the GSE93272 dataset from the GEO database, which

contains 35 healthy controls and 67 RA patients. Firstly, the GSE93272 was

normalized by the R software “limma” package. Then, we screened PRGs by

SVM-RFE, LASSO, and RF algorithms. To further investigate the prevalence of RA,

we established a nomogrammodel. Besides, we grouped gene expression profiles

into two clusters and explored their relationship with infiltrating immune cells.

Finally, we analyzed the relationship between the two clusters and the cytokines.

Result: CHMP3, TP53, AIM2, NLRP1, and PLCG1 were identified as PRGs. The

nomogram model revealed that decision-making based on established model

might be beneficial for RA patients, and the predictive power of the nomogram

model was significant. In addition, we identified two different pyroptosis patterns

(pyroptosis clustersAandB)basedon the5PRGs.We found thateosinophil, gamma

deltaTcell,macrophage,natural killercell, regulatoryTcell, type17Thelpercell, and

type 2 T helper cell were significant high expressed in cluster B. And, we identified

gene clusters A and B based on 56 differentially expressed genes (DEGs) between

pyroptosis cluster A and B. Andwe calculated the pyroptosis score for each sample

toquantify the different patterns. Thepatients in pyroptosis cluster Bor gene cluster

B had higher pyroptosis scores than those in pyroptosis cluster A or gene cluster A.

Conclusion: In summary, PRGs play vital roles in the development and occurrence

of RA. Our findingsmight provide novel views for the immunotherapy strategies with

RA.

KEYWORDS

rheumatoid arthritis, pyroptosis, immunity, consensus clustering, bioinformatic analysis
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1 Introduction

Rheumatoid arthritis (RA), a chronic autoimmune inflammatory

disease, is often characterizedbypersistentmorning stiffness, jointpain

and swelling (1). RA affects approximately 1% of the world population

and has become one of the most common causes of significant

disability (2). Although the pathogenesis and etiology of RA have

not been fully known, the interaction of environmental, genetic, and

immunological factors has been shown toplay an important role in the

development ofRA(3). Earlydiagnosis and timely treatmentofRAcan

effectively delay the progression of the condition and significantly

reduce the incidence of disability (4). Therefore, screening for

diagnostic genes associated with RA, exploring their subtype

classification, and elucidating the underlying pathogenesis of RA

could be effective in preventing and treating RA, and might provide

new approaches for clinical treatment of RA.

Pyroptosis, a novel inflammatory programmed cell death, is

mediated by the caspase family and the GSDM protein family (5).

Pyroptosis is characterized by cell swelling and cell membrane

rupture, and the release of pro-inflammatory cytokines that

eventually induce and aggravate the inflammatory response (6).

Increasing studies conformed that pyroptosis might play a key role

in the development of many immune diseases (7). In the arthritic

mouse model, NLRP3-/- or Caspase-1-/- mice could alleviate

symptoms of arthritis (8). Gsdme-/- mice have been demonstrated

to reduce intestinal inflammation in the inducible colitis model (9).

Besides, bronchial epithelial cell pyroptosis promotes airway

inflammation in asthmatic mice (10). However, the role of

pyroptosis-related genes (PRGs) in RA remains unclear.

In the research, we used bioinformatics methods to investigate

the function of PRGs in the diagnosis and classification of

rheumatoid arthritis form the Gene Expression Omnibus (GEO)

datasets. Firstly, we identified differential expression of PRGs from

the GSE93272 dataset. Then, we screened 5 PRGs associated with

RA by support vector machine-recursive feature elimination (SVM-

RFE), least absolute shrinkage and selection operator (LASSO)

logistic regression and random forest (RF) algorithms, and

established a nomogram model for predicting the prevalence of

RA. In addition, we divided gene expression profiles into two

clusters and explored their relationship with infiltrating immune

cells. Finally, we further analyze the relationship between two

clusters and cytokines. We found that the pyroptosis-related

pattern could distinguish RA patients from normal people and

provide new directions for the prevention and treatment of RA.
2 Materials and methods

2.1 Data acquisition and preprocessing

Themicroarray datasetswere downloaded from theGEOdatabase

(https://www.ncbi.nlm.nih.gov/geo/) using “rheumatoid arthritis”,

“whole blood,” and “Homo sapiens” as keywords. The inclusion

criteria were as follows: the whole-genome expression profiling of

whole blood of RA patients and healthy control samples was available
Frontiers in Endocrinology 026
in the datasets; every dataset contained a sample count of > 20; and all

included samples were not treated with drugs. The microarray dataset

GSE93272 from the GPL570 platform containing 35 healthy controls

and 67 RA patients was downloaded from the GEO database (11).
2.2 Identification of differentially
expressed PRGs

The GSE93272 cohort was normalized by the “limma” package

of R software (12). Based on previous literatures (13–15), we

acquired 52 PRGs. However, we did not find the expression data

of GSDMA in GSE93272. Therefore, 51 PRGs were used for the

following analysis. Then, we identified differentially expressed PRGs

in RA and normal samples using the “limma” package. The p-value

< 0.05 was considered a significant difference. Heatmap and boxplot

were performed using the R packages “pheatmap” and “ggpubr” to

visualize the differentially expressed PRGs.
2.3 Screening of PRGs for RA

Based on the differentially expressed PRGs, three feature

selection algorithms, including SVM-RFE (16), LASSO logistic

regression (17) and RF algorithm (18) were adapted to screen

RA-related biomarkers, respectively. The SVM-RFE algorithm

was performed by the R packages “e1071” and “caret” with five-

fold cross-validation (19). The LASSO logistic regression was

employed with the R package “glmnet” (20). The RF algorithm

was analyzed by the R package “randomForest” (21). Then, the

“venn” R package was used to select overlapping genes from the

three algorithms as signature genes for further analysis.
2.4 Construction of a nomogram model

We constructed a nomogram model based on PRGs (CHMP3,

TP53, AIM2, NLRP1, and PLCG1) to predict the occurrence of RA

patients with the “rms” package in R (22). The calibration curve was

used to assess the predictive performance of the nomogram model.

Then, we further performed decision curve analysis (DCA) and

clinical impact curve analysis (CICA) to estimate the clinical utility

of the nomogram model (23).
2.5 Consensus clustering

Consensus clustering is an algorithm for identifying cluster each

member and their number in datasets (24). We utilized the

consensus clustering method to distinguish distinct pyroptosis-

related clinical subtypes of RA and identify different PRGs

patterns based on the significant differentially expressed PRGs

with the package “ConsensusClusterPlus” in R (25). “Points”

represents the score of the corresponding factor below and “Total

Points” indicates the summation of all the scores of factors above.
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2.6 Estimation of the pyroptosis
gene signature

To quantify the pyroptosis patterns, we used principal component

analysis (PCA)algorithms tocalculate thepyroptosis score for eachRA

sample. The Principal Component 1 (PC1) and Principal Component

2 (PC2) were chosen as the signature scores. And pyroptosis scores for

each RA patient were calculated using the following formula (26, 27):

Pyroptosis Score = S(PC1i + PC2i), where i is the expression of PRGs.
2.7 Estimation of immune cell infiltration
for RA

The single-sample gene-set enrichment analysis (ssGSEA) was

employed to measure the relative abundance of immune cells in RA

samples via the R packages “limma”, “GSVA”, and “GSEABase”

(28). And the gene set for marking each immune cell type was

obtained from the study of Charoentong (29).
2.8 Functional and pathway
enrichment analysis

To investigate the functional and molecular pathways of

differentially expressed genes between pyroptosis gene clusters A

and B, we performed GO, KEGG enrichment analyses by the

“colorspace”, “stringi” and “ggplot2” packages in R (30, 31). P <

0.05 was considered statistically significant.
2.9 Statistical analysis

The Kruskal-Wallis test was adopted to compare differences

between normal samples and RA samples. The significant

differences were identified with the p-value < 0.05. All statistical

analysis were performed using the R version 4.0.3.
3 Results

3.1 The landscape of the differentially
expressed PRGs

We analyzed the differential expression levels of 51 PRGs between

RA patients and healthy controls using the “limma” R package

(Supplementary Table 1). A heatmap and histogram were used to

visualize the 23 differentially expressed PRGs. We found that BAX,

CASP1, CASP3, CASP4, CASP5, CHMP2B, CHMP3, HMGB1, IL18,

IL1A, AIM2, NLRC4, NOD2, TNF, andGZMAwere overexpressed in

RA patients compared to healthy controls (Figures 1A, B).
3.2 Identification of characteristic genes

To further screen the characteristic genes related to PRGs for RA,

we utilized the LASSO logistic regression algorithm, the RF algorithm,
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and the SVM-RFE analysis for feature identification (Supplementary

Table 2). Thirteen genes from differentially expressed PRGs were

identified as biomarkers for RA using the LASSO logistic regression

algorithm (Figure 1C).We used RF algorithm to detect nine key genes

from differentially expressed PRGs as vital biomarkers (Figure 1D).

Eight signature genes were identified from differentially expressed

PRGs by the SVM-RFE analysis (Figure 1E). Finally, we overlapped

three different algorithms analysis results and obtained 5 genes

(CHMP3, TP53, AIM2, NLRP1, and PLCG1) that were significantly

related to RA (Figure 1F).
3.3 Construction of the nomogram

To predict the prevalence of RA patients, we constructed a

nomogram model based on the 5 PRGs (Figure 2A). As shown in

Figure 2B, the calibration curve of the nomogram revealed accurate

predictive ability. The DCA result revealed that decision-making

based on established models may be beneficial for RA patients

(Figure 2C). And the CICA result (Figure 2D) found that the

predictive power of the nomogram model was significant.
3.4 Two distinct pyroptosis patterns

Based on the 5 PRGs, we identified two different pyroptosis

patterns (cluster A and cluster B) using the consensus clustering

method (Figure 3A and Supplementary Figure 1). There were 38

cases in clusterA and 29 cases in cluster B.Weplotted the histogram to

observe the differential expression levels of the 5PRGsbetween the two

clusters. TP53, NLRP1, and PLCG1 showed higher expression in

pyroptosis gene cluster A than in pyroptosis gene cluster B, while

AIM2 revealed the opposite results. And CHMP3 showed no

differently expressed between the two patterns (Figure 3B). As

shown in Figure 3C, the two pyroptosis patterns could be

distinguished though the 5 significant PRGs with PCA analysis.

Then, the differential immune cell infiltration between the two

pyroptosis patterns was analyzed (Figure 3D). We found that

eosinophil, gamma delta T cell, macrophage, natural killer cell,

regulatory T cell, type 17 T helper cell, and type 2 T helper cell were

significant high expressed in cluster B (p < 0.05). Besides, we calculated

the abundance of immune cells in RA patients and evaluated the

correlation between the 5 PRGs and immune cells (Figure 3E).
3.5 Function and pathway enrichment

A total of 56 differentially expressed genes (DEGs) were identified

between the two pyroptosis patterns. To further explore the potential

functional and molecular pathways of DEGs, we performed GO and

KEGG enrichment analyses, and the results were shown through an

enrichment circle diagram. In the GO enrichment analysis of

differential expression PRGs, biological processes (BP) terms were

correlated with defense response to virus (GO:0051607) and defense

response to symbiont (GO:0140546); cellular components (CC) terms

were related to tertiary granule (GO:0070820) and early endosome

(GO:0005769); and molecular functions (MF) terms were associated
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with double stranded RNA binding (GO:0003725) and pattern

recognition receptor activity (GO:0038187) (Figure 4A;

Supplementary Table 3). The results of KEGG enrichment analysis

revealed that DEGs were significantly enriched in the NOD-like

receptor signaling pathway and the NF-kappa B signaling pathway

(Figure 4B; Supplementary Table 4).

3.6 Identification of two distinct
gene patterns

To further verify the pyroptosis patterns, we classified the RA

patients into different genetic subtypes and termed as gene cluster A
Frontiers in Endocrinology 048
and B based on the 56 DEGs by using the consensus clustering

method (Figure 5A; Supplementary Figure 2). There were 37 cases

in gene cluster A and 30 in gene cluster B. As shown in Figure 5B,

the heatmap displayed the expression levels of the 56 DEGs in gene

clusters A and B. In addition, we found that the differential

expression levels of the 5 significant PRGs and immune cell

infiltration between gene cluster A and B were consistent with

those in the pyroptosis patterns (Figures 5C, D). The result again

demonstrated the accuracy of dividing into distinct subtypes.

Furthermore, we also compared the pyroptosis score between the

two distinct pyroptosis patterns or DEGs patterns. The result

revealed that the pyroptosis score in cluster B or gene cluster B
A B

D

E F

C

FIGURE 1

Landscape of the 23 PRGs. (A) Expression heatmap of the 23 PRGs in healthy control and RA patients. (B) Expression histogram of the 23 PRGs in
healthy control and RA patients. (C) The PRGs screened using the LASSO logistic regression algorithm. (D) The hub genes identified via the RF
algorithm. (E) The PRGs recognized using SVM-RFE algorithm. (F) Venn diagram showing the intersection among PRGs genes between the three
algorithms. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
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was significantly higher than that in cluster A, or gene cluster A

(Figure 6A). The relationship between pyroptosis patterns,

pyroptosis gene patterns, and pyroptosis scores was visualized in

a Sankey diagram (Figure 6B).
3.7 Identification of two distinct
gene patterns

To further reveal the relationship between pyroptosis patterns

and RA, we investigated the correlation between pyroptosis patterns

and STAT1, CCR5, NLRP1, IL-15, and CXCL10. The results

showed that the expression levels of STAT1, CCR5, NLRP1, IL-

15, and CXCL10 were higher in pyroptosis gene cluster B or gene

cluster B than in pyroptosis gene cluster A or gene cluster A, which

suggested that pyroptosis gene cluster B or gene cluster B is highly

linked to RA characterized by the immune response Figure 6C.
4 Discussion

RA is a chronic inflammatory disease characterized by

persistent inflammatory synovitis and systemic inflammation. RA

has attracted wide world attention in recent years due to its high

disability rate (32). Currently, treatment strategies with biologics

and disease-modifying anti-rheumatic drugs have led to significant

improvement in the prognosis of RA patients, while a large

proportion of RA patients still do not experience effective clinical
Frontiers in Endocrinology 059
relief. Studies showed that early diagnosis and positive treatment

significantly improve the clinical prognosis of RA (33). Thus, there

is an urgent need to identify RA-related diagnostic genes, further

explore the molecular mechanisms of RA, and provide novel

therapeutic strategies for the prevention and treatment of RA.

Pyroptosis is a novel form of inflammatory programmed cell

death that plays a vital role in the development of RA (34).

Pyroptosis further exacerbates RA inflammation by releasing

inflammatory cytokines like interleukin (IL)-1b and IL-18 (35).

Besides, studies demonstrated that the serum concentrations of IL-

1b (36) and IL-18 (37) were significantly higher in RA patients

compared to healthy controls. In order to gain new knowledge for

the diagnosis and management of RA, we further studied the

connection between RA and pyroptosis by locating and screening

PRGs in the serum of RA patients.

In this work, we used 51 PRGs to detect differential expression

PRGs using differential expression analysis. We chose 5 candidate

PRGs (CHMP3, TP53, AIM2, NLRP1, and PLCG1) from

differential expression PRGs by applying RF, SVM-RFE, and

LASSO methods in order to filter the 51 PRGs that were the most

pertinent for RA. Then, we constructed a nomogram model based

on the 5 PRGs to predict the occurrence of RA. In addition, we

distinguished two different pyroptosis regulation patterns based on

the 5 PRGs and explored the correlation between infiltrating

immune cells and the 5 PRGs. A total of 56 DEGs were screened

between the two pyroptosis patterns. We further investigated the

GO and KEGG functional enrichment of 56 DEGs. Furthermore,

we used the consensus clustering method to validate the pyroptosis
A

B DC

FIGURE 2

Construction of the nomogram model. (A) Construction of the nomogram model based on the 5 PRGs. (B) Predictive robustness of the nomogram
model as revealed by the calibration curve. (C) Decisions based on the nomogram model may benefit RA patients. (D) Clinical impact of the
nomogram model as assessed by the clinical impact curve.
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FIGURE 3

Consensus clustering of the 5 PRGs. (A) Consensus matrices of the 5 PRGs for k = 2. (B) Differential expression histogram of the 5 PRGs in gene
cluster A and B. (C) PCA for the expression profiles of the 5 PRGs. (D) Differential immune cell infiltration between gene cluster A and B.
(E) Correlation between infiltrating immune cells and the 5 PRGs. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
A B

FIGURE 4

The functional enrichment analyses of DEGs. (A) The GO analyses results for DEGs; (B) The KEGG analysis results for DEGs.
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patterns based on 56 DEGs. We found that two distinct pyroptosis

gene patterns were consistent with the grouping of pyroptosis

patterns. During the progression of RA, cytokines have been

involved in immune regulation, immune response, and

inflammatory response (38). We also explore the relationship

between inflammatory cytokines and the patterns of pyroptosis.

NOD-like receptor thermal protein domain associated protein 1

(NLRP1) is a member of the NLR family. NLRP1 has been found to

be closely associated with the pathogenesis of RA (39). Activated

NLRP1 promoted the release of inflammatory cytokines, such as IL-
Frontiers in Endocrinology 0711
1b and IL-18 (40). Besides, a study showed that inhibition of NLRP1
activation effectively ameliorated joint inflammation and

destruction in collagen-induced arthritis mice (41). Furthermore,

the polymorphism of the NLRP1 gene was associated with the

incidence of RA in the Han Chinese population (42). A member of

the interferon-inducible HIN-200 protein family is absent in

melanoma 2 (AIM2). AIM2 has emerged as a hub for research

into the pyroptosis-specific pathophysiology of RA. AIM2 has been

linked to the emergence of inflammatory illnesses and autoimmune

arthritis, according to a research (43). AIM2 could format a
A B

D

C

FIGURE 5

Consensus clustering of the DEGs. (A) Consensus matrices of the 56 DEGs for k = 2. (B) Expression heatmap of the 56 DEGs in gene cluster A and B.
(C) Differential expression histogram of the 5 PRGs in gene cluster A and B. (D) Differential immune cell infiltration between gene cluster A and B. *
means P < 0.05, *** means P < 0.001.
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caspase-1-activating inflammasome, thereby controlling the

proteolytic maturation of pro-inflammatory cytokines IL-1b and

IL-18 (44). In addition, a meta-analysis revealed that AIM2 levels

were highly expressed in peripheral blood mononuclear cells from

RA patients (45). Recent study showed that the expression of AIM2

was higher in the RA synovium than in the OA. AIM2 siRNA could

inhibit the proliferation of RA fibroblast-like synoviocytes (46).

PLCG1, also called phospholipase C, gamma 1, is involved in the

receptor tyrosine kinase-(RTK-)-mediated signal transduction

pathway (47). A study found that PRGPI might serve as a

prognostic biomarker for pancreatic cancer patients (48). Besides,

numerous studies have proven the involvement of PLCG1-mediated

inflammatory response in the pathogenesis of osteoarthritis and lung

cancer (49, 50). Chargedmultivesicular body protein 3 (CHMP3) is a

subunit of ESCRT III involved in membrane remodeling (51). High

CHMP3 expression in breast cancer patients predicts better survival

outcomes (52). Moreover, immunohistochemistry revealed

significant high expression of CHMP3 in tumor liver tissue (53).

The P53 tumor suppressor gene (TP53), also known as the p53 gene,

is a protein encoding a molecular weight of 53 kDa. TP53 was found

to regulate important cellular functions, such as apoptosis, cell cycle

regulation, DNA repair, and apoptosis (54). Besides, TP53 is an

inflammatory suppressor associated with autoimmune diseases.

Many studies have indicated that the TP53 mutation is closely

related to the pathological changes of RA (55, 56). TP53 mutation

was identified in synovium of RA patients (57). In the collagen-
Frontiers in Endocrinology 0812
induced arthritis model, p53-/- mice showed increased severity of

arthritis (58).

However, there are some limits to the study. Firstly, the lack of

experimental verificationofbioinformatics analysis results.Weneed to

collect human serum samples to further validate our analysis results

and elucidate their value as potential clinical biomarkers. Besides, due

to the small number of available RA datasets in the GEO database and

the limited sample size of this study, the analysis results may be biased.

We will include more samples to further assess the reliability of the

predicted signature genes.
5 Conclusion

In conclusion, our study first found PLCG1 and CHMP3 may

be involved in the pathogenesis of RA. And pyroptosis pattern is

involved in the progress of RA by bioinformatics analysis, which

provides a novel prospective for the prevention and diagnosis

of RA.
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FIGURE 6

Role of pyroptosis patterns in distinguishing RA. (A) Differences in pyroptosis score between pyroptosis gene cluster A and B and differences in
pyroptosis score between gene cluster A and B. (B) Sankey diagram showing the relationship between pyroptosis patterns, pyroptosis gene patterns,
and pyroptosis scores. (C) Differential expression levels of STAT1, CCR5, NLRP1, IL-15, and CXCL10 between pyroptosis gene cluster A and B.
(C) Differential expression levels of STAT1, CCR5, NLRP1, IL-15, and CXCL10 between gene cluster A and B. * means P < 0.05, ** means P < 0.01,
*** means P < 0.001.
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Identification of five hub
immune genes and
characterization of two immune
subtypes of osteoarthritis

Lifeng Pan1†, Feng Yang2†, Xianhua Cao1, Hongchang Zhao1,
Jian Li1, Jinxi Zhang1, Jiandong Guo1, Zhijiang Jin1*,
Zhongning Guan1* and Feng Zhou1*

1Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China,
2Community Health Service Center, Hangzhou, Zhejiang, China
Background: Osteoarthritis (OA) is one of the most prevalent chronic diseases,

leading to degeneration of joints, chronic pain, and disability in the elderly. Little

is known about the role of immune-related genes (IRGs) and immune cells in OA.

Method: Hub IRGs of OA were identified by differential expression analysis and

filtered by three machine learning strategies, including random forest (RF), least

absolute shrinkage and selection operator (LASSO), and support vector machine

(SVM). A diagnostic nomogram model was then constructed by using these hub

IRGs, with receiver operating characteristic (ROC) curve, decision curve analysis

(DCA), and clinical impact curve analysis (CICA) estimating its performance and

clinical impact. Hierarchical clustering analysis was then conducted by setting

the hub IRGs as input information. Differences in immune cell infiltration and

activities of immune pathways were revealed between different immune

subtypes.

Result: Five hub IRGs of OA were identified, including TNFSF11, SCD1, PGF,

EDNRB, and IL1R1. Of them, TNFSF11 and SCD1 contributed the most to the

diagnostic nomogram model with area under the curve (AUC) values of 0.904

and 0.864, respectively. Two immune subtypes were characterized. The immune

over-activated subtype showed excessively activated cellular immunity with a

higher proportion of activated B cells and activated CD8 T cells. The two

phenotypes were also seen in two validation cohorts.

Conclusion: The present study comprehensively investigated the role of immune

genes and immune cells in OA. Five hub IRGs and two immune subtypes were

identified. These findings will provide novel insights into the diagnosis and

treatment of OA.

KEYWORDS

osteoarthritis, immune microenvironment, diagnostic model, nomogram,
machine learning
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1 Introduction

Osteoarthritis (OA) is one of the most prevalent chronic

diseases worldwide, leading to degeneration of joints, chronic

pain, and disability in the elderly (1). Novel insights suggested

that OA is a syndrome of joint destruction caused by different risk

factors, and each of the factors could promote OA by instigating

different mechanistic pathways (2). Typical processes involved in

OA development contain mechanical (3), inflammatory (4),

metabolic (5), and senescent (6) signaling pathways. Interestingly,

synovitis is found in the majority of patients with OA. Moreover,

the infiltration of T cells and activated macrophages in synovial

tissue has a strong correlation with bone erosion and pain in OA

patients (7). Little is known, however, about the osteo-immune

microenvironment (OIME) of OA, and the role of immune-related

genes has hardly been studied in this disease.

Hereby, we investigated the role of immune-related genes

(IRGs) in OA from the aspects of OIME, disease classification,

and diagnostic value. First, hub IRGs were identified by differential

expression analysis and three strategies of feature selection,

including random forest (RF), least absolute shrinkage and

selection operator (LASSO), and support vector machine (SVM).

Then, these hub IRGs were used to construct a diagnostic

nomogram model with receiver operating characteristic (ROC)

curve, decision curve analysis (DCA), and clinical impact curve

analysis (CICA) estimating its diagnostic performance and clinical

impact for OA. These hub IRGs were then subjected to hierarchical

clustering analysis, and two immune subtypes of OA were

characterized. The immune over-activated subtype showed a

higher proportion of activated B-cell and activated CD8 T-cell

infiltration, underlying an OIME with excessively activated

cellular immunity for this group. Finally, two external cohorts of

OA were utilized to validate the existence of the two immune

subtypes of OA.

In all, the present study conducted a comprehensive analysis of

the role of immune genes and immune cells in OA. An immune

over-activated subtype of OA was identified, and a nomogram

model was built for clinical practice. It was found that regulatory

T-cell infiltration was positively correlated with TNFSF11 and

IL1R1 and negatively correlated with EDNRB. These findings

provided novel insights to understand the role of the osteo-

immune microenvironment in the development of OA.

2 Materials and methods

2.1 Data collection and processing

The microarray datasets were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/) using “Osteoarthritis”, “Tissue”, and “Homo

sapiens” as keywords. The microarray datasets GSE55235 and

GSE55457 (doi: 10.1186/ar4526) and GSE82107 (doi: 10.1371/

journal.pone.0167076) contained 27 healthy controls and 30 OA

patients. A dataset of identified IRGs was acquired from the

ImmPort database (http://www.immport.org).
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We then performed log2 transformed for gene expression

profiling and matched the probes to their gene symbols according

to the annotation document of corresponding platforms. Finally,

the gene matrix with row names as sample names and column

names as gene symbols were obtained for subsequent analyses.
2.2 Identification of differentially expressed
immune-related genes

These three datasets weremerged and normalized by the “limma”

package8 of R software (doi: 10.1093/nar/gkv007). The batch effect

amid different arrays was eliminated by using the ComBat function of

R (version 4.1.3) package sva9. We extracted the expression profiles

of immune-related genes from this merged dataset. Then, we

identified differentially expressed IRGs in OA and normal samples

by the “limma” package. p-value <0.05 was considered a significant

difference. Heatmap was generated using the R package “pheatmap”

to visualize the differentially expressed IRGs.
2.3 Functional and pathway
enrichment analyses

To investigate the functional and molecular pathways of

differentially expressed IRGs, we performed Gene Ontology (GO)

(8), Kyoto Encyclopedia of Genes and Genomes (KEGG) (9), and

gene set enrichment analysis (GSEA) (10) enrichment analyses by the

“colorspace”, “stringi”, and “ggplot2” packages in R (doi: 10.7717/

peerj.11534). p < 0.05 was considered statistically significant.
2.4 Screening of OA-related biomarker
characteristic genes

The protein–protein interaction (PPI) network was constructed to

predict protein–protein interactions of differentially expressed IRGs

using the Search Tool for the Retrieval of Interacting Genes database

(STRING, http://www.stringdb.org). The gene with an interaction

score >0.9 was retained, and Cytoscape software v3.6.0 is used to

visualize the PPI network. Based on these IRGs, three feature selection

algorithms including SVM–recursive feature elimination (SVM-RFE),

LASSO logistic regression, and RF were adapted to screen OA-related

biomarkers. The SVM-RFE algorithm was performed by R packages

“e1071” and “caret” with fivefold cross-validation. The LASSO logistic

regression was employed with the R package “glmnet” (11). The RF

algorithm was analyzed by the “randomForest” package in R (https://

CRAN.R-project.org/package=beeswarm). Then, the “venn” R

package (12) (version 1.7) was used to select overlapping genes

from the three algorithms as signature genes for further analysis.
2.5 Construction of a nomogram model

The ROC and area under the curve (AUC) were also calculated

to evaluate the predictive effectiveness of the algorithm. We
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constructed a nomogram model based on OA-related signature

genes to predict the occurrence of OA patients with the “rms”

package in R. The calibration curve was used to assess the predictive

performance of the nomogram model. Then, we further performed

DCA and CICA to estimate the clinical utility of the

nomogram model.
2.6 Consensus clustering

Consensus clustering is an algorithm for identifying the cluster

of each member and their number in datasets. We utilized the

consensus clustering method to distinguish distinct immune-

related clinical subtypes of OA and identify different IRG patterns

based on the significant differentially expressed IRGs with the R

package “ConsensusClusterPlus” (13). In the correlation between

significant OA-related IRG expression and clinical features in

subtypes of OA patients. “Points” represents the score of the

corresponding factor below, and “Total Points” indicates the

summation of all the scores of factors above.
2.7 Estimation of immune cell infiltration

The single-sample gene set enrichment analysis (ssGSEA) was

employed to measure the relative abundance of immune cells in OA

samples via the R packages “limma”, “GSVA” (10), and

“GSEABase”. The gene set for marking each immune cell type

was obtained from the study of Charoentong (14). We also

conducted a correlation analysis of immune cells with OA-

related genes.
2.8 Calculation of immune score

We used principal component analysis (PCA) algorithms to

construct the signature of immune-related genes for OA samples

(doi: 10.1038/nbt0308-303). Principal Component 1 (PC1) and

Principal Component 2 (PC2) were chosen as the signature

scores. Immune scores for each OA patient were calculated using

the formula Immune Score = S(PC1i + PC2i), where i is the

expression of immune-related genes. We calculated the

relationship between different classifications and immune scores.

We used limma and ggpubr packages to study the relationship

between the different classifications and the expression level of

notable molecules.
2.9 Statistics and software

Data processing and bioinformatics analyses were accomplished

by R (version 4.1.3). Packages limma, ggplot2, rmda, clusterProfiler,

ssGSEA, rsm, and glmnet were employed for analyses with proper

citations. The Wilcoxon or Kruskal–Wallis test was applied for

comparisons between two or more groups involved in this study.

Pearson’s and Spearman’s rank correlation tests were adopted to

estimate the statistical correlation of parametric or non-parametric
Frontiers in Endocrinology 0317
variables. Two-sided p < 0.05 was considered a significant threshold

for all statistical tests.
3 Results

3.1 Hub IRGs and their biological function
in OA

Between the OA samples and the control samples, there was a

significant difference in the expression of 2,483 IRGs (Figure 1A).

As was to be predicted, enrichment of these genes was found in a

number of processes related to bone production and resorption.

These processes include MAPK, Osteoclast Differentiation, and Ras

Signaling Pathways. In addition to this, the Th17 cell differentiation

pathway was shown to be active in OA patients, which suggests the

possible involvement of immune cells in the development of OA

(Figures 1B, C).
3.2 Diagnostic value of the hub IRGs in OA

There were intense interactions amid these IRGs, and several

genes seemed to be key regulators in OA, including VEGFA, EDN1,

JUN, and MAPK8 (Figure 2A, Figure S1). Three machine learning

strategies were then utilized for feature selection by inputting these

IRGs and patients’ diagnostic information (Figures 2B-D). Finally,

17, 11, and 21 core genes were authenticated by LASSO, SVM, and

RF algorithms, respectively (Figure 2E). Of them, five intersected

genes were submitted to the final diagnostic model, including PGF,

TNFSF11, EDNRB, SDC1, and IL1R1 (Figure 2E).

In the end, TNFSF11 and SDC1 appeared to contribute the

most in the diagnostic model to distinguish OA samples from

control samples, suggesting that these two genes play an important

role in the progression of OA (Figure S2). The AUC for TNFSF11

was 0.904 (0.806–0.979), and the AUC for SDC1 was 0.864 (0.744–

0.959) (Figures S2D,E). The nomogram then quantified the

contribution of each gene, and as a result, the patients’ disease

risk was quickly calculated by adding up the points from all five

genes (Figure 2F). In the calibration curve, the nomogram’s

predicted disease risk and the actual disease condition were quite

congruent with one another (Figure S3A). The subsequent DCA

study demonstrated a significant internal advantage for this

approach (Figure S3B). When the value of the threshold was

greater than 0.6, the estimated number of patients came closer to

matching the actual positive patient count (Figure S3C).
3.3 Characterization of the immune over-
activated and immune-inhibited subtypes
of OA

Two subtypes of OA were identified by executing hierarchical

clustering analysis with the IRGs mentioned above (Figures 3A, C).

Cluster A displayed higher expression of TNFSF11 and IL1R1,

while Cluster B demonstrated an increased level of EDNRB
frontiersin.org
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(Figure 3B). Moreover, Cluster B was seen with increased

infiltration of activated B cells and activated CD8 T cells and

decreased infiltration of regulatory T cells, suggesting a

microenvironment with excessively activated cellular immunity

for this group (Figure 3D). On the contrary, Cluster A seemed to

be the immune-inhibited subtype of OA with more infiltration of

regulatory T cells. Correspondingly, TNFSF11 and IL1R1 were

found positively correlated with the infiltration of regulatory T

cells, partly accounting for its reduction in Cluster B (Figure 3E). In

addition, Clusters A and B differed in many biological processes

(Figure 3F) such as regulation of anatomical structure size

(go:0090066), endoplasmic reticulum lumen (go:0005788),

po ta s s ium channe l ac t iv i ty (go :0005267) , and heat

generation (go:0031649).
3.4 External validation for the two immune
subtypes in GSE55457 and GSE82107

Similar classifications were seen in two external validation

cohorts: GSE55457 (N = 33) and GSE82107 (N = 17). The

processes of clustering analyses for these two cohorts were
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illustrated in supplementary pictures (Figures S4, S5) with

consensus matrix, CDF, and delta area determining the optimal

number of clusters. Distinguishable two clusters were identified in

GSE55457 with a group of genes upregulated in Cluster A

(Figures 4A, B). Keeping consistent with the former results of the

training cohort, TNFSF11, IL1R1, and regulatory T cells also

showed a marked decrease in Cluster B (Figures 4C, D), implying

a phenotype of immune over-activation with advanced bone

absorption. In GSE55457, Cluster B was seen with an increased

immune score in both the immune gene cluster and the gene cluster,

supporting the immune-activated phenotype of this group. The

Sankey diagram demonstrated the overlap of patients between the

different clusters (Figures 5A, B). In parallel, Cluster B showed a

distinct decline of TNFSF11 and GDF5, accompanied by significant

ascending of FRZB and TRAPPC2 (Figures 5C, D).
4 Discussion

Non-infectious chronic inflammation, which occurs when

inflammatory cells invade synovial tissue or synovial fluid,

especially in the early stages of the illness, is the main clinical
A B

C

FIGURE 1

Differentially expressed immune genes in osteoarthritis (OA). (A) The heatmap shows the differentially expressed immune genes between OA and
control samples (GSE55235). (B, C) Gene Ontology (B) and Kyoto Encyclopedia of Genes and Genomes (C) enrichment analyses revealed the
biological function and downstream pathways of the differentially expressed immune genes.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1144258
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2023.1144258
hallmark of OA (doi: 10.1053/joca.1998.0224, 10.1002/art.10768).

Immunity plays a key role in the emergence and progression of OA.

The present study comprehensively investigated the role of

immune genes and immune cells in OA, revealing the immune
Frontiers in Endocrinology 0519
over-activated and immune-inhibited subtypes of OA. The former

subtype showed higher infiltration of activated B cells and CD8 T

cell, compared with lesser infiltration of regulatory T cells,

underlying a microenvironment with excessive cellular immunity.
D

A B

E F

C

FIGURE 2

Hub immune-related genes (IRGs) and their diagnostic value. (A) Protein–protein interaction network of the IRGs. (B–D) Hub IRGs were filtered by
three machine learning strategies of feature selection, including least absolute shrinkage and selection operator (B), random forest (C), and support
vector machine (D). (E) Five hub IRGs were identified by the three machine learning strategies. (F) The five-IRG-based nomogram model showed
good diagnostic performance.
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A nomogram model was also constructed by using five immune

genes, showing rather good diagnostic performance. These findings

will help understand the crosstalk between immune cells and bone

tissue, providing novel insights for the diagnosis and treatment

of OA.

First, five critical IRGs were identified in our study, including

PGF, TNFSF11, EDNRB, SDC1, and IL1R1. It was shown that the
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presence of regulatory T cells was inversely connected with EDNRB

and positively correlated with TNFSF11 and IL1R1. Of them,

TNFSF11 contributed most significantly to the diagnosis of OA,

followed by SCD1. Reportedly, TNFSF11 (TNF Superfamily

Member 11) is a key factor responsible for osteoclast

differentiation and activation, encoding RANKL, the ligand of

osteoprotegerin (OPG) (15, 16), to regulate bone density.
D

A B

E
F

C

FIGURE 3

Clustering analysis and immune infiltration analysis. (A) Clustering analysis stratified patients into two subtypes. (B, C) The two immune subtypes
differ in gene expression pattern (B) and geometrical distance (C). (D) Immune subtype B showed higher infiltration of activated B cells and activated
T cells than subtype (A). (E) Correlation analysis between five hub immune genes and immune cells. (F) Gene Ontology enrichment analysis revealed
the functional differences between the two immune subtypes. * means P < 0.05, *** means P < 0.001.
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Moreover, TNFSF11 has already been linked to a series of diseases

with osteoproliferation or osteolysis, including osteopetrosis,

dysosteosclerosis, Paget disease of bone 2, and familial expansile

osteolysis (17). Therefore, it is reasonable to see the significant

upregulation of TNFSF11 in osteoarthritis. Correspondingly,

reducing TNFSF11 expression could relieve the progression of

cartilage degradation in OA (18).

Meanwhile, TNFSF11 is key in the processes of lymph node

development and production of activated B cells and T cells (19, 20).

This is consistent with the results of our study: TNFSF11 was

observed to be correlated with the infiltration of activated T cells, B

cells, natural killer T cells, neutrophils, monocytes, etc. Similarly,

elevated TNFSF11 was reported to induce a pro-inflammatory

phenotype of OA (21), resulting in accelerated joint destruction

and deteriorated clinical symptoms (22).

SCD1, stearoyl CoA desaturase 1, was found to promote the

function of osteogenesis in bone marrow mesenchymal stem cells
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(23), and inhibition of SCD1 could prevent postmenopausal

osteoporosis to some extent (24). Keeping consistent with these

studies, we found that SCD1 also played a pivotal role in OA. SCD1

expression was positively correlated with the infiltration of

monocyte, activated CD4 T cell, and gamma delta T cell,

underlying an inflamed microenvironment. Potential mechanisms

accounting for this correlation between SCD1 and immune

imbalance are the activation of miR-203a/FOS and miR-1908/

EXO1 signaling pathways by SCD1 (25).

The present study has several advantages. Comprehensive

investigations were conducted on the role of immune genes and

immune cells in OA. Several critical immune genes were identified,

and a diagnostic nomogram was constructed with quite good

performance. Immune over-activated and immune-inhibited

subtypes of OA were revealed. The former subtype showed higher

infiltration of activated B cells and CD8 T cells, underlying a

microenvironment with excessive cellular immunity. These
D

A B

C

FIGURE 4

External validation for the two immune subtypes in GSE55457. (A) Two immune subtypes were found in GSE55457 by clustering analysis. (B) The
heatmap showed the differentially expressed genes between the two subtypes. (C, D) The two immune subtypes differ in the pattern of immune gene
expression (C) and immune cell infiltration (D). Cluster B also displayed higher infiltration of activated B cells and T cells as the subtype B in GSE55235.
* means P < 0.05, ** means P < 0.01, *** means P < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1144258
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2023.1144258
findings will provide novel insights into the diagnosis and treatment

of OA.

There were also some limitations to our study. First, it would be

more convincing if there were some in vitro experiments. Second,

the expression of TNFSF11, SCD1, and the two immune subtypes of

OA could be tested in actual patient cohorts. Lastly, analysis of the

pathways related to osteogenesis can be added to further explain the

difference between the two immune subtypes of OA.
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FIGURE 5
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Single-cell mapping of N6-
methyladenosine in esophageal
squamous cell carcinoma and
exploration of the risk model for
immune infiltration
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Jingjiang Lai5, Qiang Li6, Fengge Zhou6* and Zhe Yang1,6*
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Shandong, China, 2Shandong First Medical University, College of Basic Medicine, Shandong First
Medical University-Shandong Academy of Medical Sciences, Jinan, Shandong, China, 3Department of
Computer Science and Technology, Ocean University of China, Qingdao, China, 4Department of
Pathology, Shandong Provincial Hospital, Shandong University, Jinan, China, 5Department of
Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,
6Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Jinan, Shandong, China
Background: N6-methyladenosine (m6A) modification is the most common

RNAmodification, but its potential role in the development of esophageal cancer

and its specific mechanisms still need to be further investigated.

Methods: Bulk RNA-seq of 174 patients with esophageal squamous carcinoma

from the TCGA-ESCC cohort, GSE53625, and single-cell sequencing data from

patients with esophageal squamous carcinoma from GSE188900 were included

in this study. Single-cell analysis of scRNA-seq data from GSE188900 of 4

esophageal squamous carcinoma samples and calculation of PROGENy

scores. Demonstrate the scoring of tumor-associated pathways for different

cell populations. Cell Chat was calculated for cell populations. thereafter, m6A-

related differential genes were sought and risk models were constructed to

analyze the relevant biological functions and impact pathways of potential m6A

genes and their impact on immune infiltration and tumor treatment sensitivity in

ESCC was investigated.

Results: By umap downscaling analysis, ESCC single-cell data were labelled into

clusters of seven immune cell classes. Cellchat analysis showed that the network

interactions of four signaling pathways, MIF, AFF, FN1 and CD99, all showed

different cell type interactions. The prognostic risk model constructed by

screening for m6A-related differential genes was of significant value in the

prognostic stratification of ESCC patients and had a significant impact on

immune infiltration and chemotherapy sensitivity in ESCC patients.

Conclusion: In our study, we explored a blueprint for the distribution of single

cells in ESCC based on m6A methylation and constructed a risk model for
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immune infiltration analysis and tumor efficacy stratification in ESCC on this

basis. This may provide important potential guidance for revealing the role of

m6A in immune escape and treatment resistance in esophageal cancer.
KEYWORDS

N6-Methyladenosine, esophageal squamous cell carcinoma, single-gene sequencing,
immune infiltration, bioinfomatics
Introduction

Esophageal cancer is a common malignancy worldwide,

ranking seventh in incidence and sixth in mortality of all

malignancies (1). Esophageal cancer is mainly classified into

esophageal squamous cell carcinoma (ESCC) and esophageal

Adenocarcinoma (EAC), with ESCC being the most common

histological type of esophageal cancer. In Asian countries,

squamous cell carcinoma of the esophagus, accounts for

approximately 95% of esophageal cancers (2). Despite significant

breakthroughs in the diagnosis and treatment of esophageal

squamous carcinoma (3), the prognosis of patients with

esophageal squamous carcinoma remains poor, with a 5-year

survival rate of less than 15% (4), largely because its pathogenesis

has not been fully elucidated. With the further analysis of tumor

development mechanism, a variety of therapies based on new tumor

immune and metabolic targets (immunotherapy and targeted

therapy, etc.) have emerged to improve the efficacy, but the

prognosis of esophageal cancer patients is still poor (5), therefore,

in-depth study of the mechanisms related to the development of

esophageal cancer and the search for new effective therapeutic

targets are important means to improve the overall survival rate

of esophageal cancer patients. At the same time, an in-depth

understanding of tumor heterogeneity from a genetic perspective

is more conducive to dissecting the intrinsic features of ESCC.

N6-methyladenosine, (m6A) modification is one of the most

common RNA modifications (6). m6A methyltransferase-like 3

(METTL3) is the most important component of m6A

methyltransferase (7). According to recent studies, m6A

methylation has been associated with a variety of human cancers,

including cervical, colorectal, ovarian and lung cancers (8–11). m6A

methylation is closely involved in cancer cell proliferation,

apoptosis, invasion and migration, autophagy and metabolism. as

well as metabolism and other biological processes (12–16).

However, its biological role and molecular mechanisms in the

development of esophageal squamous carcinoma are relatively

limited. The m6A methylation modification has an important

regulatory role in the proliferation, migration and invasion of

esophageal cancer cells, and is of great research value and clinical

significance in predicting the prognosis and targeting therapy of

esophageal cancer. However, the relationship between m6A

methylation modification and esophageal cancer still needs to be

further explored. Based on m6A-related genes, several previous
0225
studies have constructed riskscore that can stably predict the

prognosis of patients with multiple cancer types, including ESCC

(17, 18). But different from other studies, our study analyzed m6a-

related genes from the perspective of single-cell mapping for the

first time, and constructed a riskscore that stably predicts the

prognosis of ESCC patients.

Therefore, we investigated the microscopic roles of the major

pathways of m6A methylation and differential genes in esophageal

carcinogenesis and invasive metastasis in ESCC patient tumors.

Single cell sequencing and cell communication analysis were used to

clarify the spatially specific major biological functions of the

distribution of m6A methylation-related genes in tumor cells.

Transcriptomics and single-cell sequencing revealed that

subpopulations of tumor cells with differential expression of m6A

methylation-related gene profiles were heterogeneously distributed

within the lesion. m6A methylation differential expression

correlated significantly with the immune infiltration status of

EACC patients. This suggests that the aberrant distribution of

m6A methylation may determine poor prognosis and immune

tolerance in ESCC patients. To enrich the clinical scalability of

the model, we assessed the specific relationship between m6A

methylation-related genes and immune infiltration and

constructed subgroups to assess their impact on drug sensitivity.

These findings provide new insights into the spatial biology and

immunological understanding of m6A methylation in ESCC, and

make some breakthroughs for individualised treatment and new

target development in ESCC.
Materials and methods

Data collection

All patient data in this study were obtained from online public

databases, including the cancer genome atlas (tcga) and GEO

DataSets. All patients included in the study had complete public

gene expression data and clinical annotation. A bulk RNA-seq of 77

patients with esophageal squamous carcinoma from the tcga-ESCC

cohort was included, while gene expression data containing samples

of esophageal cancer tissue and normal esophageal tissue were

downloaded from the gene expression omnibus (GEO) data (http://

www.ncbi.nlm.nih.gov/geo/). GSE53625, a core data set of

expression profiles, was used for validation. It includes bulk
frontiersin.org
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RNA-seq from 174 patients with esophageal squamous carcinoma

and single cell scRNA-seq data from GSE188900 from 4 patients

with esophageal squamous carcinoma. The clinical data collected

included age, gender, tumor stage and prognostic data. To ensure

the availability and reliability of the data, strict inclusion and

exclusion criteria were established for this study. Inclusion

criteria: (1) primary squamous cell carcinoma of the esophagus

confirmed by pathological sections; (2) patients with a prognostic

follow-up of at least 30 days; (3) complete genomic expression level

data included; and (4) clear reporting of pathological conditions

and follow-up. Exclusion criteria: (1) other pathological types or

secondary esophageal tumors; (2) concurrent primary tumors from

other sites.
Collection of genes associated with
epigenetic modifications of m6A and
single-cell data processing

In this study, 21 m6A regulators were collected from the

MSigDB database, including 8 writers (METTL3, METTL14,

RBM15, RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13), 2

erasers (ALKBH5, FTO) and 11 readers (YTHDC1, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, IGF2BP1, HNRNPA2B1,

HNRNPC, FMR1, LRPPRC, ELAVL1). The original expression

profile dataset (GSE188900) used for the analysis was filtered

from the public database GEO database platform. The data set

was 5 EACC tumor specimens, which were extracted from RNA

and analyzed by expression profiling microarray, using the Illumina

NextSeq detection platform. The raw data set was pre-processed

with the Seurat R package to ensure quality control (QC) results.

The number of genes detected in each cell (nFeature_RNA) and the

total number of molecules detected within the cell (nCount_RNA)

were calculated, and the number of genes detected per cell was

proportional to the number of genes expressed (reads) obtained by

sequencing. Cells were clustered based on the filtered principal

components and visualized using uniform manifold approximation

and projection (UMAP) dimensionality reduction techniques for

cell classification. Tumour cell marker genes with adj. p value < 0.05

were screened. Cell marker genes were retrieved using the

PanglaoDB database, and the genes corresponding to each class

cluster were intersected to determine the class cluster in which the

cells were located. Cell population grouping was performed by

single cell sequencing data acquisition post-processing and

downscaling analysis. This includes T cells, B cells, Mast cells,

fibroblasts, myeloid and endothelial cells and the remaining

cell types.
Analysis of protein interactions and
cellular communication of m6A epigenetic
modifications in ESCC at the single
cell level

After pre-processing and downscaling analysis of single-cell

scRNA-seq data from four patients with esophageal squamous
Frontiers in Endocrinology 0326
carcinoma from GSE188900, PROGENy scores were calculated to

demonstrate the scoring of tumor-associated pathways in different

cell populations.PROGENy (Pathway RespOnsive GENes for

activity inference) is an R package published in 2018. It is

generally accepted that gene expression correlates with pathway

signaling activity, and in previous pathway enrichment analyzes this

has largely been used as a basis for assuming that the more genes

highly expressed in a pathway, the more likely it is that the pathway

is activated, however, the effect of post-translational modifications

has been ignored. Based on this, PROGENy can use publicly

available data from perturbation experiments to infer common

core genes in the pathway response of human samples. This can be

used to infer pathway activity from bulk RNAseq science. This fits

in with our research aim to understand the m6A epigenetic gene

pathway alterations in single cell samples from ESCC. Also, Cell

Chat scores were calculated for different species of immune cells

sequenced from single cells, demonstrating cellular communication

for each cell population. Cellular communication analysis can help

us understand cell-cell interactions and resolve intercellular

communication networks. It will help us to unravel the

interactions of various cell types during development, explore the

immune microenvironment of tumors and uncover potential

therapeutic targets for diseases. CellChat has built a cellular

interaction database of 2021 ligand-receptor pairs that can be

used to quantify intercellular communication networks from

single cell transcriptome data, resolve the major input and output

signals for each cell type, and suggest how each cell type and

multiple signaling pathways work together. Based on the fact that

the macrophage migration inhibitory factor (MIF) signaling

pathway is the secretory signaling pathway with the highest

probability of communication in ESCC cells, the cellular

communication network of the ‘MIF’ pathway is demonstrated.
Gene enrichment and functional analysis of
the m6A epigenetic pathway

The m6A signature (m6A epigenetic) was scored for gene set

enrichment using the AddModuleScore function of the Seruat

package, and was divided into two groups: m6A signature-high

and m6A signature-low. It can be seen that most of the immune

cells have a mixture of m6A signature-high and m6A signature-low

groups. Further analysis was carried out in the Bulk transcriptome.

The R package “LIMMA” (version 3.48.3) was used to compare the

two groups. LMFIT and bayes functions were used to ensure

accuracy. The R packages clusterProfiler, org.Hs.eg.db, DOSE,

enrichment plot, and colourspace were used for gene enrichment

and pathway functional analysis of DEGs and core genes. The

clusterProfiler R package was used to perform gene ontologyGO)

functional enrichment analysis and Kyoto encyclopedia of genes

and genomes (KEGG) pathway enrichment analysis on the

differential gene sets. The enrichment analysis is based on the

principle of hypergeometric distribution, where GO is a

comprehensive database describing gene function and can be

divided into 3 parts: biological process (BP), cellular component

(CC) and molecular function (MF). KEGG is a comprehensive
frontiersin.org
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database that integrates genomic, chemical and systemic functional

information. We want to analyze the key macroscopic associations

of m6A epigenetically related genes and signaling pathways during

development at the cellular component, molecular function and

biological process levels. Enrichment pathways are all significant at

p value < 0.05. In addition, we used the “Limma” package to find out

the differential genes between the two groups based on the “Ebays”

function, and performed a univariate Cox regression analysis on the

differentially expressed genes (DEGs) based on the tinyarray

package, with a p value < 0.01, and 29 genes were selected.
m6A epigenetic survival-related
differential gene acquisition and prognostic
model construction

To further visualise as well as quantify the potential impact of

m6A epigenetic inheritance on the development of ESCC patients.

We performed univariate Cox regression analysis on the 29 DEGs

obtained in the previous step, and selected prognostic genes with p

value < 0.05 as the screening criterion. The cohort GSE53625 of 174

patients with squamous esophageal cancer was also used for

independent external validation. We divided ESCC patients into

high-risk and low-risk groups by the median riskscore. Also,

Kaplan-Meier (K-M) survival curves were plotted for the high-

and low-risk groups. Combining common clinical parameters and

riskscore to draw a nomogram for further clinical visualization and

auxiliary application of the model.
Exploring the relationship between the
role of m6A epigenetics in immune
infiltration and the impact of treatment
sensitivity in ESCC

Clarifying the immune infiltration of m6A epigenetics in the

tumor microenvironment and the lymphocyte association is an

important prerequisite for understanding its impact on treatment

resistance in ESCC patients. To ensure predictive accuracy, we used

ssGSEA and xCell algorithm (19) to assess the level of immune

infiltration. Based on the expression matrix, xCell evaluates the

composition and abundance of immune cells in mixed cells by

combining the advantages of deconvolution methods and gene

enrichment. Based on the expression matrix and the immune cell

marker gene set, ssGSEA can calculate enrichment scores for

individual samples and gene set pairs to determine the level of

immune infiltration. ssGSEA is able to quantify the abundance of

immune cells and stromal cells from transcriptomic data to assess

the level of immunity one at a time. In addition, immune scores

and tumor purity were calculated for each sample by the

ESTIMATE algorithm.

In view of the above studies showing the close association of

m6A epigenetics for immune infiltration in ESCC, it is considered

that m6A may interfere with immune infiltration in ESCC by

interfering with tumor immunity against chemotherapy. Further,

we wanted to analyze whether the therapeutic susceptibility of
Frontiers in Endocrinology 0427
ESCC patients to multiple chemotherapeutic agents is definitively

associated with the m6A epigenetic pathway, in order to facilitate

the clinical dissemination and application of the model in the

future. Here, we used the Cancer Genome Project (CGP) database

to predict the therapeutic susceptibility of chemotherapeutic agents

using the R package “prophet”. After initial analysis of the data, we

used the Genomics of drug sensitivity in Cancer (GDSC) database

to calculate drug sensitivity scores using the R package ‘oncopredict’

(20) and visualised the predicted images using multiple box plots.
Tissue acquisition and quantitative
real-time PCR

Ten pairs of ESCC tissues and adjacent normal tissues were

collected from Shandong Provincial Hospital of Shandong

University and stored at -80°C for a long time. RNAiso Plus

(Takara Bio, Japan) was used to extract total RNA from tissues,

PrimeScript RT Master Mix (Takara Bio, Japan) was used for

reverse transcription of cDNA, and TB green (Takara Bio, Japan)

was used for RT-qPCR reaction. and normalized with GAPDH. All

primer sequences are detailed in Supplementary Table 1.
Statistical analysis

Independent t-tests and Mann-Whitney U tests were used to

compare two groups of variables with normal and non-normal

distributions, respectively, and to determine statistical significance.

One-way ANOVA (analysis of variance) and Krush-Wallis tests

were used to compare differences between multiple sets of statistics.

RT-qPCR data were compared using Student’s t-test. All statistical

analyzes were performed using R software for statistical analysis.

Statistical significance was defined as a p value < 0.05.
Results

Preliminary visualization and distribution
analysis of single-cell sequencing data
from ESCC

First, single-cell analysis was performed on scRNA-seq data

from four esophageal squamous carcinoma samples from

GSE188900, downlinked into seven cell clusters. Preliminary in-

expression normalization was performed and we classified the cells

into coherent transcriptional clusters using a graph-based clustering

approach. UMAP method downlink analysis was performed to

group the cells into clusters. The main categories of immune cell

clusters identified and annotated included:Tcell, B cell, Epithelial,

Fibrobalst, Mast Cell, Endotheli and Myeloid (Figure 1A), and cells

were annotated according to the source of the sample. Furthermore,

single-cell sequencing data obtained from four ESCC patients were

annotated for spatial distribution and classified primarily based

primarily on differences in the taxonomic content of their immune

cells and associated signaling pathway alterations. These were
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ESCA1, ESCA2, ESCA3 and ESCA4, respectively (Figure 1B). The

images yielded that ESCA1 and ESCA2 patients were labelled with

more single cell sequencing data and expressed higher content. In

contrast, for ESCA3 and ESCA4 patients, relatively low levels of

single cell expression were annotated. Cells were annotated by

clusters and clusters were classified into seven main categories. By

combining the cellular distribution of the multi-locus single cell

transcriptome profiles, we found that the annotated expression of

endothelial cells was high, mainly in ESCA1, ESCA2 and ESCA3

patients, located throughout the top right side of the image. myeloid

cells were mostly distributed in the ESCA3 patient population,

located in the lower part of the image. Fibroblasts are mainly

annotated in ESCA2 patients and are located in the lower left of

the image. B cells and Mast cells received relatively few

cellular annotations.

We wanted to gain further insight into the genetic correlation

between the expression of m6 epigenetic-related genes in single-cell

data and their distribution in different sequencing groups. We first

analyzed the expression distribution of 8 immune cell-specific

marker genes in 7 types of immune cells (Figure 1C). RAMP2

and VWF were highly expressed in endothelial cells; Epithelial
Frontiers in Endocrinology 0528
mainly expressed S100A2, fibroblasts expressed LUM, CD79A and

CD3D were expressed in B cells and T cells respectively, and C1QB

was mainly located in Myeloid cells. tPSAB1 gene was less

expressed. In Figure 1D, we applied a scale bar chart to further

analyze the distribution of immune cell types in four different ESCC

patients. In ESCA1 patients, Epithelial cells were found to be more

expressed in about 30% of the patients, in addition to mainly T cells

and B cells. For all four patients, Mast cells were relatively less

expressed, which is similar to our perception of the distribution of

immune space. For ESCA2, Myeoloid cells were the main

component, with Epithelial cells and fibroblasts dominating the

distribution. In contrast, ESCA3 is dominated by T cells. For

ESCA4, the distribution of the content of the various types of

immune cells was more uniform. In Figure 1E, we further visualised

the distribution of the main m6A epigenetic immune cell types

obtained in Figure 1B through bubble plots. Further, we used

PROGENy to show the tumor-related pathway scores of the

different cell populations (Figure 1F). Endothelial cells were

highly positively correlated with the expression of various tumor

cell pathways, the most active of which was the TGFb pathway,

considering that they may be mainly related to ESCC invasion and
A

B

D E
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C

FIGURE 1

Spatial depiction of single-cell sequencing data and annotation of immune cell types and gene distribution in ESCC patients. (A) U-MAP plot
showing the sample source of the single-cell data, with each colour representing one sample, including a total of 4 patients; (B) Representative 7
major immune cell types and distribution annotations in ESCC cells, including T cells, B cells, epithelial cells, fibroblasts, mast cells, endothelial cells
and myeloid cells; (C) Single-cell sequencing obtained from 7 cell types in the major m6A gene cluster expression distribution maps, including
RAMP2, VWF, S100A2, LUM, CD79A and CD3D. outlines the spatial distribution of expression of their major immune cell types. (D) Scale bar graphs
further analyze the distribution of immune cell types in four different ESCC patients; (E) Bubble plots further visualize the major m6A epitopes
obtained in (B) 7 major immune cell types and distribution annotated expression relationships; (F) Heat map showing the expression of tumor-
associated pathway scores for different immune cell populations obtained by the PROGENy method; (G) Single-cell sequencing visualization of m6A
signature for gene set enrichment scoring, divided into m6A signature-high and m6A signature-low groups.
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metastasis. Fibroblasts mainly expressed Estrogen and TGFb

pathways. The tumor pathways of Epithelial cells are mainly

enriched in EGFR and MAPK, and the significant enrichment of

these two ‘star pathways’may suggest a significant role of Epithelial

cells in the development of ESCC. For T cells, all tumor pathways

were not significantly enriched. In contrast, B cells showed a

significant positive correlation with Trail pathway expression. In

addition, the m6A signature was scored for gene set enrichment by

function into two groups: m6A signature-high and m6A signature-

low. It was concluded in Figure 1G that the majority of immune

cells were present in a mixture of m6A signature-high and m6A

signature-low groups, suggesting the need for further quantitative

studies for analysis.

Further, we studied single cell sequencing data and interactions

between different immune cells from ESCC patients through

cellular communication. CellChat score is an open source R

package (http://github.com/sqjin/CellChat) that allows the use of

scRNA-seq data to infer, visualize and analyze intercellular

communication. As shown in Figure S1A, T cells and B cells

interact primarily with Epithelial cells. Epithelial cells send signals

that are primarily associated with T cells. Fibroblasts are more

closely associated with T cells and Epithelial cells. Mast cells send

signals focused on T cells. Endothelial cells and Myeloid cells

interacted mainly with T cells. In addition, we calculated the

interaction of four signaling pathway networks, MIF, AFF, FN1

and CD99, as shown in Figure S1B. In the MIF signaling pathway

network, T cells and B cells were the main signal sourcing as well as

signal receivers, suggesting their main immune regulatory role in

the MIF network. For the APP signaling network, Endothelial cells

are the main source of signaling, targeting a wide range of immune

cells. Similarly, in FN1, the major signaling pathway for fibrosis,

fibroblasts play a more dominant role, sending signals targeting a

variety of immune cell types. In contrast, for the CD99 signaling

pathway network, the interaction of signaling pathways across cell

types is more complex and there is no key cell type that is

more deterministic.
Gene enrichment and pathway functional
analysis of m6A epigenetic inheritance

To clarify the specific implications and potential biological

functions of the macroscopic role of m6A epigenetics in the

development of ESCC, we used GSEA, KEGG and GO analysis to

enrich for markers and pathway functions. In the GSEA analysis

(Figure 2A), signaling pathways were mainly enriched in

cytoplasmic translation, cell-substrate junction, postsynaptic

specialization, and focal adhesion. In the GO analysis (Figure 2B),

the main m6A epigenetic pathways were expressed in the structural

constituent of Oxidative phosphorylation, Proteasome, ribosome,

Protein processing in endoplasmic reticulum, etc. In the KEGG

pathways of m6A epigenetics in ESCC patients were mainly

enriched in structural constituent of ribosome, cytoplasmic

translation, secretory granule lumen, cadherin binding,

etc (Figure 2C).
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Acquisition of survival-associated
differential genes for m6A epigenetic
inheritance and construction and validation
of prognostic models

Subsequently, to further clarify the direct association of m6A

epigenetically related genes with survival in ESCC patients directly,

We obtained m6A-signature differential genes and screened out the

prognostic genes among them. Using the TCGA-ESCC cohort, nine

out of 29 genes were selected based on Lasso regression to build a

prognostic model. The specific process of LASSO regression and the

coefficient selection process are shown in Figures 3A, B. The risk

genes screened included BST2, COL6A2, CTSL, HNRNPA3,

MAP3K8, MYC, PSMA4, RBM8A, TPT1. and riskscore were

constructed by linearly multiplying the screened risk genes by

linear multiplication to distinguish the low-risk group from the

high-risk group by the median of the riskscore to build to clarify the

stratification of the constructed riskscore on the prognosis of ESCC

patients, we analyzed the survival status of different m6A epigenetic

subgroups using K-M curves. A significant difference in survival

prognosis between patients with high as well as low expression of

m6A epigenetic markers can be seen in Figure 3C. In addition,

bubble and scatter plots were used to further visualise the survival

prognosis of the different riskscore patients, as shown in Figure 3D.

Further, we also depicted the distribution of expression of nine risk

genes in the m6A epigenetic low- and high-risk groups of the

patient population (Figure 3E). The results showed that, except for

RBM8A, TPT1 and HNRNPA3, all m6A epigenetically inherited

genes were highly expressed in the low-risk group, suggesting that

they were the main protective genes. In Figure 3F, we analyzed the

expression correlations of the nine risk genes constituting the

riskscore, and the results showed that the expression among

RBM8A, MYC, and TPT1 genes possessed a high positive

correlation. The expression of HNRNPA3, PSMA4, MAP3K8,

BST2, CTSL and COL6A2 were more closely associated with

each other.

In the 174 patients with esophageal squamous carcinoma in

cohort GSE53625, we further performed independent external

validation of the constructed m6A epigenetic riskscore. In

Figure 4A, we performed survival analysis and survival curve

validation in the independent validation group. The results show

that our constructed riskscore is able to significantly differentiate

the survival status of ESCC patients, with patients with high m6A

riskscore having a significantly lower prognostic survival status than

those in the low-risk group. We also applied scatter plots and dotted

line plots to depict the distribution of m6A riskscore among

patients in the low- and high-risk groups, as shown in Figure 4B.

This suggests that the riskscore we constructed has significant

prognostic stratification predictive power in both patient groups

with ESCC. In more depth, we wanted to understand the

distribution of the m6A epigenetic gene. In Figure 4C it is shown

that RB8MA and HNRNPA3 are located on chromosomes 1 and 2,

respectively, and that MYC, CTSL and MAP3K8 are expressed on

chromosomes 8, 9 and 10. tPT1 and PSMA4 are distributed on

chromosomes 14 and 15. bst2 and COL6A2 are distributed
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on chromosomes 19 and 22, respectively. The results showed that

the genomic localization of m6A-related genes was scattered and

did not show obvious clustering. In order to further facilitate the

clinical use of riskscore and to combine the decision-making

features of integrated clinical multifaceted analysis and judgment.

We constructed a Nomogram for model visualization based on

m6A epigenetic and other clinicopathological factors (Figure 4D).

The Nomogram, consisting of age, Stage, Gender, and riskscore,

significantly predicted the prognosis of ESCC patients in a stratified

manner. In addition, we also preliminarily explored the correlation

of m6A epigenetic score with the expression of immune-related

signalling pathways and signalling molecules. In addition, we

performed correlation analysis on riskscore and immune

modulator analysis. The results showed that CD80, HAVCR2,

ICOS, IL10, TNFRSF4 and multiple immune-related pathway

proteins were significantly positively correlated with the
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expression of riskscore (Figure 4E). This tentatively revealed a

potential association between m6A epigenetics and tumor

immune infiltration.
Assessment of the role of m6A epigenetics
in immune infiltration in ESCC

To further determine the direct association of lysosomal

pathway-related risk genes with the specificity of immune

infiltration and immune cell secretion in ESCC, we calculated

immune infiltration scores using two methods, ssGSEA and xCell,

visualized by box plot, heat map and scatter plot, respectively. The

results of immune infiltration analyzed by the ssGSEA method were

first analyzed. In Figure 5A, we analyzed the differential expression

of multiple immune cells and immune-related proteins in the m6A
A B

C

FIGURE 2

Biological functional enrichment analysis of m6A epigenetic in ESCC single cell data (A). KEGG enrichment pathway analysis of m6A epigenetic-
related genes in ESCC patients, mainly enriched in the functional features of cytoplasmic translation, cell-substrate junction, postsynaptic
specialization, focal adhesion (B). GSEA pathway analysis of m6A epigenetically related genes in ESCC patients; (C) GO pathway analysis of m6A
epigenetically related genes in ESCC patients.
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high-risk and low-risk groups, and presented them in the form of

box plots. We noted that the expression of activated CD8T cells,

MDSC, gama delta T cells, activated dendritic cells, NK T cells,

macrophages and Monocyte were significantly different between the

different subgroups, and the expression levels of these immune cells

were significantly higher in patients in the m6A epigenetic low-risk

group than in those in the high-risk group. This suggests that m6A

may have a potential impact on tumor development, mainly by

affecting the expression of immune cells and their immune

function. Further, we analyzed the expression correlation between
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several of the previously proposed cell types and the riskscore. The

specific characteristics of the associations were analyzed by means

of linear correlation plots, as shown in Figure 5B. The results

showed that multiple immune cells were negatively correlated in

expression with increased riskscore, p value < 0.05. In Figure 5C, we

further clarified the expression correlation of multiple immune cells

and immune infiltration levels with specific each gene in the m6A

risk model using correlation heat map analysis. Here we found that

COL6A2, BST2, TPT1, and MAP3K8 were predominantly

positively correlated with high expression of immune cells. In
A B

D

E F

C

FIGURE 3

Acquisition of survival-associated differential genes for m6A epigenetic inheritance and prognostic model construction (A, B). LASSO regression
process for screening survival-related prognostic genes from 29 m6A epigenetically related differential genes; (C). K-M analysis reveals the
prognostic stratification ability of the constructed m6A epigenetically related riskscore for patients in the high-risk and low-risk groups, respectively;
(D). Dotted line and scatter plots reveal the different riskscore of survival time and survival status of ESCC patients, from left to right representing the
high and low variation of riskscore, respectively, and scatter colours representing survival and death status; (E). Box line plot revealing the expression
distribution of 10 risk genes in the low- and high-risk groups of the 6A epigenetic patient population; (F). Expression correlation plot of the 10 risk
genes constituting the riskscore. * means <0.05, ** means <0.01, *** means <0.001, ns means >0.05.
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contrast, for the other genes that make up the m6A epistatic risk

model, including CTSL, PSMA4, MYC, HNRNPA3, and RB8MA,

there was a negative correlation with the majority of differentially

expressed immune cells. In addition, we further clarified and multi-

methodologically confirmed this differential expression relationship

using the xCell method (Figure S2A-S2C). The results likewise

showed that the m6A epigenetic-based riskscore was significantly

correlated with multiple immune cell types, with ESCC patients

with higher riskscore having lower expression levels of their major

immune cells, with this difference being reflected mainly in NKT,

CD4+ naive T cells, M1 macrophages, aDC, and macrophages.
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Assessing the role of m6A epigenetics in
ESCC treatment sensitivity

As a result of the immune infiltration analysis described above

and the multi-method functional evaluation of different immune

cell types, we have been able to understand the specific patterns of

association between the m6A methylation risk model and tumor

immunity and prognosis in ESCC patients. Several clinical trials

have shown that current ESCC immunotherapy is less effective, and

to explore whether m6A could be helpful in this pathway in ESCC,

specific associations between the therapeutic sensitivity of various
A B

D

E

C

FIGURE 4

Independent validation and initial immune-related characterization of the survival risk model for m6A epigenetics (A) K-M analysis in GEO’s
independent validation database reveals the prognostic stratification ability of the constructed m6A epigenetic-associated riskscore for patients in
the high-risk and low-risk groups, respectively; (B) Dotted line and scatter plots reveal the survival time and survival status of ESCC patients with
different riskscore, from left to right, representing the riskscore of high and low variation, and the scatter colours represent survival and death status;
(C) Chromosomal expression location map of m6A genes constituting the risk model; (D) Nomogram based on m6A riskscore reveals the prognostic
stratification score of ESCC patients; (E) Bar graphs initially show the potential association between m6A epigenetic and tumor immune infiltration-
related proteins. * means <0.05, ** means <0.01, *** means <0.001.
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oncology therapies and the riskscore subgroup were assessed.

Sensitivity scores for drugs in the GDSC database were calculated

based on the R package “oncoppredict”. As shown in Figure 6A, for

chemotherapeutic agents such as AZD8186_1918, patients in the

low-risk group of the m6A riskscore had significantly lower

treatment sensitivity than those in the high-risk group. In
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contrast, for chemotherapeutic agents such as GSK269962A_1192,

Acetalax_1804, Bl-2536_1086, JQ1_2172 and PF-4708671_1129,

patients in the m6A low-risk group had higher therapeutic

sensitivity, which may be related to the close m6A epigenetic in

tumor immune infiltration and regulation of multiple immune cells

association. In Figure 6B, we used correlation heat map analysis to
A B

C

FIGURE 5

ssGSEA analysis of immune infiltration and cell expression annotation in ESCC patients. (A) Box plot format analyzing the differential expression of
multiple immune cells and immune-related proteins in the m6A high-risk and low-risk groups. The expression of several types of immune cells,
including activated CD8 T cells, MDSC, gama delta T cells, activated dendritic cells, NK T cells, macrophages, and Monocyte, differed significantly
between subgroups, and the m6A epistasis The expression levels of these immune cell types were significantly higher in the low-risk group than in
the high-risk group; (B) Linear correlation plots assessed the expression correlations between multiple immune cell types and the riskscore;
(C) Correlational heat map analysis further clarified the correlation between multiple immune cells and immune infiltration levels and the expression
of each specific gene in the m6A risk model (shades of colour indicate the level of correlation, purple indicates positive correlation, blue indicates
negative correlation). * means <0.05, ** means <0.01, *** means <0.001, ns means >0.05.
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further clarify the correlation between the therapeutic sensitivity of

multiple chemotherapeutic agents and the expression of each

specific gene in the m6A risk model. Here we found that CTSL,

BST2, PSMA4, TPT1 and MAP3K8 were predominantly positively

correlated with the therapeutic sensitivity of multiple

chemotherapeutic agents. In contrast, for the other genes that

make up the m6A epistatic risk model, including COL6A2, MYC,

HNRNPA3, and RB8MA, there was a resistance correlation with the

majority of chemotherapeutic drug treatment effects.
Expression verification of risk genes

In order to further explore the expression of risk genes in ESCC

tissues, we verified the expression of risk genes in ESCC tissues and

adjacent normal tissues using RT-qPCR. The results showed that,
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except for TPT1, there was no difference in expression between

cancer and paracancerous tissues, and the expression of the other 8

risk genes in ESCC tissues was significantly higher than that in

paracancerous normal tissues (Figures 7A–I).
Discussions

In recent years, although the incidence and mortality rates of

esophageal cancer have been significantly reduced, the overall

survival rate of esophageal cancer patients after surgery is still low

and the prognosis is poor. The study of the molecular biology of

esophageal cancer development can provide new targeted

therapeutic strategies for the precise treatment of esophageal

cancer and improve the prognosis and overall survival time of

patients, and is therefore a hot research topic in the field of
A

B

FIGURE 6

Correlation analysis of the riskscore expression of m6A in ESCC patients with the sensitivity scores of drugs in the GDSC database. (A) Box plots of
specific expression associations between treatment sensitivity and riskscore groupings for multiple oncology therapies. Chemotherapeutic agents
include AZD8186_1918, SK269962A_1192, Acetalax_1804, Bl-2536_1086, JQ1_2172, PF-4708671_1129; (B) Correlation heat map analysis further
clarifies the therapeutic sensitivity of multiple chemotherapeutic agents with specific each gene in the m6A risk model for expression correlation.
* means <0.05, ** means <0.01, *** means <0.001.
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esophageal cancer (21, 22). m6A methylated modification, as one of

the most common RNAmodifications, can regulate gene expression

at the post-transcriptional level, and in recent years its related

enzymes or proteins have also been investigated for their role in the

development of esophageal cancer. In recent years, the function of

its related enzymes or proteins in the development of esophageal

carcinoma has also been widely investigated. Studies (23) have

shown that m6A methylation-modified binding protein is

specifically highly expressed in a variety of tumors and that its

upregulated expression promotes tumor proliferation, migration

and invasion. However, the mechanism of its role in esophageal

cancer remains unclear. In this study, we investigated the specific

mechanism of m6A epigenetic development in esophageal cancer

and clarified the immune cell distribution of m6A-related genes in

ESCC tumor microenvironment by single cell sequencing analysis.

Meanwhile, m6A differential genes were selected to construct a risk

model to achieve a sensitive stratification of ESCC patients’

prognosis. The association of m6A epigenetics with immune

infiltration and abnormal expression of immune cells was also

investigated by various methods. Finally, the specific impact of

differential m6A expression in esophageal cancer in ESCC on tumor

chemotherapy resistance was analyzed.

Related studies have found that m6A, as the most abundant

epigenomic modification in eukaryotic cells, plays an important role

in tumorigenesis and progression (24). Studies have shown that

among hundreds of known RNA modifications, m6 A methylation

modification is the most common internal modification in

messenger RNA (mRNA), affecting RNA shearing, translation,

stability and epigenetic effects of certain non-coding RNAs. In

mammalian cells, there are on average one to two m6 A

methylation sites per 1,000 nucleotides (25). m6 A methylation

regulators have been shown to be aberrantly expressed in a variety

of tumors and play an important role in the regulation of malignant

biological behaviours such as cell proliferation, invasion and
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metastasis (26), and are involved in the development and

progression of various cancers such as leukaemia, glioblastoma,

lung cancer and liver cancer (27). In this paper, we explored and

described the composition and mode of action of m6 A

modification regulators, their biological functions in the disease

progression of esophageal cancer, as well as the prognostic value

and potential clinical applications of m6 A methylation

modification in esophageal cancer, providing some entry angles

for in-depth exploration of the mechanism of esophageal cancer

development and the search for esophageal cancer biomarkers and

therapeutic targets. In our study, we used the ESCC single-cell

mapping to perform enrichment scoring according to m6a-related

genes, and divided them into m6a signature-high and m6a

signature-low. And the differential genes among different m6a

features were analyzed. We performed further pathway and

biological function enrichment analysis of the screened DEGs.

The results revealed that m6A was mainly associated with

cytoplasmic translation, cell-substrate junction, Thermogenesis,

structural constituent of ribosome. This suggests that m6A may

influence the development of ESCC and cell mutation through

chromosome structural composition pathway and cellular

structural reorganization, providing a new way to investigate the

specific mechanism of m6A in ESCC. In addition, the study also

found a specific association between differential m6A expression

and tumor immune infiltration and abnormal expression of

immune cells, suggesting that m6A interferes with tumor immune

pathways to influence treatment resistance in ESCC.

This study also has some limitations. Firstly, as a retrospective

analysis, there are limitations in terms of data acquisition. Secondly,

the study design was biased in terms of variable selection.

Information on important molecular factors such as HER2/neu

overexpression was not included in the data analysis (28, 29). These

factors have been shown to be associated with the prognosis of

patients with ESCC. Also, the database does not contain complete
A B D EC
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FIGURE 7

Expression levels of model genes in a real-world cohort. (A–I) qPCR assay was used to detect the transcription levels of model genes in tissue
samples. * means <0.05.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1155009
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nie et al. 10.3389/fendo.2023.1155009
treatment records, such as information on the choice of

chemotherapy regimen or targeted therapy (30). Furthermore,

some factors of laboratory tests, such as tumor markers, are

important for survival of cancer patients (31) and the authors do

not have sufficient knowledge of these factors. These advances will

be incorporated into these important factors to improve the

prognostic value of future m6A-related esophageal cancer studies.

In our study, a blueprint for the single-cell distribution of ESCC

based on m6A methylation was explored, and on this basis risk

models were constructed for immune infiltration analysis and

tumor efficacy stratification in ESCC. m6A methylation plays a

close role in tumor developmental invasion, but there is a lack of

relevant studies reported in ESCC. Therefore, this may play an

important potential guide to reveal the role played by m6A for

immune escape and treatment resistance in esophageal cancer.
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metabolism-driven signature
to improve outcomes and
immunotherapy in
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Background: It has been suggested that lactate metabolism (LM) is crucial for the

development of cancer. Using integrated single-cell RNA sequencing (scRNA-

seq) analysis, we built predictive models based on LM-related genes (LMRGs) to

propose novel targets for the treatment of LUAD patients.

Methods: The most significant genes for LM were identified through the use of

the AUCell algorithm and correlation analysis in conjunction with scRNA-seq

analysis. To build risk models with superior predictive performance, cox- and

lasso-regression were utilized, and these models were validated on multiple

external independent datasets. We then explored the differences in the tumor

microenvironment (TME), immunotherapy, mutation landscape, and enriched

pathways between different risk groups. Finally, cell experiments were

conducted to verify the impact of AHSA1 in LUAD.

Results: A total of 590 genes that regulate LM were identified for subsequent

analysis. Using cox- and lasso-regression, we constructed a 5-gene signature

that can predict the prognosis of patients with LUAD. Notably, we observed

differences in TME, immune cell infiltration levels, immune checkpoint levels, and

mutation landscapes between different risk groups, which could have important

implications for the clinical treatment of LUAD patients.

Conclusion: Based on LMRGs, we constructed a prognostic model that can

predict the efficacy of immunotherapy and provide a new direction for treating

LUAD.
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lung adenocarcinoma, lactate, signature, prognosis, immunotherapy
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1 Introduction

Lung cancer (LC) is a highly prevalent malignant tumor and the

leading cause of cancer-specific deaths worldwide, resulting in over

350 deaths per day in 2022 (1). In the past decade, significant

improvements have been made in the science of non-small cell lung

cancer (NSCLC), which occupies almost 80% of all LC cases. LUAD

is the most common histological subtype of NSCLC. In terms of

disease prevention, the wide application of low-dose chest

computed tomography has achieved the goal of early detection,

greatly reducing all-cause mortality (2, 3). The treatment of LC has

also evolved with the generation of several lines of tyrosine kinase

inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). Despite

that, the 5-year overall survival rate remains poor, ranging from

68% in patients with stage IB to less than 10% in patients with stage

IV (4). Thus, it is imperative to explore novel molecular markers for

LUAD to improve prognosis.

Since the Warburg effect was proposed in the 1920s, there has

been ample evidence that lactic acid plays a critical role in

malignant cell proliferation (5). As we know, glucose is the main

energy source of tumor cell metabolism. While, due to abnormal

metabolic activities, cancer cells desire an excessive quantity of

nutrients and oxygen. Based on the Warburg effect, tumor energy

metabolism is inclined to anaerobic glycolysis rather than oxidative

phosphorylation, even under an aerobic state, which leads to a

hypoxic tumor microenvironment (TME) (6). Lactate, the

byproduct of glycolysis, is found concentrated in tumor tissue 5-

20 times higher than in normal tissue (7). An increased

concentration of lactate in the TME is correlated with rapid

tumor growth, metastasis, and resurgence, also creating an

immunosuppressive TME favorable for a cancer cell to gain

immune escape potential (8). Tumor cells may produce lactate

and transfer it to surrounding cancer cells, immune cells, and

stromal cells, resulting in metabolic reprogramming (9). Thus,

lactate plays the role of a mediator between intrinsic metabolism

and immunosuppression. Recent studies have identified a number

of lactate-metabolizing enzymes that are dysregulated in LUAD,

including lactate dehydrogenase A (LDHA), monocarboxylate

transporters (MCTs), and lactate oxidase (LOX). Targeting these

enzymes with small molecule inhibitors has shown promise as a

therapeutic strategy for LUAD (10). Reducing the concentration of

lactate by blocking the production pathway of lactate or the

transport of lactate has proven to be a promising therapeutic

strategy, especially for drug-resistant malignant tumors (11).

Although the LMRGs have been proven to perform a critical

function in the progression of LUAD in recent years (12, 13),

comprehensive analyses of the relationship between LMRGs and

the diagnosis, risk stratification, and prognosis of LUAD are

urgently needed.

Hence, in the present study, we aimed to screen out the LMRGs

in LUAD and elaborate on the role of LMRGs in the TME and

prognosis of LUAD. Then, we will establish a signature capable of

predicting the prognosis of patients with LUAD on basis of LMRGs.

Our research may improve the existing lactate-dependent

therapeutic schedule, providing novel insights into prognostic

biomarkers and therapeutic targets for LUAD.
Frontiers in Endocrinology 0239
2 Materials and methods

2.1 Data acquisition

In this study, LUAD scRNA-seq data were obtained from the

GSE150938 database (https://www.ncbi.nlm.nih.gov/geo/), which

consisted of 12 LUAD samples. The training cohort comprised

LUAD RNA expression patterns and relevant clinical information

from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). Additionally, the validation set was

obtained from the GSE29016, GSE30219, GSE31210, and

GSE42127 GEO expression profi les. To facilitate data

comparability, all expression data were converted to transcripts

per million (TPM) format. The “sva” R package was used to

eliminate the batch effect, and all data were transformed to log2

before analysis. A total of 247 lactate-related metabolic genes

(LMRGs) with correlation values greater than 15 were selected

from the GeneCards database (https://www.genecards.org/) for

further analysis.
2.2 scRNA-seq data processing and
cell annotation

We validated the scRNA-seq data using the “Seurat” R program.

Screening criteria included expressing genes in at least three cells,

expressing 200-7000 genes in each cell, and expressing no more

than 10% of mitochondrial genes. Finally, 46,286 appropriate cells

were identified. The top 3000 highly variable genes were screened

using the “FindVariableFeatures” program. The canonical

correlation analysis (CCA) function “findintegrationanchors” was

used to reduce batch effects that might interfere with downstream

analysis. We utilized the “IntegrateData” and “ScaleData” methods

to appropriately integrate and expand the data. Anchor points were

discovered using principal component analysis (PCA)

dimensionality reduction. To locate relevant clusters, the first 20

PC were tested using the t-distribution random neighborhood

embedding (t-SNE) technique. We obtained 20 cell clusters by

using the “FindNeighbors” and “FindClusters” functions

(resolution = 0.8). We assessed cell cycle heterogeneity along cell

clusters using cell cycle markers from the “seurat” package. The

“CellCycleScoring” program was used to generate cell cycle scores

based on the expression of G2/M and S-phase markers. The

“FindAllMarkers” program was used to identify differentially

expressed genes (DEGs) for each cluster. To select which genes

were employed as markers for each cluster, we used a cut-off

threshold and modified P< 0.01 and log2 (foldchange) > 0.25

criterion. Cell types were meticulously defined using common

marker genes for each cluster. The “AUCell” R program, which

analyzes the activity state of gene sets, was used to assign LM

activity ratings to each cell. The cells were separated into high- and

low-LM-AUC groups based on the median AUC score, and

visualization was done with the “ggplot2” R program. We next

performed differential analyses to discover DEGs in high- and low-

LM-AUC groups, and 440 DEGs were selected for further

investigation. Furthermore, we used correlation analysis to look at
frontiersin.org
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the genes most connected with LM activity, with the top 150 most

associated genes being included for future study. The DEGs and

genes discovered through association analysis were the ones that

had the greatest effect on LM activity (590 genes in total).
2.3 Construction and validation of
the risk scoring

We used univariate analysis on the 590 genes that regulated LM

activity to find genes that significantly related with patient survival

(P< 0.01). Following that, LASSO andmultivariate regression analysis

were used to further screen for genes and risk coefficients that were

highly linked with prognosis. Based on the coefficients revealed by the

multivariate analysis, each LUAD patient was assigned a risk score.

Patients from the TCGA-LUAD were separated into high- and low-

risk groups based on their median risk score. Meanwhile, survival

curves were plotted using the Kaplan-Meier technique for prognostic

reasons, and log-rank tests were used to establish statistical

significance. The prediction model’s effectiveness was evaluated

using receiver operating characteristic (ROC) curves; an AUC value

of >0.65 indicated outstanding performance. The signature’s

prediction capacity was verified in nine distinct GEO datasets using

survival analysis and AUC. PCA analysis was used to show the

distribution of patients in different risk groups. A similar method was

used to validation cohorts.
2.4 Nomogram construction

We created a nomogram that used the risk score, age, and

pathological stage as independent prognostic criteria to compute

the probability of OS at 1-, 3-, and 5- years (14). The receiver

operating characteristic (ROC) curve, calibration curve, and

concordance index curve were also utilized to evaluate the

prediction accuracy of the nomogram. The prognostic

significance of risk score clinical characteristics was assessed using

stratified analysis (age, pathological T, N stage, and clinical stage).
2.5 Mutation landscape

The TCGA database was used to generate gene mutation

profiles from LUAD patients, and the “ComplexHeatmap” R

package was used to visualize the mutation landscape and

immune infiltration scores (15). According to the median risk

score and tumor mutational load, TCGA-LUAD patients were

separated into four groups (H-TMB+high-risk, H-TMB+low-risk,

L-TMB+high-risk, and L-TMB+low-risk), and their survival

disparities were compared.
2.6 Assessment of immune infiltration

The timer 2.0 database was used to download data from seven

different methods that were utilized to determine the degree of
Frontiers in Endocrinology 0340
immune infiltration in TCGA-LUAD patients. A heatmap graphic

was used to show differences in immune infiltration across various

risk categories. The “estimate” R program was used to quantify the

stromal and immune cell abundance and tumor purity in malignant

tumor tissues based on the expression patterns (16). A higher score

indicates that there is a greater percentage of TME components.
2.7 Immunotherapy comparisons

Immune checkpoints are a group of molecules that are

expressed on immunological cells that control the amount of

immune activation. They are critical in controlling excessive

immunological activation. We evaluated the levels of expression

of well-known immune checkpoint genes in both groups (ICGs).

Correlations between ICGs expression, model genes, and risk scores

were investigated further. The Immunophenoscores (IPS) for

LUAD were obtained from the Cancer Immunome Atlas (TCIA)

database (17).
2.8 Enrichment analysis

The GSVA used the MSigDB signature gene sets

“h.all.v7.5.1.symbols.gmt” (https://www.gseamsigdb.org/gsea/

msigdb/index.jsp). The GSEABase program was then used to

analyze the activity of each gene set in each sample. GSEA was

used to identify which signaling pathways and biological activities

were enriched in the high- and low-risk groups. ssGSEA was used to

determine the enrichment scores of infiltrating immune cells and

immunological function.
2.9 The Role of AHSA1 in LUAD

Using the timer database, researchers investigated the

expression of AHSA1 in pan-cancer. Patients were divided into

two groups based on AHSA1 expression to study changes in

survival: both high- and low- expression.
2.10 Cell lines culture

The Cell Resource Center at Shanghai Life Sciences Institute

provided BEAS-2B, A549, and H1299 human LUAD cell lines.

These cells were cultured in F12K or RPMI-1640 (Gibco BRL, USA)

with 10% FBS, 1% streptomycin, and penicillin (Gibco, Invitrogen,

Waltham, MA, USA). Cells were grown at 37°C, 5% CO2, and

95% humidity.
2.11 Cell transfection

SIRNAs knocked down AHSA1 (siRNAs). Supplementary

Table S1 included AHSA1 siRNA sequences. In a 6-well plate,

cells were plated at 50% confluence and infected with negative
frontiersin.org
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control (NC) and knockdown (siAHSA1). All transfections used

Lipofectamine 3000 (Invitrogen, USA).
2.12 Extraction of RNA and Real-Time PCR
(RT-PCR)

Cell lines were TRIzol-extracted for total RNA (15596018,

Thermo). Using PrimeScriptTMRT, cDNA was made (R232-01,

Vazyme). SYBR Green Master Mix (Q111-02, Vazyme) was used

for real-time polymerase chain reaction (RT-PCR), and each

mRNA was standardized to GAPDH. Expression levels were

counted using 2−-Ct. Supplementary Table S1 lists all primer

sequences from Beijing-based Tsingke Biotech.
2.13 Colony formation

We transfected 1x103 cells into each well of a 6-well dish and

cultured them for 14 days. The cells were fixed in 4%

paraformaldehyde for 15 minutes and then stained with Crystal

violet (Solarbio, China).
2.14 EdU

After the cells adhered to the side of the 96-well plate, the

experiment was performed. Then, the manufacturer’s 5-Ethynyl-2’-

deoxyuridine (EdU) test was carried out (Ribobio, China). Cells that

were actively dividing were tallied using an inverted microscope.
2.15 Wound-healing assay

A cell incubator was used to grow transfected cells in 6-well

plates to 95% confluence. Each cultured well was scraped along a

single straight line using a sterile 20-L plastic pipette tip, and the

scrapings and any loose cells or debris were rinsed away twice with

phosphate-buffered saline. Taking pictures of the scratches at 0h

and 48h, we next used the Image J program to quantify the breadth

of the wounds.
2.16 Transwell assay

The transwell test was used to examine the invading and

migrating cells. Incubation of treated A549 and H1299 cells

(2x105 per well) in 24-well plates began after 12 hours. The cells’

invading and migrating abilities were measured by precoating the

top of the plate with matrigel solution (BD Biosciences, USA) or

leaving it untreated. The cells on the top surface were removed,

while the remaining cells on the bottom were fixed in 4%

paraformaldehyde and stained with 0.1% crystal violet

(Solarbio, China).
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2.17 Statistical analysis

Data and statistics were processed in R (version 4.1.3). The

experimental data were analyzed using Graphpad and Image J

(1.8.0) (version 9.4.0). Kaplan-Meier curves and a log-rank test

were used to evaluate the differences in survival times between the

two groups (18). The “survminer” R program was used to generate

all survival curves. Cox and lasso regression analysis were used to

assess risk factors. For visualization, we utilized “ggplot2” program,

and for analysis, the R package “survival” was used to calculate both

OS and risk scores. It was made using “Pheatmap”, an online

heatmap generator. Significant quantitative differences for normally

distributed variables were identified using a two-tailed t-test or a

one-way analysis of variance. For non-normally distributed data,

the significance of any differences was determined using either the

Wilcoxon test or the Kruskal-Wallis test. All statistical testing was

performed in R. If the number is less than 0.05, it is considered to be

statistically significant.
3 Results

3.1 Analysis process of scRNA-seq

Figure 1 depicted the flowchart for the study. A total of 46286

high-quality cells were deemed suitable for future study. The

expression characteristics of each sample were shown in

Supplementary Figure S1A. There was a statistically significant

positive connection between sequencing depth and total

intracellular sequences (R=0.94, Supplementary Figure S1B). The

PCA reduction plot indicated no discernible differences in cell cycles

(Supplementary Figure S1C). The study included 12 samples, and the

cell distribution within each sample was mostly identical, indicating

that there was no discernible batch impact between samples, which

might be useful for future research (Supplementary Figure S1D).

Following that, the dimensionality reductionmethods, namely t-SNE,

classified all cells into 22 clusters (Figure 2A). Bubble plots depicted

the typical marker genes (19) of various cell types as well as the

connection of distinct groups (Figure 2B). In Figure 2C, an t-SNE plot

was used to depict the distribution of each cell population. Each cell’s

LM activity was evaluated. AUC values were higher in cells that

expressed more LMRGs, which were mostly orange-colored myeloid

cells (Figure 2D). Based on the AUC score median values, all cells

were assigned an AUC score for the LMRGs and divided into high-

and low-LM-AUC groups (Figure 2E). Correlation study revealed

that the genes most closely associated with LM activity (Figure 2F).

The single-cell study yielded the 590 genes most linked with

LM activity.
3.2 Construction and validation of the
risk scoring

We eliminated the batch effect from the GEO-obtained data for

improved data consistency, and Figures 3A, B displayed the PCA
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plots before and after the batch effect was removed from the TCGA

data, respectively. Following that, TCGA was separated into 6:4

training and validation sets, and univariate COX analysis was done,

with the findings indicated by a forest plot (Figure 3C, P< 0.01),

before lasso (Figure 3D) and multivariate COX regression analysis

were used to create the risk model consisting of 5 genes. Figure 3E

displayed the coefficients associated with each model gene from
Frontiers in Endocrinology 0542
which the risk score was computed. The following was the formula:

risk   score =o
k

n=i
(CoefiExpi)

The coefficient and expression of each model gene were represented

by Coefi and Expi, respectively, and the risk score for each sample
FIGURE 1

The workflow of the present study.
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was determined using the above method. The circle diagram

depicted the predictive HR value of five model genes, and it was

obvious that AHSA1, SERBP1, RHOF, and CCL20 are at high risk.

CD3D, on the other hand, had been demonstrated to be a low-risk

gene (Figure 3F).
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3.3 Survival analysis and model evaluation

Based on median risk values, patients were split into high- and

low-risk groups, and a survival analysis revealed a substantial OS

difference for TCGA-LUAD patients (train set, test set, and all set,
A B

D

E

FC

FIGURE 2

Annotation of single-cell data. (A) The t-SNE plot showed that all the cells in 22 clusters. (B) A bubble plot exhibited typical marker genes for each
cell cluster. (C) The t-SNE map indicates that LUAD samples can be annotated as 8 cell types in the TME (different colors represent different cell
types). (D, E) AUCell score and groups of LM activity in each cell. (F) Correlation analysis between LM-AUCell score and genes.
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Figures 4A–C). Similarly, four GEO datasets also had statistically

significant survival differences (P< 0.05; Figures 4G–I; 5A).

According to the expression levels of the model genes, PCA

analysis was performed on all the samples from TCGA and GEO,

and the results showed that the samples of the high- and low- risk
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groups could be clearly distributed into two clusters Figures 4D–F,

J–L and Figure 5B. ROC analysis measured the discrimination of

this signature, with 1-, 3-, 5-,7-, and10-year AUCs of 0.0.734, 0.721,

0.695, 0.710, and 0.682 in TCGA-train set; 0.711, 0.707, 0.602,

0.615, and 0.597 in TCGA-test set; 0.724, 0.719, 0.647, 0.658, and
A B

D

E F

C

FIGURE 3

Construction of the signature. (A, B) PCA plots before and after removal of batch effects for 5 datasets. (C) A forest plot presents prognostic
associated LMRGs. (D) Eleven prognostic LMRGs were included in the LASSO regression analysis to screen the most important model genes.
(E, F) Coefficients for model genes as well as HR values for model genes.
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0.632 in TCGA-all set; 0.626, 0.728, 0.687, 0.616, and 0.607 in

GSE29016; 0.690, 0.715, 0.737, 0.709, and 0.654 in GSE30219; 0.725,

0.645, 0.650, and 0.666 in GSE31210 (LUAD-patients on survival

less than 1 year were lacking); and 0.764, 0.608, 0.596, 0.576, and

0.6606 in GSE42127 (Figures 5C-I).
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3.4 Construction and validation of
nomogram

A heatmap was constructed to highlight the correlations

between model genes and clinical characteristics. Some clinical
A B

D E F

G IH

J K L

C

FIGURE 4

Assessment of risk models. (A-C) Kaplan-Meier survival analysis of signatures in the TCGA (train, test, and all set) datasets. (D-F) The PCA analysis was
used to evaluate the distribution of the samples in the TCGA (train, test, and all set) datasets. (G-I) Kaplan-Meier survival analysis of signatures in the
GEO (GSE29016, GSE30219, and GSE31210) datasets. (J-L) PCA analysis showed the distribution of samples in the GEO (GSE29016, GSE30219, and
GSE31210) cohorts.
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factors (T stage, N stage, clinical stage, and survival status) differed

significantly between the high- and low-risk groups (P< 0.05,

Supplementary Figure S2A). The prevalence of different phases

across groups was then compared and shown as a percentage bar

plot. We observed that the high-risk group had worse T stage, N

stage, and clinical stage (Figures 6A-D). Based on the TCGA-LUAD

dataset, a predictive nomogram comprising risk score and

clinicopathological parameters (age and clinical stage) was built to

better predict prognosis (Figure 6E). Survival statuses at 1, 2, and 3

years were used as clinical outcome measures. The calibration plot

revealed that this signature had outstanding prediction ability for 1-

, 2-, and 3-year survival rates (Figure 6F). The C-index curves

revealed that the nomogram outperforms the risk score and any

other clinical measure in predicting prognosis (Figure 6G). The

predictive ability of the nomogram score, risk score, and other
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clinical characteristics was also evaluated using ROC analysis. The

AUC value of the nomogram score over one, three, five, and seven

years was 0.760, 0.7749, 0.711, and 0.734, which were greater than

risk scores and other clinical indicators (Figures 6H–K).
3.5 Mutational landscape

This was especially true for personalized cancer therapy, where

mutations in certain genes play a crucial role. We studied the

somatic mutation profiles of various risk categories. Statistics

indicated that the high-risk group had a higher mutation

frequency for the top 20 high-frequency mutated genes

(Figure 7A), which included TP53, TTN, and CSMD3. Figure 7B

indicated a significant difference in TMB between the high- and
A B

D E F

G IH

C

FIGURE 5

Evaluation of model. (A, B) Survival analysis revealed the survival significance of high and low risk scores in the GSE42127 cohort, and the sample
distribution of high and low risk groups was shown in the PCA plot. (C-I) The ROC curve showed the survival accuracy of the model in TCGA (train,
test, and all set) and GEO (GSE29016, GSE30219, GSE31210 and GSE42127) cohorts.
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low-risk groups, with greater TMB in the high-risk group.

Spearman correlation analysis was utilized to study the

association between risk score and TMB, and a significant

positive correlation was obtained (R = 0.12, P< 0.001, Figure 7C).

We then divided patients into four groups (H-TMB+high-risk, H-
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TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk) based on

median TMB values and median risk values; the results showed that

LUAD patients with H-TMB+low-risk had the best prognosis, and

LUAD patients with L-TMB+high-risk had the worst

prognosis (Figure 7D).
A B D

E F

G

IH J K

C

FIGURE 6

Building a more accurate nomogram. (A-D) The proportion of clinical characters (age, N stage, T stage, and clinical stage) in different risk groups.
(E) Nomogram was constructed by combining clinical features with risk score. (F) The calibration plots test consistency between the actual OS rates
and the predicted survival rates, with the 45°line representing the best prediction. (G) The C-index curves were used to evaluate the predictive
performance of different clinical characteristics, nomogram scores and risk scores. (H-K) ROC curves for 1, 3, 5, and 7 years showed AUC values for
various clinical factors, risk scores, and nomogram scores.
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3.6 Differences in the immune
microenvironment and immunotherapy
response

Seven separate algorithms indicated that tumors at low risk had

greater immune cell infiltration, such as T cells, B cells, NK cells,
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and activated Mast cells as illustrated in Figure 8A. The ESTIMATE

approach was used to analyze the amount of immune infiltration in

the various risk groups, and Figure 8B similarly confirmed the prior

study, with the low-risk group having greater stromal,

immunological, and ESTIMATE scores than the other groups

(stromal score combined with immune score). Spearman
A

B DC

FIGURE 7

Landscape of LUAD sample mutation profiles. (A) Mutation landscape of the top 20 genes with mutation frequency in differential risk subgroups.
(B) Comparison of tumor mutation burden (TMB) between different risk groups. (C) Correlation analysis between risk score and TMB. (D) Survival
differences for four different subgroups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk).
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correlation analysis was utilized to evaluate the link between risk

score and the score of immune infiltration. The risk scores were

favorably connected with stromal (R = -0.22, FDR< 0.001), immune

(R = -0.28, FDR< 0.001), and ESTIMATE (R = -0.27, FDR< 0.001)

scores, and negatively correlated with tumor purity (R = -0.28,

FDR< 0.001, Figure 8C). The risk score was correlated with the

degree of immune cell infiltration and the quantity of each

component in the TME, according to the data. Depending on the

degree of immune infiltration, disease progression and

immunotherapeutic efficacy may differ. Given the above results,
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we investigated whether the prognostic model might predict LUAD

patients’ reaction to ICIs. First, we examined the relation between

risk score and commonly identified immunotherapy biomarkers in

the TCGA-LUAD cohort. It demonstrated that practically all ICGs,

including as PD-1, TIGIT, and CTLA4, were all substantially

expressed in the high-risk group (Figure 9A). The correlations

between modeling genes, risk scores, and ICGs were further

analyzed and shown in the bubble plot (Figure 9B), with blue

representing negative correlations and orange representing positive

correlations, with bigger bubbles and deeper hues suggesting a
A B

C

FIGURE 8

Analysis of immune infiltration. (A) Seven algorithms assess differences in immune infiltration status between different risk groups. (B) The violin plot
demonstrated the difference in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the ESTIMATE algorithm between
the two risk subgroups. (C) The correlations in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the ESTIMATE
algorithm between the two risk subgroups.
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stronger link. The IPS can help you locate persons who possibly

benefit from immunotherapy. It was hypothesized that tumor

samples from these individuals would have a positive immune

response to PD-1/PD-L1 or CTLA4 inhibitors, or both

(Figures 9C-F). Patients in the group with the lowest risk had

much higher IPS scores, indicating that they would benefit the most

from this kind of immunotherapy.
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3.7 Functional enrichment analysis

In order to investigate the underlying process that may lead to a

poor prognosis for high-risk LUAD patients, an analysis of

hallmark pathway gene profiles was conducted, revealing distinct

characteristics between high- and low-risk groups. A direct

comparison between the Risk-High and Risk-Low groups showed
A

B

D E FC

FIGURE 9

Immune checkpoint and TCIA analysis. (A) A box plot showed that differences in immune checkpoint gene expression between high- and low-risk
groups. (B) Correlation between model genes and immune checkpoint. (C-F) The low-risk group has significantly greater IPS, IPS-CTLA4-neg-PD-1-
neg, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-neg-PD-1-pos, and IPS-CTLA4-pos-PD-1-pos. Note: *P< 0.05, **P< 0.01, ***P< 0.001.
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that the top five enriched signatures in the high-risk group were

MYC target v1, MYC target v2, mTORC1 signaling, G2M

checkpoint, and Glycolysis (Figure 10A). GSEA enrichment

analysis also indicated that the high-risk group had significantly

enriched Cell Cycle (NES = 1.93, p< 0.001) and DNA Replication

(NES = 1.78, p = 0.000) (Figure 10B). The ssGSEA algorithm was

employed to examine differences in immune status across distinct

risk groups. Low-risk LUAD patients showed increased infiltration

of various immune cells, including Active dendritic cells (aDCs), B

cells, CD8+ T cells, Dendritic cells (DCs), Immature dendritic cells

(iDCs), Mast cells, neutrophils, T helper cell, Tumor-infiltrating

lymphocytes (TILs), and Regulatory T cells (Treg), in their tumor

microenvironment (TME). Furthermore, almost all immune-

related pathways were significantly expressed in the low-risk

group (Figures 10C, D).
3.8 Experimental verification

A pan-cancer study of AHSA1 expression levels demonstrated

that AHSA1 was substantially expressed in LUAD compared to

normal tissue (Figure 11A). Figures 11B, C demonstrated that

AHSA1 was substantially expressed in tumor groups and that

patients with high AHSA1 expression in the TCGA database had

a worse prognosis. In accordance with our earlier findings, AHSA1

was expressed at a greater level in LUAD cell lines (Figure 11D).

Then, five days after transfection, we quantified the amount of

AHSA1 expression in A549 and H1299 cell lines by qRT-PCR to

determine the efficiency of siRNA-mediated AHSA1 knockdown

(Figure 11E). According to research on clonal formation, AHSA1

knockdown inhibits the capacity of LUAD cells to produce clones

(Figure 11F). Then, EdU tests were conducted to investigate

whether knockdown of AHSA1 affected the proliferative capacity

of LUAD cells. Lower AHSA1 expression decreased the

proliferation of A549 and H1299 cells relative to the control

group (Figure 12A), indicating that AHSA1 may play a role in

the proliferation of LUAD cell lines. According to these results,

AHSA1 knockdown inhibited the proliferation of LUAD cells. The

investigation on wound healing demonstrated that AHSA1

knockdown dramatically decreased LUAD cell migration and

invasion (Figure 12B). The trans-well experiment demonstrated

that LUAD cells transfected with si- AHSA1 exhibited a reduced

capacity for migration and invasion, which was consistent with the

wound healing assay outcomes (Figure 12C). All experimental

investigations demonstrated that AHSA1 was a tumor-promoting

oncogene in tumor development and progression and acted as a

pro-oncogenic regulator in LUAD.
4 Discussion

LC remains one of the most prevalent malignant tumors and the

greatest contributor to cancer-specific death worldwide. Despite

significant improvements have been made in diagnostic techniques
Frontiers in Endocrinology 1451
and treatment schedules of NSCLC, the 5-year overall survival rate

remains poor. At present, lactic acid, the byproduct of glycolysis,

was repeatedly confirmed could promote malignant cell

proliferation and induce immunosuppressive microenvironment.

It acts as a mediator between intrinsic metabolism and

immunosuppression. In recent years, researchers found that

reducing the concentration of lactate might be a promising

therapeutic strategy. Hence, lactate-related genes have the

potential to act as novel molecular biomarkers and therapeutic

targets. In the present study, we explored an original diagnostic

signature and prognostic scoring system based on LRMGs, bringing

prospect for reversing immune resistance and improving prognosis

of patients. Numerous groundbreaking research demonstrated the

potential of the lactic acid-induced immunosuppressive milieu and

its role in the promotion of tumors. As far as we are aware, LUAD

does not have a lactate-related prognostic grading system.

We conducted scRNA-seq on 12 LUAD samples in this study

and identified eight distinct cell types. LM activity was evaluated

using the LM gene set obtained from the GeneCards database, and

myeloid and epithelial cells were found to exhibit the highest levels

of LM activity, suggesting that LM may play a role in regulating

these cells and influencing carcinogenesis and development. Key

genes that regulate LM activity were then investigated, and

prognostic models were constructed using Cox and lasso

regression. The high-risk group was found to have a worse

prognosis, and a signature derived from this analysis

demonstrated good accuracy and stable performance across four

public GEO datasets. We also integrated clinical information to

develop a nomogram, which showed better performance in

predicting survival than risk scores and other clinical

characteristics. While previous studies have suggested a link

between genetic modifications and the generation of neoantigens

and potential immunotherapeutic advantages (20), our findings

showed that patients in the low-risk group had fewer TMB, while

patients in the high-risk group had more mutations in high-

frequency genes. We further categorized the patients into four

groups based on TMB and risk status, and the H-TMB+low-risk

group had the best prognosis, providing potential clinical

implications for prognostic assessment.

The immune microenvironment is composed of a variety of

cellular components including extracellular matrix, epithelial cells,

blood vessels and tumor-infiltrating lymphocytes, which may

accelerate tumor destruction, enhance tumor invasiveness, and

improve antitherapeutic response (21). To further understand

how TME effects tumor prognosis, we examined immune cell

infiltration in high- and low-risk LUAD patients. Seven

algorithms were used to quantify immune cell infiltration in

various risk categories, and the results revealed that tumors in the

low-risk group had more immune cell infiltration. The ESTIMATE

approach also revealed that low-risk samples had more immune cell

infiltration, and the risk score was inversely connected to the

stromal, immune, and ESTIMATE scores (FDR< 0.001).

Furthermore, we discovered that the majority of the known ICGs

were expressed at a greater level in the low-risk group, and the
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correlation analysis revealed that the risk scores were strongly

negatively linked with the majority of the immunological

checkpoint genes. TCIA was utilized to investigate the effects of

PD-1 and CTLA-4 treatment in order to better understand the

variations in immunotherapy effectiveness among risk groups.

Because their IPS score was substantially higher than that of the
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high-risk group, the findings suggested that LUAD patients in the

low-risk group would benefit more from immunotherapy.

GSEA results show that Cell Cycle and DNA Replication were

mainly enriched in the high-risk group. Tumor is a kind of disease

in which cell cycle regulation mechanism is destroyed. In the whole

monitoring system of cell cycle progression, cell cycle detection sites
A B

DC

FIGURE 10

Enrichment analysis. (A) GSVA analysis revealed pathways enriched in the 50 hallmark gene sets for the high- and low- risk groups. (B) GSEA showed
pathway differences between high- and low-risk groups. (C, D) The ssGSEA algorithm was employed to quantify the immune cell infiltration and
immune function between the high-risk and low-risk groups. Note: **P < 0.01, ***P < 0.001.
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play a core role function. DNA replication is an important part of

the cell cycle, dysregulation of which is also one of the significant

factors leading to tumorigenesis and tumor proliferation. Currently,

cell cycle checkpoint kinase inhibitors are utilized therapeutically

and are successful in LC. These inhibitors induce cell death and cell
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cycle arrest, therefore reversing the acquired drug resistance

induced by cell cycle disorder (22).

Interestingly, in TCGA database, AHSA1 was highly expressed

in tumor groups, and LUAD patients with high-expression AHSA1

had poor prognosis. In order to understand the underlying
A
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FIGURE 11

Cell Experiment. (A) The expression of AHSA1 in pan-cancer tissues was analyzed using the TIMER database. (B) Prognosis was evaluated by
performing survival analysis on the effect of AHSA1 expression. (C) TCGA database analysis revealed a difference in AHSA1 expression between
normal samples and tumor samples. (D) To assess AHSA1 expression, qRT-PCR was performed on both normal cells and LUAD cell lines. (E) The
level of AHSA1 expression was evaluated 5 days after transfection using qRT-PCR, and significant reduction in AHSA1 expression (P< 0.001) was
observed with siRNA sequences. (F) The number of colonies was significantly reduced in cells with reduced AHSA1 expression compared to the NC
group, as shown by the colony formation assay. Note: *P < 0.05, **P < 0.01, ***P < 0.001.
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mechanism, we conducted a series of experiments. According to the

results, knocking down AHSA1 significantly decreased cell

invasion, migration, and proliferation in LUAD cell lines.

The current research has certain problems. To begin, this

signature was built utilizing publicly accessible datasets. Large-
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scale prospective clinical investigations are required to verify the

prognostic potential. In conclusion, we constructed an LM-related

signature, which can predict the prognosis and immunotherapy of

LUAD patients, and our findings can provide help for the clinical

treatment of LUAD.
A
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FIGURE 12

Related experiments for AHSA1. (A) EdU staining assay indicated that downregulation of AHSA1 expression repressed cell proliferation in LUAD cell
lines. (B) Scratch-wound healing assay depicted that a significantly slower wound healing rate was observed in cells with a decreased expression of
AHSA1. (C) Transwell assay showed that downregulation of AHSA1 expression inhibited the migration and invasion capacity of LUAD cells. To
demonstrate the accuracy and reproducibility of the results, all experiments were repeated in two LUAD (A549, H1299) cell lines and all data were
presented as the means ± SD of three independent experiments. Note: ***P < 0.001.
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Integrating single-cell analysis
and machine learning to create
glycosylation-based gene
signature for prognostic
prediction of uveal melanoma
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Shiyi Sun1, Zhijia Xia4*, Gang Yao1* and Jian Tang1*

1Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China, 3Department of Ophthalmology, Charité – Universitätsmedizin Berlin,
Campus Virchow-Klinikum, Berlin, Germany, 4Department of General, Visceral, and Transplant
Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
Background: Increasing evidence suggests a correlation between glycosylation

and the onset of cancer. However, the clinical relevance of glycosylation-related

genes (GRGs) in uveal melanoma (UM) is yet to be fully understood. This study

aimed to shed light on the impact of GRGs on UM prognosis.

Methods: To identify the most influential genes in UM, we employed the AUCell

and WGCNA algorithms. The GRGs signature was established by integrating bulk

RNA-seq and scRNA-seq data. UM patients were separated into two groups

based on their risk scores, the GCNS_low and GCNS_high groups, and the

differences in clinicopathological correlation, functional enrichment, immune

response, mutational burden, and immunotherapy between the two groups were

examined. The role of the critical gene AUP1 in UM was validated through in vitro

and in vivo experiments.

Results: The GRGs signature was comprised of AUP1, HNMT, PARP8, ARC, ALG5,

AKAP13, and ISG20. The GCNS was a significant prognostic factor for UM, and high

GCNS correlated with poorer outcomes. Patients with high GCNS displayed

heightened immune-related characteristics, such as immune cell infiltration and

immune scores. In vitro experiments showed that the knockdown of AUP1 led to a

drastic reduction in the viability, proliferation, and invasion capability of UM cells.

Conclusion: Our gene signature provides an independent predictor of UM

patient survival and represents a starting point for further investigation of GRGs

in UM. It offers a novel perspective on the clinical diagnosis and treatment of UM.

KEYWORDS

glycosylation, uveal melanoma, immunotherapy, machine learning, AUP1
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1 Introduction

Uveal melanoma (UM), the most common type of intraocular

cancer in adults, originates from melanocytes in the uvea, which

includes the iris, ciliary body, and choroid (1). UM accounts for 3%

to 5% of all melanoma and 79% to 81% of ocular melanoma (2). The

global average incidence of UM ranges from 0.002‰ to 0.008‰,

with significant geographic and ethnic disparities (3). Around 50%

of UM patients experience hematogenous metastasis, with the liver

being the primary and most common site of metastasis (4, 5).

Several studies have been conducted to prevent metastasis in UM,

high-dose interferon is the only adjuvant therapy shown to improve

recurrence-free survival time and control the primary UM.

However, there has been no significant improvement in overall

survival (OS) or metastasis-free survival in any of these studies (1).

Patients with metastatic UM have a median survival time of 6 to

12 months, and their prognosis heavily depends on liver metastasis

and disease progression in the liver (6). Despite the numerous

studies by scholars exploring various immunotherapies, such as

immune checkpoint inhibitors (ICI), cancer vaccines, and T-cell

passaged cell therapy (7, 8), the effects of immunotherapy for UM

have been disappointing (9). Given the limited therapeutic options

for UM, it is crucial to investigate its underlying pathophysiological

pathways and develop a reliable prognostic prediction model for

UM patients.

Glycosylation is a biological process that occurs through the

action of various glycosyltransferases (GTs) and glycosidases (10,

11). This modification changes the protein’s conformation and

structure, which in turn affects its functional activity (12). The

regulation of glycosylation is controlled by glycogenes, which are

genes that encode for glycosidases and sulfotransferases. An

abnormal expression or regulation of these genes is linked to

tumor progression and is considered a hallmark of cancer (13,

14). A translational study showed that the expression levels of 210

GTs genes could differentiate between six types of cancer, including

breast cancer and ovarian cancer. Moreover, glycosylation has the

potential to act as a prognostic indicator, as a signature of

glycosylation-related genes (GRGs) was shown to predict clinical

outcomes in ovarian cancer patients (15). Other post-translational

regulatory mechanisms, such as ubiquit inat ion (16) ,

phosphorylation (17) and epigenetic modifications (18) have also

been reported as potential biomarkers in UM prognostic models.

However, despite being one of the most crucial post-transcriptional

alterations among the 300 protein modifications, few studies have

explored the relationship between GRGs signature and the tumor

microenvironment (TME) of UM.

To address this gap, we leveraged bulk RNA-seq and scRNA-seq

data to establish the GRGs signature in UM and divided UM patients

into GCNS_low and GCNS_high groups using a selected cut-off

value. Our analysis revealed a significant difference in prognosis

between the two groups. The results were validated using the

GSE84976 dataset from the Gene Expression Omnibus (GEO)

database. Furthermore, we examined the utility of the GRGs
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signature in the TME, tumor mutational burden (TMB),

immunotherapy response, and drug sensitivity. Lastly, we explored

the impact of inhibiting AUP1 expression on UM cell proliferation

andmigration in vitro. Our study provides novel insights into the role

of glycosylation in UM and holds promise for improved patient

stratification and targeted therapy development.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq data of UMwas obtained from the GEO (https://

www.ncbi.nlm.nih.gov/geo/), which comprised 59,915 tumor and

non-tumorous cells from eight primary and three metastatic

samples (accession number: GSE139829). The RNA expression

profiles, gene mutations, and relevant clinical information of UM

were extracted from The Cancer Genome Atlas (TCGA) database

(https://tcgadata.nci.nih.gov/), with a sample size of 80 and served as

the training dataset. The FPKM format of the TCGA-UM was

transformed into the TPM format. Additionally, the expression

profiles of GSE84976 were obtained from the GEO database and

used as the validation set. Before any further analysis, all

transcriptome data were log2-transformed. The “sva” package

adjusted for batch effects between TCGA-UM and GSE84976. The

GeneCards database (https://www.genecards.org/) was consulted to

obtain GRGs, and a total of 110 GRGs with a relevance score greater

than 1.0 were selected for further analysis. To assess the prognostic

utility of the risk score in ICI therapy, we utilized the IMvigor 210

Core Biologies database of patients with advanced urothelial cancer

undergoing anti-PD-L1 immunotherapy, which was analyzed using

the R program (19).
2.2 Data processing and annotation

We employed the “seurat” and “singleR” R packages to perform

quality control on scRNA-seq data (20). To ensure the data’s

accuracy, we eliminated genes expressed in less than three single

cells, cells with less than 200 or more than 7,000 genes, and cells with

more than 10% mitochondrial genes. Out of the total, 30,934 cells

were selected for further analysis. These cells underwent scaling after

normalization through a linear regression model that utilized the log-

normalization method. Using the “FindVariableFeatures” function,

we identified the top 3,000 hypervariable genes. To remove batch

effects that may affect downstream analysis, we utilized the

“FindIntegrationAnchors” function of the canonical correlation

analysis (CCA) method. We integrated and scaled the data using

the “IntegrateData” and “ScaleData” functions, determined the

anchor points by principal component analysis (PCA), and

evaluated the top 20 PCs using the t-distributed stochastic neighbor

embedding (t-SNE) algorithm to discover significant clusters. We

used the “FindNeighbors” and “FindClusters” functions (resolution
frontiersin.org
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=0.8) to obtain 24 cell clusters, which were visualized as a t-SNE

diagram. The “FindAllMarkers” function in the “seurat” package was

applied to identify the differentially expressed genes (DEGs) in each

cluster. The “singleR” package annotated cell types based on the

cluster’s canonical marker genes, which were later manually validated

against published literature (21).
2.3 AUCcell

The “AUCell” R package was utilized to determine the active

status of gene sets in scRNA-data by assigning glycosylation activity

scores to each cell lineage (22). The gene expression rankings of

each cell were calculated based on the AUC value of selected GRGs

to assess the fraction of highly expressed gene sets. Cells with larger

AUC values had higher gene express ion levels . The

“AUCell_exploreThresholds” function was used to identify cells

actively involved in glycosylation gene sets. These cells were then

grouped into high and low G-AUC categories using AUC score

cutoff values and visualized in a t-SNE embedding with the help of

the “ggplot2” R package. A gene set variation analysis (GSVA) was

conducted to uncover enriched biological pathways among the high

and low G-AUC subgroups. The results were represented in a bar

chart, displaying all the significantly different pathways.
2.4 Gene set enrichment analysis (GSEA)

This study determined the absolute enrichment fraction of a

specified gene set in every sample by applying ssGSEA. To assign

glycosylation enrichment values to each participant in the TCGA-

UM cohort, we employed ssGSEA. Based on their glycosylation

enrichment scores, participants were divided into two groups, high-

GSN and low-GSN, for further investigation.
2.5 Weighted gene co-expression network
analysis (WGCNA)

The systems biological method WGCNA was applied to the

gene co-expression network of TCGA-UM (23). The following

outlines the steps are taken: exclusion of genes with missing

values using the “goodSamplesGenes” function, grouping of

tumor samples, deletion of outliers, and establishment of a cut

line of 100. The optimal soft threshold for adjacency calculation was

determined using graphical methods. An adjacency matrix was

generated from the expression matrix to determine the genetic

interconnectedness of the network. The topological overlap matrix

(TOM) was then constructed from the adjacency matrix.

Hierarchical clustering was performed using an average linkage

approach and the differences in TOM. The hierarchical clustering

tree was dynamically pruned to identify similar modules with high

correlation coefficients (r > 0.25). Pearson’s correlation test was

applied to examine the relationship between eigengenes and clinical

characteristics. The modules containing genes with the most
Frontiers in Endocrinology 0358
significant correlations to clinical traits, such as glycosylation

score, survival status, and survival time were selected for

further investigation.
2.6 Construction of the risk scoring

A venn diagram analysis was conducted to pinpoint the

intersection between the DEGs and the target genes in WGCNA.

This was followed by a univariate analysis of the overlapping genes

to select those that showed a statistically significant correlation with

patients’ OS (P < 0.01). The least absolute shrinkage and selection

operator (LASSO) analysis was then employed to narrow down

further the list of genes and risk coefficients strongly linked to

prognosis, creating a risk model using the “glmnet” package. Based

on the coefficients obtained from the LASSO analysis, a risk score

was assigned to each UM patient. The patients in the TCGA-UM

dataset were divided into two groups, GCNS_low and GCNS_high,

using the median risk score as the cutoff. The Kaplan–Meier (K-M)

method was utilized to generate prognostic survival curves. The

performance of the predictive model was evaluated employing

receiver operating characteristic (ROC) curves, with a good

performance defined as an area under the curve (AUC) value of >

0.8. The accuracy of the signature in predicting outcomes was

demonstrated by using survival analysis and AUC value in an

independent dataset (GSE84976). PCA was carried out to reduce

dimensionality and visualize the differences between the two risk

groups. The same analysis was performed on the GSE84976 cohort.
2.7 Assessment of the prognostic model’s
independence and validity

A nomogram combining GCNS, age, gender, and the

pathological stage was developed to estimate the 1-, 2-, and 3-

year OS probability (24). The accuracy of the nomogram was

assessed through ROC curves and calibration curves. The net

benefit of the nomogram and individual clinical features was also

evaluated through decision curve analysis (DCA). Subgroup

analysis was performed to determine the prognostic value of the

GCNS among subpopulations defined by specific clinical

characteristics, including age, gender and clinical stage.
2.8 Assessment of the relationship
between prognostic models and tumor
immunity and its impact on
immunotherapy

We analyzed the immune infiltration level of UM patients in the

TCGA database using data from the TIMER 2.0 database, which

comprises seven evaluation methods. We then conducted a ssGSEA

analysis of genes in the prognostic model with the “GSEABase”

package to determine immune-related properties. The “estimate” R

package facilitated the calculation of the relative proportions of
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stromal cells, immune cells, tumor cells and their comparison across

different GCNS categories. A higher score indicates a greater

presence of components in the TME. Furthermore, several

immune cell-expressed molecules serve as immunological

checkpoints that regulate the level of immune activation and

prevent excessive immunological activation (25). We compared

the expression levels of both groups of well-known immune

checkpoint genes (ICGs) extracted from the literature. To assess

their potential in predicting immunotherapy response, tumor

immune dysfunction and exclusion (TIDE) was applied. Finally,

we evaluated the IMvigor210 cohort to confirm the ability of the

GCNS model to predict immunotherapy outcomes.
2.9 Mutational landscape and drug
sensitivity

From the TCGA database, gene mutation profiles of UM

patients were obtained, and the “maftools” software was used to

display them. The GCNS and the comprehensive gene mutation

files were combined. GCNS_low and GCNS_high groups’ signaling

pathways were compared using GSEA, and the essential active

pathways in the GCNS_high group were identified. To establish

the half-maximal inhibitory concentrations (IC50) of common

chemotherapeutic drugs, we also used the R package

“pRRophetic,” which allowed us to look into the relationship

between the GCNS and drug sensitivity (26). Wilcoxon signed-

rank tests compared the IC50 values between the two GCNS groups.
2.10 Cell culture and transfection

The Cell Resource Center at Shanghai Life Sciences Institute

provided the human uveal melanoma cells (MuM-2B, OCM-1)

used in this study. The cells were cultured in DMEM (Dulbecco’s

Modified Eagle’s Medium) (Gibco, USA) with 1% penicillin/

streptomycin and 10% fetal bovine serum (FBS) (Gibco, USA) in

a humid incubator (37°C and 5% CO2). Cells were sown in six-well

plates and cultured at 37°C to 80% confluence before transfecting.

Ribobio created the si-AUP1 and si-NC (control) (Ribobio,

Guangzhou, China). Then, following the manufacturer’s

instructions, they were transfected into MuM-2B and OCM-1

cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA).

After the transfection had been going on for 48 h, more research

was done. AUP1 siRNA sequences were given in Supplementary

Table S1.
2.11 Real time-polymerase chain reaction
(RT-PCR)

Using TRIzol reagent (15596018, Thermo, Waltham, MA,

USA), total RNA was extracted from MuM-2B and OCM-1 cells,

and RNA purity and concentrations were measured using the

manufacturer’s recommendations. When creating cDNA using

the PrimeScriptTM RT reagent Kit (R232-01, Vazyme, Nanjing,
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China), the following settings were made: 15 min at 37°C, then 5 s at

85°C, and finally storage at -20°C. The PCR procedure was

performed using a 10 mL volume in 40 cycles of 95°C for 10 s

and 60°C for 30 s. Three times each operation was carried out.

GAPDH was used as a reference standard, and the relative gene

expression was analyzed using the 2-DDCt technique. Tsingke

Biotech company created specific primers (Tsingke, Beijing,

China). In Supplementary Table S1, used primers were supported.
2.12 Cell proliferation

CCK-8 was used to determine how AUP1 affected the ability of

UM cells to proliferate. UM cells were grown in triplicate in 96-well

microplates with a cell density of 5,000 per well. Following

transfection, the cells were treated at 37°C for 2 h with 10 mL of

CCK-8 solution (A311-01, vazyme, Nanjing, China) mixed with 90

mL of complete media in each well at 0, 24, 48, 72, or 96 h. Finally,

the absorbance of each well was measured at 450 nm using a

microplate reader. The EdU test was used as an additional

technique to quantify cell proliferation using the EdU

proliferation detection kit (Ribobio, Guangzhou, China). In a

nutshell, EdU was applied to MuM-2B and OCM-1 cells (2×105

cells per well) for 2 h before they were stained with DAPI (Thermo

Fisher Scientific, USA). A fluorescent microscope (Olympus, Japan)

was used to take pictures of the EdU-positive cells, which were then

processed in ImageJ.
2.13 Transwell migration

The Transwell migration test was used to detect cell migration

in a 24-well transwell plate with 8 m-pore membrane filters. In a

nutshell, 10% FBS was added to the media in the bottom chamber,

and 2×105 cells in serum-free medium were coated on the top

chamber. After a 48-hour incubation period, the cells that had

migrated to the chamber’s bottom were bathed in 4% methanol for

10 minutes before being stained for 15 min with 0.1% crystal violet

(Solarbio, Beijing, China). The images were taken using a

microscope’s eyepiece, and the number of migrating cells was

counted using ImageJ software.
2.14 Wound-healing assay

The wound healing experiment reflects the MuM-2B and

OCM-1 cells’ migratory patterns. 80% confluence was obtained by

the transfected cells after they had been cultured in a six-well plate

and incubated at 37°C. A sterile 200 mL pipette tip left a liner scrape

in cell monolayers. The medium was changed to one without serum

following two PBS washes to remove cell debris. Under an inverted

microscope, the distance that cells traveled into the wound surface

was gauged at 0 h and 48 h (Olympus, Japan). Lastly, we examined

the wound region using ImageJ software. Data were shown as the

rate of relative cell migration.
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2.15 Animal models

All animal studies were authorized by the Nanjing Medical

University Animal Experiment Ethics Committee. Null BALB/c mice

that were five weeks old were utilized as the xenotransplantationmodel.

MuM-2B cells that were stably transfected with AUP1 and control cells

were implanted intomice’s left and right groins to conduct tumorigenic

studies. The tumor volume was calculated every five days. The tumor

from the xenograft was removed and weighed 25 days after injection.
2.16 Statistical analysis

R software, namely version 4.2.0, was used to conduct our

analyses. Student t-tests or one- or two-way ANOVAs with

Bonferroni’s multiple comparison post hoc tests were used to

determine statistical significance in GraphPad Prism 8 (La Jolla,

CA, USA). Three times each operation was carried out. The mean
Frontiers in Endocrinology 0560
and standard deviation (SD) of the data were shown. With a p-value

of 0.05, the result was considered statistically significant.

3 Results

3.1 scRNA profiling of uveal melanoma

Figure 1 shows the process used in this investigation. 28,981

cells were deleted after quality screening using the aforementioned

standards. The eleven samples included in the investigation had no

observable batch effects since the distribution of cells within each

piece was pretty uniform (Figure 2A). Then, using the t-SNE

approach, all cells were divided into 24 more specific clusters

depending on all levels of gene expression (Figure 2B). We used

differential expression analysis to find DEGs—cluster marker genes

—for several clusters. These clusters were recognized as known cell

lineages using “singleR” package annotation and previously

reported marker genes (Figure 2C). An image of the expression of
FIGURE 1

The technical roadmap of this study.
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cell type-specific marker genes is shown in Figure 2D. There are

eight kinds of cells, including tumor cells, monocytes/macrophages,

and endothelial cells/fibroblasts. We could examine the GRGs

expression patterns by measuring each cell line’s GRGs activity

using the “AUCell” package (Figure 2E). The AUC values were
Frontiers in Endocrinology 0661
higher in cells that expressed more genes, and in this study, most of

these cells were orange-colored B cells and plasma cells (Figure 2F).

According to the AUC score threshold values, all cells were given an

AUC score for the associated GRGs, and they were then split into

two groups (high and low G-AUC subgroups). To understand the
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FIGURE 2

Overview of the single-cell landscape of UM tumor samples of GSE139829. (A) The t-SNE plot shows the integration of 11 samples. Cells were
evenly distributed among all samples, suggesting no significant batch effects among the UM clusters. (B) After quality control and standardization, all
cells in 11 samples revealed 24 cell clusters marker with unique colors. (C) The cells were annotated into eight categories of cell types according to
the composition of the marker genes, namely B cells, endothelial cells, monocytes/macrophages, NK/T cells, photoreceptor cells, plasma cells,
retinal pigment epithelium, and tumor cells. (D) Dot plot of cell type marker genes. Cell-specific marker genes were selected according to previous
studies. The color of the dots represents the average expression, and the size represents the average percentage of cells expressing the desired
gene. (E) Visualization of the percentage of GRGs in each cell via the AUCell package. The cells were divided into high and low groups, namely high
G-AUC and low G-AUC subgroups. (F) t-SNE plots of the AUC score in all clusters. B cells and plasma cells express more GRGs and exhibit higher
AUC values. (G) GSVA analysis revealed significant enrichment pathways between the high G-AUC and low G-AUC groups; blue represents the
enrichment pathway in the high G-AUC group, and the green represents the pathway involved in the low G-AUC group.
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likely biological processes behind these variations, we conducted

differential and functional analyses. According to GSVA data, we

discovered apoptosis, MYC targets V1, and the PI3K/AKT/mTOR

signaling pathway were particularly prevalent in the high G-AUC

subgroups (Figure 2G).
3.2 WGCNA

Each TCGA-UM sample received a glycosylation score from

ssGSEA, as shown in Figure 3A. Patients were split into high-GSN

and low-GSN groups depending on the median glycosylation score.

The survival analysis discriminated between the high-GSN and low-

GSN groups. Glycosylation may be a risk factor for UM since we

discovered that patients in the high-GSN group had increased

mortality (P < 0.001). WGCNA was utilized to narrow the

possible GRGs strongly associated with UM prognosis

(Figure 3B). 19 non-gray modules were produced with these

settings (soft domain value = 7, minimum number of modules =

100, deepSplit = 3, similarity threshold = 0.25) (Figures 3C, D). The

relationships between phenotypic traits and each module’s

expression were evaluated. The DEGs and MEgreen module’s 79
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overlapping genes were then chosen to be examined in the

subsequent phases (Figure 3E).
3.3 Establishment of GRGs signature for
prognosis prediction

We sought to create a GRGs prognostic signature based on the

previously mentioned 79 intersected genes to investigate further the

connection between GRGs and the prognosis of UM patients. When

we initially used the TCGA-UM cohort as our training set for

univariate Cox analysis, we discovered 63 genes to be substantially

(P < 0.01) linked with the OS of UM patients. Next, the prognostic

model was created using LASSO Cox regression analysis

(Figures 4A, B). Finally, seven GRGs (AUP1, HNMT, PARP8,

ARC, ALG5, AKAP13, and ISG20) were filtered out with optimal

regularization settings. Patients in the TCGA cohort were divided

into GCNS_high and GCNS_low groups based on their median risk

ratings. According to K-M analysis, individuals in the GCNS_high

group served a lower survival time than those in the GCNS_low

group (P < 0.001) (Figure 4C). We also assessed the connection

between GCNS and OS in GSE84976 to demonstrate the predictive
A B
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FIGURE 3

ssGSEA and WGCNA. (A) The glycosylation score for each UM patient in the TCGA database was calculated. UM patients in the high-GSN group had
worse outcomes (P<0.001), suggesting that glycosylation is a risk factor for UM. (B) We applied WGCNA to construct the gene co-expression
networks of UM patients. The distribution and trends of scale-free topological model fit, mean connectivity and soft threshold. (C) The clustering of
genes among different modules by the dynamic tree cut and merged dynamic method. (D) Heatmap shows the average correlations among module
eigengenes and clinical features. The correlation coefficient and p-value (in parentheses) are shown. The MEgreen module is closely related to
glycosylation and survival time, marked with red frames. (E) The Venn diagram shows the intersection of the DEGs identified between high G-AUC
and low G-AUC groups and MEgreen module genes obtained from WGCNA.
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FIGURE 4

Construction and validation of the 5 GRGs model in TCGA-UM cohort and GSE84976. (A) 10-fold cross-validation for tuning parameter selection in
the LASSO model. (B) The Y-axis shows LASSO coefficients and the X-axis is −log (lambda). Dotted vertical lines represent the minimum and one
standard error values of lambda. Differences in OS in different risk subgroups in TCGA-UM cohort (C) and GSE84976 cohort (D) were assessed using
the log-rank test. Compared to low-risk UM patients, a shorter OS is found in high-risk UM patients. (E) Time-dependent ROC curve depicting the
predictive accuracy of the risk model for OS at 1-, 3- and 5-year in the training set (AUC = 0.876, 0.929, and 0.889, respectively). (F) The AUC value
of the risk score for predicting 3-, 5- and 10-year survival in the validation cohort (GSE84976) were 0.857, 0.818 and 0.888, respectively. The PCA
demonstrates that the model can distinguish patients into GCNS_high and GCNS_low groups well in the training set (G) and validation set (H).
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power of GCNS. Using the same technique, we assigned each

patient a GCNS and divided them into two groups. The two

groups showed a clear difference in survival analyses, with the

GCNS_high groups showing a worse prognosis than the GCNS_low

groups, which is consistent with earlier findings (Figure 4D). The

training cohort’s AUC at 1, 3, and 5 years was 0.876, 0.929, and

0.889, respectively, showing that our model was incredibly

influential in predicting UM patients’ prognosis (Figure 4E). In

the validation set, similar outcomes were attained. Additionally,

ROC analysis revealed that the AUC of the model value varied

between 0.81 and 0.88, demonstrating the outstanding predictive

accuracy of our GCNS model (Figure 4F). PCA well-distinguished

patients in the various GCNS groups, showing that the model can

stratify risk subtypes in both the training and validation cohorts

(Figures 4G, H).
3.4 Development and validation of
prognostic nomogram

An integrated GCNS and clinical parameters prognostic

nomogram was created to forecast the prognosis of UM patients.

Clinical results at 1, 2, and 3 years were used to calculate the

patients’ survival rates (Figure 5A). The calibration plot

demonstrated that the GRGs signature offered exact estimates of

UM patients’ OS (Figure 5B). The nomogram has more

extraordinary predictive ability than any clinical trait, as shown

by the ROC curve’s AUC of 0.939. (Figure 5C). DCA plots showed

that adding clinical variables to GCNS might increase the precision

of survival prediction (Figure 5E). The clinical stage and survival

status showed a favorable link to a heatmap of clinical variables and

prognostic indicators of GRGs. However, other clinical

characteristics did not vary statistically (Figure 5D). A percentage

bar plot was used to compare the distributions of certain stages

among the groups. According to our research, stage II patients make

up the majority of patients in the GCNS_low group, whereas stage

III patients are in the GCNS_high group (Figure 5F). UM patients

were divided into subgroups based on unique clinical

characteristics, and the GCNS’s ability to predict outcomes was

evaluated in each group. Additionally, we saw that patients with

GCNS_high consistently had reduced survival chances in all

categories, which suggests that the prognostic model applies to

all situations.
3.5 Tumor microenvironment components

Given the significant differences in OS amongst GCNS

subgroups, we anticipated that the immune milieu would be

critical in tumor formation and clinical outcomes. Therefore, we

looked for distinctive immunological characteristics in the TCGA-

UM patients. Figure 6 illustrates how patients with GCNS_high

exhibited higher immune cell infiltration, including M2

macrophage cells and B cells. According to the estimating

methodology, patients with high GCNS had significantly higher

immune scores, stromal scores, and estimate scores (stromal score
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plus immune score) than those with low GCNS. According to the

data, a relationship exists between GCNS and the amount of

immune cell infiltration and TME components. Various rates of

disease onset and immunotherapeutic efficacy may result from

different immune infiltration levels. We assessed somatic

mutation profiles of UM patients based on GCNS in light of the

intrinsic link between genetic mutation and tailored treatment for

cancer patients. The top three mutant genes were GNAQ, GNA11,

and SF3B1, as shown in Figure 6. Combining the mutational gene

distributions with GCNS, we found the most prevalent mutation in

GCNS_low patients in GNAQ, whereas the most frequent mutation

in GCNS_high patients was in GNA11. This discrepancy may help

to explain why these groups respond to immunotherapy

so differently.
3.6 Immunotherapy and chemotherapy
response prediction

To support these findings, we used ssGSEA to compare the

immune cell makeup of two GCNS groups (Figure 7A). Those with

high GCNS had significantly more partial innate immune cells (like

macrophages and DC cells) and adaptive immunity cells (like B cells

and T cells) than patients with low GCNS. The GCNS_high

subgroup also had higher enrichment scores for functions created

linked to the immune system. These results imply that

immunological glycosylation-related characterization is more

prevalent in the GCNS_high group. We looked at the possibility

of this prognostic model to forecast UM patients’ responses to ICI

therapy. We examined the relationship between the TCGA-UM

cohort’s GCNS and the most common immunotherapeutic targets.

Nearly all ICGs showed noticeably greater expression in the

GCNS_high group, including PDCD1 (PD-1), CD274 (PD-L1),

CTLA4 and LAG3 (Figure 7B). As shown in Figure 7C, the

immunotherapy responses in the GCNS groups were contrasted.

One of the key characteristics of cancer that depends on the tumor’s

ability to survive in the human body is immune system evasion.

TIDE is a valuable biomarker for predicting the response to

immunotherapy in patients with diverse malignancies,

particularly those treated with ICI. This evaluation measures the

immune escape capability of tumors (27). In patients taking anti-

PD-1 and anti-CTLA-4 therapy, the poorer the ICI response, the

higher the tumor TIDE score. We found that patients with high

GCNS had significantly lower TIDE scores and a negative

association between GCNS and TIDE values (P < 0.001, | r | > 1).

The risk of a tumor immune escape increased as the TIDE value

increased. However, the effectiveness of immunotherapy has

decreased. We could infer from this that those with high GCNS

are better candidates for immunotherapy. Subsequently, we

evaluated the ability of our model to predict the efficacy of

immunotherapy using the IMvigor210 cohort to confirm the

validity of this discovery. The number of patients receiving anti-

PD-1 therapy who saw an objective and partial response increased

as the risk score rose (Figures 7D, E). According to our findings,

patients in the GCNS_high group had a higher chance of benefiting
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from immunotherapy. The GCNS may be a biomarker to pinpoint

the right patient population for immunotherapy.

To examine the differences in route enrichment between the

GCNS_high and GCNS_low groups, GSEA was used. We discovered

that allograft rejection, IL-6/JAK/STAT3 signaling, and the

inflammatory response were enriched in the GCNS_high group,

suggesting that GCNS_high patients are intimately connected to

immune regulation-related and inflammatory pathways

(Figure 7F). In order to broaden the practical application of the
Frontiers in Endocrinology 1065
prognostic model, we forecast how susceptible patients in the GCNS_

high and GCNS_low groups would be to chemotherapeutic drugs.

Lapatinib, foretinib, LY317615 and 17-AAG all had lower IC50

values in the GCNS_high group, indicating that GCNS_high

patients respond better to these medications (Figure 7G). There

was a strikingly negative correlation between drug sensitivity and

GCNS for cytarabine, SN-38, PD-0332991 and cisplatin, suggesting

that these drugs may be more effective in treating GCNS_low people

identified by our model (Figure 7H).
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FIGURE 5

Development and evaluation of prognostic nomogram integrating GCNS and conventional clinical traits. (A) A nomogram was generated to evaluate
the 1, 2, and 3-year survival rates of UM patients based on the TCGA cohort. The red line shows an example of how to predict the prognosis. (B) The
calibration curve depicted the consistency between nomogram predicted 1-, 2-, and 3-year survival rates of patients and actual survival rates.
(C) The AUC value predicted by the nomogram for patient prognosis remains about 0.939, which is significantly higher than other clinical features.
(D) Differences in clinicopathologic features and expression levels of GRGs between the GCNS_high and GCNS_low subtypes. (E) DCA curve was
drawn to compare the clinical efficacy of the nomogram based on the threshold probability. The upper lines indicate more net benefit. (F) UM stage
III and IV patients accounted for the largest proportion in the GCNS_high group and increased significantly compared to the GCNS_low group.
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3.7 AUP1 promoted the proliferation,
migration, and invasion abilities of UM cells

Using univariate and multivariate Cox analysis, the predictive

value of AUP1 was contrasted with that of other clinicopathological

factors. Forest plots showed that AUP1 had the highest HR among

the clinical features, suggesting that AUP1 constituted a separate

risk factor for predicting the prognosis of UM patients (Figures 8A,

B). Patients with high AUP1 expression had a significantly poorer
Frontiers in Endocrinology 1166
prognosis than those with low AUP1 expression (Figure 8C). In

light of these results, AUP1 was chosen for further in vitro testing to

confirm its role in UM. GO analysis showed that high AUP1

expression groups were mainly focused on immunoglobulin

production, immunoglobulin complex and antigen binding,

suggesting the expression of AUP1 was related to immune

regulation and metabolism (Figure 8D). According to GSEA,

high-AUP1 groups were significantly enriched in allograft

rejection, IL6/JAK/STATA3 signaling and inflammatory response
FIGURE 6

The landscape of immune and stromal cell infiltrations in the GCNS_high and GCNS_low groups. The heatmap shows the normalized scores of
immune and stromal cell infiltrations according to the evidence from the TIMER database. The Wilcoxon Test compared the two groups’ statistical
differences in immune cell infiltration. For the GCNS_high group, blue-gray represents cells with lower infiltration, while yellow represents cells with
higher infiltration. The GCNS_high group tended to have higher levels of immune cell infiltration. The TMB calculated by package “maftools” was
also displayed. Patient’s clinical features and gene mutation patterns were also illustrated as an annotation.
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FIGURE 7

Analysis of immune infiltration, immunotherapy and enrichment pathways. (A) The differences of tumor-infiltrating of 16 cell types and the score of
immune pathways between the GCNS groups by ssGSEA. Between-group differences were evaluated using the Wilcoxon test. The black dots
represent the median values, and asterisks indicate significance. (B) The differences in expression levels of ICGs between the GCNS_high and
GCNS_low subtypes. The lines inside the boxes represent the median values, and the lines outside indicate the 95% confidence interval.
(C) Prediction of response to immunotherapy. TIDE score was low in the GCNS_high group. Pearson correlation analysis showed a negative
correlation between GCNS and TIDE. (D) Comparing risk scores in groups with different anti-PD-L1 treatment response statuses in the IMvigor210
cohort. R represents complete response (CR)/partial response (PR); NR represents progressive disease (PD)/stable disease (SD). (E) The comparison
of the proportion of non-responders and responders to anti-PD-L1 immunotherapy between the two GCNS groups in the IMvigor210 cohort. (F)
GSEA showed that allograft rejection, IL-6/JAK/STAT3 signaling, and inflammatory response pathways related to immune regulation were activated
in the GCNS _high group. (G, H) Comparison of the IC50 values of chemotherapy agents in the two GCNS groups. The predicted IC50 values of 17-
AAG, LY317615, lapatinib and foretinib were generally lower in the GCNS_high group, whereas cytarabine, SN-38, PD-0332991 and cisplatin had a
lower IC50 in the GCNS_low group. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 8

The results of univariate (A) and multivariate (B) Cox regression indicated that the AUP1 was an independent prognostic factor for OS in UM patients.
(C) Survival analysis of AUP1 in TCGA database. High expression of AUP1 is associated with a poor prognosis of UM. (D). GO analysis of AUP1 high
expression group. (E) GSEA enrichment plots represented enriched biological pathways in high AUP1 groups. (F) The role of the critical gene AUP1 in
uveal melanoma cell lines was verified in vitro. Both siRNAs significantly down-regulated AUP1 expression in MuM-2B and OCM-1 cell lines. (G, H)
The CCK-8 assay showing the proliferation ability of MuM-2B and OCM-1 cells decreased significantly after silencing AUP1. (I) EdU staining assay
indicated that downregulation of AUP1 expression repressed MuM-2B and OCM-1 cell proliferation. **P < 0.01; ***P < 0.001.
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signaling pathways (Figure 8E). The AUP1 knockdown system was

created in MuM-2B and OCM-1 cells (Figure 8F). The CCK-8 and

EdU assays revealed that AUP1 silencing decreased the

proliferation rate of UM cells (Figures 8G–I). Clonal formation

experiments simultaneously showed that the MuM-2B and OCM-1

cell lines’ capacity to form colonies was significantly diminished

(Figure 9A). Additionally, the transwell test and wound healing

experiment revealed a lower tendency for UM cell migration and

invasiveness following the reduction of AUP1 compared those

transfected with si-NC (Figures 9B, C). Comparing AUP1

knockdown to controls, tumor growth, size, and weight were all
Frontiers in Endocrinology 1469
reduced (Figure 9D). These results suggest that AUP1 was involved

in regulating pro-oncogenic processes in UM.
4 Discussion

About 50% of patients with UM die from metastatic UM, the

leading cause of mortality in this population (28). Due to the unique

characteristics of the ocular anatomy, systemic medication

administration in UM patients is frequently suboptimal (29).

Because of this, researchers in the UM area are motivated to
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FIGURE 9

Related experiments for AUP1. (A) Colony formation assays revealed that the ability of the MuM-2B and OCM-1 cell lines to produce colonies was
considerably reduced following AUP1 knockdown. (B, C) AUP1 knockdown dramatically reduced the migration and invasion capacity of MuM-2B and
OCM-1 cell lines in the wound healing and transwell experiment. (D) Experiments using naked mice. AUP1 knockdown decreased tumor growth, and
tumor volume and weight were lower in the knockdown group than in the control group. All tests were performed in two UM cell lines (MuM-2B
and OCM-1) to verify the accuracy and reproducibility of the results. *P < 0.05; **P < 0.01; ***P < 0.001.
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provide more accurate approaches for identifying and managing

metastatic illness. A more profound comprehension of the complex

ecology of UM is necessary to define the therapy goals for

UM patients.

Over 60 years ago (30), the first report of glycosylation

variations connected to oncogenic transformation appeared. The

disruption of crucial functions within cancer cells and the TME by

various types of glycoconjugates is thought to contribute to the

growth and spread of cancer (31). Several physiopathological

processes may be controlled through glycosylation, which

incorporates a number of enzymes, organelles, and other elements

to produce post-translational alterations linked to carbohydrates

(11). Due to glycosylation’s susceptibility, even minor pathogenic

alterations or metabolic stress can cause it to malfunction, creating

abnormal glycochains and glycoproteins (14). Understanding the

causes and consequences of glycosylation changes linked to tumor

illness will offer priceless insights into tumor development (11). The

complete picture of glycosylation in UM could be more intricate.

Therefore, more studies must be done.

Single-cell sequencing technology has made it possible to

examine the diverse tumor environment and extract gene

expression from UM tumor cells at the individual cell level,

essential for identifying the treatment targets for UM patients (32,

33). In this study, using bulk RNA-seq and scRNA data, we built a

GCNS model for UM patients and examined the expression

patterns of the GRGs. We first identified numerous cell

subpopulations inside UM and discovered that the activity of

GRGs differed throughout cell lineages, focusing on increased

glycosylation activity in B cells and plasma cells. The high G-

AUC subgroup was strongly enriched in apoptosis, MYC targets

V1, and PI3K/AKT/mTOR signaling pathways, all of which deserve

in-depth research in the future, according to GSVA algorithm.

Next, using LASSO algorithm on the TCGA dataset, a

prognostic model based on seven OS-related GRGs was created

and validated using GSE84976. UM patients were classified into

GCNS_high and GCNS_low groups, with those in the GCNS_high

group displaying a worse prognosis independent of clinical

parameters. We investigated the underlying mechanism after the

prognostic signature showed a robust predictive capacity for

prognosis in both the training and validation groups. As

anticipated, there were differences in the levels of immune

infiltration, TMB and immunotherapy response between the

GCNS_high and GCNS_low groups, which may cause the

heterogeneity of UM tumors.

A growing number of studies have shown that TME is

intimately connected to carcinogenesis and can, to some degree,

predict tumor prognosis and the effectiveness of immunotherapy.

The immune system is suppressed, and lymphatic circulation is

restricted in the eye, which eventually causes the CD8+ T cell

population to decline (34, 35). High levels of M2-type macrophages

and CD8+ T cells are found in the UM immune milieu in the

GCNS_high group. CD8+ T cells emerge as a critical player in the

tumor immunosurveillance system, indicating a bad prognosis for

UM patients. The two G subunit genes, GNAQ and GNA11, which

are mutually exclusive, frequently have to activate mutations in UM

(36). Notably, the GNAQ mutation was more widespread in the
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GCNS_low group, whereas the GNA11 mutation was more

prevalent in the GCNS_high group. Mutations in GNAQ and

GNA11 activate pathways that might serve as a foundation for

using MEK or Akt inhibitors in clinical settings (37, 38), thus

providing a reference for optimizing targeted therapy in

UM patients.

Tumor immunotherapy has quickly advanced, and it is now

becoming clear that its primary goals are to stop tumor cells from

evading the immune system, boost the body’s immunological

reaction to tumor cells, and cause immune-received tumor cells

to die (39, 40). James P Allison and Tasuku Honjo disclosed

numerous immunological checkpoints’ immunosuppressive

modes and created ICI based on this to block PD-L1/PD-1/

CTLA4 (41, 42). ICI in clinical trials have significantly improved

cancer treatment in some cancer types, including melanoma.

Contrary to previous study’s findings, we concluded that

immunotherapy would be successful for those in the GCNS_high

group using the TIDE algorithm and data from the IMvigor210

cohort. To obtain exact and individualized treatment, we propose

giving each UM patient a risk score based on a prognostic model,

ascertaining whether they fall into the GCNS_high or GCNS_low

group, and treating UM patients in the GCNS_high group with

immunotherapy. Rather than PD-1 and CTLA4, the critical sign of

failure in UM is the suppressive immunological checkpoint of

LAG3 (43). This partially explains why anti-PD-1 and anti-

CTLA4 treatments are ineffective. LAG3 is highly expressed in

tumor-infiltrating lymphocytes in UM, as Triozzi et al. discovered

in 2014 (44). There are several clinical studies evaluating the

therapeutic effectiveness of LAG3 inhibitors in treating various

malignancies, one of which (NCT02519322) uses relatlimab to

treat advanced UM (45).

Clarifying the function of modeling genes in controlling

glycosylation in UM is necessary to offer new treatment options for

malignancy. Our analysis of seven modeled genes showed that AUP1

had the greatest HR value. A subsequent survival study showed

elevated AUP1 expression levels were significantly associated with a

poorer clinical outcome in UM patients. Of note, suppressing AUP1

expression significantly inhibited the proliferation and invasiveness of

UM cells. Based on the studies, AUP1 is a prospective clinical

biomarker for UM. Meisler first recognized and defined AUP1,

which contains 410 amino acids and is found on human

chromosome 2p13 in a conserved linkage region (46). AUP1 has

an “ancient conserved area” in proteins from unrelated organisms

(47). Due to its age and high level of sequence conservation, the

protein encoded by AUP1 is essential for cell biology (48). However,

the function of AUP1 in UM has yet to be determined. The AUP1

high and low expression groups were compared using GSEA to

determine which biochemical pathways were significantly enriched in

either group. The results of GSEA identified 5 AUP1-associated

enriched pathways, and the IL-6/JAK/STAT3 signaling pathway

was part of the activated signaling pathway. To our knowledge, the

IL-6/JAK/STAT3 signaling pathway is aberrantly hyperactivated in

individuals with chronic inflammatory diseases, hematopoietic

malignancies and solid tumors (49). Several cell types within the

TME release IL-6, activating JAK/STAT3 signaling in both tumor

cells and immune cells infiltrating the tumor, promoting tumor-cell
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proliferation, survival, invasiveness and metastasis (49).

Consequently, we speculated that AUP1 is involved in the IL6/

JAK/STAT3 signaling pathway to drive the proliferation, invasion

and migration of UM cells. However, the crosstalk and mechanism of

the above bioinformatics prediction need verification with well-

designed experiments.

Despite the favorable results, the research nevertheless

contained several flaws. Since UM had a significant degree of

heterogeneity and our signature was built and validated using

cohorts in relatively small sample sizes, it is crucial to confirm the

GCNS propensity for prognostication in a big multicenter cohort

before applying the model in clinical practice. Additionally, we were

only concerned with how AUP1 silencing affected UM cell

proliferation, invasion, and migration. The description of the

potential relationship between the expression of AUP1 and the

prognosis for UM. More research is still needed to determine how

AUP1 contributes to the development and progression of UM

tumors through glycosylation alteration. The predictive biomarker

potential of our risk model creates fresh treatment options for UM.
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Prognostic prediction and
multidimensional dissections of a
macrophages M0-related gene
signature in liver cancer
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1Department of Gastroenterology, Jining First People’s Hospital, Jining, China, 2Department of
Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School,
The First People’s Hospital of Yancheng, Yancheng, China
Background: Liver hepatocellular carcinoma (LIHC) is the seventh most

commonly diagnosed malignancy and the third leading cause of all cancer

death worldwide. The undifferentiated macrophages M0 can be induced into

polarized M1 and M2 to exert opposite effects in tumor microenvironment.

However, the prognostic value of macrophages M0 phenotype remains obscure

in LIHC.

Methods: The transcriptome data of LIHC was obtained from TCGA database

and ICGC database. 365 LIHC samples from TCGA database and 231 LIHC

samples from ICGC database were finally included. Macrophages M0-related

genes (MRGs) were screened by Pearson correlation analysis and univariate Cox

regression analysis based on the infiltration level of Macrophages M0. LASSO

regression analysis was employed to construct a prognostic signature based on

MRGs, and risk scores were accordingly calculated. Then we investigated the

MRGs-based prognostic signature with respects to prognostic value, clinical

significance, strengthened pathways, immune infiltration, gene mutation and

drug sensitivity. Furthermore, the expression pattern of MRGs in the tumor

microenvironment were also detected in LIHC.

Results: A ten-MRG signature was developed and clarified as independent

prognostic predictors in LIHC. The risk score-based nomogram showed

favorable capability in survival prediction. Several substance metabolism

activities like fatty acid/amino acid metabolism were strengthened in low-risk

group. Low risk group was deciphered to harbor TTN mutation-driven

tumorigenesis, while TP53 mutation was dominant in high-risk group. We also

ascertained that the infiltration levels of immune cells and expressions of

immune checkpoints are significantly influenced by the risk score. Besides, we

implied that patients in low-risk group may be more sensitive to several anti-

cancer drugs. What’s more important, single-cell analysis verified the expression

of MRGs in the tumor microenvironment of LIHC.
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Conclusion: Multidimensional evaluations verified the clinical utility of the

macrophages M0-related gene signature to predict prognosis, assist risk

decision and guide treatment strategy for patients with LIHC.
KEYWORDS

liver cancer, macrophages M0, prognostic signature, immune infiltration,
immunotherapy, single-cell analysis
1 Introduction

According to GLOBOCAN statistics 2020, liver cancer is

reported to be the seventh most commonly diagnosed

malignancy, with over 900,000 new cases per year, while it is the

third leading cause of all cancer death (8.3%), which induces a huge

disease burden worldwide (1). Liver hepatocellular carcinoma

(LIHC) and intrahepatic cholangiocarcinoma (ICC) are the two

major histopathological subtypes of liver cancer in clinics,

accounting for over 90% of cases (1). Currently, surgical resection

is still the primary therapy strategy for liver cancer, and other

treatments, including interventional therapy, chemo/radiotherapy,

molecular targeted therapy, and immunotherapy are considered

supplementary methods. With the development of comprehensive

treatment, the prognosis of patients with liver cancer has been

partially prolonged (2, 3). However, the whole prognosis of liver

cancer remains unsatisfactory on account of concealed early

symptoms, local recurrence, and distant metastasis (4). TNM

stage is the traditional method to assess the prognosis of patients,

whereas it has particular limitations, for it can only analyze the

clinical outcome at a macro level. In the era of precision medicine, it

is prevalent to process prognostic evaluation utilizing a

comprehensive molecular signature, especially in cancer studies.

Therefore, the identification of a reliable gene signature to predict

the prognosis of patients with liver cancer may contribute to clinical

management and risk decision, rendering possible priority for

survival improvement.

Tumor microenvironment (TME) is a sophisticated ecosystem

that ameliorates tumor growth by promoting angiogenesis and

supporting immunosuppression (5). Notably, the interactive

mechanisms between cancer cells and diverse immune infiltrating

cells have been increasingly focused, in an attempt to exploit novel

anticancer strategies. The facts suggest that immune infiltrating

cells may exert tumor-promoting effects by driving chronic

inflammation and blinding host immune surveillance (5).

Commonly, danger-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs) as stimuli to stir

tissue homeostasis can be identified by pattern recognition

receptors on the surface of innate immune cells like neutrophils,

macrophages, dendritic cells, and NK cells, thereby subsequently

inflaming the TME (6, 7). However, the inflammation remains

unlocked and becomes chronic in TME, which significantly benefits

cancer cells (8). Multiple factors gradually remodel the ECM toward

more tumor-friendly (8, 9). Macrophages, have been determined to
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propel tumor progression by enhancing angiogenesis, invasion, and

metastasis in vivo according to their functional status induced by

the TME (10). It is believed that the diversity of macrophages can be

employed by cancer cells to contribute to progression utilizing EGF

stimulation, for instance (10). Considering the pivotal roles of

macrophages in cancer development, previous studies managed to

establish favorable prognostic models utilizing macrophages-related

genes (MRGs) in several malignancies (11–13). However, the

prognostic value of MRGs in liver cancer remains obscure.

Liver cancer cells express PDL1 to inhibit the activity of

cytotoxic T cells, so as to evade immune surveillance and

infinitely proliferate. Immunocheckpoint inhibitors can reverse

the inhibition of liver cancer cells on cytotoxic T cells, rendering

cytotoxic T cells active to kill cancer cells (14). At present,

immunotherapy for LIHC presents a multi-plan situation. The

combination of the anti-PDL1 antibody atezolizumab and the

anti-angiogenesis antibody bevacizumab is getting standard in

first-line therapy. The anti-PD1 antibody nivolumab and

pembrolizumab can also be sequentially applied after tyrosine

kinase inhibitor (TKI) in several conditions (15). The current

bottlenecks for immunotherapy of LIHC are the exploitation of

novel predictive tools to assess therapeutic efficacy and conducting

clinical trials to widen the applicable patients, as well as discovering

more effective dosage regimens (16).

In this present study, we managed to develop and validate a

prognostic signature based on MRGs, through which better risk

decisions may be achieved in clinics. Distinct subgroups were also

classified based on MRGs. Investigations of the gene signature

concerning clinical subgroup, functional characterization,

immune infiltration, immune checkpoint expression, and

mutation landscape were organized. We also provided

implications of drug agents via IC50 drug sensitivity analysis.

Moreover, single-cell analysis determined the expression pattern

of MRGs in the TME of LIHC. The workflow of the present study is

summarized in Figure 1.
2 Materials and methods

2.1 Data acquisition and preprocessing

RNA-sequencing data and clinical information of liver

hepatocellular carcinoma (LIHC) samples were downloaded from

the TCGA database (http://cancergenome.nih.gov) and the ICGC
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database (https://dcc.icgc.org). Samples without complete survival

information were excluded. We thus finally enrolled 365 LIHC

samples from TCGA database and 231 LIHC samples from

ICGC database.
2.2 Identification of M0-related genes

Above all, we quantified the infiltration levels of 22 immune

cells of each TCGA-LIHC sample by the CIBERSORT algorithm.

Then the survival difference between the low infiltration group and

the high infiltration group of a specific immune cell was

investigated. Pearson correlation analysis was used to identify the

genes (MRGs) significantly correlated with macrophages M0. Genes

with |r| > 0.4 and P < 0.001 were considered significantly relevant.

We next processed Gene Ontology (GO)/Kyoto Encyclopedia of

Genes and Genomes (KEGG) functional enrichment analyses of

MRGs based on cluster Profiler and org.Hs.eg.db R packages.

Univariate analysis was conducted to further filter MRGs that

harbor significant prognostic importance.
2.3 Consensus clustering of LIHC based on
M0-related genes

Consensus clustering was employed to testify the consistency of

selected MRGs by means of dissecting different LIHC subtypes in

TCGA cohort. We compared the MRGs expressions and infiltration

levels of immune cells between LIHC subtypes. Survival differences

between the subtypes were also determined.
2.4 Construction and validation
of the prognostic signature based
on M0-related genes

TCGA cohort was randomly divided into the training cohort

(50%) and internal validation cohort (50%) respectively, while the
Frontiers in Endocrinology 0375
ICGC cohort was used as the external validation cohort. LASSO

regression analysis was employed to construct a prognostic

signature based on MRGs in the training cohort. Risk score =

∑(Ci*Ei), i represented a certain MRG, C represented the coefficient

of MRG and E represented the expression level of MRG. The low-

risk group and high-risk group were evenly divided according to the

median cut-off value of the risk score. Principal component analysis

(PCA) was utilized to check out the discrimination between the

high-risk group and the low-risk group. We also compared the

survival difference between the low-risk group and the high-risk

group via survminer and survival R packages. The predictive

capability of the prognostic signature was tested by receiver

operating characteristic (ROC) curves via the timeROC R

package. Corresponding analyses were also performed in the

internal validation cohort and the ICGC cohort.
2.5 Clinical attachment of the prognostic
signature and establishment of nomogram

We applied the prognostic signature in several clinical

subgroups to further determine its clinical prognostic utility.

Next, univariate and multivariate Cox regression analyses were

conducted to decipher independent prognostic predictors for LIHC

from several clinicopathological parameters and risk score in both

the TCGA cohort and the ICGC cohort. We subsequently

developed a nomogram to predict overall survival (OS) utilizing

several clinicopathological factors. The predictive accuracy of the

nomogram was verified by calibration curves.
2.6 Functional strengthens of the
two risk groups

The differentially expressed genes (DEGs) between the low-risk

group and the high-risk group were identified with the DEGseq R

package. Genes with |Log2FC| > 1 and P < 0.05 were considered

DEGs. Gene Set Enrichment Analysis (GSEA) was performed to
FIGURE 1

Workflow of the present study.
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determine the significantly enriched functional characterizations in

the two risk groups, respectively.
2.7 Differences of immune infiltration and
immune checkpoint expression between
the two risk groups

We compared the activity of several immune activities between

the low-risk group and the high-risk group utilizing single sample

gene set enrichment analysis (ssGSEA), as well as the infiltration

levels of various immune cells. Moreover, we investigated the

expression pattern of 40 immune checkpoints between the two

risk groups to ascertain the potential value of the prognostic

signature in immunotherapy.
2.8 Mutation landscapes of the
two risk groups

The mutation landscapes of the low-risk group and the high-

risk group were obtained via the maftools R package, respectively.

The top twenty most frequently altered genes in the two risk groups

were displayed respectively. The difference in tumor mutation

burden (TMB) between the low-risk group and the high-risk

group was checked out. Besides, low TMB group and high TMB

group were divided according to the median cut-off value of TMB.

Survival differences between patients in the low-TMB group and the

high-TMB group with or without combination of risk groups were

further uncovered.
2.9 Drug sensitivity analysis

With the pRRophetic R package, we processed broad drug

screening based on the GDSC database (https://www.sanger.ac.uk/
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tool/gdsc-genomics-drug-sensitivity-cancer/) to ascertain the drug

agents that the two risk groups may sensitively respond to.
2.10 Single-cell RNA-sequencing
data analysis

About 110992 high-quality cells were filtered and obtained from

the LIHC_GSE189903 dataset. The expression pattern of the MRGs

were visualized by the Seurat R package based on the single-cell

profile of LIHC_GSE189903.
2.11 Statistical analysis

Bioinformatic analyses were all conducted by R 4.0.3. The

comparison of the K-M survival curve was achieved by Cox

regression analysis. Differences in expression levels between

groups were compared by the Wilcoxon rank sum test. Pearson

correlation was taken for correlation analysis. P < 0.05 was deemed

statistically significant. “*” indicates P < 0.05, “**” indicates P < 0.01

and “***” indicates P < 0.001 throughout this study.
3 Results

3.1 Macrophages M0 abundance extremely
correlated with the prognosis of LIHC

The infiltration levels of 22 immune cells of each TCGA-LIHC

sample were qualified (Figure 2A). We found that the survival

difference between high- and low macrophages M0 infiltration

groups is the most significant according to its polarized P-value

(P = 0.003) among the 22 immune infiltrating cells (Figures 2B–F).

Patients with higher infiltration levels of macrophages M0 suffered

from poorer outcomes. A total of 31 MRGs were identified to be
B
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FIGURE 2

The survival significance of 22 immune infiltrating cells in LIHC. (A) Quantification of the infiltration levels of 22 immune cells in the TCGA cohort.
(B) The survival significance of macrophages M0. (C) The survival significance of macrophages M1. (D) The survival significance of dendritic cells
resting. (E) The survival significance of NK cells resting. (F) The survival significance of macrophages M2.
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significantly correlated with macrophages M0 in LIHC, among

which ten genes showed positive correlation and the other 21

genes showed negative correlation (Figure 3A). Most MRGs

positively correlated with each other (Figure 3B). GO/KEGG

functional enrichment analyses indicated that these MRGs are

enriched in the external side of the plasma membrane,

phagosome, lysosome, apoptosis, protein export, and chemical

carcinogenesis-oxidative oxygen species, etc. (Figures 3C, D).

Univariate Cox regression analysis further determined 19 MRGs

significantly correlated with the prognosis of LIHC (P <

0.001) (Figure 3E).
3.2 Two subtypes were divided based on
M0-related genes in LIHC

We divided TCGA-LIHC samples into subtype 1 and subtype 2

based on 19 MRGs (Figures 4A–C). The 19 MRGs were all

differentially expressed between the two subtypes (Figure 4D).

Subtype 1 with higher infiltration levels of macrophages M0

harbored a worse prognosis than subtype 2 (P < 0.001)

(Figures 4E, F).
3.3 A ten-gene signature was
constructed and validated for
prognosis prediction in LIHC

A ten-gene signature was generated by LASSO regression

analysis in the training cohort (Figures 5A, B). Risk score =

0.1308 * RBFA exp. + 0.0489 * IRAK1 exp. + 0.0882 * KIAA0930

exp. + 0.0936 * CCT3 exp. + 0.0735 * CTSV exp. + 0.1284 *

FKBP9P1 exp. + 0.1209 * LPCAT1 exp. + 0.0873 * TUBA4A exp. +
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0.058 * SNHG4 exp. + 0.075 * ING5 exp. The expression pattern of

the ten MRGs between the low-risk group and the high-risk group

was visualized (Figure 5C). The distribution of patients with risk

scores in different risk groups was displayed (Figure 5D). PCA

further verified the distinct demarcation between the low-risk group

and the high-risk group (Figure 5E). Corresponding investigations

were performed in the internal validation cohort (Figures 5F–H).

The survival differences between the low-risk group and the

high-risk group in the training cohort, internal validation cohort

and ICGC cohort were all well distinguished (Figures 6A, D, G). In

the training cohort, the AUCs at 1-, 3- and 5-year were 0.779, 0.718,

and 0.722 (Figure 6B). In the internal validation cohort, the AUCs

at 1-, 3- and 5-year were 0.744, 0.685, and 0.624 (Figure 6E). In the

ICGC cohort, the AUCs at 1-, 3- and 5-year were 0.760, 0.819, and

0.772 (Figure 6H). Furthermore, we found that the prediction

capability of the prognostic signature is better than any other

clinical characteristics, for its general AUCs were 0.792, 0.748,

and 0.766 in the three cohorts respectively (Figures 6C, F, I).
3.4 The risk score was identified as an
independent prognostic predictor for LIHC

Firstly, we applied the prognostic signature in eight clinical

subgroups (Figures 7A–H). Results confirmed the broad

applicability of the prognostic signature in all types of patients

with LIHC. Distributions of several clinical parameters between the

low-risk group and the high-risk group were also demonstrated

(Figure 7I). We next identified risk score as an independent

prognostic predictor for LIHC in both the TCGA cohort and the

ICGC cohort by Cox regression analyses, which verified the strong

prognostic value of the prognostic signature (P < 0.001)

(Figures 7J–M).
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FIGURE 3

Identification of M0-related genes. (A) Correlations between MRGs and macrophages M0. (B) Correlations within the 31 MRGs. (C) GO functional
enrichment analysis of the MRGs. (D) KEGG functional enrichment analysis of the MRGs. (E) Univariate Cox regression analysis of the MRGs.
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FIGURE 4

Consensus clustering of LIHC based on MRGs. (A–C) Consensus clustering. (D) Differential expressions of the 19 MRGs between subtype 1 and subtype
2. (E) Survival difference between subtype 1 and subtype 2. (F) Differences in 22 immune cells’ infiltration levels between subtype 1 and subtype 2.
*P-value < 0.05, **P-value < 0.01 and ***P-value < 0.001, ns, represents non-significant.
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FIGURE 5

Construction of the prognostic signature based on MRGs. (A, B) LASSO regression analysis in the training cohort. (C) Expression pattern of the ten
MRGs between the low-risk group and the high-risk group in the training cohort. (D) Distribution of patients with risk scores in different risk groups
in the training cohort. (E) Principal component analysis in the training cohort. (F) Expression pattern of the ten MRGs between the low-risk group
and the high-risk group in the internal validation cohort. (G) Distribution of patients with risk scores in different risk groups in the internal validation
cohort. (H) Principal component analysis in the internal validation cohort.
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3.5 The risk score-based nomogram
showed favorable prediction capability

A nomogram was further developed based on several

clinicopathological factors and risk score for OS prediction in the

training cohort (Figure 8A). Calibration curves were employed to

examine the predictive accuracy, which was close to the ideal line,

suggesting excellent predictive efficacy of the nomogram in the

ICGC cohort, training cohort, and internal validation cohort

(Figures 8B–D).
3.6 Substance metabolism activities were
strengthened in low-risk group

Above all, the DEGs between the low-risk group and the high-

risk group were ascertained. The DEGs in different risk groups were

submitted to GSEA functional enrichment analysis, respectively.

The biological activities that are significantly enriched in the high-

risk group were positive regulation of cell activation, regulation of

lymphocyte activation, external encapsulating structure,

immunoglobulin complex, signaling receptor regulator activity,

cell adhesion molecules cams, cytokine-cytokine receptor

interaction, ECM receptor interaction, hematopoietic cell lineage,
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and neuroactive ligand receptor interaction (Figures 9A, B). The

biological activities that are significantly enriched in the low-risk

group were xenobiotic catabolic process, microbody lumen,

arachidonic acid monooxygenase activity, aromatase activity,

oxidoreductase activity acting on paired donors with

incorporation, fatty acid metabolism, glycine serine and threonine

metabolism, primary bile acid biosynthesis, retinol metabolism, and

tryptophan metabolism (Figures 9C, D). It appeared to be that the

substance metabolism activities are significantly strengthened in the

low-risk group.
3.7 The risk score correlated with higher
immune infiltration and immune
checkpoint expression

The ssGSEA results suggested that high risk score is

significantly correlated with more active immune activities and

higher infiltration levels of immune cells like APC co-stimulation,

CCR, checkpoint, HLA, Para inflammation, MHC class I, aDCs,

iDCs, macrophages, pDCs, Tfh, Th2 and Tregs (Figures 10A, B).

We also determined that high risk score significantly correlates with

multiple immune checkpoints, including LAG3, CTLA4, and

PD1 (Figure 10C).
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FIGURE 6

Validation of the prognostic signature. (A–C) Application of the prognostic signature in the training cohort. (D–F) Application of the prognostic
signature in the internal validation cohort. (G–I) Application of the prognostic signature in the ICGC cohort.
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FIGURE 8

Development of a prognostic nomogram based on the risk score. (A) Development of the nomogram based on clinicopathological parameters and
risk score in the training cohort. Calibration curves at 1-, 3- and 5-year in the (B) ICGC cohort, (C) training cohort, and (D) internal validation cohort.
***P-value < 0.001.
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FIGURE 7

Clinical analyses of the prognostic signature. (A) LIHC patients with ≤ 65. (B) LIHC patients with > 65. (C) LIHC patients with T1-T2. (D) LIHC patients
with T3-T4. (E) LIHC patients with G1-G2. (F) LIHC patients with G3-G4. (G) LIHC patients with stage I-II. (H) LIHC patients with stage III-IV. (I)
Distributions of clinicopathological parameters between the low-risk group and the high-risk group. (J) Univariate Cox regression analysis of risk
score in TCGA cohort. (K) Multivariate Cox regression analysis of risk score in TCGA cohort. (L) Univariate Cox regression analyses of risk score in
ICGC cohort. (M) Multivariate Cox regression analysis of risk score in ICGC cohort. *P-value < 0.05, ***P-value < 0.001.
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FIGURE 10

Associations between prognostic signature and immune infiltrating cells/immune checkpoints. (A, B) single sample Gene Set Enrichment Analysis.
(C) Expression pattern of 40 immune checkpoints between the low-risk group and the high-risk group. *P-value < 0.05, **P-value < 0.01 and
***P-value < 0.001, ns, represents non-significant.
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FIGURE 9

Gene set enrichment analysis. (A, B) Biological activities enriched in the high-risk group. (C, D) Biological activities enriched in the low-risk group.
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3.8 Distinct mutation characteristics in
low-risk group and high-risk group

We displayed the top 20 most frequently altered genes in the

low-risk group and the high-risk group, respectively (Figures 11A,

B). TTN (21%) and TP53 (36%) were deciphered to be the most

frequently altered genes in the low-risk group and the high-risk

group, respectively, and the most common mutation type was

observed to be missense mutation. We also compared the TMB

difference between the two risk groups, which turned out to be not

statistically significant (P = 0.055) (Figure 11C). Patients with high

TMB harbor poorer clinical outcomes than those with low TMB

(P = 0.031) (Figure 11D). Survival analysis combining risk score and

TMB revealed that patients carrying low TMB and low risk score

have the best prognosis, while patients taking high TMB and

high-risk score suffered from the worst prognosis (P <

0.001) (Figure 11E).
3.9 Patients in low-risk group were
potentially sensitive to several drug agents

Drug sensitivity analysis with IC50 indicated that patients

in the low-risk group may more sensitively respond to

fludarabine, axitinib, cytarabine, sorafenib, and oxaliplatin

(P < 0.001) (Figure 12).
3.10 Single-cell analysis of the
M0-related genes

To further understand the expression pattern of MRGs in the

tumor microenvironment (TME) of LIHC, we processed

investigations based on single-cell profiles. It was found that the
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expression levels of RBFA, KIAA0930, CCT3, and TUBA4A were

detected in various cell types in the TME (Figure 13). RBFA was

detected in hepatocytes and megakaryocyte-erythroid progenitor

cells. KIAA0930 was detected in monocytes. CCT3 was detected in

B cells , endothelial cells, epithelial cells , hepatocytes,

megakaryocyte-erythroid progenitor cells, monocytes, T cells, and

tissue stem cells. TUBA4A was detected in B cells, epithelial cells,

hepatocytes, and megakaryocyte-erythroid progenitor cells.
4 Discussion

Though progress has been made in achieving better survival

probability for patients with LIHC, the general prognosis remains

unsatisfactory on account of local recurrence and distant metastasis

(2, 3). It is getting prevalent to exploit models for prognosis

prediction and risk stratification currently. It is worth mentioning

that Zhang et al. (17) first report a macrophages M0-related gene

model to predict the survival of patients with LIHC. However, our

present prognostic signature has several following distinctions and

advantages. Firstly, genes that are negatively or positively correlated

with macrophages M0 were both included for subsequent analysis.

Secondly, we constructed the prognostic signature with ten MRGs,

which renders it more robust. What’s more important, the

predictive capability of our prognostic signature was stronger, we

have higher AUC values in both the training cohort and the

validation cohort, which indicated the priority of the present

signature to be applied in clinics. In addition, the risk score

showed the highest predictive value compared with other

traditional clinicopathological features, suggesting the potential

advantage of the present signature in aiding practical decision-

making. We also applied the prognostic signature in the training

cohort, internal validation cohort, and external validation cohort

sequentially. Thus, the applicability is verified more rigorously.
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FIGURE 11

Mutation differences between the low-risk group and the high-risk group. (A) Mutation landscape in the low-risk group. (B) Mutation landscape in
the high-risk group. (C) Differences in TMB between the two risk groups. (D) Survival analysis between patients with low TMB and patients with high
TMB. (E) Survival analysis combining risk score and TMB.
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FIGURE 12

Drug sensitivity analysis. (A) Fludarabine. (B) Axitinib. (C) Cytarabine. (D) Sorafenib. (E) Oxaliplatin.
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FIGURE 13

Single-cell analysis of macrophages M0-related genes. (A) Annotation of cell subclusters in the tumor microenvironment of LIHC. (B) Expression
pattern of MRGs in the tumor microenvironment.
Frontiers in Endocrinology frontiersin.org1183

https://doi.org/10.3389/fendo.2023.1153562
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu and Wang 10.3389/fendo.2023.1153562
Subgroup analysis further confirmed the broad applicability of the

prognostic signature in all types of patients with LIHC. In addition,

the expression pattern of several MRGs in the TME was detected by

single-cell analysis. Thus, the macrophages M0-related prognostic

signature constructed in the present study may be more

clinically practical.

The ten-MRG prognostic signature revealed favorable predictive

capability for patients with LIHC, which was more accurate than

other clinicopathological factors like grade, T stage, clinical stage, etc.

In addition, the risk score was deciphered as an independent

prognostic predictor for patients with LIHC, indicating the strong

predictive power of the macrophages M0-related gene signature.

Macrophages M0 are the undifferentiated cell type that can be

potentially induced to polarized cell types, M1 or M2, according to

corresponding signals and microenvironment. Macrophages M1 are

inflammation-promoting macrophages that secret inflammatory

factors, which are caused by lipopolysaccharide (LPS) with or

without Th1 cytokines (IFN‐g, GM‐CSF, etc.). In contrast,

macrophages M2 are induced by Th2 cytokines (IL-4, IL-13, etc.)

to exert anti-inflammatory and immune-modulatory effects via

producing anti-inflammatory factors (18, 19). The regulatory role

of macrophages M0 in LIHC remains incompletely demonstrated.

We noticed that the ten MRGs presented in this study are all risk

factors for the prognosis of LIHC. To this extent, our study lies in the

primary demonstration of the association between macrophages M0

phenotype and the prognosis of LIHC. However, more experimental

evidence is required to strengthen our implication.

Another significance of the present study revealed that several

metabolic activities (fatty acid metabolism, bile acid biosynthesis,

retinol metabolism, and amino acid metabolism) are significantly

upregulated in low-risk group with better prognosis and relatively

low macrophages infiltration. Aberrant substance metabolism or

metabolic reprogramming is commonly observed in malignancies

whereby tumor cells positively respond to metabolic stress caused by

glucose deficiency and hypoxia microenvironment (20). The liver is

the largest organ that physiologically undertakes the degradation of

metabolites and the synthesis of pivotal substances like urea and

albumin (21). Thus, the metabolic stress would even be increased

during hepatocarcinogenesis. The processing of glucose, fatty acid,

amino acid, and glutamine is generally enhanced in liver cancer cells

(22). On the other hand, the liver also functions as an immune organ

orchestrated by antigen-presenting cells and lymphocytes wandering

around the hepatic sinusoids (23). Thus, in the double settings, liver-

resident immunocytes attach great importance to metabolic

dysregulation in liver diseases. For instance, the switch between

polarized macrophages (from M2 to M1) determined the

transformation of the inflammatory microenvironment in the

progression of obesity (24). But the complex regulatory network

behind is largely unexplored, especially that relevant to

macrophages. Macrophages in the TME are also named tumor-

associated macrophages (TAMs), which are versatile in

carcinogenesis (25). A study regarding the TAMs-LIHC

interaction ascertained that TAMs could propel the migration of

cancer cells by means of stimulating cellular fatty acid oxidation via

secreting IL-1b (26). Thus, based on our findings, it is suggested that

the TAMs may potentially contribute to aberrant substance
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metabolism like fatty acid oxidation to affect the malignant

phenotypes of liver cancer cells. More experimental analyses are

necessary to further explore the association between TAMs and

metabolic dysregulation in LIHC.

Immunotherapy, as a promising anti-cancer strategy, has

somewhat improved the survival probability of patients with LIHC.

Massive tumor-infiltrating immune cells resident in the hepatic

sinusoids are potential to be activated by stimulation of immune

checkpoint blockade (27–29). Investigation of immune checkpoint

expression pattern indicated that key immune checkpoints like PD1

and CTLA4 are significantly upregulated in the high-risk group.

Thus, immune checkpoint blockade may better benefit patients in the

high-risk group, where lies the value of the M0-related prognostic

signature in guiding immunotherapy of patients with LIHC.

Excessive gene mutations are one of the triggers for tumorigenesis,

especially the tumor suppressor genes (30). TTN and TP53 were

determined to be the dominant carcinogenesis-driven genes in the

low-risk group and the high-risk group respectively, suggesting the

possibility of targeting the two dominant genes for prognosis

improvement in different risk groups. Several drug agents were also

implied by the M0-related prognostic signature to guide the clinical

treatment strategy for patients in low-risk group. For instance, the

multi-kinase inhibitor sorafenib is originally suitable for patients with

unresectable LIHC. Thus, our findings may serve as a clinical

reference to apply sorafenib to patients with low risk score.

Additionally, the other four drug agents (fludarabine, axitinib,

cytarabine, and oxaliplatin) lack the indication in LIHC. Our

findings may imply that clinical trials can be conducted to explore

the clinical benefits of applying these old drugs in LIHC.

Single-cell transcriptome data is sequenced from annotated cells

with high quality, which renders it more precise than common bulk

RNA-sequencing data. Thus, it is widely applied to dissect the TME

to further understand the intertumoral heterogeneity (31–33). In the

present study, we detected the expression pattern of MRGs in the

TME based on single-cell analysis. Results revealed that T cells are

the most abundant immune infiltrating cells in the TME. Besides, the

active expression of two MRGs, CCT3, and TUBA4A, was

determined in multiple immunocytes and stromal cells in the TME.

Zheng et al. (31) identified 11 T cell subclusters in the TME based on

single-cell technology and clinical LIHC samples. They found that the

exhausted CD8+ T cells and Tregs were predominant and potentially

clonally expanded in the TME. Other studies also indicated the

association between exhausted CD8+ T cells infiltration and

unfavorable clinical outcomes in LIHC (34, 35). Thus, positive

activation of exhausted CD8+ T cells may help to reverse the poor

prognosis. In addition, the interaction between TAMs and T cells

may be potentially mediated by the two MRGs, CCT3 and TUBA4A,

in LIHC, which requires further investigation.

However, there are certain limitations in the present study.

Firstly, specimens from actual clinical patients are needed to get

precise verification of the expression of the MRGs. Secondly, a

prospective study with a large LIHC cohort from multiple centers

will make the M0-related prognostic signature and corresponding

results more convincing. Thirdly, more experimental studies are

required to further unfold the obscure regulatory axes and

functional characterizations of the MRGs in LIHC.
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5 Conclusions

In this present study, a ten-gene prognostic signature was

constructed and validated based on macrophages M0-related

genes in LIHC. Substance metabolism, like fatty acid metabolism,

was significantly strengthened in the low-risk group, which may

potentially result from TAMs modulation. Multi-dimensional

investigations verified the clinical utility of the prognostic

signature. Furthermore, single-cell analysis dissected the active

expression of MRGs in the TME of LIHC. Taken together, this

macrophages M0-related gene signature may provide new insights

into prognostic prediction, risk decision, and clinical treatment

strategy for patients with LIHC.
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Crafting a prognostic nomogram
for the overall survival rate
of cutaneous verrucous
carcinoma using the
surveillance, epidemiology,
and end results database

Siomui Chong1‡, Liying Huang2‡, Hai Yu1, Hui Huang1,
Wai-kit Ming3, Cheong Cheong Ip1,4, Hsin-Hua Mu5, Kexin Li6,
Xiaoxi Zhang1, Jun Lyu2,7*† and Liehua Deng1,6*†

1Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University
Institute of Dermatology, Guangzhou, China, 2Department of Clinical Research, The First Affiliated
Hospital of Jinan University, Guangzhou, China, 3Department of Infectious Diseases and Public
Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong,
Hong Kong, Hong Kong SAR, China, 4Department of Dermatology, University Hospital Macau, Macau,
Macau SAR, China, 5General Surgery Breast Medical Center, Taipei Medical University Hospital,
Taipei, China, 6Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, He
Yuan, China, 7Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization
(2021B1212040007), Guangzhou, China
Background: The aim of this study was to establish and verify a predictive

nomogram for patients with cutaneous verrucous carcinoma (CVC) who will

eventually survive and to determine the accuracy of the nomogram relative to

the conventional American Joint Committee on Cancer (AJCC) staging system.

Methods: Assessments were performed on 1125 patients with CVC between

2004 and 2015, and the results of those examinations were recorded in the

Surveillance, Epidemiology, and End Results (SEER) database. Patients were

randomly divided at a ratio of 7:3 into the training (n = 787) and validation (n =

338) cohorts. Predictors were identified using stepwise regression analysis in the

COX regression model for create a nomogram to predict overall survival of CVC

patients at 3-, 5-, and 8-years post-diagnosis. We compared the performance of

our model with that of the AJCC prognosis model using several evaluation

metrics, including C-index, NRI, IDI, AUC, calibration plots, and DCAs.

Results: Multivariate risk factors including sex, age at diagnosis, marital status,

AJCC stage, radiation status, and surgery status were employed to determine the

overall survival (OS) rate (P<0.05). The C-index nomogram performed better than

the AJCC staging system variable for both the training (0.737 versus 0.582) and

validation cohorts (0.735 versus 0.573), which AUC (> 0.7) revealed that the

nomogram exhibited significant discriminative ability. The statistically significant

NRI and IDI values at 3-, 5-, and 8-year predictions for overall survival (OS) in the

validation cohort (55.72%, 63.71%, and 78.23%, respectively and 13.65%, 20.52%,

and 23.73%, respectively) demonstrate that the established nomogram

outperforms the AJCC staging system (P < 0.01) in predicting OS for patients
frontiersin.org0187

https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1142014/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1142014&domain=pdf&date_stamp=2023-03-27
mailto:lyujun2020@jnu.edu.cn
mailto:Liehuadeng@126.com
https://doi.org/10.3389/fendo.2023.1142014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1142014
https://www.frontiersin.org/journals/endocrinology


Chong et al. 10.3389/fendo.2023.1142014

Frontiers in Endocrinology
with cutaneous verrucous carcinoma (CVC). The calibration plots indicate good

performance of the nomogram, while decision curve analyses (DCAs) show that

the predictive model could have a favorable clinical impact.

Conclusion: This study constructed and validated a nomogram for predicting the

prognosis of patients with CVC in the SEER database and assessed it using several

variables. This nomogrammodel can assist clinical staff in makingmore-accurate

predictions than the AJCC staging method about the 3-, 5-, and 8-year OS

probabilities of patients with CVC.
KEYWORDS

cutaneous verrucous carcinoma, nomograms, SEER, prognosis, overall survival (OS)
Introduction

Ackerman discovered the uncommon and unique form of low-

grade squamous cell carcinoma known as cutaneous verrucous

carcinoma (CVC) in 1948 (1). This cancer develops slowly, is mostly

exogenously, and keratoacanthoma-like tumors may appear anywhere

on the surface of the skin. However, it appears most frequently on the

plantar surface of the foot, anogenital area, and mouth. CVC is

uncommon and has been found to occur on the face, maxillary

antrum, and buttocks (2–4). Factors induced by chemical

carcinogens, trauma, chronic irritability, and human papillomavirus

are a few of the causes that have been linked to the development of

CVC (5). Only a few instances of CVC have been documented to have

metastasized to the local lymph nodes which cannot be attributed to

skin metastases that have insufficient supporting documentation (6–9).

The incidence of CVC appears to be increasing rapidly, and it is

now the second most common kind of skin cancer (10, 11). In the

US, CVC constitutes 20% of skin cancers, corresponding to 1

million cases and contributing to up to 9000 predicted fatalities

per year (12). Surgery is still the main treatment intervention.

Radiotherapy and chemotherapy are adjuvant treatments, but for

primary low-risk patients, the recurrence rate is 8–10% (13, 14).

The American Joint Commission on Cancer (AJCC) Staging

Manual includes CVC, and is a significant tool for advising patients,

selecting their best treatment, and categorizing them for clinical

studies. However, there are a few important limitations in the AJCC

staging system for CVC regarding factors that might not be assessed

similarly across centers, such as differentiation grading. Another

disadvantage is that no independent evaluation of histologic

investigations has been performed, and hence risk factors are

assumed to be missing if they are not reported. Some pathologic

characteristics, such as the tumor depth in millimeters, are not

recorded consistently and may impact some instances of AJCC

staging. Furthermore, certain AJCC stages of CVC fall short of exact

prognostic classification when outcome metrics differ (15–17).

Nomograms have emerged as a valuable predictive tool in the

field of oncology in recent years (18). Compared to conventional

evaluation methods, nomograms provide a more accurate and easily
0288
interpretable means of estimating the probability of a particular

clinical outcome in an individual patient. This method has the

potential to enhance the precision of prognostic assessments and

facilitate more informed clinical decision-making (19). Nomograms

have been widely utilized in the prognostication of various kind of

malignancies (20–22), such as liver cancer, lung cancer, and breast

cancer, their application in predicting clinical outcomes of patients

with CVC remains inadequate. Presently, no predictive models have

been established that can precisely prognosticate the overall survival

(OS) of patients with CVC. Therefore, we have decided to

investigate the survival rate of CVC utilizing Surveillance,

Epidemiology, and End Results (SEER) data to aid clinicians and

patients in determining appropriate treatment options.

The aim of this study was to establish a comprehensive

nomogram for CVC patients using the Survei l lance ,

Epidemiology, and End Results (SEER) database, which

incorporates essential clinical and pathological features,

demographic variables, treatment modalities, and other relevant

characteristics. Consequently, the novel nomogram provides

clinicians with more accurate and personalized patient survival

predictions, superior to AJCC staging system in clinical efficacy.

This is may have the potential to enhance population health by

promoting improved quality of life and extending lifespan

among patients.
Materials and methods

Patient source and extraction

We obtained patient data from the Surveillance, Epidemiology,

and End Results (SEER) database, which includes 18 cancer

registries and is publicly available at www.seer.cancer.gov. We

used SEER*Stat version 8.3.6 software to retrieve and analyze the

data. Additional access to the SEER Plus database was requested in

compliance with ethical and legal standards. We reviewed

information from the public SEER database, a cancer database

that covers approximately 28% of Americans (23), and extracted
frontiersin.org
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data on CVC patients from this database (24). Subsequently, the

proceeded as follows: the major CVC locations were chosen using

the codes “C00.0 to C63.2.” All CVC-related ICD-O-3(third

revision of the International Classification) histology and

behavior codes (8051/3: Verrucous carcinoma, NOS) were included.
Predictor selection

This study aimed to identify prognostic factors for cancer overall

survival on CVC patients who were diagnosed between 2004-2015 and

staged according to the sixth edition of the American Joint Committee

on Cancer (AJCC) staging system which published in 2004. The

various demographic and clinical variables screened as CVC

prognostic factor that were age, sex, race, marital status, AJCC stage,

surgery, radiation, cause-specific death, vital status, chemotherapy,

tumor size, combined summary stage, and income. However, due to

significant multicollinearity among these factors, we only used the

AJCC staging system in the analysis. The outcome predicting variable

was cancer overall survival. It is important to note that patient-

informed permission was not necessary, as the SEER database used

in this study did not include any personally identifying information.
Data selection criteria

A retrospective analysis was conducted using the SEER

database, where 2889 patients with CVC between 2004-2015 were

initially selected, based on the criteria mentioned previously. After a

careful screening process, 1125 patients were finally selected,

whereas 1764 patients were excluded due to unknown tumor size,
Frontiers in Endocrinology 0389
race, or marital status, as well as unknown AJCC stage or an age

exceeding 100 years old, which criteria were exclusion. The data

selection procedure is depicted in Figure 1.
Nomogram contruction and Cox
regression analysis

In order to construct, 70% of patients were randomly allocated to

the training cohort (n = 787) and 30% to the validation cohort (n =

338). We applied with univariate Cox regression to identify relevant

prognostic factors, subsequent to multivariate Cox regression to

determine independent risk factors in the training set. Hazard ratios

(HR) and 95% confidence intervals (CI) were simultaneously recorded

during this analysis. The nomogram was constructed based on a Cox

regressionmodel to identify significant variables for determining the 3-,

5-, and 8-year OS rates in patients with CVC.

Through the allocation of weights to each variable, multiple

lines are created, with each variable corresponding to a specific

point. Through the cumulative sum of points assigned to all

variables, an overall score is obtained, which can be used to

predict survival rates at different points in time.
Nomogram verification and
clinical applicability

A range of validation method were utilized to ensure the accuracy

and reliability of the constructed nomogram in current study. The

following describes the content and methods of evaluation applied in

this study. These validation method was included the following texts
FIGURE 1

Flow chat of research selection. SEER, Surveillance, Epidemiology, and End Result Program; ICD-0-3, International Classification of Disease for
Oncology, Third Edition.
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mention:the calibration and discrimination of the nomogram were

evaluated using bootstrapping with 500 resamples. Comparisons

were conducted using net reclassification index (NRI) and

integrated discrimination improvement (IDI), which are relatively

new markers. This method made the comparisons more thorough

and accurate. The concordance index (C-index) and the area under

the time-dependent receiver operating characteristic curve (AUC)

were employed as assessment tools to assess the potential for

differentiation in the new model (25). The accuracy of the survival

probability estimations made using the nomogram were evaluated

using calibration plots. We further constructed judgment curves in

order to assess the potential use of the nomogram in clinical

contexts (26).

Decision curve analysis (DCA) is a novel method to assess the

clinical utility of a model by determining the net benefit at different

risk thresholds. DCA was employed for evaluating new nomogram

of clinical potential application. The threshold probability and net

benefit of the model were plotted on the abscissa and ordinate,

respectively. A higher DCA curve for a model indicates greater

clinical utility, as it reflects a higher net benefit at a given risk

threshold (27).
Statistical analysis

The software packages R (version 4.2.2; http://www.Rproject.org)

and SPSS (version 25.0, SPSS, Chicago, Illinois, USA) were utilized for

all statistical analyses of the data. In this analysis of 1125 patients, the

log-rank test was used in R software to ensure that noticeable
Frontiers in Endocrinology 0490
differences did not occur between the two cohorts. The continuous

variable of age was quantified as median(25th-75thpercentile) and did

not follow a normal distribution. Percentages were used to express

categorical variables.

The potential prognostic factors were identified using univariate

Cox regression, and the relevant variables were included in the

multivariate analysis. Then, a Cox regression model was selected

using the stepwise regression method. A two-tailed test probability

value of p < 0.05 was selected as the criterion for significance.
Result

Patient characteristics

This study comprised of 1125 patients with CVC, who were

stratified into a training cohort (N=787) and a validation cohort

(N=338). The clinicopathological and demographic characteristics

of the two cohorts were summarized in Table 1 using SPSS, and no

statistically significant differences were found between the groups.

The median ages at the CVC diagnosis were in 67 years

(interquartile range (IQR), = 56–99 years) and 65 years (IQR =

54– 98 years) in the training and validation cohorts, respectively.

Most of the patients in the training and validation cohorts were

white (84.0% and 85.2%, respectively), married (52.2% and 51.2%),

and male (59.2% and 59.8%). The AJCC cancer staging was in an

early stage, predominately at stage I (49.3% and 50.9%), and local

invasion predominated in both the training and validation cohorts

(76.1% and 75.2%). Most patients accepted surgical resection
TABLE 1 Patient characteristics and socio-demographic.

Variable Training group Validation Group

Number of patient n(%) 787(70) 338(30)

Diagnosis of age 67(56-99) 65(54-98)

Race n(%)

White 661(84.0) 288(85.2)

Black 78(9.9) 27(8.0)

Others 48(6.1) 23(6.8)

Sex n(%)

Male 466(59.2) 202(59.8)

Female 321(40.8) 136(40.2)

Married status n(%)

Married 411(52.2) 173(51.2)

Single 153(19.4) 67(19.8)

Divorced/Separated/Widowed 223(28.4) 98(29.0)

AJCC staging n(%)

I 389(49.3) 172(50.9)

II 240(30.5) 100(29.6)

(Continued)
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treatment (89.8% and 88.8% in the training and validation cohorts,

respectively) but refused radiotherapy (79.5% and 78.7%) and

chemotherapy (91.5% and 90.5%). Upper-middle-income class

families suffering from CVC in this study comprised about 42.2%

and 41.7%, respectively.
Variable screening

The significant variables in the univariate Cox regression

analyses were age at diagnosis, AJCC stage, marital status,

radiation status, sex, combined summary stage, tumor size, and

surgery status, which were further assessed using multivariate Cox

stepwise regression analysis(P<0.05). The following factors were

significant after multivariate analysis, which results list in Table 2:

age at diagnosis (HR = 1.059, 95%CI =1.050-1.067, p < 0.001),

female (versus male: HR = 0.813, 95%CI =0.669-0.988,p = 0.037),

divorced/widowed/separated (versus single: HR = 1.356, 95%CI

=1.013-1.814,p = 0.040), AJCC stage II (combined summary stage

versus AJCC stage I: HR = 1.224, 95%CI =1.001-1.496,p = 0.04),

AJCC stage III (vs AJCC stage I: HR = 1.404, 95%CI =1.087-1.814,p

= 0.010), AJCC stage IV (versus AJCC stage I: HR = 1.888, 95%CI

=1.396-2.553,p < 0.001), without surgery (versus surgery: HR =

2.025, 95%CI =1.538-2.665, p < 0.01).
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Nomogram for OS prognosis

A nomogram was constructed using chosen variables with their

HRs, which comprised all the significant independent variables for

forecasting the OS rates at 3, 5, and 8 years in the training cohort.

Figure 2 shows that age had the greatest effect on the prognosis

according to the nomogram, followed by AJCC stage, marital status,

race, sex, and combine summary stage(Sums). Each nomogram

variable was given a score on a points system. After adding the

scores for all variables, a line is drawn vertically downward to obtain

the total score that indicates the OS probabilities at 3, 5, and 8 years.
Evaluation of the OS nomogram

The C-indexes of the OS nomogram were 0.737 and 0.735, in

the training and validation cohorts, respectively, compared with

0.582 and 0.573 for AJCC staging. Our model demonstrates

superior discriminatory performance and prognostic ability

compared to AJCC staging, as evidenced by its C-index values

exceeding 0.7 and surpassing those of AJCC staging.

The AUC values for OS at 3, 5, and 8 years were 0.767, 0.789,

and 0.789, respectively, in the training cohort, and 0.757, 0.773, and

0.792 in the validation cohort. The AUC was > 0.7 for the prediction
TABLE 1 Continued

Variable Training group Validation Group

III 99(12.6) 37(10.9)

IV 59(7.5) 29(8.6)

Combined Summary Stage n(%)

Local 599(76.1) 254(75.2)

Regional metastasis 148(18.8) 66(19.5)

Distant metastasis 40(5.1) 18(5.3)

Surgery n(%)

Yes 707(89.8) 300(88.8)

No/Unknown 80(10.2) 38(11.2)

Radiation n(%)

Yes 161(20.5) 72(21.3)

No/Unknown 626(79.5) 266(78.7)

Chemotherapy n(%)

Yes 67(8.5) 32(9.5)

No/Unknown 720(91.5) 306(90.5)

Income(US dollor) n(%)

<$35,000, $35, 000-44,999 75(9.5) 38(11.2)

$45,000-$59,999 193(24.5) 78(23.1)

$60,000-74,999 332(42.2) 141(41.7)

$75,000+ 187(23.8) 81(24.0)
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of OS at 3, 5, and 8 years in both the training and validation cohorts

(Figure 3), indicating favorable discrimination by the nomogram.

The model demonstrated excellent discriminative capacity through

its accurate predictions of the OS probabilities at 3, 5, and 8 years,

which were made possible by highly precise predictive models of

both set (Figure 3).
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For the 3-, 5-, and 8-year OS probabilities, the NRI values were

68.08% (95% confidence interval [CI] = 0.559–0.867), 77.56% (95%

CI = 0.677–0.945), and 79.34% (95% CI = 0.699–0.960),

respectively, in the training cohort, and 55.72% (95% CI = 0.226–

0.829), 63.71% (95% CI = 0.363–0.876), and 78.23% (95% CI =

0.561–0.964) in the validation cohort. The corresponding IDI values
TABLE 2 Selected variables by multivariable Cox regression analysis.

Multivariable analysis

Variable HR 95% CI P-value

Diagnosis of age 1.059 1.050-1.067 <0.001

Sex

Male Reference

Female 0.813 0.669-0.988 0.037

Marital status

Single Reference

Married 0.814 0.621-1.067 0.137

Divorced/widowed/Separate 1.356 1,013-1.814 0.040

AJCC

I Reference

II 1.224 1.001-1.496 0.04

III 1.404 1.087-1.814 0.010

IV 1.888 1.396-2.553 <0.001

Radiation

Yes Reference

No/Unknown 0.843 0.668-1.063 0.149

Surgery

Yes Reference

No/Unknown 2.025 1.538-2.665 <0.001
fron
AJCC, American Joint Committee on Cancer; HR, hazard ratio, CI, confidence interval.
FIGURE 2

Nomogram for predicting 3-, 5-, and 8-years cutaneous verrucous carcinoma overall survival of probability. The value of each of variable was given
a score on the point scale axis. A total score could be easily calculated by adding each single score and, by projecting the total score to the lower
total point scale, we were able to estimate the probability of CVC. Sums, combined summary of stage; Mari, marital status; AJCC, American Joint
Committee on Cancer.
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were 15.48%, 20.23%, 23.66%, 13.65%, 20.52%, and 23.73% (p =

0.001), respectively. When compared with the AJCC staging system,

the new model performed much better in every circumstance in

which the IDI and NRI values were higher than zero. These results

indicating that the nomogram predicted prognosis with greater

accuracy than the AJCC staging.

The calibration plot was used to test whether the model

effectively differentiated between actual and expected values. The

calibration curves of the nomogram showed high consistency

between the predicted and observed survival probabilities in both

the training and validation cohorts. In summary, the calibration

plot of the OS nomogram demonstrated that the expected 3-, 5-,

and 8-year survival probabilities for the training and validation

cohorts closely matched the survival probabilities calculated using

the actual data (Figure 4), indicating that the model had

considerable discriminative and calibrating abilities. This proves

that the model exhibited a high level of calibration.
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Ultimately, A decision-curve analysis (DCA) was conducted to

assess the clinical validity of the new model, and satisfactory results

were obtained for curves calculated at 3, 5, and 8 years in the training

and validation cohorts (Figure 5). In the comparison between the

clinical benefits of the nomogram and those of the AJCC staging, the

DCA curves demonstrated that the nomogram outperformed the

AJCC staging in predicting the 3-, 5-, and 8-year overall survival

rates. This was evidenced by the fact that the nomogram provided

more net benefits than the AJCC staging for nearly all threshold

probabilities in both the training and validation cohorts.
Discussion

With a lifetime prevalence of 7–11% in the USA, CVC is the

second-most prevalent nonmelanoma skin cancer among white

people (28). However, there are insufficient data for forecasting
DA
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FIGURE 3

Receiver operating characteristic curves. ROC curve analyses to evaluate the performance of the new model compared to the traditional AJCC
model. The area under the curve (AUC) metric was used to predict the overall survival probability with 3-, 5-, and 8-years OS probability in the
training and validation cohorts. The results of the training cohort represent in (A–C) while (D–F) represent the results of validation cohort. OS,
overall survival.
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the OS in patients with CVC, and so our investigation addressed

this aforementioned lack of research.

This study effectively used case data from the SEER database to

construct a unique and simple prediction nomogram for patients

with CVC. The 3-, 5-, and 8-year OS probabilities of patients with

CVC can be estimated using this nomogram. In both internal and

external evaluation, our nomogram showed satisfactory accuracy

and discrimination. Nomograms can be used to identify and

categorize participants in clinical trials to produce personalized

prognostics. It is important for both the physician and the patient to

properly interpret the probability of the 3-, 5-, or 8-year recurrence

for the patient (29). We can examine two patients with CVC before

AJCC stage IV as an illustration: a 60-year-old married white male

known as patient 1 had a localized invasive tumor, while patient 2

was an 88-year-old black single female who had a distant metastasis

tumor. The outcomes produced by the new nomogram were
Frontiers in Endocrinology 0894
distinct: the 3-, 5-, and 8-year OS rate predictions for patient 1

were 80%, 68%, and 55%, respectively, and those for patient 2 were

28%, 12%, and 0%. We can identify patients with various prognoses

using this nomogram, allowing for more-customized treatment and

follow-up plans for this uncommonmalignancy. The present results

are consistent with several nomograms having been developed for

other types of cancer that are more accurate than the current AJCC

staging system (30).

Our study found that the average age at which CVC was

diagnosed was 67 years, with males comprising the majority

(>50%) of cases in both cohorts (Table 1). Multivariate analysis

identified age as a significant risk factor for overall survival (OS),

with older patients experiencing lower survival rates. Meanwhile,

our model found that the nomogram score increased as the AJCC

stage progressed, meaning that a higher AJCC stage was also linked

to negative effects on patient survival (31). Females fared better than
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FIGURE 4

Calibration curves. Calibration curves for 3-, 5-, and 8-year OS depict the calibration of each model in terms of agreement between the predicted
probabilities and observed outcomes of the training cohort (A–C) and validation cohort (D–F). The solid black line indicates the ideal reference line
where predicted probabilities would match the observed survival rates. The black dots are calculated by bootstrapping (resample: 500) and represent
the performance of the nomogram. The closer the solid black line is to the dash red line, the more accurately the model predicts survival. OS,
overall survival.
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males in our study, and there were significant variations in OS

related to sex, meaning that it is an important prognostic factor

(Table 2). The healthy male and middle-aged population tendency

may be related to alcohol use and health which has

been documented.

It was particularly interestingly that this study found that

having experienced divorce is a risk factor for the OS (HR =

1.356, p < 0.05) in CVC. A previous study found that divorced

patients with cancer had worse outcomes than married patients

(32), which may be related to a sudden interruption or loss of health

insurance, reduction in social support, or financial instability, and

raises the possibility that a patient may have worse outcomes after

receiving cancer treatment (33). According to Hanske et al., the

lower cancer screening rate among single people may be responsible

for their higher risk of adverse outcomes (34). It can be speculated

that unmarried or divorced patients undergo cancer screening less

frequently, which could have an impact on their OS rate and cause

more-advanced stages among this population. Previous research
Frontiers in Endocrinology 0995
has found that supportive partnerships may have positive impacts

on the behavior of a partner to obtain medical care (35).

Clinically, an CVC tumor lesion is defined by progression to a

large, necrotic, and infected state with local aggressive metastasis,

with results that are comparable to those of our study. Although

uncommon, metastases to nearby lymph nodes and other distant

regions are possible. Metastatic CVC has a fatal prognosis; our

nomogram indicated that distant tumors in CVC increases negative

outcomes for the survival rate, with a few large studies indicating

mortality rates of 70% (36). This is an indication that the difficulty

of treating metastatic CVC will depend on the affected areas and the

degree of metastasis. Biologic aggression is well-documented and

indicated by an increased frequency of numerous tumors, risk of

local recurrence, regional and distant metastases, and higher

mortality (37).

Our investigation found that patients who underwent surgery

had an improved prognosis (Table 2). The outcome gives us a hint

about CVC management: detecting tumors at an earlier stage is
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FIGURE 5

Decision curve analysis curves. Decision curve analysis of the nomogram for prediction of 3-, 5-, and 8-years overall survival probability with CVC
patients. (A) 3-year survival benefit in the training cohort. (B) 5-year survival benefit in the training cohort. (C) 8-year survival benefit in the training
cohort. (D) 3-year survival benefit in the validation cohort. (E) 5-year survival benefits in the validation cohort. (F) 8-year survival benefit in the
validation cohort.
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preferable since localized illness is frequently treatable with an

appropriate surgical excision with sufficient margins (38), which

may improve the survival probability and the prognosis of the

patient. This might also facilitate a reduction in the frequency of

local recurrences (39). Our study also found that receiving radiation

as a monotherapy for CVC had no predominant effectiveness, while

not receiving radiation was not a significant factor (Table 2).

Although radiation therapy can shrink the tumor size, the patient

who only receives radiation therapy may experience anaplastic

transformation of their tumor that could eventually metastasize to

the organ or the lymph node, which has been demonstrated in

previous studies of skin cancer (6, 40). Radiation therapy can reduce

the tumor size, but even with surgery, death might not be avoided.

A nomogram for OS has been constructed based on an

assessment of the relevant prognostic indicators, and the

nomogram was compared with the standard AJCC model by

employing an internal validation cohort and a training cohort.

The C-index and AUC were utilized to assess the discrimination

abilities of the two approaches, and we discovered that both of these

were superior for the monogram compared with the AJCC staging

system in both the training and validation cohorts (Figure 3). An

increase in AUC is not always immediately apparent when a brand-

new metric is added to a model, and so a comparison needs to be

performed to determine whether the predictive ability of the model

has improved. Instead, the NRI is often used to compare the

predictive capabilities of models, whereas the IDI may be used to

indicate overall model progress (41, 42). According to the NRI of

the nomogram model, the proportion of participants with correctly

classified 3-, 5-, and 8-year survival probabilities increased after the

new index was added by 68.08%, 77.56%, and 79.34% in the training

cohort, respectively, and by 55.72%, 63.71%, and 78.23% in the

validation cohort (p < 0.001). The IDI values indicated that the new

model outperformed the AJCC staging system in terms of the

probabilities of 3-, 5-, and 8-year survival by 15.48%, 20.23%, and

23.66% in the training cohort, respectively, and by 13.65%, 20.52%,

and 23.73% in the validation cohort.

In order to establish the accuracy of our nomogram, the

calibration curves and C-indexes were checked using both the

training and validation cohorts. When subjected to internal and

external validation, the C-indexes for the 3-, 5-, and 8-year OS

models were 0.737 and 0.735, respectively. Both internal and

external verification methodologies indicated that the C-index of

the OS model exceeded 0.7. Excellent performance of the

nomogram was also demonstrated by the calibration curves being

highly consistent with the 45-degree ideal lines. These outcomes

demonstrated that in both the training and verification cohorts, our

nomogram had good calibration and discrimination performance

(43) (Figure 4).

Decision-curve analysis (DCA) was employed to assess the

clinical net benefit of the prediction models (44). The results of

the study showed that the OS model had a beneficial impact on both

the training and validation cohorts, as revealed by the 3-, 5-, and 8-

year DCA curves, which demonstrated good performance

(Figure 5). According to Vickers and Elkin (45), they have
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introduced DCAs to estimate the clinical utility of prediction

models by determining the threshold probability, which is the

probability at which the harm of a false-positive intervention

exceeds the harm of a false-negative non-intervention, and

subsequently derive the net benefit. In our current study, DCAs

curve demonstrated significant net benefits for both the training

and validation cohort. For example, in the validation cohort,

assuming timely intervention for CVC patients with a 20% risk of

mortality, every 6 and 15 of 100 individuals would benefit from the

intervention at 3 and 5 years, respectively. The net benefits of

clinical intervention were considered good when the threshold

probability was greater than 0.4 at 3-,5-,8-year OS model (Figure 5).

While our study had important strengths, there were also a few

limitations. First, because of the retrospective design of extracting

data from the SEER database, selection and information biases

were unavoidable. Second, therapy information in the SEER

database is not all-inclusive; for example, no information was

available on the type of surgical techniques utilized or some

crucial clinical pathologic characteristics associated with

prognoses, such as vascular invasion and the surgical margin.

Third, the SEER database information lacks some laboratory tests

results for important prognostic indicators, such as tumor and

immunohistochemical analyses markers of p53, Rb gene, and

HMB-45. Fourth, the projected values of the nomogram are

only intended to serve as a general reference for doctors and

will not always provide a correct prognosis. Future prospective

studies will be conducted to test the nomogram to account for

these limitations.
Conclusion

This study is the first to utilize the SEER database to construct a

comprehensive CVC nomogram based on an analysis of various

variables. One intriguing finding was that divorce was a risk factor

that harms the prognosis. Our nomogram may be useful as a tool to

assist clinical staff in determining more-precise forecasts of the 3-,

5-, and 8-year OS rates of patients with CVC compared with using

the AJCC staging system.
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Cancer is the second most common cause of mortality in the world. One of the

unresolved difficult pathological mechanism issues in malignant tumors is the

imbalance of substance and energymetabolism of tumor cells. Cells maintain life

through energy metabolism, and normal cells provide energy through

mitochondrial oxidative phosphorylation to generate ATP, while tumor cells

demonstrate different energy metabolism. Neuroendocrine control is crucial

for tumor cells’ consumption of nutrients and energy. As a result, better

combinatorial therapeutic approaches will be made possible by knowing the

neuroendocrine regulating mechanism of how the neuroendocrine system can

fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells

for nutrients and metabolites are presented, showing how the neuroendocrine

system regulates substance and energy metabolic pathways to satisfy tumor cell

proliferation and survival requirements. In this context, targeting neuroendocrine

regulatory pathways in tumor cell metabolism can beneficially enhance or

temper tumor cell metabolism and serve as promising alternatives to

available treatments.

KEYWORDS

substance, energy, metabolism, neuroendocrine regulation, tumor cells
1 Introduction

Cancer is a disease that seriously threatens people’s life and health and is one of the

leading causes of death each year, despite tremendous advances in detection and treatment

in recent decades. According to statistics, there were about 23.6 million new cases of cancer

worldwide and about 10 million people died from cancer in 2019 (1). Since 2000, the
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number of cancer cases and deaths as well as the crude incidence

and mortality of cancer in China have gradually increased (2).

Cancer is a heavy burden for both the patients themselves and the

whole of society. At present, the global situation is still not

optimistic. Therefore, it is crucial to find new regulated pathways

of tumor cell death and investigate their therapeutic potential.

In the study of cancer biology, cancer metabolism represents

one of the most important research directions. The synthesis,

release, conversion, and utilization of energy in the whole

metabolism are summarized under the term energy metabolism.

Glucose is primarily converted to energy by cells. The primary

energy source of normal cells is the aerobic oxidation of glucose,

whereas the energy metabolism of tumor cells differs significantly

from that of normal cells. The ability to reconfigure their metabolic

network gives cancer cells the ability to adapt and ensure survival in

the face of significant environmental change. During the 1920s,

Warburg observed that the rate of glycolysis in tumor cells was

significantly increased in tumor cells compared with normal cells.

This phenomenon was later termed the Warburg effect, also known

as aerobic glycolysis, which occurs in tumor cells even in the

presence of sufficient oxygen (3). Despite its low production

efficiency, glycolysis can rapidly produce ATP for tumor cells and

also produce a variety of macromolecules to meet the material and

energy requirements of tumor cells that proliferate rapidly.

Although oxidative phosphorylation in mitochondria is an

effective method for energy production, tumor cells prefer

glycolysis as their method for energy production. Different tumor

cells produce ATP in varying proportions from glycolysis and

oxidative phosphorylation. In 2011, reprogramming of energy

metabolism was named as one of the ten most important features

of tumors (4). Reprogramming of energy metabolism not only

provides energy and biomacromolecules for tumor cell growth and

proliferation, but also supports tumor cell survival under

stress conditions.

Surprisingly, a growing body of research has shown that

neuroendocrine systems regulate a variety of molecular dynamics

in substance and energy metabolism in tumors. To control

numerous elements of energy intake, consumption, digestion, and

absorption, the central nervous system (CNS) interacts with a

number of peripheral organs and tissues (5). For example, food-

induced changes in gastrointestinal tract tension can directly trigger

vagal afferents, or indirectly activate taste receptors through

chemical stimuli and trigger the production of gastrointestinal

peptides (5). The released peptides, including ghrelin, gastric

leptin, cholecystokinin, and peptide YY, or appetite-stimulating

substances such as glucagon-like peptide 1 increase the feeling of

satiety (5). Through circuits between the brainstem and

hypothalamus, nutrient levels in the blood influence food intake

(5). The circuits of homeostatic energy metabolism are called

hypothalamic circuits (6). Neuropeptide Y (NPY) and dopamine

pathways associated with sensory inputs of food such as smell and

taste, and influenced by physiological states such as hunger and

satiety, regulate food intake in the hypothalamus and

extrahypothalamic nuclei (7, 8). In addition to food intake, the

hypothalamic circuit controls other elements of energy

homeostasis, such as fat metabolism (9), adipose tissue
Frontiers in Endocrinology 02100
distribution (10), glucose metabolism (11), and insulin sensitivity

(12). Energy expenditure, glucose and fat metabolism, and feeding

behavior have been shown to change under stress (13). However,

the neurobiology underlying these processes is constantly changing

to meet the demands of energy supply in tumors. This review aims

to highlight the molecular interface that neuroendocrine dynamics

represent as an important general physiological condition for

modulating tumor substance and energy metabolism and

clinically determining cancer progression, and to provide a

reference for basic research and clinical treatment of tumors by

targeting neuroendocrine molecules.
2 Energy metabolism in tumor cell

Energy metabolism is one of the fundamental features of an

organism’s life activities. Energy is needed for the growth and

reproduction of cells. One of the reasons cancer why is so

damaging to the body and so difficult to overcome is because of

its ability to alter metabolic pathways, and give tumor cells a greater

competitive advantage. Energy in cancer cells is provided mainly by

adenosine triphosphate (ATP), with most of the ATP in the cells

being generated by the breakdown of glucose, and a small amount

by the breakdown of glutamine and fatty acid metabolism.
2.1 Glucose metabolism

In normal cells, the energy required for cellular metabolism is

converted mainly from glycogen and other substances into 6-

phosphate-glucose, and then enters the mitochondria via the

glycolysis pathway, where it undergoes the tricarboxylic acid

(TCA) cycle and oxidative phosphorylation, providing 70% of the

energy required for its own metabolism. Glycolysis can only provide

a small portion of the energy, which is about 20-30% of the

metabolism of normal cells. The Warburg effect describes that

how cancer cells tend to absorb glucose and convert it

predominantly to lactate, even in the presence of oxygen, and

refers to the abnormal glucose metabolism in cancer cells

(Figure 1). The Warburg effect assumes that glycolysis is the main

energy supply pathway for tumor cells, and that tumor cells rely on

glycolysis for energy supply even when sufficient oxygen is available.

Studies have shown that tumor cells transport extracellular glucose

into the cell via glucose transporters distributed on the cell

membrane and catabolize it to generate ATP using glycolytic

enzymes such as hexokinase, phosphoglucose isomerase, and the

product of the multistep metabolism of pyruvate. In the hypoxic

region of the tumor, a large amount of lactate is formed from

pyruvate by lactate dehydrogenase. Lactate is released to the outside

of the cell through the only carboxyl transporter in the cell

membrane and accumulates locally, creating an acidic

environment for tumor growth. This microenvironment promotes

tumor cell invasion into surrounding tissues (14). At the same time,

researchers found that tumor cells in the oxygenated area could take

up the lactic acid produced by cells in the hypoxic area and

synthesize glucose through gluconeogenesis, which can be used by
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tumor cells in the hypoxic area to realize energy cycle (14). Lactic

acid can also enter the bloodstream, reach the liver via

gluconeogenesis, and eventually generate liver glycogen or blood

glucose, resulting in a lactic acid cycle (15). In the oxygenated tumor

oxygen region, tumor cells also have the same energy me of the TCA

cycle as normal cells, i.e, the metabolite pyruvate enters the

mitochondria through oxidative decarboxylation to form acetyl-

CoA via transporters, and is oxidatively metabolized in the

TCA cycle.

Aerobic glycolysis is a unique metabolic mode of tumor cells.

The aerobic glucose metabolic pathway is actually a low-

productivity metabolic pathway. One molecule of glucose is

degraded to pyruvate via the glycolytic pathway, generating 2

molecules of ATP, whereas complete oxidation by oxidative

phosphorylation in mitochondria generates 32 to 33 molecules of

ATP. Tumor cells require a large amount of energy to proliferate

rapidly, but they choose glycolysis, which is less productive.

However, there is no obvious defect in the mitochondria of tumor

cells. It has been found that mitochondria maintain complete

functions in tumor cells, and the tumorigenic function of cancer

cell lines in vitro and in vivo is reduced when mitochondrial DNA is

specifically knocked down (4, 16).

Why do some tumor cells still prefer the less efficient pathway of

glycolysis as their primary energy source, even though

mitochondria are so efficient? First, the cytoplasm produces ATP

100 times faster than mitochondria, meaning the yield is low but the

rate is high. As long as glucose supply is sufficient, the ATP

produced by glycolysis per unit time is higher than that of

oxidative phosphorylation (17). Second, the increase in glycolysis

leads to the accumulation of metabolic intermediates that can

generate the demand for tumor cell proliferation through other

reactions. Finally, the massive accumulation of pyruvate during

glycolysis generates lactate under the action of lactate
Frontiers in Endocrinology 03101
dehydrogenase A (LDHA), which is transported outside the cell

by monocarboxylic acid transporter 4 (MCT4), creating an acidic

environment outside the cell that promotes tumor cell growth,

invasion and metastasis.

In addition, tumor cells adapt to different survival conditions by

altering their metabolism, a process known as metabolic plasticity.

When using chemotherapeutic agents that target the proliferation

phase of tumor cells, cancer stem cells (CSCs) can circumvent the

killing effects of chemotherapeutic agents by regulating their own

metabolic processes to keep them in a “resting state” with low

energy metabolism. At the same time, CSCs also promote the

metabolism of the pentose phosphate pathway and increase their

own antioxidant capacity to adapt to different tumor

microenvironments (TMEs) (18). Elgendy et al (19) also

demonstrated through intermittent diet and drug administration

that tumor cells have metabolic plasticity that can switch between

glycolysis and oxidative phosphorylation to adapt to different

survival challenges. Adenosine-activated protein kinase (AMPK)

and HIF-1 are two important regulators of oxidative

phosphorylation and glycolysis. To explain the Warburg effect in

tumor metabolism, Sotgia et al (20) proposed that cancer-associated

fibroblasts in the vicinity of the tumor are “induced” by cancer cells

to switch energy metabolism to aerobic glycolysis and that these

interstitial cells are “induced” by cancer cells. Metabolites of fibers

can provide metabolic substrates for epithelial cancer cells as an

energy source. In this model, interstitial cell glycolysis produces L-

lactate and ketone bodies that provide raw materials for

mitochondrial metabolism, and their transport to epithelial tumor

cells with oxidative properties drives mitochondrial oxidative

phosphorylation. This metabolic mode is also referred to as the

“reverse Warburg effect” because mesenchymal cells, rather than

tumor cells, take over aerobic glycolysis. At the same time, this also

shows that tumor and tumor stromal cells belong to the same

metabolic symbiosis.
2.2 Glutamine metabolism

Glutamine is the most abundant non-essential amino acid in

human blood under normal conditions and accounts for about 50%

of the free amino acids in the human body (21). In stressful

situations, the body must supply glutamine to meet the demand,

and glutamine is absorbed by the body and classified as a

conditional non-essential amino acid. Under normal conditions,

glutamine is synthesized and stored primarily in skeletal muscle,

and some is also synthesized in adipose tissue, lung and liver, with

skeletal muscle having the highest glutamine synthase activity.

Glutamine taken up and stored by skeletal muscle is gradually

released into the bloodstream and delivered to all parts of the body.

The proliferation of lymphocytes and macrophages stimulated by

antigens, and the renewal and maintenance of the intestinal mucosa

require large amounts of glutamine. Therefore, the intestine and

immune cells are important consumption organs for glutamine.

Glutamine metabolism is another characteristic of tumor cells

(22) (Figure 2). Glutamate is synthesized from glutamate and

ammonia under the catalysis of glutamine synthase (GS).
FIGURE 1

Schematic diagram of glucose metabolism in tumor cell.
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However, in tumor cells or rapidly proliferating cells, the de novo

synthesis of glutamine cannot meet the demand of cellular energy

metabolism for glutamine, so it is converted to a conditionally

essential amino acid. Glutamine enters the cell via the amino acid

transporters SLClA5 and SLC7A5/SLC3A2, and is deaminated into

glutamate in the mitochondria by glutaminase (GLS). Glutamate is

formed under the action of glutamate dehydrogenase (GDH) or

amino acid transaminase. Ketoglutarate (KG) is fed back into the

TCA cycle and provides energy to cells through oxidative

phosphorylation. The study found that tumor cells take up more

glutamine and less glucose than immune cells in the TME. At the

same time, it was observed that glutamine uptake and metabolism

can significantly inhibit glucose metabolism. The specific

mechanism is not clear (23), but it indicates that glutamine

metabolism is very important for tumor cells. However, in later

studies, glutamines was found to be an energy source only in some

tumor cells and not in all tumor cells (24).
2.3 Fatty acid metabolism

In recent years, researchers have paid more attention to fatty

acid metabolism in tumor cells because fatty acids are not only the

main components of membrane formation, but also a source of

energy supply and secondary messengers of signal transduction in

rapidly proliferating tumor cells (25). In a state of energy stress,

fatty acids in mitochondria produce acetyl-CoA through iodine

oxidation, accompanied by the production of NADH and FADH,

thereby supporting the cell’s biosynthetic pathway and producing

ATP. In addition, phosphatidylinositol 3-kinase (PI3K) regulates

several important signaling pathways. PI3K-AKT signaling pathway

promotes glucose uptake and glycolysis by activating glucose

transporter 1 (GLUT1) and hexokinase. PI3K-AKT signaling
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pathway can also enhance glutamine replenishment and lipid

remodeling by activating glutamate pyruvate transaminase (26).
3 Neuroendocrine system

The endocrine/neuroendocrine system includes the endocrine

organs like the pineal gland, adrenal gland, pituitary gland, thyroid

gland, and parathyroid gland, as well as clusters of endocrine cells

such as the pancreatic islets of Langerhans, bronchial neuroepithelial

bodies, scattered epithelial endocrine cells (such as gastrointestinal

endocrine cells), and neurons (27). In the literature, the terms

“endocrine” and “neuroendocrine” are frequently used

interchangeably, particularly when discussing neoplasms derived

from these cells. In this review, we use the condensed classification

system of the sympathetic nervous system (SNS) and hypothalamic–

pituitary–adrenal (HPA) gland axis as the neuroendocrine system.

The various distinct cell types composing this system produce and

secrete a wide variety of amino acids, including glycine, glutamate,

acetylcholine (ACh), and gamma-aminobutyric acid (GABA);

biogenic amines including the neurotransmitters epinephrine (E)

and norepinephrine (NE), and serotonin; neuropeptides including

neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP),

calcitonin gene-related peptide (CGRP), neurotensin, brainstem,

and many others; steroid hormones including adrenocorticotropic

hormone, growth hormone, hydrocortisone, and many others. The

HPA axis is activated at the molecular level by the production of

corticotrophin- releasing hormone and arginine vasopressin, both of

which induce the release of adrenocorticotropin from the anterior

pituitary gland as a crucial part of the hormonal response to

dangerous stimuli. The following generation of glucocorticoids

mediates the final output of the system (28, 29). Epinephrine and

norepinephrine are produced by the sympathetic division of the SNS

and the adrenal medulla, signaling physiological changes in response

to a dangerous scenario (28, 29), which act either locally (paracrine

function) or systemically via the vascular system (Table 1).

Neuroendocrine regulation is the crucial element of the adaptive

systems of organisms to regain homeostasis following environmental

and psychosocial stresses. Both the SNS and HPA axis have been

shown to modulate the substance and energy metabolism (28, 49),

and other specific molecular processes implicated in these dynamics

are also thought to influence the formation of tumors.
4 Crosstalk between neuroendocrine
regulation and tumor cell metabolism

Specific responses (inhibitory or excitatory) are displayed by

specialized subsets of brainstem and hypothalamus neurons in

response to variations in extracellular glucose concentrations (50).

For proper control of systemic physiology, these two brain areas

must work in close collaboration (51, 52). The lateral, arcuate, and

ventromedial hypothalamic nuclei were identified to include

hypothalamic glucose-sensing neurons in the 1960s (53); in contrast,

the nucleus of the solitary tract, region postrema, and dorsal motor
FIGURE 2

Schematic diagram of glutamine metabolism in tumor cell.
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nucleus of the vagus was revealed to contain brainstem glucose-sensing

neurons. Importantly, these neurons release mediators, which are

essential for maintaining physiological homeostasis, controlling sleep-

wake cycles, regulating food patterns, and other functions that are

disturbed in cancer (Figure 3). Therefore, understanding the role of

neurotransmitters play in the development of cancer provides a

foundation for a suggested connection between psychosocial and

physiological factors (54, 55). The functionality of migration of

tumor cells has also been revealed to be significantly influenced by

neurotransmitters and hormones (56). The section that follows will go

through the impact of numerous traditional neurotransmitters and

neuropeptides on the material and energy metabolism of tumors.

The hypothalamus and brainstem contain several neuroendocrine

mediators that are sensitive to variations in extracellular glucose levels.

These neuroendocrine mediators regulate a wide range of behavioral

and physiological processes, including hepatic gluconeogenesis, energy

balance, sleep/wake phases, eating behavior, and stress tolerance.

Therefore, the effects of cancer-related alterations in glucose on

central neuronal activity and subsequent physiology/behavior are

anticipated to be extensive. Understanding and modifying these

circuits may offer a unique strategy for treating co-morbidities linked

with cancer, such as disturbed sleep, exhaustion, cachexia/anorexia,

depression, and anxiety.
4.1 Epinephrine and norepinephrine

The catecholamines epinephrine (adrenal ine) and

norepinephrine (noradrenaline) are the best-known and most

studied neurotransmitters, formed from the amino acid tyrosine

and released mainly by sympathetic nerves and the adrenal medulla.

The interactions between epinephrine and norepinephrine and the
TABLE 1 Neuroendocrine mediators.

Neuroendocrine
system

Neuroendocrine mediators Reference

Amino acids Glycine (30)

Glutamate (31)

Acetylcholine (Ach) (32)

Gamma-aminobutyric acid (GABA) (33)

Epinephrine (NE) and
norepinephrine (E)

(34, 35)

Serotonin (36)

Neuropeptide including
neuropeptide Y (NPY)

(37)

Biogenic amines Vasoactive intestinal polypeptide
(VIP)

(38)

Calcitonin gene related peptide
(CGRP)

(39)

Neurotensin (40)

Taurine (41)

6-alanine (42)

Hypocretin/Orexin (HO) (43)

Prooplomelanocortin (POMC) (44)

Steroid hormones Adreno corticotropic hormone (45)

Growth hormone (46)

Hydrocortisone (47)

Melanin-Concentrating Hormone
(MCH)

(48)
FIGURE 3

Potentially changed glucose-sensitive neuroendocrine mediator in the context of cancer-induced hyperglycemia.
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alpha (a)- and beta (b)-adrenergic receptors (ARs), which are G-

protein-coupled 7-transmembrane receptors widely distributed in

most tissues of mammals, mediate their actions. Epinephrine and

norepinephrine, serve as stress hormones to respond to external

stress or danger to the sympathetic and adrenal nervous systems

(57, 58). Norepinephrine, in particular, plays a crucial role as a

neurotransmitter in the brain and at the output of the sympathetic

nervous system, which includes the network of peripheral nerves

that controls the body’s organs. It was reported that there is a

gender difference in responses to epinephrine. In men, but not in

women, the release of free fatty acids (FFA) from lower body

adipose tissue increased in response to epinephrine, whereas in

both sexes the release of palmitate increased in the upper body.

These results support some in vitro research and suggest that the

differences in body fat distribution between males and females may

be influenced by catecholamine activity (59). Furthermore, the

biological properties of malignant tumors, such as cancer cell

proliferation, invasion, metastasis, angiogenesis, resistance to

apoptos i s , and stromal compartments in the tumor

microenvironment, are strongly influenced by epinephrine and

norepinephrine (60). Isoproterenol, an a-adrenergic agonist, can

imitate the tumor growth and angiogenesis brought on by

prolonged stress, while propranolol, an a-adrenergic antagonist,

can prevent this (61). Importantly, epinephrine and norepinephrine

have been considered to be one of the main regulators in the

metabolism of tumor cells. In breast cancer survivors, epinephrine,

cortisol, and lactate responses appeared to be attenuated compared

with controls, while glucose and responses showed larger

magnitude changes. The adrenergic system regulates energy

balance in part by promoting thermogenesis and the release of

lipids from brown or white adipose tissues (62, 63), and human fat
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cells are equipped with adrenergic receptors (adrenoceptors) b1
(ADRB1), b2 (ADRB2) and b3 (ADRB3). Beta-adrenergic genes

have already been linked to a variety of cancers, including their

interactions with environmental or other risk factors (64–67).

Adrenoceptor polymorphisms and the dopamine beta-

hydroxylase enzyme, which produces norepinephrine, can modify

insulin resistance and change glucose signaling (68–71), which may

have an impact on the Warburg effect. Norepinephrine can activate

the metabolism of endothelial cells to block oxidative

phosphorylation and activate an angiogenic switch that promotes

the growth of cancer (72, 73). In pancreatic cancer, catecholamines

promote neurotrophins to be secret by b-ARs, which in turn raises

norepinephrine levels and aids tumor growth (74). Chronic stress-

induced epinephrine promotes the development of breast cancer

stem-like traits by rewiring the metabolism in a lactate

dehydrogenase A (LDHA) dependent manner (75) .

Catecholamines norepinephrine and epinephrine have been

demonstrated to play a role in metabolic reprogramming and

epithelial-to-mesenchymal transition in liver and colorectal

cancers (76, 77). PCK1 regulates glucose metabolism and

neuroendocrine differentiation through the activation of LIF/

ZBTB46 signaling in castration-resistant prostate cancer (78).

Together, these and other numerous studies provide compelling

evidence that epinephrine and norepinephrine play an important

role in the metabolism of substances and energy, which promotes

the growth and spread of tumors in multiple of cancer

types (Figure 4).

Epinephrine (EPI) and norepinephrine (NE) interact with

environmentally-regulated factors like obesity, hypertension,

unhealthy dietary components, physical inactivity, substance

abuse, and mental or emotional stress to promote the Warburg
FIGURE 4

Epinephrine and norepinephrine contribute to tumorigenesis.
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effect by facilitating glucose. These interactions are in addition to

the direct interaction of elevated central catecholamine release or

peripheral sympathetic-adrenomedullary signaling with epigenetic

and genetic risk factors including mutagenesis, and perhaps by

increasing insulin resistance. Additionally, it is suggested in this

research that many cancer cells produce and release catecholamine

molecules to autocrinely activate their own a-ARs and b-ARs. To
encourage cancer and metastasis, EPI and NE may potentially

interact with oxidative stress, systemic inflammation, and

immunological function.
4.2 Gamma-aminobutyric acid (g-GABA)

g-GABA is the adult mammalian brain’s major inhibitory

neurotransmitter for CNS. The ionotropic GABAA and GABAC

receptors as well as the metabotropic GABAB receptor are three

distinct types of GABA (A, B, and C) receptors. Numerous tumor

tissues have been found to contain GABA receptors, which control

the migration and proliferation of tumor cells (79, 80). The

GABAergic system and the growth of tumors appear to be closely

associated, according to recent research using human cancer cell

lines, animal models, and human tissues. In general, stimulation of

GABA receptors slows migration (81) and suppresses tumor cell

proliferation (82). These findings imply that the GABAergic system

contributes significantly to cell pathology, and it is possible that

GABA plays a substantial role in the prognosis of cancer patients.

Some cancers has been shown to have higher GABA levels, such as

breast cancer (80), ovarian cancer (80), gliomas (83), gastric cancer

(84), colon cancer (85), and prostate cancer (86). Typically, GABA

inhibits cancer cell growth through the GABAB receptor, but

stimulates cancer cell growth through the GABAA receptor

pathway (87). The GABAergic system and the growth of tumors

appear to be closely related, according to recent research using

human cancer cell lines, animal models, and human tissues.

Recently, it was demonstrated that two independent 13C-labeled

substrates, [1,6-13C2] glucose and [2-13C] acetate, which are

metabolized in neurons and glia differently, may be used to

evaluate the TCA cycle and neurotransmitter cycle fluxes of

glutamatergic and GABAergic neurons in vivo separately (88).

Using this technique in adult rats under halothane anesthesia, it

was found that cortical glutamatergic and GABAergic neurons

contribute 80% and 20%, respectively, of neuronal glucose

oxidation and neuronal/glial cycling (88). The g-GABA

abnormality is present in many diseases and can be served as

potential target. It was reported that abnormalities in Glu/GABA-

Gln are present in rat dyskinetic syndrome, and the amino acid

neurotransmitter imbalance was improved by “Tiapride,” which

also increased the expression of GS and EAAT2 protein, decreased

Glu levels, increased g-GABA levels, and increased g-GABA levels

(89). Additionally, treatment with 10 mM g-GABA considerably

slowed down the loss of malate and titratable acidity and increased

the levels of succinate and oxalate. Fruit treated with GABA had

higher cytosolic activities of nicotinamide adenine dinucleotide-

dependent malate dehydrogenase (cyNAD-MDH) and

phosphoenolpyruvate carboxylase (PEPC) than control fruit,
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whereas administration of 10 mM GABA significantly reduced

the loss of malate and titratable acidity and raised the

concentrations of succinate and oxalate. GABA-treated fruit had

larger cytosolic activities of nicotinamide adenine dinucleotide-

dependent malate dehydrogenase (cyNAD-MDH) and

phosphoenolpyruvate carboxylase (PEPC) than control fruit,

although cyNADP-ME and phosphoenolpyruvate carboxykinase

activities were lower. Notably, GABA administration drastically

decreased ethylene production while also downregulating the

expression of MdACS, MdACO, and MdERF. GABA therapy also

boosted the accumulation of GABA and improved the function of

the GABA shunt (89). The GABAA receptor agonist muscimol

promotes gastric cancer cell growth by triggering mitogen-activated

protein kinases (MAPK). Similar to this, GABA promotes the

formation of pancreatic cancer by increasing intracellular Ca2+

levels and the MAPK/ERK cascade by overexpressing GABRP, a

subunit of GABAA (90). Contrarily, activation of GABAB receptors

successfully prevents DNA synthesis and cell migration by

inhibiting isoproterenol-induced cAMP, p-CREB, cAMP response

element-luciferase activity, and ERK1/2 phosphorylation (91). The

GABA or GABAB agonist baclofen has been demonstrated to

promote Epidermal growth fac tor receptor (EGFR)

transactivation, which has been connected to the propensity of

prostate cancer cells to invade (92). According to these findings,

various GABA activation-induced effects on cancer development

and migration may vary on the kind of cancer or GABA receptor.

Contrary to the mechanism described above, our most recent

research showed that the GABAA receptor subunit promotes the

growth of pancreatic cancer by altering KCNN4-mediated Ca2+ in a

GABA-independent manner (93). Besides, it is intriguing that

GABA is present in the tumor microenvironment, which suggests

that it may be able to control inflammation by concentrating on

immune cells that have invaded the tumor (93). In summary, these

advances remind that nutrition has evidently metabolic

consequences that may change the incidence and progression of

cancer, reinforcing the metabolic cancer model.
4.3 Glutamate

In brain tissue, glutamate is widely distributed and has the

highest concentration all amino acids. Over the past 50 years,

numerous studies have been conducted on the functions of

glutamate in the brain, revealing a wealth of information about

glutamate. Early research by Krebs indicated that glutamate has an

important metabolic function in the brain (94). Waelsch and

colleagues made the first observation about the complicated

compartmentation of glutamate metabolism in the brain (95).

Neurotransmission in both cell types has the highest energetic

cost, which increases with cortical activity. Interpretation of

functional imaging results is significantly influenced by the

contribution of GABAergic neurons and inhibition to cortical

energy metabolism (88). Using NAD or NADP as cofactors,

glutamate dehydrogenase (GDH) catalyzes the oxidative

deamination of glutamate to a-ketoglutarate. GDH is found in

primarily in astrocytes in the mammalian brain, where it is likely
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involved in the metabolism of the transmitter glutamate. Thus,

while GTP primarily controls housekeeping GDH, the availability

of ADP or L-leucine has a significant impact on GDH activity in

neural tissue. GDH specific to neural tissue is likely to be activated

under circumstances that promote hydrolysis of ATP to ADP (e.g.,

during intense glutamatergic transmission), increasing glutamate

flux through this pathway (96). In synaptosomes and cultured

neurons that do not produce GDH, the rate of oxidative

glutamine metabolism was significantly lowered when glucose was

restricted. In contrast, the absence of GDH expression had no

impact on glutamine metabolism when glucose was present. In

brain mitochondria from GDH KO mice, respiration powered by

glutamate was significantly lower, and synaptosomes were unable to

increase their respiration in response to increased energy demand.

The importance of GDH for neurons, especially during times of

high energy demand, is highlighted by its role in the metabolism of

glutamine and the capacity for respiration. This may be due to the

significant allosteric activation of GDH by ADP (97). Using 13C,

astroglia plays a role in energy metabolism of human brain. The

primary pathway for the neurotransmitter glutamate repletion has

been identified, and nuclear magnetic resonance spectroscopy has

been used to study astrocytic oxidative metabolism (98). The

pa thophy s i o l ogy o f hype r ammonemia and hepa t i c

encephalopathy appears to be heavily influenced by abnormalities

in glutamate metabolism and glutamatergic neurotransmission. The

pa thogenes i s o f hepa t i c encepha lopa thy and other

hyperammonemia conditions involves an abnormality in

astroglial glutamate uptake caused by ammonia (99).

Additionally, in the absence of ad hoc activity-related metabolic

restrictions, the glutamate-glutamine cycle does not control the

relative energy requirements of neurons and astrocytes, and as a

result, their intake of glucose and the exchange of lactate (100).

Glutamate-induced Ca2+ loads cause mitochondria to sequester Ca2

+, which then uncouples respiration and results in metabolic

acidosis. The acidification brought on by glutamate is a sign of

metabolic stress and may suggest that mitochondria are crucial in

the process of glutamate-induced neuronal death (101).
4.4 Dopamine

Dopamine served as a minor intermediary in the synthesis of

noradrenaline in 1957. Today, it is a significant neurotransmitter in

the brain. It was reported that dopamine plays a key role in

modulating learning and motivation. Excitatory and inhibitory

synaptic transmission are altered by dopamine. While the nature

of neuromodulation of inhibitory transmission is still under

discussion, it appears that activation of the dopamine 1 (D1)

receptor specifically promotes N-methyl-D-aspartic acid receptor

(NMDA) but not a-amino-3-hydroxy-5-methyl-4-isoxazole-

propionicaci (AMPA) synaptic transmission in the cortex and

striatum. Because of their dependence on voltage, NMDA

currents are less active when the postsynaptic cell is not firing

than they are when it is depolarized. Large networks of pyramidal

neurons may be induced to enter bistable states resembling working

memory, according to experimental and theoretical data (102). The
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capacity of the striatum to store dopamine as assessed by L-[18F]-

fluorodopa uptake was normal, but dopamine (D2) receptor

binding was decreased in huntington’s disease compared with

normal subjects (103). In addition, glutathione is a critical

neuroprotectant for midbrain neurons in conditions when energy

metabolism is compromised and show that an oxidative challenge

occurs during suppression of energy metabolism by malonate (104).

Parkinson’s disease (PD) neurons had damaged PI3K/Akt, mTOR,

eIF4/p70S6K, and Hif-1 pathways, which are part of a network

regulating energy metabolism and cell survival in response to

growth factors, oxidative stress, and nutrient deprivation. The

primary hubs of this network, which is important for longevity

and may be a target for therapeutic intervention along with the

stimulation of mitochondrial biogenesis, are PI3K/Akt and mTOR

signaling (105). Recently, a distinct metabolomic profile linked to

parkin dysfunction and demonstrate the value of combining

metabolomics with an iPSC-derived dopaminergic neuronal

model of parkinson’s disease to gain fresh understanding of the

pathogenesis of the disease (105). The striatum and prefrontal

cortex of the spontaneously hypertensive rat model of attention

deficit hyperactivity disorder (ADHD) show impaired energy

metabolism and disturbed dopamine and glutamate signaling

(106). Several metabolic abnormalities, including insulin

resistance, abdominal obesity, dyslipidemia, and hypertension,

make up the metabolic syndrome. Its pathogenesis may be

influenced by faulty dopamine D2 receptor (D2R) signaling,

according to earlier studies. D2R activation simultaneously

improves various metabolic traits in obese women (107). The

failure of dopamine and glutamate’s connection in controlling

energy metabolism results in neuronal death (108). Midbrain

dopaminergic cells with Lesch-Nyhan disease have limited

developmental potential and impaired energy metabolism (109).

Catecholamine toxicity may result from interactions with the

mitochondrial electron transport system as well as from the

induction of an oxidative stress state, and this was further

supported by the fact that ADP was able to reverse the dose-

dependent inhibition of NADH dehydrogenase activity caused by

dopamine (110).
4.5 Serotonin

Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine that

has a variety of effects on the peripheral organs as well as the CNS.

In the brain, 5-HT is a neurotransmitter that regulates mood, sleep,

behavior, appetite, and other functions (111). Serotonin is also an

important regulator of the inputs to the energy balance, including

energy intake and energy expenditure. Serotonin in the CNS plays a

complex and intricate role in appetite and subsequent nutrient

intake (112). Receptor agonists for the treatment of obesity have

been approved due to serotonin’s inhibition of appetite (113). The

rate-limiting enzyme tryptophan hydroxylase (TPH) transforms the

amino acid tryptophan into 5-hydroxtryptophan (5-HTP), which is

then converted to 5-HT by aromatic acid decarboxylase. TPH2 is

expressed in the CNS and peripheral neuronal tissues, whereas

TPH1 is present in peripheral nonneuronal tissues. These two
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isoforms of TPH were discovered to be expressed in a mutually

exclusive pattern in the early 2000s (114). Since 2010, scientists have

become more aware of how peripheral serotonin controls systemic

energy metabolism. The enterochromaffin cells of the gut produce

the majority of the 5-HT present in the body. However, 5-HT is also

generated by many metabolic organs and has been shown to have

biological effects that are endocrine, paracrine, and autocrine in

nature. 5-HT promotes proliferation and mass enlargement of

pancreatic b-cells. 5-HT encourages lipogenesis and prevents

adaptive thermogenesis in adipose tissues. 5-HT activates hepatic

stellate cells and causes lipogenesis and gluconeogenesis in the liver

(115). It was reported that dairy cows in late lactation treated with

5-HTP had improved energy metabolism, reduced urinary calcium

loss, and increased milk calcium secretion. To ascertain any

advantages for post-partum calcium and glucose metabolism,

additional research should focus on the effects of increased

serotonin during the transition period. Chronic acetyl-l-carnitine

administration reduced the conversion of glucose to lactate,

elevated energy metabolite levels, and changed the levels of

monoamine neurotransmitters in the mouse brain (116). Recent

genetic studies suggest that leptin signaling physiological processes,

most notably leptin’s control over appetite and the accumulation of

bone mass, are primarily involved in the inhibition of serotonin

synthesis and released by brainstem neurons (117). Collectively, 5-

HT plays an emerging role in regulating metabolism in cancer cells.
4.6 Neuropeptides

Neuropeptide Y (NPY) is one of the most prevalent

neuropeptides in the brain, with 36 amino acids (118, 119). In

order to regulate hunger and energy balance, agouti-related

protein neurons (AgRP) in the CNS emit NPY, which was first

identified as a powerful neuropeptide that stimulates appetite

(120–122). The central regulatory effects of NPY on circadian

rhythm, the cardiovascular system, stress, and anxiety were

gradually demonstrated as this peptide’s role in the body’s

regulation of these processes became better understood (123).

Mammals have five different types of NPY receptors (Y1, Y2, Y4,

Y5, and Y6), which are found throughout the CNS (124, 125) and

linked to various stages of oncogenesis, allowing NPY to exercise

its biological effects. When Y2-R is activated, it appears to

encourage angiogenesis, whereas Y1-R appears to be involved in

the regulation of cancer cell growth. Furthermore, a thorough

investigation of the NPY receptor revealed that it is expressed in

peripheral tissues such as adipose tissue, the pancreas, and bone

(126, 127). As a result, the peripheral effect of NPY has drawn a lot

of attention. For instance, activating the NPY receptor in the

pancreas can lower hyperglycemia and b-cell apoptosis (128).

Adipocyte proliferation and adipogenesis are promoted by NPY in

adipose tissue (127). This suggests that in addition to being

secreted in the brain by peripheral tissues, NPY also plays

significant regulatory roles in the endocrine system (129, 130).

In addition to these conventional functions, neuropeptides have

been shown to promote tumor growth (131, 132). Numerous

neuropeptides, including SP and NPY (133) have been thoroughly
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investigated in malignancies. Neuropeptide receptors are often

GPCRs, which is a superfamily of receptors. For instance, the

neurokinin-1 (NK-1) receptor, which is connected to the Gq

family of G proteins, is primarily responsible for the

pharmacological activity of SP. Upon activation, the NK-1

receptor produces the second messenger’s inositol 1,4,5-

triphosphate (IP3) and diacylglycerol (DAG) (134). Through its

effects on energy homeostasis, the NPY system has complex and

significant implications for the development of cancer. Botox

particularly, but not only, suppresses NPY in cancer using in

vitromodels and tissues from a prior human chemical denervation

investigation. NPY nerve quantification is an independent

predictor of prostate cancer-specific mortality. Last but not least,

radiation-induced apoptosis is reduced when prostate cancer cells

are cocultured with dorsal root ganglia/nerves, and NPY-positive

nerves are increased in the prostates of patients who failed

radiation therapy, suggesting that NPY nerves may be involved

in radiation therapy resistance (135). In summary, understanding

the role of NPY in whole-body energy balance could provide

insight on mechanisms underlying the pathogenesis of cancer.
5 Therapeutic implications of the
interaction between energy
metabolism and neuroendocrine
regulation

In the past ten years, numerous advancements have been made

to reprogram the highly dynamic and heterogeneous energy

metabolism of cancer cells. Cancer was first recognized as a

disease with altered metabolism one hundred years ago.

Migration, invasion, and metastasis are significantly influenced by

metabolic alterations in the tumor cell. Despite a lengthy study

history, the intricate connections between tumor metabolism,

tumor development, and immunosuppression continue to be

fascinating fields of study. For the creation of anti-cancer

medications, modifications in tumor cell metabolism, such as

increased glycolysis, glutaminolysis, and fatty acid metabolism,

constitute appealing targets (136). Targeting the metabolism of

tumor cells, however, is a strategy that can indirectly affect stromal

components like fibroblasts or immune cells in addition to directly

killing tumor cells.

In many distinct forms of human malignancies, the

neurotransmitters variably control a wide range of activities of

cancer cells, endothelial cells, and immune cells. The increasing

involvement of the neurotransmitter system in tumor biology and

the tumor microenvironment is now better understood, creating

new potential for the development of cancer-targeted treatments.

Many traditional neurotransmitter-related medications, including

b-AR antagonists, serotonin receptor antagonists, AChR

antagonists, and DR agonists, may have clinical consequences in

the treatment of cancer and be interesting candidates for

combination drug therapy. Further research should be done on

surgical or chemical denervation and targeting neurotrophic

signaling to avoid neoneurogenesis as a cancer treatment option.
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It is interesting to note that recent research suggests that a number

of neurotransmitters, including 5-HT, dopamine, NE, and

histamine, may act as substrates for protein posttranslational

modification, such as the well-known crotonylation of histones

(137). Selective serotonin reuptake inhibitors (SSRIs) or other small

compounds that act on biogenic amines or transglutaminase may

therefore prove to be a cutting-edge treatment for cancer. However,

additional research is necessary to solidify the use of these

medications in the arsenal of cancer therapy and to prevent

side effects.

Notably, several neurotransmitters and their analogs,

antagonists, and agonists for their receptors have therapeutic

benefits and are used as medications for various illnesses,

including cancer. Around 2008, a team of French physicians

published a paper suggesting the use of propranolol, which

inhibits b-ARs (i.e., receptors that EPI and NE activate), to

reduce or eradicate benign tumors known as infantile

hemangiomas in newborns (138). Since then, numerous

academic publications have been written about this subject,

and therapeutically, propranolol has taken the place of other

treatments for malignancies (139). Meanwhile, studies using in

vitro preparations, in vivo rodent models, and retrospective

epidemiological studies of human subjects have suggested that

propranolol is therapeutic in a variety of cancer types

(counteracting both tumorigenesis and metastasis, including

when combined with other pharmacological agents) (140, 141).

According to a recent, well-known retrospective study, women

with ovarian cancer who used non-selective beta-blockers (like

propranolol) had a median overall survival of 94.9 months,

compared with 42 months for non-users (142). Propranolol

guards against disease recurrence in people with thick

cutaneous melanoma, according to a prospective human

subjects study (143). Numerous preclinical and clinical studies

suggest that propranolol may have therapeutic benefits for

angiosarcoma, poor prognosis or refractory cancer (144, 145).

Additionally, propranolol is the subject of numerous ongoing

clinical trials for a range of different neoplasms. Prazosin (which

blocks the alpha1 adrenoceptor) and other medications other

than propranolol that also block adrenoceptors are therapeutic

in rat models, and additional research has suggested that NE

itself promotes cancer (146, 147). In addition, to modify

tumorigenesis and metastasis, the molecules serotonin,

acetylcholine, and melatonin may act centrally or interact with

the sympathetic-adrenomedullary system in the periphery (148,

149). Propranolol, a non-selective beta-adrenoceptor (beta1 and

beta2) blocking medication, is being studied more and more for

its potential to prevent or treat a variety of human cancers (150).

However, in a specific situation, cancer cells need not produce

their own NE/EPI or release it in an autocrine manner in order to

be responsive to propranolol treatment, as this medication or

those in its family (carvedilol, nebivolol) may lower blood sugar

by altering pancreatic insulin release or improving insulin

sensitivity (151). Propranolol and related beta-blockers,

including in breast cancer cells, may enhance glycemic control

through modulation of GLUT4 glucose transporter expression
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and hexokinase-2 (152, 153). In this case, propranolol might also

inhibit beta-adrenoceptors on the cancer cell’s extracellular

surfaces, which would be responding to NE/EPI from non-

autocrine sources like the adrenal glands. Additionally,

propranolol (or related medications) can still inhibit beta-

adrenoceptors on the surface of cancer cells, dampening

intracellular molecular pathways linked to cancer, even in the

absence of the Warburg effect in cancer cells. Additionally,

propranolol or closely related medications may still be able to

lower blood sugar levels via the pancreas or improve insulin

sensitivity even in cases where cancer cells exhibit the Warburg

effect but lack adrenoceptors.

Differences between normal and mutant oncogenic enzymes

and cancer cells’ addiction to nutrients to support uncontrolled cell

growth programs imposed by cancer genes are the therapeutic

windows for addressing cancer cell metabolism. Therefore, the

intricate regulatory networks involving cancer genes and

metabolic pathways must be identified for particular cancer types

in order for somatic genetic changes in tumors to strategically direct

the targeting of cancer cell metabolism. It is hoped that during the

next ten years, new medicines will emerge from the fundamental

sciences of metabolism, with the increase in knowledge and interest

in cancer metabolism.
6 Concluding remarks

Cancer cells develop the capacity to remodel their metabolic

network, enabling them to adjust and maintain their survival in the

face of drastic environmental changes. The rate of glycolysis in

tumor cells was significantly increased in tumor cells compared to

normal cells, which was termed the Warburg effect, also known as

aerobic glycolysis, which occurs in tumor cells even in the presence

of sufficient oxygen. Glutamine metabolism is another characteristic

of tumor cells. In addition, fatty acids are not only the main

components of membrane construction, but also a source of

energy supply and secondary messengers of signal transduction in

rapidly proliferating tumor cells. Neuroendocrine control is crucial

for tumor cells’ consumption of nutrients and energy. There is a

crosstalk between neuroendocrine regulation and tumor cell

metabolism. Numerous traditional neurotransmitters and

neuropeptides including epinephrine and norepinephrine, g-
GABA, glutamate, dopamine, serotonin and neuropeptides have

an impact on the material and energy metabolism of tumors. As a

result of understanding the neuroendocrine regulatory mechanism

of how the neuroendocrine system can fuel cellular metabolism,

better combinatorial treatment methods will be possible. Innovative

anti-cancer medicines may be based on research on tumor

metabolism and neuroendocrine influences on tumors. The

creation of medications that directly affect the altered tumor

metabolism at the neuroendocrine level may prove to be a

ground-breaking oncology treatment. These novel understandings

of key catabolic pathways in cancer provide a focus for further

research in this field and may aid in the development of effective

therapeutic strategies.
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Spatial heterogeneity
and Immune infiltration of
cellular lysosomal pathways
reveals a new blueprint for
tumor heterogeneity in
esophageal cancer

Jinxing Wei1, XiaoMing Wu1, Shuohao Wang2, Siqing Liu3

and Xia Gao1*

1Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China, 2Department of Broad
Discipline of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
SAR, China, 3The Second Clinical Medical College, Tianjin Medical University, Heping, Tianjin, China
Background: Esophageal squamous cell carcinoma (ESCC) is a common

Malignant tumor of digestive tract which have a potential association with

lysosomal pathway. The purpose of this study was to explore the correlation

between lysosome pathway and immune infiltration of ESCC.

Methods: The cell type annotation of ESCC patients and the distribution of their

gene markers were analyzed by single cell data. They were also grouped

according to the expression of lysosomal pathways. Gene set variation analysis

(GSVA) enriched pathway scoring, Cellchat cell communication was performed

to demonstrate the tumour-associated pathway scores and interactions of

different cell populations. Relevant differential genes were screened,

prognostic risk markers were constructed and direct associations of lysosomal

pathway-related gene risk scores with immune infiltration and tumour treatment

drug sensitivity were assessed by algorithms. In cellular experiments, qPCR and

flow cytometry were used to assess the role of the lysosomal pathway gene-

MT1X on tumour cell development.

Results: ESCC single cell data were annotated into 7 Cluster clusters by t-sne

downscaling analysis. Cellchat analysis revealed that the “MIF” cellular

communication network is the main communication mode of the lysosomal

pathway in ESCC cells. The lysosomal pathway genetic risk model was found to

be significantly different from ESCC prognosis in both the training and validation

groups. The lysosome pathway gene risk model was associated with treatment

resistance in ESCC patients using oncopredict R package. The correlation

between the expression of lysosomal-DEG and tumour immune infiltration

and immune cell types by the MCPcounter method. Cellular assays showed

that the lysosomal pathway gene MT1X was less expressed in oesophageal

cancer cells than in normal oesophageal epithelial cells. Knockdown of MT1X

significantly promoted the growth rate of oesophageal cancer cells.
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Conclusion: Based on the single cell sequencing technology and transcriptomic

analysis, we confirmed that there is a close association between the lysosomal

pathway and the immune infiltration and treatment sensitivity of ESCC, which

may be a potential target for a new direction of ESCC therapy.
KEYWORDS

lysosomes, esophageal squamous cell carcinoma, cellular autophagy, single-gene
sequencing, immune infiltration
Introduction

Esophageal cancer is one of the more aggressive malignancies

(1). Epidemiological studies (2, 3) have shown that esophageal

squamous cell carcinoma (ESCC) accounts for about 90% of

esophageal cancers and esophageal adeno-carcinoma (EAC)

accounts for only 10%. ESCC is therefore the main type of

oesophageal cancer and has a high morbidity and mortality rate

among patients with oesophageal cancer, with a 5-year survival rate

of less than 20% (4). The poor prognosis is associated with

difficulties in early diagnosis, frequent metastases and reduced

therapeutic sensitivity (5). Therefore, there is an urgent need to

develop new diagnostic, therapeutic and prognostic assessment

strategies to improve the overall survival of EC patients. At the

same time, further in-depth studies on the altered immune

infiltration microenvironment and molecular pathway amount in

esophageal cancer, combined with information on tumour

heterogeneity, are needed to dissect the intrinsic features of ESCC

from a molecular perspective (6–8). It is an important factor to

promote the development of new clinical ESCC therapies and

innovative esophageal cancer treatment strategies.

Autophagy is a process by which self-damaged organelles and

proteins are separated in autophagic vacuoles (AVs) and transported

to lysosomes for catabolism (9). The nucleation of AVs is mediated by

the mammalian target of rapamycin complex 1 (mTORC1) and

adenosine monophosphate activated protein kinase (AMPK); the

extension and maturation of AVs is regulated by autophagy related

gene (ATG) and phosphoinositide 3-kinase (PI3Ks) (10). Recent

studies have shown that autophagy regulates tumour cell growth both

as a promoter and an inhibitor, and that targeting autophagy may

influence the efficacy of anti-tumour therapy (11, 12). However, the

important functions of autophagy and lysosomal pathways in the

development of ESCC have not yet been reported and systematically

summarized (13). As esophageal cancer is a tumour type with high

tumour antigenicity and cross-over effects of immunotherapy, we

suggest that the lysosomal pathway and cellular autophagy have

important potential in the exploration of new therapies and

assessment of immune infiltration in ESCC.

Herein, we investigated the specific roles of lysosomal-related

pathways and cellular autophagy in the development of oesophageal

carcinogenesis and invasive metastasis in tumour samples from ESCC

patients, and further determined the spatial specificity of the
02114
distribution of related genes and cellular pathways in ESCC cells by

means of single-cell sequencing and spatial transcriptomic analysis.

The results showed that subpopulations of tumour cells with different

lysosomal pathway-associated gene profiles appeared heterogeneously

distributed between and within tumour foci. This suggests that aberrant

distribution of the lysosomal pathway may determine poor prognosis

and immune tolerance in ESCC patients. In addition, we assessed the

specific relationship between the lysosomal pathway and related genes

and immune infiltration in ESCC, and constructed subgroups to assess

their impact on drug sensitivity. These findings provide new insights

into the spatial characteristics, complex ecosystem and biological

behaviour of ESCC clones, and provide new insights into

individualized treatment of ESCC.
Materials and methods

Methods

Data acquisition
The GEO public gene expression data and full clinical annotation

were searched, and this study included bulk RNA-seq from patients in

the GSE53624 cohort (including 117 oesophageal squamous

carcinomas), GSE53622 cohort (including 60 oesophageal squamous

carcinomas), and single-cell scRNA-seq data from five patients with

oesophageal squamous carcinomas in the GSE188900 cohort for

further analysis. The RNA-Seq data were corrected for batch effects

using the R package “sva” (version 3.44.0). Each included patient

contained complete matching clinical data such as age, gender, tumour

stage, TNM stage, survival status, etc. The inclusion and exclusion

criteria for this study were as follows. Inclusion criteria: (1) follow-up

time of at least 30 d; (2) primary oesophageal tumour; (3) inclusion of

data related to mRNA, lncRNA and miRNA gene expression levels; (4)

complete personal basic information, pathological information and

follow-up information of the patient. Exclusion criteria: (1) secondary

oesophageal tumours; (2) concurrent primary tumours from

other sites.

Lysosome-related pathway gene acquisition and
single-cell data pre-processing

Lysosomal-related pathways were included in this study from

the MSigDB database: including CCDC115, CLN3, DPP7, GBA,
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LAMP2, LAPTM4B, LDLR, LRP1, LRP2, MARCHF2, MFSD8,

MGAT3, TMEM106B, TMEM199, TPP1, VPS13A, and VPS35, a

total of 17 genes. The expression of lysosomal pathway-related

genes was collected and analysed in the GSE53624 cohort and the

GSE188900 cohort, respectively. Single-cell analysis of the scRNA-

seq data from GSE188900 was performed on five oesophageal

squamous carcinoma samples. t-distributed stochastic neighbor

embedding (t-SNE) is a machine learning algorithm for

dimensionality reduction, which is very suitable for visualizing

high-dimensional data down to two-dimension or three-

dimension. The AUCell R package was used to determine the

lysosomal pathway activity of each cell line in seven cell

populations, which were divided into two groups, Lysosome-high

and Lysosome-low, according to the median AUC score. Cell

population grouping was performed by post-processing of single

cell sequencing data acquisition and downscaling analysis. This

included Fibroblasts, Myeloid and Endothelial cell groups as well as

the remaining cell types. GSVA enrichment pathway scores were

collected and calculated for both Lysosome-high and Lysosome-low

groups using 50 Hallmark datasets.
Cellular communication and tumour-associated
pathway analysis of single-cell sequencing data
from ESCC samples

After pre-processing and downscaling analysis of single cell

scRNA-seq data from five patients with esophageal squamous

carcinoma from GSE188900, CellChat scores were calculated for

the seven cell populations of the downscaled subgroups,

demonstrating the cellular communication of each cell

population, as well as the relationship between the Lysosome-high

group dominated by Fibroblasts, Myeloid and CellChat constructed

a database of cellular interactions containing 2021 ligand-receptor

pairs. CellChat can be used to quantify intercellular communication

networks from single cell transcriptomic data, to resolve the major

input and output signals of each cell type, and to suggest how each

cell type and multiple signalling pathways operate in concert. The

Macrophage migration inhibitory factor (MIF) signalling pathway

is the secretory signalling pathway with the highest probability of

communication in ESCC cells, and we demonstrate the cellular

communication network of the “MIF” pathway. We also calculated

PROGENy scores to show the scores of tumour-associated

pathways in different cell populations.
Gene enrichment analysis for differential
genes in lysosome-associated pathways

The R package “LIMMA” (version 3.48.3) was applied to

compare the Lysosome-high and Lysosome-low groups. LMFIT

and EBayes functions were used to ensure accuracy. Differentially

expressed genes (DEGs) were screened with adjusted P values < 0.05

and absolute values of logFC > 0.585. GO functional enrichment

analysis and KEGG metabolic pathway enrichment analysis were

performed on DEGs and core genes using the R packages

clusterProfiler, org.Hs.eg.db, DOSE, enrichplot, colourspace, etc.
Frontiers in Endocrinology 03115
GO enrichment analysis can annotate genes with significant

differences at three levels: cellular component, molecular function

and biological process. The cellular component describes the

location of the differential gene, such as the cytoplasm, nucleus or

mitochondria. Molecular function describes the function of the

differential gene at the molecular biological level. Biological

processes mainly describe the biological processes in which the

differential genes participate, such as regulation of cell proliferation,

cell development and cell migration. The present study can

summarise the large number of differential genes at the cellular

component, molecular function and biological process levels,

reflecting the macroscopic association of ESCC with the

lysosomal pathway.
Acquisition of survival-related genes from
lysosomal pathways and construction of
prognostic models

The differentially expressed genes (DEGs) obtained in the

previous step were subjected to univariate Cox regression analysis

based on the tinyarray package, with p-value < 0.05 as the screening

criterion, and a total of 117 genes were selected. The GSE53624

cohort was used as a training cohort to select genes with prognostic

significance from the 117 genes and construct a prognostic model

based on Randomforest random forest. After calculating the median

for the risk score, this median was distinguished between the

High-risk and Low-risk groups by using Kaplan-lysosome

pathway-related genes to intervene in the possible mechanisms

of ESCC survival. For having significant prognostic differences.

And independent external validation was performed by

applying the cohort GSE53622 of 60 patients with esophageal

squamous carcinoma.
Scoring of immune infiltration levels and
evaluation of treatment sensitivity for
markers of lysosomal-related pathways

To further clarify the relevance of lysosomal pathway-related

genes to immune infiltration and ESCC drug resistance. We

assessed the level of immune infiltration by 3 algorithms,

Cibersort, ssGSEA and MCP-Counter. Based on the expression

matrix, Cibersort used a deconvolution algorithm to assess the

composition and abundance of immune cells in mixed cells. Based

on the expression matrix and the immune cell Marker gene set,

ssGSEA calculates enrichment scores for single samples and gene

set pairs to determine the level of immune infiltration. ssGSEA uses

transcriptomic data to quantify the abundance of immune cells and

stromal cells. The TIDE algorithm predicts tumour response to

immunotherapy, correlating expression matrices and T cell

dysfunction in tumours with high Cytotoxic T lymphocyte (CTL)

expression, predicting high correlation in patients with no response

to immunotherapy. In CTL low expression tumours, the expression

matrix and T-cell rejection characteristics of tumour patients were

correlated to predict highly relevant patients as non-responders to
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immunotherapy. In addition, immune scores and tumour purity

were calculated for each sample by the ESTIMATE algorithm.

In addition, we tested the therapeutic sensitivity of lysosomal-

related pathway markers to a variety of chemotherapeutic agents to

further explore the clinical reality of the association between the

lysosomal pathway and ESCC drug resistance. The R package

“pRRophetic” was used to predict drug sensitivity based on the

Cancer Genome Project (CGP) database. Similarly, drug sensitivity

scores were calculated by the R package “oncoPredict” based on the

Genomics of Drug Sensitivity in Cancer (GDSC) database.
Cell culture and flow cytometry validation

Human oesophageal cancer cells Eca-109 and normal

oesophageal epithelial cells HET-1A were purchased from

Shanghai Cell Bank, Chinese Academy of Sciences; RPMI-1640

was purchased from Gibco; fetal bovine serum was purchased from

Thermo Fisher. The frozen Eca-109 cells and HET-1A cells were

recovered and inoculated into RPMI-1640 medium containing 10%

fetal bovine serum and incubated at 37°C in a 5% CO2 incubator.

Differences in the expression of lysosome-related genes between

ESCC cells and normal cells were measured and analysed.

Independent control groups were set up to construct cell lines

with knockdown MT1X gene and two replicate groups were set up.

The cells were collected, centrifuged at 400 × g for 5 min, the

supernatant was discarded, washed twice with pre-chilled PBS,

added with pre-chilled 75% ethanol and fixed in a refrigerator

at -20°C for more than 24 h. The cells were centrifuged at 700 × g

for 5 min, and the supernatant was discarded. The cells were

incubated for 10 min at 4°C, protected from light. The cell cycle

was measured on a flow cytometer. The cells were transfected 1 day

prior to transfection at a final concentration of 100 nmol/L. After 8

h of transfection, the cells were replaced with complete culture

medium. After 48 h of transfection, total RNA was extracted and

cDNA was synthesized by MMLV reverse transcriptase, and the

interference efficiency was measured by real-time quantitative PCR

using b-actin as internal reference. The cycling conditions for

MT1X and b-actin were as follows: 95°C for 5 min, 95°C for 10 s,

61°C for 15 s and 85°C for 5 s. A total of 30 cycles were performed.

The MT1X gene value was divided by the b-actin gene value to

calculate the expression of the sample.
Results

Initial visualization and distribution analysis
of single-cell sequencing of ESCC cells

By collecting single-cell scRNA-seq data from the GSE188900

cohort of five patients with esophageal squamous carcinoma, we

mapped a comprehensive multi-locus single-cell transcriptome

profile of ESCC. After expression normalization, cells were

subsequently classified into coherent transcriptional clusters

(Clusters) using a graph-based clustering approach. The cells

were divided into Clusters by t-sne descending analysis. We
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annotated the cells in clusters and grouped the Clusters into

seven main categories, namely: Tcell.B cell, Epithelial cell,

Fibroblasts, Mast cell, Endothelial cell and Myeloid (Figure 1A),

and annotated the cells according to their sample origin. The

distribution of cells shows that the different types of immune cells

have distinctly different subspatial locations in the ESCC cells. The

Fibroblasts are mainly located on the upper side of the ESCC, with

Myeloid and T-cells in close proximity; the B-cells and Endothelial

cells are located closer together, mainly on the left side of the axis;

the Mast cells and Endothelial cells are mainly located in the The

other main distribution area of Mast cells and Endothelial cells is

located in the lower right corner of the axis. We can further see that

Endothelial cells, T cells and B cells are the main cell types

annotated in the ESCC single cell sequencing. Immediately

afterwards, we annotated the cells according to their sample

origin. As seen in Figure 1B, the spatial distribution of the

samples from the five ESCC patients is also characteristic: Patient

1, Patient 2 and Patient 5 samples yielded more cell annotations,

occupying 70-80% of the entire space. The annotation information

obtained for Patient 2’s sample was mainly located in the upper half

of the space, while Patient 4’s annotation information was more

sporadic and less obtained. Having obtained the spatial distribution

characteristics of ESCC immune cell types, we wanted to further

understand the association of immune cell types with lysosomal

pathway-related genes and the positions occupied in the grouping

(Figure 1C). In Myeloid cells, LYZ and C1QB genes were highly

expressed; in Endothelial cells, RAMP2 and VWF were highly

expressed; in Mast cells, TPSAB1 and CPA3 were associated; and

in B cells, CD79A was consistently expressed. The expression of T

cells and Epithelial cells was less consistent with CD79A. In

Figure 1D, we further visualise the cell type representation of

several patients by means of cascading bar charts. Patient 1 and

patient 2 had a relatively similar distribution of cells, with Myeloid

cells and T cells predominating. In contrast, for the overall five

patients, all basically showed a higher annotation of Myeloid cells, T

cells, Fibroblasts and a lower content of other cell types. Wemapped

t-SNE based on specific expressed genes in different types of clusters

and found typical genetic markers used to identify cell types, the

results of which are shown in Figure 1E. In Endothelial cells,

RAMP2 and VWF possessed high expression; LUM was

distributed in Fibroblasts cells; S1002 was distributed in Epithelial

cells, while C1QB and CAP3 were located in Myeloid and Mast

cells, respectively.
Cell grouping and the exploration of
signaling pathways

Immediately afterwards, to assess the correlation between

specific immune cell types and the lysosomal pathway in ESCC

patients, we applied the AUCell R package to determine the

lysosomal pathway activity of each cell line (Figure 2A). The

groups were divided into Lysosome-high and Lysosome-low

according to the median AUC score value. It can be seen that

Fibroblasts, Myeloid and Endothelial cells are predominantly in the

Lysosome-high group and the remaining cells are predominantly in
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the Lysosome-low group. This suggests that several ESCCmetabolic

pathways and cellular synthesis processes, namely fibrosis,

endothelial formation, and myeloid neoblast processes, may be

closely related to the lysosomal pathway of ESCC, pending our

further study in the future. In Figure 2B, GSVA enrichment

pathway scores were calculated for both Lysosome-high and

Lysosome-low groups using 50 Hallmark data sets. For GSVA

pathway enrichment analysis, the average gene expression for

each cell type was used as input data using the GSVA package.

Results show. In Fibroblas ts ce l l s , ANGIOGENESIS,

EPITHELIAL_MESENCHYMAL_TRANSITION, MYOGENESIS

and Notch were predominantly expressed; in Endothelial cells,

WNT_BETA_CATENIN and TGF_beta expression; Mast cells

were associated with IL6_JAK_STAT3_SIGNALING and TNFa;
Frontiers in Endocrinology 05117
Epithelial cells were mainly associated with E2F_targets and

MYC_TARGETS_V1 and MYC_TARGETS_V2; while T cells and

B cells lacked significant pathway correlation. Further, we calculated

PROGENy scores to demonstrate the scores of tumour-associated

pathways for different cell populations (Figure 2C). As can be seen,

Endothelial cells are associated with a variety of tumour pathways,

including Androgen, EGFR, Estrogen, Hypoxia, JAK-STAT,

MAPK, NFKB and TGFb. Fibroblasts are highly correlated with

Estrogen pathway expression. cells were significantly associated

with MAPK and EGF pathways. For other cell types, there was

less agreement with tumour-related pathways. In Figure 2D, the

cellular communication of each cell population is shown by

calculating the CellChat score, an open source R package (http://

github.com/sqjin/CellChat) that can use scRNA-seq data to infer,
B

C D

E

A

FIGURE 1

Sample immune cell type analysis and lysosomal pathway gene distribution by single cell sequencing of ESCC cells. (A) t-SNE diagram showing the
distribution of 7 major cell types in ESCC cells: Tcell.B cell,Epithelial cell, Fibroblasts, Mast cell, Endothelial cell and Myeloid; (B) t-SNE diagram
showing the source of the cell samples, each colour indicates one sample, a total of 5 patients are included; (C) bubble diagram of the major genes
and groups expressed in the 7 cell types obtained from single cell sequencing, the results show that in Myeloid cells, LYZ and C1QB genes are highly
expressed; in Endothelial cells, RAMP2 and VWF have high expression. LYZ and C1QB genes are highly expressed; in Endothelial cells, RAMP2 and
VWF possess high expression; (D) Cascade bar graphs further visualize the specific type number share of the 7 immune cell types in ESCC patients,
with Myeloid cells, T cells, Fibroblasts more annotated and other cell types less abundant; (E) t SNE plots show the expression of typical marker
genes for the different cell types.
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visualise and analyse intercellular communication. For cell

types with high lysosomes, Fibroblasts had more interactions

with Epithelial cells and T cells; while communication

between Fibroblasts and Epithelial cells, T cells, B cells and Mast

cells was highly weighted in the overall ESCC cell tumour

expression composition.
The communication networks and
interactions analysis between cells based
on ESCC single-cell sequencing data

In Figure 3A, we delve further into the interactions of immune

cell types obtained from single cell sequencing data from ESCC
Frontiers in Endocrinology 06118
patients. As seen in the images, T cells interacted more uniformly

with all types of cells, while B cells sent more signals to T cells.

Epithelial cells interacted more with T cells and B cells.

Fibroblasts, as the main cell type that sends signals, send more

signals to T cells, B cells and EPITHELIAL cells, while Mast cells,

Endothelial cells and Myeloid cells have more interactions with T

cells. This suggests that T cells may function as the primary

recipient of intercellular communication signals in ESCC

patients. Immediately afterwards, we further quantitatively

visualized the major intercellular links as well as mediating

cytokines of several lysosomal-high cells by means of bubble

plots. In Figure 3B, we found that Fibroblasts interaction with

Myeloid is mainly mediated by APP-CD74, interaction with

Endothelial via CD99 and CD74, transmission of MastCell
B

C

D

A

FIGURE 2

ESCC immune cell types interacting with lysosomal pathway and GSVA enrichment analysis. (A) t-SNE plots showing the expression of lysosomal
pathway-related genes in seven major cell types in ESCC cells, divided into two groups, lysosome-high and lysosome-low, based on colour;
(B) GSVA enrichment pathway scores were calculated for the Lysosome-high and Lysosome-low groups using 50 Hallmark data sets; (C) Calculation
of PROGENy scores will obtain heat maps showing the scores of tumour-associated pathways for different cell populations; (D) Circle interaction
plots showing the number and weight analysis of ineraction of Fibroblasts cells with the remaining several immune cells.
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signals via COL1A1 - CD44, COL6A2 - CD44, and FN1 - CD44,

and their communication with B and T cells For Epithelial cells,

there is more interaction and signalling to T and B cells, mediated

by the MIF - (CD74+CD44) and MIF - (CD74+CXCR4) pathways.

Myeloid cells, on the other hand, interact less efficiently with a

variety of cell types and also mediate their immune effects by

signalling to T and B cells. -A - CD8B, HLA-B - CD8A, HLA-B -

CD8B, HLA-C - CD8A, HLA-C - CD8B, and HLA-E - CD8A. This

shows that multiple cellular pathways can mediate the interaction

of Myeloid with T cells. Subsequently, in Figure 3C, we show by

heat map the significant extent to which each cell subpopulation

plays a major role as a central sender, receiver, mediator and

influencer of the MIF secretory signalling communication

network. b cells and EPITHELIAL cells play the role of major
Frontiers in Endocrinology 07119
MIF signalling senders. b cells are also important Receiver and

Mediator, while throughout the MIF In the signalling pathway, T

cells, B cells and Epithelial cells play the role of major Influencer.

this parallels our knowledge of the tumour immune system, where

T cells and B cells play the role of major signal receivers

and enforcers.
Lysosomal pathway-related transcriptomic
risk model construction and functional
linkage analysis for ESCC

The R package “LIMMA” (version 3.48.3) was applied to compare

the Lysosome-high and Lysosome-low groups. LMFIT and EBayes
B

C

A

FIGURE 3

Cellchat and MIF signalling communication between immune cell types in ESCC. (A) Cross-correlation map of immune cell types obtained from
single-cell sequencing data of ESCC patients, including T cells, B cells, Fibroblasts, Mast cells, Endothelial cells, and Myeloid cells; (B) Bubble plots
further quantitatively visualize the major intercellular links of several lysosomal-high cells as well as mediating cytokines, including Fibroblasts,
Myeloid, and Epithelial cells.(C). Heat map demonstrating the prominence of each cell subpopulation as a major sender, receiver, mediator and
influencer at the centre of the MIF secretory signalling communication network. B cells and EPITHELIAL cells play the role of major MIF signal
senders. B cells are also important Receivers and Mediators, while throughout the MIF signalling pathway, T cells, B cells as well as Epithelial cells
played a major Influencer role in the overall MIF signalling pathway.
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functions were used to ensure accuracy. Differentially expressed genes

(DEGs) were screened for adjusted P values < 0.05 and absolute values

of logFC > 0.585. statistically significant lysosome-DEGs were thus

obtained. and subjected to GO analysis and KEGG analysis. As shown

in Figure 4A, the DEGs associated with lysosomal expression were

mainly enriched in signaling receptor activator activity, receptor

ligand activity, extracellular matrix structural constituent -peptidase

regulator activity, glycosaminoglycan binding,endopeptidase regulator

activity,peptidase inhibitor activity,endopeptidase inhibitor activity,

heparinbinding-collagenbinding, regulation of hydrolase activity and

negative regulation of proteolysis -negative regulation of peptidase

activity. Further, we performed KEGG functional analysis to

understand the importance of lysosomal-DEG in cell development,

pathway expression and growth and development through multiple

perspectives, as shown in Figure 4B. The results indicate that the
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lysosomal DEG-related pathway is mainly associated with

ommunition and coagulation cascades that Staphylococcus aureus

infection, Viral protein interaction with cytokine and cytokine

receptor, the Lysosome, ECM-receptor interaction, IL-17 signaling

pathway, Chemokine signaling pathway Amoebiasis, Proteoglycans in

cancer, pathway, Pertussis, Malaria, and Cytokine-cytokine receptor

interaction were related. After obtaining the relevant functional

characteristics of lysosomal DEG, we selected four genes of

prognostic significance from 117 genes according to the

Randomforest random forest algorithm and constructed prognostic

models, namely SCPEP1, DUSP2, C10orf10, and MT1X. decision tree

simulations for the random forest analysis of lysosomal DEG are

shown in Figure 4C shows. The weights occupied by the expression of

different genes in the lysosomal-DEG prognostic model were further

quantified in the form of dotted line plots, as seen in Figure 4D.MT1X
B

C D

E

A

FIGURE 4

Prognostic risk modeling and functional enrichment analysis of lysosomal pathway-related transcriptomics in ESCC. (A) GO analysis revealed that
DEG associated with lysosomal expression was mainly enriched in signaling receptor activator activity,receptor ligand activity,extracellular matrix
structural constituent -peptidase regulator activity,glycosaminoglycan binding,endopeptidase regulator activity; (B) KEGG enrichment barplot
showed that lysosomal DEG-related pathways were mainly enriched in omplement and coagulation cascades, Staphylococcus aureus infection, Viral
protein interaction with cytokine and cytokine receptor enriched in; (C) Transcriptomic risk model construction for lysosomal-DEG by decision trees
constructed from random forest; (D) Histogram analysis of the relative importance of lysosomal-DEG models in the final transcriptomic prognostic
risk model, with MT1X possessing the highest prognostic-related importance; (E) Assessment of the predictive power of the constructed lysosomal
pathway-related transcriptomic prognostic risk models, from left to right. Kaplan-Meire curves for the lysosome-associated prognostic risk model,
distribution of risk scores, and scatter plots of prognostic survival times for patients with different risk scores.
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was the main lysosomal-DEG gene that determined the difference in

prognosis of ESCC patients, with a relative importance close to 1.0.

while the relative importance of all three genes, SCPEP1, DUSP2, and

C10orf10, was also higher than 0.50, significantly higher than the

other lysosomal-DEG genes. In Figure 4E, we further analyzed the

prognostic predictive power of the constructed lysosomal pathway-

associated transcriptomic risk model. The results showed that the

model exhibited good survival prediction performance in the

GSE53624 cohort. Differentiating the High-risk and Low-risk groups

by the median risk score, the two groups had significant prognostic

differences. Patients in the Low-risk group in the lysosomal-DEG-

related prognostic risk model had significantly better prognostic

survival than those in the High-risk group (p<0.0001), while

patients in the High-risk group had a significantly shorter

prognostic survival time than those in the Low-risk group and were

visualised in the scatter plot. This suggests a close association between

lysosomal pathway-related genes and ESCC survival, perhaps related

to the underlying functional characteristics of the lysosomal pathway

and the specific mechanisms of immune tolerance to tumours.
Immuno-infiltration analysis of a lysosomal
pathway-associated transcriptomic risk
model for ESCC

We further evaluated the prognostic ROC curves of the

lysosomal pathway-associated prognostic risk model (Figure 5A)

with AUC values of 0.70, 0.72 and 0.70 for the 1-year, 3-year and 5-

year cohorts, respectively, indicating that our constructed lysosomal

risk model has good prognostic performance. In the GSE53622

cohort, we further evaluated and analysed the prognostic

performance of the constructed risk model in an independent

validation cohort of ESCC. In Figure 5B, the Kaplan-Meier curve

in the validation cohort also achieved excellent prognostic

prediction performance at P<0.0001. We also analysed the

correlation of the expression of the four lysosomal-DEGs

constituting the risk model by correlation heat map (Figure 5C).

The results showed that SCPEP1 had a high correlation with

C10orf10, suggesting that these two genes may play a similar role

in the development of the lysosomal pathway. In contrast, there was

a significant association between the expression of DUSP2 and

MT1X. Further, we calculated the correlation and significant

association between the expression of lysosomal-DEG and

tumour immune infiltration and immune cell types by the

MCPcounter method (Figure 5D). In Figure S1D, we showed that

all types of immune cells and immune infiltrate types were highly

expressed in the risk scores associated with the lysosomal pathway

in ESCC patients. The expression of activated dendritic cells and

activated CD4 T cells showed a high correlation with the tumour-

related risk score (Figure 5E), with a negative correlation between

the expression of activated dendritic cells and the risk score

(p<0.001) and a positive correlation between the expression of

activated CD4 T cells and the lysosomal pathway-related risk score

(p<0.05), with a significant linear relationship. This suggests that

the lysosomal pathway has a significant positive value for immune

infiltration and development of tumour resistance in T cells as well
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as in dendritic cells. In Figure 5F, we further assessed the

enrichment of immune cells and immune infiltrative pathways

between the low-risk and high-risk groups by GSEA analysis.

Among them, the expression of Neutrophill, lmmature.dendritic

as well as Th1 T cells was significantly higher in the low-risk group

than in the high-risk group. In contrast, the expression of NK T cells

as well as Activated.dendritic.cells was significantly higher in the

high-risk group than in the low-risk group. Further, our Pearson

correlation in Figure 5G reveals the correlation between the

expression of different immune cells, immune pathways.

Activated CD4 T cells had a higher expression correlation with

activated CD8 T cells, and activated CD8 also had a higher

expression correlation with MDSK and Th1T cells. The rest of

the immune cells were also more or less correlated with each other.

To further determine the specific direct association of lysosomal

pathway-related risk genes with immune infiltration and immune

cell secretion in ESCC, we calculated immune infiltration scores by

three methods: ssGSEA, MCPcounter, and the xCell algorithm,

which were visualized with box plots, heat maps, and scatter plots,

respectively. Figure S1A shows the immune cell scores between the

low-risk and high-risk groups calculated with the xCell method.

The expression of CD4 Memory T cells, Macrophages, and

Marcophages M1 was higher in the low-risk group than in the

high-risk group; while Basophils, CLP, Epithelial, and HSC cells

were less expressed in the low-risk group than in the high-risk

group. In Figure S1B, we also applied box plot depictions to

compare immune pathway scores between ESCC lysosome-

associated low-risk and high-risk groups, with MEP, Monocytes,

Neurons, smooth muscle, and Th2 cells being higher in the low-risk

group than in the high-risk group; and Myocytes and Pericytes

being more expressed in the high-risk group than in the low-risk

group. In addition, we also compared the linear correlation between

several immune cell types with significantly different expression and

their respective risk scores, and the results are shown in Figure S1C.

The results showed that Neutrophils, CD4 memory T cells and

Macrophages M1 expression were linearly and negatively correlated

with risk scores (p<0.05). In contrast, Epithelial cells as well as

Myocytes corresponded to a linear positive correlation with risk

score, suggesting a differential role of different cell types in the

lysosomal pathway contributing to the development of ESCC

(p<0.05). In addition, we analysed the interaction of genes

constituting the lysosomal pathway risk model with immune

infiltrating cells and pathways by correlation heat map (Figure

S1D). the MT1X gene was mainly negatively correlated with

Adipocyts, B-cellsdun, Class-switched memory T cells, HSC,

Neurons expression (p<0.05), with CD8 naive T cells, MSC, NK

Cells, and NKT expression. c10orf10 gene was significantly

positively correlated with aDC, CD4 memory T cells, CD8 T cells,

CD8 Tcm, macrophages, macrophage M1 type, and macrophage

M2 type. The DUSP2 gene was significantly associated with the

expression of CD4 Tem, Adipocytes, Epithelial and macrophages.

For the SCPEP1 gene, there was a high correlation with

macrophages and smooth muscle cells.

We also applied the MCP method to calculate the immune

infiltration scores of patients in the low-risk versus high-risk groups

of the lysosomal pathway and visualized them using box line plots
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(Figure S2A). Fibroblasts expression was lower in the low-risk

group than in the high-risk group, while B lineage expression was

higher in the low-risk group than in the high-risk group. The

expression of B lineage, T cells, Neutropilis, Monocytic Lineage,

Myeloid dendritic and Endothelial cells all showed a linear

correlation with the risk score. The expression of B lineage, T

cells, Neutropilis, Monocytic Lineage, Myeloid dendritic and

Endothelial cells were linearly and negatively correlated with the

corresponding risk scores, the same as those calculated by our XCell

method (Figures S2B, S2C). In Figure S2D we used Pearson’s

correlation to reveal the correlation between the expression of

different immune cells and immune pathways in the MCPcpunter

method, where T cells showed a high correlation with CD8 T cells, B
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lineage, Monocytic lineage and Meyloid dendritic cells, while

Monocytic Lineage showed a high correlation with Monocytic

Lineage was highly correlated with the expression of Endothelial

cells and B lineage. Similarly, we also analysed the interaction of

genes constituting a risk model for the lysosomal pathway with

immune infiltrating cells and pathways by correlation heat map

(Figure S2E). MT1X gene was mainly negatively correlated with B

lineage and Cytotoxic lymphocytes expression (p<0.05), and with

Endothelial and Monocytic lymphocytes expression. The C10orf10

gene was significantly positively correlated with aDC, CD4 memory

T cells, CD8 T cells, CD8 Tcm, macrophages, macrophage M1 type,

and macrophage M2 type. In contrast, the DUSP2 gene was

significantly associated with the expression of CD4 Tem,
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FIGURE 5

Independent validation of the lysosomal pathway-associated risk model and preliminary analysis of immune infiltration. (A) Prognostic prediction
ROC curves for the lysosomal pathway-associated prognostic risk model ,with AUC values of 0.70, 0. 72 and 0.70 for 1-year, 3-year and 5-year,
respectively; (B) Kaplan-Meier curves for the prognostic risk model in the GSE53622 independent validation cohort, p<0.0001. (C) Heat map
revealing the expression correlation of the four lysosomal-DEGs that comprise the lysosomal pathway risk model, with SCPEP1 possessing a high
expression correlation with C10orf10 and a significant association between DUSP2 and MT1X expression; (D) MCPcounter calculated histograms
analyzing the potential immune cell constitutive types of risksocre; (E) in addition, we analysed the correlation between the expression of activated
dendritic cells as well as activated CD4 T cells and risk scores; (F) ssGSEA analysis, revealing the enriched expression of immune cells and immune
infiltration pathways between the low and high risk groups. Among them, the expression of Neutrophill, lmmature.dendritic and Th1 T cells was
significantly higher in the low-risk group than in the high-risk group. In contrast, the expression of NK T cells as well as Activated.dendritic.cells was
significantly higher in the high-risk group than in the low-risk group; (G) Heat map reveals the correlation between the expression of different
immune cells and immune pathways using Pearson correlation. * means <0.05,** means <0.01, ns means >0.05.
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Adipocytes, Epithelial and macrophages. For the SCPEP1 gene,

there was a high correlation with macrophages and smooth

muscle cells.
Analysis of the role of ESCC
lysosomal pathway risk models
on tumour treatment sensitivity

Through the previously constructed risk model and the

relationship between immune infiltration, we have explored in

depth the significant association between lysosomal pathway

genes and tumour immunity and tumour cellular pathways with

poorer prognosis in ESCC patients. Considering the current poor

immunotherapeutic effect of ESCC and the strong immunogenicity
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of the tumour, we further investigated whether the lysosomal

pathway gene risk model is associated with treatment resistance

in ESCC patients We further investigated whether the lysosomal

pathway gene risk model was associated with treatment resistance

in ESCC patients. A sensitivity score was calculated for drugs in the

GDSC database based on the R package “oncoPredict”. MT1X was

associated with the therapeutic susceptibility of AGI-5198_5913,

Cyclophosphamide, ML323, Rapamycin, Venetoclax. AZD8186,

GSDK591, SB505124 was significantly associated with treatment

efficacy. expression of DUSP2 in ESCC patients was associated with

treatment efficacy of GSK2578215, I-BRD9, ML-323. For SCPEP1,

treatment with Fulvetrant, MK-1775, Venetoclax_1909 was highly

correlated with it (Figure 6A). In Figures 6B, C, we applied box-line

plots to analyse the potential correlation between several key

chemotherapeutic agents used for ESCC treatment and the
B
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FIGURE 6

Analysis of the role of ESCC lysosomal pathway risk models on tumor treatment sensitivity. (A) Bubble diagram showing the association of four key
genes constituting the lysosomal pathway risk model with the therapeutic sensitivity of multiple chemotherapeutic agents: MT1X was associated with
AGI-5198_5913, Cyclophosphamide, ML323, Rapamycin, Venetoclax. expression of C10orf10 was significantly associated with AZD8186, GSDK591,
SB505124. GSDK591, SB505124 were significantly associated. for DUSP2, it was associated with GSK2578215, I-BRD9, ML-323. For SCPEP1,
treatment with Fulvetrant, MK-1775, Venetoclax_1909 had a high correlation with it. (B) Box plot of treatment sensitivity between low and high risk
groups for lysosomal risk scores for several chemotherapeutic agents, SB505124_1194, Entinostat_1593, GSK591_2110; (C) Gallibiscoquinazole_
1830, PRIMA-1MET_1131, JAK1_8709_ 1718 Box line plot of treatment sensitivity of these chemotherapeutic agents between low risk and high risk
groups for lysosomal risk scores. * means <0.05,** means <0.01,*** means <0.001.
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distribution of lysosomal pathway risk models. The results show

that for several chemotherapeutic agents, SB505124_1194,

GSK591_2110, Gallibiscoquinazole_1830, PRIMA-1MET_1131

and JAK1_8709_1718, the treatment sensitivity of patients in the

low-risk group of the lysosomal pathway is significantly higher than

that of the high-risk group of the lysosomal pathway; while for

Entinostat_1593, its therapeutic sensitivity increased with higher

lysosomal-risk score, which depends on further studies to confirm.
Cellular validation of MT1X, a key
lysosomal pathway gene, on ESCC invasion
and physiological reproduction

Following the above single-cell sequencing and transcriptomic

studies and bioinformatic validation, we have initially demonstrated

that a risk model consisting of four lysosomal pathway-related genes

is strongly associated with immune infiltration and chemo-

sensitivity in ESCC. Therefore, we wanted to further validate this

organic association experimentally. Here, we selected the MT1X

gene, which has the highest weight in the risk model, and performed

corresponding knockdown and suppression experiments in

oesophageal cancer cells and normal cells to assess its effect on

the development of ESCC. First, we analysed the number and

significance relationships of several constitutive genes in the

lysosomal pathway risk model in different carcinomas

(Figure 7A). The results showed that the SCPEP1 gene was highly

expressed in BRCA, KIRC and THCA tumour types, and the

DUSP2 gene was more expressed in KICH, LIHC and BRCA. In

contrast, for the MT1X gene, his expression was more significant in

BRCA, while for ESCC, its expression level was more limited. To

explore the role played by MT1X, the most critical gene in the

lysosomal pathway, in ESCC, we further analysed the expression of

MT1X in different tumour types using box-line plots in Figure 7B.

The results showed that MT1X gene expression was weaker in

tumour cells than in paraneoplastic tissues in most tumour types,

except CESC, GBM, UCEC and LUSC. Further, we analysed the

expression of MT1X in tumour and normal tissues in ESCC in

Figure 7C, which showed that MT1X expression was significantly

higher in normal tissues than in tumour tissues. MT1X expression

was determined by flow cytometry in esophageal cancer cells ECA-

109 as well as in normal esophageal epithelial cells HET-1A

(Figure 7D), again in agreement with the above results, i.e. the

expression of MT1X was lower in esophageal cancer cells.

Correspondingly, to clarify the role of key genes of the lysosomal

pathway in the development of ESCC. We knocked down MT1X

gene expression in ECA-109 cells, and the success of the

knockdown is shown in the qPCR results in Figure 7E, where

MT1X gene expression was significantly lower in both knockdown

cell groups. In Figure 7F, we analysed the cell cycle distribution for

tumour cells as well as for ECA-109 cells after MT1X knockdown

using flow cytometry. The results show that when the MT1X gene

was further knocked down in the esophageal cancer cells, the

number and proportion of tumour cells in the S and G2+M

phases of the cell cycle increased. This suggests that the

proliferation and growth of esophageal cancer cells were
Frontiers in Endocrinology 12124
significantly promoted after knocking down the MT1X gene. It is

suggested that the MT1X gene in the lysosomal pathway may be

associated with the proliferation and growth of tumour cells.
Discussions

As a common malignant tumour of the digestive system,

oesophageal cancer still has a poor overall survival rate and a

poor prognosis, although its incidence and mortality rate have

been significantly reduced in recent years (14, 15). The lysosomal

pathway, as an important underlying mechanism in tumour cell

metabolism, invasion, metastasis and development, is inevitably

associated with poor immunotherapy outcomes and poor prognosis

in ESCC patients (16, 17). The autophagic lysosome system is a

cellular degradation system that plays an important role in the

regulation of proteins, lipids and cell homeostasis. Therefore, the

autophagic lysosome system can play key functions in a variety of

diseases, including cancer, immune and inflammation-related

diseases, etc (18). It has been found that lysosomes regulate the

growth and proliferation of tumor cells by activating the growth

factor signaling pathway through tyrosine kinase receptors on the

membrane. the uncontrolled proliferation of tumor cells often

requires more nutrients to maintain cell metabolism. Lysosomes

can degrade proteins inside and outside cells through autophagy

and pinocytosis, and provide a large amount of amino acids to cells

(19). Therefore, the relationship between lysosomes and cancer is

inextricably linked. LAMP1 is the main protein component located

on the lysosome membrane. Immunohistochemical staining of

ESCC patients indicated that LAMP1 expression level was

significantly different between TNM stage and tumor histological

differentiation degree. This also indicates that lysosomes are closely

related to the occurrence and development of ESCC (20). The study

of the lysosome pathway related to the development of ESCC and

immune infiltration is of great significance and has a guiding role in

the development of new targeted therapy strategies for ESCC.

In this study, we identified genes related to the lysosomal

pathway based on the GEO database, and systematically identified

the relevant biological pathways and pharmacological sensitivities

of these genes. Single-cell sequencing was used to analyse the close

association between lysosomal pathway-related genes and the gene

distribution of oesophageal cancer. Pathway enrichment analysis

revealed that lysosomal DEGs were significantly associated with

various elements of tumour progression, such as metabolism,

cellular processes and biological systems. We found that the

ECM-receptor interaction pathway was enriched. Extracellular

matrix (ECM) is an important component of the tumor

microenvironment. It has various functions, including mechanical

support and regulation of the microenvironment. In the process of

tumorigenesis, the interaction between cancer cells and tumor

microenvironment (TME) often leads to the stiffness of ECM,

thus causing further tumor deterioration (21). Thus, ECM plays

an important role in tumor progression. Cytokines are the key

proteins of signaling in the tumor microenvironment (TME) and

have pleiotropy. It can be divided into interleukin, interferon, tumor

necrosis factor, hematopoietic factor, growth factor, chemokine
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receptor interaction and so on. Cytokine-cytokine receptor

interaction plays an important role in the occurrence and

development of tumor. Interferon and TGF-b can directly or

indirectly inhibit tumor cell growth, TNF and various chemokines

play a role by promoting angiogenesis, and IL-18 can activate NF-

kB signal, induce cancer cell proliferation and invasion, and prevent

cell apoptosis (22). All the mechanisms mentioned above indicate
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the close relationship between cytokines and tumors. In addition,

IL-17 signaling pathway was also enriched. According to the study

of Chen et al., IL-17 can promote the recruitment and activation of

neutrophils in esophageal squamous cell carcinoma, thus playing a

role in anti-tumor immunity (23). Meanwhile, IL-17 is also a kind

of cytokine, which indicates that lysosome-DEGs is closely related

to cytokines. The lysosomal pathway prognostic risk model is a
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FIGURE 7

Cellular experimental validation of the role of MT1X, a key gene of the lysosomal pathway, in the growth and invasion of ESCC. (A) Box plot analysis reveals
the number and significance of the four constitutive genes of the lysosomal pathway risk model in different tumours; (B) Box plot analysis of MT1X
expression in different tumour types and paraneoplastic tissues, showing that MT1X gene expression was weaker in most tumour types than in paraneoplastic
tissues, except for CESC, GBM, UCEC and LUSC (C) Box plot analysis of MT1X expression in tumour and normal tissues in ESCC, showing that MT1X
expression in normal tissues was significantly higher than that in tumour tissues; (D) Cellular assays demonstrating the role of MT1X in the expression and
growth invasion of oesophageal cancer cells: qPCR analysis of MT1X expression in ECA-109 and HET-1A cell lines; (E) qPCR analysis of MT1X expression in
ECA-109 and HET-1A cell lines. qPCR confirmed the successful knockdown of MT1X in ECA-109 cells in two replicate sets; (F) Flow cytometry analysis of
the cell growth cycle percentage of ECA-109 cell lines before and after MT1X knockdown. *** means <0.001.
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significant predictor of prognosis in ESCC patients. It also highly

influences the immune infiltration and chemosensitivity of ESCC

patients. On this basis, we further confirmed the microscopic role of

the lysosomal pathway in the invasion and metastasis of esophageal

cancer by knocking down the lysosomal pathway gene - MT1X in

cellular assays. This suggests that the lysosomal pathway and its

related genes play an important role in the development of ESCC

and drug resistance, and the study of the organic interaction

between esophageal cancer-lysosomal pathway-immune

infiltration may become a breakthrough for further exploration of

esophageal cancer.

The common treatment option for oesophageal cancer is

surgical resection followed by chemotherapy and radiotherapy,

but patients are more prone to develop resistance, which affects

the therapeutic effect. The lysosomal pathway promotes the

establishment of drug resistance in cancer cells (18). Currently,

the commonly used clinical inhibitors of the lysosomal pathway are

chloroquine and its derivative chloroquine, an antimalarial drug

that prevents lysosomal acidification and prevents lysosomal

pathway vesicles from being cleared (19). Clinical studies (20, 21)

have demonstrated the therapeutic potential of chloroquine and its

derivative hydroxychloroquine, alone or in combination with other

drugs, to improve the efficacy of radiotherapy in patients with

melanoma, colorectal cancer, myeloma and renal cell carcinoma by

inhibiting the lysosomal pathway. However, no studies have been

conducted using these lysosomal pathway inhibitors in patients

with ESCC. The lysosomal pathway plays an important and

complex regulatory role in the development and progression of

oesophageal cancer and can influence its therapeutic outcome.

Although the lysosomal pathway has been shown to play a

protective role in the conversion of BE to EAC, further in vivo

models need to be developed to investigate the regulatory

mechanisms of the lysosomal pathway. When considering the use

of lysosomal pathway inhibitors in the treatment of oesophageal

cancer, it is critical to understand whether the cell body and the

underlying lysosomal pathway levels are being disrupted. It is

important to accurately determine whether a patient’s lysosomal

pathway is activated or deactivated, and to combine this with factors

such as whether they are receiving radiotherapy. In addition, due to

the complexity of lysosomal pathway regulation in tumours, how to

judge the level of basal autophagy and assess the role played by

autophagy still requires further development of new assay systems

to achieve specific regulation of lysosomal pathway levels and better

guide clinical treatment. This study attempts to make some

breakthroughs in this field and to identify important genes related

to the lysosomal pathway. On the basis of this, risk models will be

constructed and direct associations between them and immune

infiltration will also be investigated. This may advance the process

of lysosomal targeting and therapeutic resistance research in ESCC.

This study also has some limitations. Firstly, as a retrospective

analysis, the data obtained were mostly from public databases, and

although we have performed a preliminary validation through
Frontiers in Endocrinology 14126
cellular experiments, there is a need for rich mechanistic studies

in the future. As for the key genes that were previously screened, we

were able to find downstream molecules through mass

spectrometry and proteomics analysis. It was verified by

molecular biology experiments. In addition, we can further verify

this in vivo using knockout mice. Secondly, the study set lacks

important molecular and clinical data on ESCC patients, and these

pathological factors, which are more relevant to clinical treatment

decisions, may also be associated with lysosomal pathway actions.

Also, the GEO database lacks complete treatment records, such as

chemotherapy regimen selection or targeted therapy information.

We can use clinical samples from our hospital to further explore the

correlation between lysosome pathway molecules and cancer

through immunohistochemical and clinical data analysis, as well

as immunotherapy analysis. It is hoped that future studies will

include more molecular pathology and clinical information, and

that basic research will be used to analyse the interaction between

MT1X and ESCC targets in depth, in order to more fully explore the

close association between the lysosomal pathway and ESCC. We

can further explore this with prospective studies.

Herein, based on single cell sequencing and transcriptomic

analysis, we investigated the microscopic role of the lysosomal

pathway and related genes in the development of ESCC, and

confirmed that there is a close association between the lysosomal

pathway and the immune infiltration and immune pathway of ESCC.

The preliminary validation was performed by cellular assay. This

suggests that studying the interaction between the lysosomal pathway

and immune infiltration and immune cells may be a potential target to

promote new directions in the treatment of ESCC.
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characteristics of non-small cell
lung cancer and its relationship
with tumor immune
microenvironment, cell death
pathways, and metabolic
reprogramming

Shengji Cao1, Sitong Xiao2, Jingyang Zhang1 and Shijun Li1*

1Department of Clinical Laboratory Medicine, First Affiliated Hospital of Dalian Medical University,
Dalian, China, 2Department of Clinical Laboratory Medicine, The Third People’s Hospital of Yuhang
District, Hangzhou, China
Background: The genes related to the cell cycle progression could be

considered the key factors in human cancers. However, the genes involved in

cell cycle regulation in non-small cell lung cancer (NSCLC) have not yet been

reported. Therefore, it is necessary to evaluate the genes related to the cell cycle

in all types of cancers, especially NSCLC.

Methods: This study constituted the first pan-cancer landscape of cell cycle

signaling. Cluster analysis based on cell cycle signaling was conducted to identify

the potential molecular heterogeneity of NSCLC. Further, the discrepancies in

the tumor immune microenvironment, metabolic remodeling, and cell death

among the three clusters were investigated. Immunohistochemistry was

performed to validate the protein levels of the ZWINT gene and examine its

relationship with the clinical characteristics. Bioinformatics analyses and

experimental validation of the ZWINT gene were also conducted.

Results: First, pan-cancer analysis provided an overview of cell cycle signaling

and highlighted its crucial role in cancer. A majority of cell cycle regulators play

risk roles in lung adenocarcinoma (LUAD); however, some cell cycle genes play

protective roles in lung squamous cell carcinoma (LUSC). Cluster analysis

revealed three potential subtypes for patients with NSCLC. LUAD patients with

high cell cycle activities were associated with worse prognosis; while, LUSC

patients with high cell cycle activities were associated with a longer survival time.

Moreover, the above three subtypes of NSCLC exhibited distinct immune

microenvironments, metabolic remodeling, and cell death pathways. ZWINT, a

member of the cell signaling pathway, was observed to be significantly

associated with the prognosis of LUAD patients. A series of experiments

verified the higher expression levels of ZWINT in NSCLC compared to those in

paracancerous tissues. The activation of epithelial-mesenchymal transition

(EMT) induced by ZWINT might be responsible for tumor progression.
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Conclusion: This study revealed the regulatory function of the cell cycle genes in

NSCLC, and the molecular classification based on cell cycle-associated genes

could evaluate the different prognoses of patients with NSCLC. ZWINT

expression was found to be significantly upregulated in NSCLC tissues, which

might promote tumor progression via activation of the EMT pathway.
KEYWORDS

non-small cell lung cancer, cell cycle, pan-cancer analysis, tumor immune
microenvironment, cell death pathways, metabolic reprogramming
1 Background

Lung cancer, a malignant tumor, is the most common type of

cancer worldwide with the highest incidence and mortality (1). The

histological types of lung cancer can be divided into small-cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC) (2). Among

them, the NSCLC accounts for about 80–85% of total lung cancer

cases, and mainly includes lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC) (3). Although there has been

tremendous development in the clinical diagnosis and treatment of

lung cancer, such as radiotherapy, chemotherapy, immunotherapy,

molecular targeted therapy, etc., the 5‐year survival rate of NSCLC

is still poor because the lung cancer is often insidious in the early

stage and there are delays in the diagnosis (1, 4). Therefore, it is

necessary to develop and investigate specific neoplasm markers for

improving the prediction of the clinical outcomes and

chemotherapy sensitivity of patients with NSCLC.

In the past years, a series of related breakthroughs have found

the relationship between the regulation mechanism of the cell cycle

and the development of a tumor. The major cause of tumorigenesis

is the unrestricted cell proliferation after the cell cycle disorder and

therefore, the tumor could be regarded as a cell cycle disease (5–7).

It is well known that the driving mechanism and the regulatory

mechanism of the cell cycle play important roles during cell

proliferation. When the regulatory mechanism of the cell cycle is

damaged, there can be uncontrolled cell growth, which may lead to

the transformation of tumor cells. As there is a close association

between the cell cycle and the tumor, the cell cycle could be

considered one of the primary cellular mechanisms in the

occurrence and development of cancer (8). Several studies have

reported that therapy targeting cell cycle could serve as a reasonable

treatment option to delay tumor progression by inhibiting tumor

cell proliferation and inducing its apoptosis (6, 9, 10). As the vital

genes related to the cell cycle might act as markers for pre-

cancerous lesions or early-stage cancers, doctors could choose the

best treatment for cancer patients to prolong their survival (11).

Hence, it is necessary to investigate the key molecular signatures

participating in cell cycle regulation in cancer cells. Furthermore,

the cell cycle-related genes have not been found to predict the

clinical outcomes and chemotherapeutic strategies in NSCLC
02129
patients. Therefore, the development of an NSCLC risk

stratification tool and exploring the key gene from the cell cycle-

related genes are important.

In this study, the roles of cell cycle-related genes in NSCLC were

investigated by obtaining samples from the Cancer Genome Atlas

(TCGA) database. Moreover, the cell cycle-related genes were

acquired from the MsigDb platform. We identified 93 cell cycle-

related genes that were associated with the tumor stage of NSCLC.

This study comprehensively highlighted the genome and

transcriptome characteristics of 93 genes in human tumors for

the first time. Based on the cell cycle scores and cell cycle-related

gene expression, we separated patients with NSCLC into three

distinct types and evaluated their association with prognosis,

metabolic reprogramming, immune microenvironments, and cell

death pathways. Finally, we identified the hub gene ZWINT using

bioinformatics. The association between ZWINT expression and

patient prognosis, its potential role in tumor immunity, the clinical

features of pan cancer, and the important pathways in cancer were

determined using R.
2 Materials and methods

2.1 Sample collection and acquisition of
genes associated with the cell cycle

The TCGA-LUAD and TCGA-LUSC cohorts were obtained

from the TCGA GDC website and recognized as NSCLC cohorts.

The data filtering and polishing were conducted using Perl and R

programming (12). The TCGA-LUAD cohort consisted of 539

tumor samples and 59 paracancerous samples, while the TCGA-

LUSC cohort consisted of 502 tumor samples and 49 paracancerous

samples. All these RNA-seq data were initially converted to log

format and then the sva package was applied to complete the bulk

rectification procedure. The clinical information about each patient

was also collected and compiled. Finally, the cell cycle-related

dataset was obtained and downloaded from the MsigDb platform

and the “REACTOME CELL CYCLE” dataset was compiled (13,

14). A total of 693 genes were present in this dataset, all of which

were considered to be related to the cell cycle.
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2.2 Identification of the cell cycle genes
associated with the development
of NSCLC

The conversion of normal lung epithelial cells to NSCLC cells is

considered a typical example of carcinogenesis. Therefore, a

significant role played by genes in carcinogenesis has been a topic

worthy of scientific investigation. The cell cycle genes associated

with the development of NSCLC were identified by comparing the

malignant and noncancerous tissues from the TCGA-LUAD and

TCGA-LUSC cohorts. The cutoff values for differential expression

analysis were set as follows: | logFC | > 1.5 and FDR < 0.05. Finally,

the findings from the TCGA-LUAD and TCGA-LUSC cohorts were

intersected to provide a list of differentially expressed genes.

The patients with NSCLC who acquire a tumor eventually

progress from stage I to stage IV. Therefore, it is crucial to

determine the cell cycle genes that are associated with the clinical

stage of NSCLC patients. The GEPIA2 platform developed by

Peking University was applied to facilitate the analysis (15, 16).

The specific parameters used were as follows: “Expression DIY”

toolbar, “Stage Plot” interface, and “LUAD + LUSC” dataset. Only

the cell cycle genes with a P value of less than 0.05 were selected and

further evaluated using bioinformatics.
2.3 Pan-cancer analysis

The pan-cancer cohort of TCGA was downloaded and

integrated to analyze the involvement of the aforementioned cell

cycle-related genes in diverse human cancers. The gene expression,

prognostic value, mutation type, methylation level, and pathway

regulation, among other factors, were reviewed by referring to the

previously published pan-cancer analysis methods (17–19).

The differential expression analyses of cancer and

paracancerous tissues at the pan-cancer level were conducted

using R software packages, such as ggplot2, randomcoloR,

ggpubr, GSVA, clusterProfiler, impute, and ComplexHeatmap,

and the findings were represented as a heat map (20–22). The

color of the dot on the heat map indicated whether the gene was up-

regulated or down-regulated in the cancer tissue, and the size of the

dot indicated the statistical P value. The greater the size of the dot,

the greater the statistical significance of the finding.

The pan-cancer prognostic characteristics of the aforementioned

cell cycle-related genes were studied in detail using the R packages

survival and pheatmap, and a heat map was constructed. Red

represents a dangerous gene, indicating that the greater the level of

gene expression, the worse the prognosis of patients; blue shows a

protective gene indicating that the higher the level of gene expression,

the better the prognosis of patients. Gray suggests that the gene has

no predictive association in patients with this form of malignancy.

A series of R packages, such as ggplot2, randomcoloR, tidyverse,

magrittr, readxl, stringr, maftools, dplyr, reshape2, and

RColorBrewer were used for single nucleotide variant (SNV) and

copy number variant (CNV) analyses. The frequency of SNV

mutations in each gene in a tumor is represented as a heat map,
Frontiers in Endocrinology 03130
and the type of mutation of each SNV is represented as a waterfall

map. Each hue in the CNV bar chart reflects a distinct type

of tumor.

The pan-cancer methylation levels of the cell cycle genes were

summarized using the R packages ggplot2, ChAMP, randomcoloR,

ggpubr, GSVA, clusterProfiler, impute, and ComplexHeatmap. A

red dot indicates a high amount of methylation of the gene in this

type of tumor, whereas the blue dot indicates a low level of

methylation. The size of the dot shows the P value; therefore, the

bigger the dot, the greater the statistical significance.

A comprehensive analysis of the association between the cell

cycle pathways and other traditional tumor pathways was

conducted using clusterProfiler, limma, ggplot2, ggpubr, GSVA,

and other R packages. Specifically, the relative score of each

pathway was calculated using the GSVA package to indicate the

relative activity of the pathway, and the correlation values between

the cell cycle pathway and other pathways were examined by the

correlation test, before being represented as a heat map.
2.4 Cluster analysis

First, univariate Cox regression analysis of the TCGA-LUAD

cohort was conducted to determine the cell cycle-related genes with

prognostic values, which were further used for conducting cluster

analysis. For both the TCGA-LUAD and TCGA-LUSC cohorts,

GSVA methods were used for calculating the cell cycle score of each

sample (23, 24). We performed cluster analysis based on the

expression levels of the samples using ward.D. Before classifying

the tumor tissues into three subtypes based on the distinct cell cycle

activities, we evaluated the mRNA expression levels in normal

tissues. The survival and survminer programs were used to

evaluate the prognosis of patients with different subtypes of

NSCLC to highlight the clinical value of cluster analysis.
2.5 Analysis of tumor metabolic
reprogramming, immune
microenvironment, and cell death status

42 conventional metabolic pathways, 33 immune-related

pathways, and 10 cell death pathways were classified using the

MsigDb platform. The metabolic score, immunological score, and

cell death score for each NSCLC sample were determined using the

GSVA program. The Kruskal test was used to assess the pathway

activity between the three subtypes of the cell cycle. Moreover, a

comprehensive analysis of the differences in immune cell

infiltration and gene expression at immune checkpoints was

conducted to exhaustively describe the changes in the immune

milieu across subtypes. The TIMER2.0 platform offers several

immunological algorithms, including TIMER, CIBERSOFT,

QUANTISEQ, EPIC, etc. (25, 26). The Kruskal test was used to

assess the differences in the immune cell infiltration and gene

expression at the immunological checkpoints across subtypes, and

only the findings with P < 0.05 were represented.
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2.6 Biological functional analysis of the
ZWINT gene

The expression patterns of the ZWINT gene in both healthy and

malignant tissues were obtained from Genotype-Tissue Expression

(GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer

Genome Atlas (TCGA) (27, 28). The information on ZWINT

mRNA expression in normal tissues was obtained from GTEx, a

dataset containing expression data of 31 healthy tissues, while the

information on the expression distribution across various cancer

cell lines was obtained from CCLE, a database containing

information on more than 1100 cancer cell lines. TCGA provided

information on the differential expression of genes between

malignant and noncancerous tissues. The GTEx and TCGA

databanks were accessed using the UCSC Xena platform.

Further, the linkages between ZWINT expression and clinical

outcomes were obtained using the information on patient survival

from the TCGA database. Disease-free interval (DFI), disease-specific

survival (DSS), overall survival (OS), and progression-free interval

(PFI) were used to evaluate the correlation between mRNA

expression levels and patient survival rates (29). ZWINT expression

and survival outcomes were analyzed using Kaplan-Meier (KM) and

Cox analyses for patients with different types of cancer. KM curves

and forest plots were created in R. Then, a correlation analysis of

clinicopathological data such as tumor grade, tumor stage, gender,

age, race, and tumor status was conducted using the “limma” and

“ggpubr” packages in R (30). Both the “survminer” and “survival”

packages in R were used to generate the survival curves. A P value of

0.05 was considered as the threshold of statistical significance.

The Tumor Immune Estimation Resource 2.0 online server is a

useful resource for systematically analyzing the immune infiltrates

across different cancer types. Initially, it was used to examine the

differences in ZWINT expression between the tumor and normal

tissues in all the TCGA cohorts. A correlation analysis between

ZWINT expression and immune infiltration was conducted using

several immunological deconvolution techniques. More

importantly, the correlation between ZWINT expression and

immune checkpoint levels was also evaluated in this study.

Biomarker Exploration of Solid Tumors website is a publicly

free web-based platform for omics data. It was used to further
Frontiers in Endocrinology 04131
explore the contribution of ZWINT in NSCLC. The GO and KEGG

analyses for ZWINT were based on the TCGA-LUAD and TCGA-

LUSC cohorts. Based on the median value of ZWINT expression,

LUAD, and LUSC patients were stratified into high-ZWINT and

low-ZWINT subgroups. Then, the mutation profiles between high-

ZWINT and low-ZWINT subgroups were intensively studied.

Besides, the predictive ability of ZWINT in the immunotherapy

of NSCLC patients was also analyzed. Finally, the expression levels

of the ZWINT gene in different clinical subgroups of NSCLC

patients were comprehensively investigated.

To highlight the important roles of the ZWINT gene in tumor

immune microenvironment, metabolic remodeling, and cell

death, GSEA analyses were conducted in pan-cancer tissues

following the previously described methods. Based on the

expression levels of the ZWINT gene in pan-cancer tissues, it

was ranked from high to low. The first 30% of the tumor samples

were considered as ZWINT high expression subtype, and the last

30% of the tumor samples were regarded as ZWINT low

expression subtype. Further, the tumor samples of different

subtypes were analyzed by GSEA.
2.7 Clinical sample collection

We collected 30 NSCLC tissues and 30 paired paracancerous

tissues from our hospital from 2021-08 to 2021-10. The tissues were

immediately frozen in liquid nitrogen after surgically resecting

specimens to extract total RNA. Moreover, 50 pairs of paraffin-

embedded pathological specimens obtained from 2015-12 to 2016-

12 were collected in this study. The essential information and

clinically-relevant pathological information of patients with

NSCLC are shown in Tables 1, 2, respectively. All the patients

with NSCLC from whom the tissues were collected were

pathologically confirmed to have NSCLC and were treated in the

First Affiliated Hospital of Dalian Medical University. The informed

consent was provided by the First Affiliated Hospital of Dalian

Medical University. All the patients with NSCLC refused

chemotherapy and radiation treatment before surgery. The Ethics

Committee of the First Affiliated Hospital of Dalian Medical

University approved this study.
TABLE 1 Basic information of the NSCLC patients.

Basic information
Gender Age

Male Female ≥60 <60

Number 26 24 30 20
TABLE 2 Clinically-relevant pathological information.

Pathological information
Histological type Differentiation Stage Lymphatic metastasis

Squamous Adenocarcinoma High Middle Minor I + II III + IV Yes No

Number 18 32 38 12 35 15 24 26
fr
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2.8 Isolation of the total RNA and
validation of the expression level of the
ZWINT gene by quantitative real-time PCR

Total RNA was extracted from the human NSCLC tissues by the

RNAex Pro RNA reagent based on the manufacturer’s instructions.

Subsequently, the total RNA was reverse-transcribed using the Evo

M-MLV RT Kit with gDNA Clean. The expression level of the

ZWINT gene was calculated by RT-PCR using SYBR® Green

Premix Pro Taq HS qPCR Kit. All the reagents above were

procured from Accurate Biology. The ZWINT gene was

normalized to b-actin. The DDCt method was used for

quantifying the level of RNA expression. The primer sequences

for ZWINT and b-actin were as follows:

ZWINT, 5’-AGGAGGACACTGCTAAGGG-3’(Forward),

5’- AGGTGGCCTTCAGCTCTTTC-3’ (Reverse); b-actin, 5’-

CATGTACGTTGCTATCCAGGC-3 ’ ( F o rw a r d ) , 5 ’ -

CTCCTTAATGTCACGGACGAT -3’ (Reverse).
2.9 Immunohistochemical staining

The protein express ion of ZWINT was tested by

immunohistochemical staining (IHC). The paraffin-embedded

tissue slides were immune stained with anti-N-cadherin, anti-E-

cadherin, vimentin, and ZWINT. After dewaxing, hydration, and

epitope extraction, the sections were placed in 3% hydrogen

peroxide for 15 min to inhibit endogenous peroxidase activity.

Subsequently, the sections were incubated overnight with a solution

containing the appropriate primary antibody. Then, 50 µL of

secondary antibody was added in a sequence and incubated at

room temperature for 20 min. IHC staining was carried out

according to the manufacturer’s protocol. The results were blindly

assessed independently by two pathologists. Positive ZWINT-

staining rate was considered on a scale of 0 to 4, with 1 indicating

(0–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%). Staining

intensity was rated as follows: 0 (no staining), 1 (weak staining), 2

(moderate staining), or 3 (strong staining). IHC score was

calculated as a product of positive staining rate and intensity

score. The patients were divided into high and low-expression

groups, with a score of 2 or less considered as low expression,

and a score of more than 2 considered as high expression.
3 Results

3.1 Identification of the cell cycle genes
associated with the occurrence and
development of NSCLC

A total of 148 genes involved in the cell cycle were determined

to be differently expressed in LUAD and paracancerous tissues

(Supplementary Table 1). 210 cell cycle-related genes were
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identified to be differently expressed in malignant and

noncancerous LUSC tissues (Supplementary Table 2). The

intersection of the LUAD and LUSC results revealed 143

potential cell cycle-related genes strongly linked with NSCLC

(Supplementary Figure 1). There is a clinical progression of

NSCLC as the tumor grows (StageI-StageII-StageIII-StageIV).

Further, the cell cycle genes associated with the stage of NSCLC

were identified. The findings from this study indicated that 93 out of

143 potential genes were linked with the tumor stage

(Supplementary Table 3). Therefore, these 93 genes were retained

and used for further analysis.
3.2 Pan-cancer characterization of the 93
cell cycle genes

To highlight the significance of the 93 genes in carcinogenesis

and tumor development, a pan-cancer investigation was

performed to exhaustively characterize their genomic and

transcriptome properties in different human cancers. Except for

NSCLC, practically all the genes showed highly up-regulated

expression in the cancerous tissues of CESC, CHOL, GBM,

LIHC, and UCEC (Figure 1A). However, a downregulated

expression trend was observed in the cancer tissues of COAD

and THCA (Figure 1A). This not only confirms the heterogeneity

among tumors but also indicates that these genes may play

different roles in different types of tumors. Importantly, our data

indicated that a majority of these 93 genes perform deleterious

functions in KIRC, SARC, PAAD, KIRP, LIHC, LUAD, LGG,

MESO, ACC, KICH, PCPG, BRCA, PRAD, SKCM, and UVM

(Figure 1B). In other words, as the expression of these genes

increases, there is a clinical worsening in patients with these

types of malignancies. For such cancer patients, gene-targeting

techniques may provide a novel therapeutic option. However, these

genes have a protective function in other types of cancer, including

THYM, STAD, READ, COAD, DLBC, and LUSC (Figure 1B).

Moreover, we also visualized their genetic characteristics.

Figure 2A shows the CNVs. In individuals with distinct types of

malignancies, several genes involved in the cell cycle exhibited

considerably distinct genomic features, particularly CNV levels.

The SNV mutations were more prevalent in patients with BLCA,

BRCA, CESC, COAD, LUAD, LUSC, SKCM, STAD, and UCEC

tumors (Figure 2B). It was evident that the degree of methylation

of genes might impact the level of gene expression. Therefore, the

methylation levels of these genes were examined in several tumor

types. The data indicated that the degree of methylation in

cancerous tissues is often lower than that in the surrounding

tissues (Figure 3A). In addition, pathway enrichment analysis

revealed that these cell cycle genes were significantly correlated

with several classical tumor-related pathways, indicating that

the cell cycle is intrinsically linked to tumor immune

microenvironment, metabolic reprogramming, cell death,

angiogenesis, and other biological phenomena (Figure 3B).
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3.3 Cluster analysis of NSCLC patients
based on the cell cycle gene expression
characteristics and pathway activity

Previous pan-cancer research findings revealed that the cell

cycle influences LUAD and LUSC differently or possibly contrary

to each other (Figure 1B). To further elucidate the underlying

molecular heterogeneity of NSCLC patients, a cluster analysis was

performed followed by pattern characterization. First, a univariate

COX regression analysis was conducted to identify 75 genes

associated with prognosis. The identification of these prognostic

genes can be useful in distinguishing clinically meaningful molecular

subtypes more effectively (Supplementary Table 4). The clustering

results are shown in Figures 4A, B. All the cancer patients, both from

the TCGA-LUAD and TCGA-LUSC cohorts, were successfully

classified into three subtypes (C1, C2, and C3). In the TCGA-

LUAD cohort, the trend of pathway enrichment score was C1 > C2

> C3, but in the TCGA-LUSC cohort, the pathway enrichment score

sequence was C2 > C1 > C3 (Figures 4C, D). Interestingly, in the
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TCGA-LUAD cohort, the survival times of patients followed the

trend C3 > C2 > C1, but in the TCGA-LUSC cohort, the trend was

C2 > C1 > C3 (Figures 4E, F). A comprehensive examination of

metabolic reprogramming, immunological microenvironment, and

cell death pathways was performed to completely identify the

intrinsic molecular properties of several subtypes of the cell cycle

(Figures 5, 6). The patients with LUAD and LUSC exhibited three

fundamental metabolic abnormalities associated with metabolic

reprogramming with a shift in their cell cycle activity, such as

alanine aspartate and glutamate metabolism, alpha-linolenic acid

metabolism, arachidonic acid metabolism, ether lipid metabolism,

histidine metabolism, nitrogen metabolism, glyoxylate and

dicarboxylate metabolism, and sulfur metabolism (Figures 5A,

6A). Innate immune response and adaptive immune response

exhibited notable differences among cell cycle subtypes, such as

antigen processing and presentation (Figures 5B, 6B). In addition,

several subtypes of the cell cycle were followed by distinct cell death

mechanisms, such as immunogenic cell death, necroptosis,

phagocytosis, and PANoptosis (Figures 5C, 6C).
A B

FIGURE 1

Expression traits and prognostic values of the cell cycle-related genes in pan cancer. (A) mRNA expression levels of the 93 cell cycle-related genes
in other human tumors (P < 0.05). (B) Clinical outcomes of the cell cycle in pan cancer. White color (P > 0.05) indicates no statistical difference. Red
color indicates the risk factor, while the blue color indicates the protective factor.
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3.4 Biological analysis of the ZWINT gene

As a traditional cell cycle-related gene, the ZWINT gene has been

identified to regulate the onset and development of several types of

cancers; however, its association with NSCLC remains unknown.

Therefore, the expression of the ZWINT gene in pan cancer and the

possible functions of NSCLC were examined. Combining the

histology data from TCGA and GTEx established that ZWINT was

significantly overexpressed in several types of human cancers,

indicating its significant role in carcinogenesis (Supplementary

Figures 2A, B). Comprehensive pan-cancer investigation based on

the univariate COX regression analysis and KM analysis indicated the

prognostic significance of the ZWINT gene (Supplementary

Figures 3–7). Immune correlation research revealed a significant

relationship between the ZWINT gene and infiltrating immune

cells, such as B cells, CD4+ T cells, cancer-associated fibroblasts,

CD8+ T cells, macrophages, neutrophils, and NK cells (Figure 7).

Immune checkpoints are the primary limiting criteria for the activity
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of immunological cells. As shown in Supplementary Figure 8, we also

studied the influence of the ZWINT gene on the expression levels of

different types of immune checkpoints. Immunotherapy targeting

immune checkpoints is an emerging research area in cancer

treatment, and the study results indicated that the ZWINT gene

can be used as a predictor of immunotherapy response to a certain

extent (Supplementary Figure 9).

GO analysis revealed that the ZWINT gene was involved not

only in controlling the cell cycle development in LUAD and LUSC

but also in regulating processes such as cell division, chromosomal

segregation, nucleoplasm, cell periphery, etc. (Figures 8A, B).

However, there are still some gaps that need attention. The

ZWINT gene has a stronger influence on the development and

stability of cell membranes in LUAD and a greater influence on the

extracellular matrix and some immunomodulatory responses in

LUSC. KEGG analysis results further verified the influence of

ZWINT on the advancement of the NSCLC cell cycle

(Figures 8C, D). In addition, the genomic mutation data of
A B

FIGURE 2

Genomics traits of cell cycle-related genes in pan cancer. (A) CNV outcomes of the 93 cell cycle-related genes in different types of cancers. The
length line represents the wave frequency of the cell cycle-related genes in human malignant tumors. (B) Heatmap representing the SNV mutations
for the 93 cell cycle-related genes.
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NSCLC patients with varying ZWINT expression levels were also

analyzed in this study. As shown in Figure 9, the ZWINT gene has a

stronger impact on the SNV and CNV mutations in LUAD when

compared to those in LUSC. NSCLC patients with different clinical

traits demonstrated distinct expression levels of the ZWINT gene

(Supplementary Figure 10). The male patients with LUAD had

considerably higher levels of ZWINT gene expression than the

female patients. The expression levels of the ZWINT gene were

substantially higher in patients with LUSC younger than or equal to

65 years than in those older than 65 years. For both LUAD and

LUSC patients, the expression of the ZWINT gene was significantly

associated with the tumor stage. Above all, ZWINT expression was

found to be significantly correlated with tumor immune-related

pathways, metabolism-related pathways, and cell death-related

pathways (Supplementary Figure 11). Specifically, ZWINT

expression was negatively associated with the activities of the T

cell receptor signaling pathway, B cell receptor signaling pathway,

toll-like receptor signaling pathway, and cytokine-cytokine receptor

interactions (Supplementary Figure 11A). A complex regulatory

relationship was observed between the ZWINT gene and the

classical metabolic pathways of the tumor. As shown in

Supplementary Figure 11B, a significant positive correlation

between the ZWINT gene and pyrimidine metabolism was

observed in all types of tumor tissues. However, a different
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correlation was observed with other metabolic pathways due to

tumor heterogeneity. In addition, ZWINT expression was positively

related to several cell death pathways in patients with KIRC and

THCA (Supplementary Figure 11C). ZWINT expression was

negatively related to several cell death pathways in patients with

CESC, ESCA, and GBM (Supplementary Figure 11C).
3.5 Expression validation of ZWINT gene in
patients with NSCLC

We identified the expression of the ZWINT gene in 30 samples of

NSCLC and nearby frozen tissues using RT-qPCR. Consistent with our

previous hypothesis, the RT-qPCR data demonstrated that the

expression of ZWINT in cancer tissues was much higher than that

in the neighboring tissues (Figure 10A). The immunohistochemical

results further elucidated the up-regulated expression of the ZWINT

gene in cancer tissues from the perspective of protein levels (Figure 10B

and Table 3). In addition, the immunohistochemistry studies

demonstrated that the expression of E-cadherin was significantly

down-regulated in cancerous tissues, while the expression of

Vimentin and Slug protein was significantly up-regulated in

cancerous tissues (Figure 10C). The protein expression levels of

ZWINT in NSCLC were negatively linked with E-cadherin, strongly
A B

FIGURE 3

Methylation levels and pathway correlation of the cell cycle-related genes in pan cancer. (A) DNA methylation of the 93 cell cycle-related genes in
different types of cancers (red to blue represents high to low). (B) 93 cell cycle-related genes were correlated with several classical tumor-related
pathways (red to blue represents high to low).
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associated with Vimentin, and positively correlated with Slug

protein (Table 4).
4 Discussion

Cell growth and differentiation are the essential phases of the

cell cycle. The control of the cell fate through the cell cycle enables

the development and self-renewal of mammalian cells. In other

words, signaling pathways involved in the cell cycle regulate cell

growth, proliferation, and differentiation. Each of the four phases

of the cell cycle, namely, G1, S, G2, and M, occur sequentially and

are rigorously controlled. The cell cycle checkpoint is the cell’s

feedback control mechanism that decides whether the cell can

progress to the subsequent phase. When aberrant events (such as

DNA damage) occur, cell cycle checkpoints are involved in halting

cell transitions to the next stage, accruing repairs, and promoting
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the release of a series of repair-functioning proteins. According to

tumor research, the formation and progression of tumors are

closely connected to the aberrant composition of the control point

in the G1/S phase. With the expansion of scientific research, it is

generally accepted that cyclin-dependent kinase and cyclin are

potential therapeutic targets of anti-tumor medicines. However, it

is apparent that the cell cycle is an excellent and intricate network,

in which each cell cycle regulator is closely connected, interacts

with each other, regulates or inhibits the progression of the entire

cell cycle, and ultimately leads to cancer. Therefore, there is an

urgent need to use more cutting-edge analytical tools for

investigating the possible intermolecular interactions and

regulation of gene expression, which can enhance the

understanding of the intrinsic characteristics of tumors.

Moreover, it may provide a novel alternative therapeutic method.

In this study, 693 cell cycle regulators were identified, among which

93 were differentially expressed inNSCLC and surrounding tissues, and
A

C

E

B

D

F

FIGURE 4

Cluster analysis based on the cell cycle-related genes. The patients with NSCLC in the TCGA-LUAD and TCGA-LUSC cohorts were successfully
grouped into 3 clusters for LUAD (A) and LUSC (B). Pathway enrichment scores followed the trend C1 > C2 > C3 in LUAD (C) and C2 > C1 > C3 in
LUSC (D). Three different clusters showed different survival curves. Cluster 1 has the worse survival rate in LUAD (E). However, Cluster 1 has the
worse survival rate in LUSC (F). x indicates survival time and y indicates survival rate.
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were associated with the clinical stage of the tumor. With the rapid

development of the bioinformatics field, people have gradually reached

a consensus that differentially expressed genes between cancer and

paracancerous tissues are often related to tumorigenesis, while genes

related to the clinical stages are often involved in tumor progression.

Therefore, the 93 cell cycle regulators identified in this study can be

considered to be involved in controlling the incidence and progression

of NSCLC to a certain extent, which is of tremendous research

significance, and the further bioinformatics analysis and experimental

verification in this study were also based on this.

The pan-cancer multi-group properties of these cell cycle

regulators are systematically elucidated for the first time in this

study, which is one of its novel contributions. The study findings

implied that cell cycle signals may have contrasting regulatory

effects on different subsets of NSCLC patients since the majority

of genes play risk roles in LUAD but protective roles in LUSC. The

phenomena have been documented for the first time in this study.

Moreover, cell cycle signals are closely associated with other

conventional tumor-associated signals, such as metabolic signals,

immunological signals, cell death signals, etc. In addition to the

consensus clustering of the transcriptome, we conducted a
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comprehensive analysis of the genomic characteristics of the

regulators, such as CNV and SNV.

More importantly, cell cycle signal activity was used for the first

time in this study for the effective classification of NSCLC patients into

three subgroups. For patients with LUAD, the active cell cycle signal

often led to unfavorable clinical results. However, for patients with

LUSC, the longer their survival time, the more active the cell cycle

signal. Consistent with our previous pan-cancer analysis findings, it

was observed that there is evident molecular heterogeneity in patients

with NSCLC, the reason for heterogeneity may be related to its

pathological type, and cell cycle signaling, as the most fundamental

process in cell survival, plays nearly opposite roles in LUAD and LUSC.

In NSCLC patients with distinct cell cycle activity, the immunological

microenvironment, metabolic reprogramming, and cell death

mechanisms are often distinct. This further validates the connection

between these complex networks and promotes the progression and

development of malignancies.

ZWINT is a protein that interacts with ZW10 and is encoded by

the ZWINT gene. This protein is essential for chromosomal mobility

and spindle checkpoint regulation, as well as mitosis and cell

proliferation (4, 31). It is generally accepted that mitotic
A

B

C

FIGURE 5

Correlation of the cell cycle-related gene scores with metabolic reprogramming, immunological microenvironment, and cell death pathways in
LUAD. (A) Activity of well-recognized metabolic reprogramming in the three clusters for LUAD. (B) Activity of well-recognized immune pathways in
the three clusters for LUAD. (C) Correlation between the cell cycle-related gene scores and cell death pathways for LUAD. * indicates p < 0.05;
** indicates p < 0.01; *** indicates p < 0.001; and **** indicates p < 0.0001.
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abnormalities are characteristic of a majority of malignant tumors.

Although the precise function of the molecular composition of the

centromere and the interactions between various components of the

centromere are unknown, there is growing evidence that ZWINT is

frequently over-expressed in several tumors and associated with poor

clinical prognosis and early recurrence (32). ZWINT has been

demonstrated to diminish chromosomal stability during the

development of cancer, indicating that it may function as an

oncoprotein (33). The high expression of ZWINT is strongly

associated with tumor recurrence, which is a possible risk factor for

the high recurrence rate and poor survival rate in patients with liver

cancer (34). Endo et al. revealed that the high expression of ZWINT is

associated with the overall poor survival rate of LUAD, and ZWINT

has a high sensitivity for early screening of lung cancer (35). Mou

et al. have shown that ZWINT may affect the proliferation and

migration of melanoma cells by regulating the expression of c-Myc

(36). Kim et al. observed that ZWINT is abundantly expressed in

pan-cancer cells and tissues and enhances pan-cancer cell

proliferation and invasion through NF-kB signal transduction (37).
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PCR and immunohistochemistry results indicated that the

expression levels of the ZWINT gene were considerably higher in

NSCLC cancer tissues than that in the surrounding tissues, and the

ZWINT gene may contribute to disease progression by increasing

the epithelial-mesenchymal transition (EMT). E-cadherin

(cadherin), which is completely expressed on the membrane

surface of epithelial cells, is the primary hallmark of EMT

epithelioid cells, and a decline in the E-cadherin expression

reduces the adhesion between cells (38). Vimentin and Slug are

the primary markers of EMT interstitial-like cells (39). Slug

overexpression may activate ERK2 in the nucleus, decrease E-

cadherin production, and enhance the incidence of EMT (40, 41).

In this study, ZWINT protein expression in NSCLC was negatively

connected with E-cadherin and strongly correlated with Vimentin

and Slug proteins. It is hypothesized that elevated ZWINT

expression may upregulate the Vimentin and Slug proteins and

downregulate the E-cadherin protein, thereby promoting the

occurrence of EMT. This plays a significant role in the metastasis

and development of NSCLC.
A

B

C

FIGURE 6

Correlation of the cell cycle-related gene scores with metabolic reprogramming, immunological microenvironment, and cell death pathways in
LUSC. (A) Activity of well-recognized metabolic reprogramming in the three clusters for LUSC. (B) Activity of well-recognized immune pathways in
the three clusters for LUSC. (C) Correlation between the cell cycle-related gene scores and cell death pathways for LUSC. * indicates p < 0.05;
** indicates p < 0.01; *** indicates p < 0.001; and **** indicates p < 0.0001.
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FIGURE 7

Correlation between the expression levels of ZWINT gene and immune cell infiltration in pan cancer. (Red to blue color represents high to low
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FIGURE 8

Pathway enrichment analysis of the hub ZWINT gene by GO and KEGG in LUAD and LUSU. (A, B) GO and KEGG analysis
gene in LUAD. (C, D) GO and KEGG analysis for evaluating the relationship between the classic cancer pathway and the h
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FIGURE 9

(A) Genomic mutation data of LUAD patients with varying ZWINT expression levels. (B) Genomic mutation data of LUSC patient
*** indicates p < 0.001; and **** indicates p < 0.0001.
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5 Conclusions

This study comprehensively characterized the pan-cancer cell cycle

regulatory landscape for the first time. We successfully identified the
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molecular heterogeneity in patients with NSCLC based on the cell cycle

activities. ZWINT has been proven to be significantly up-regulated in

NSCLC tissues compared to paracancerous tissues, whichmight promote

the progression of tumors through activation of the EMT pathway.
A

C

B

FIGURE 10

Expression validation of the ZWINT gene in NSCLC. (A) RT-qPCR analysis of 30 paired frozen cancerous and paracancerous tissues. (B) IHC
experiments verified the expression levels of the ZWINT gene in cancerous and paracancerous tissues. (C) IHC experiments verified the expression
levels of EMT pathway-associated markers in cancerous and paracancerous tissues. *** indicates p < 0.001.
TABLE 3 Protein expression of ZWINT in NSCLC and paracancer tissues (%).

Group N
Protein expression levels of ZWINT

c2 p
High(%) Low(%)

NSCLC 50 36(72%) 14(28%) 34.313 0.000

Para cancer 50 7(14%) 43(86%)
Red value means that the p-value is less than 0.05, indicating statistical significance.
TABLE 4 Correlation between ZWINT and E-cadherin, Vimentin, and Slug protein expression (n).

ZWINT
E-cadherin Vimentin Slug

High Low High Low High Low

High 13 22 23 13 26 10

Low 11 4 4 10 5 9

r -0.332 0.318 0.338

P 0.020 0.026 0.018
Red values means that the p-value is less than 0.05, indicating statistical significance.
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Venn diagram highlighting the shared differentially expressed cell cycle-
related genes in both LUAD and LUSC cohorts.
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mRNA expression levels of ZWINT in different types of cancers (A) ZWINT

expression traits in cancerous and normal samples based on the TCGA
cohort. (B) ZWINT expression traits in cancerous and normal samples based

on the TCGA and GTEx cohorts.

SUPPLEMENTARY FIGURE 3

Prognostic significance of ZWINT gene in pan cancer by univariate COX
regression analysis.

SUPPLEMENTARY FIGURE 4

Overall survival of the ZWINT gene in pan cancer by KM analysis.

SUPPLEMENTARY FIGURE 5

Progression-free interval of ZWINT gene in pan cancer by KM analysis.

SUPPLEMENTARY FIGURE 6

Disease-specific survival of ZWINT gene in pan cancer by KM analysis.

SUPPLEMENTARY FIGURE 7

Disease-free interval of ZWINT gene in pan cancer by KM analysis.

SUPPLEMENTARY FIGURE 8

Relationship between the expression levels of ZWINT and immune checkpoints.

SUPPLEMENTARY FIGURE 9

Relationship between ZWINT and immunotherapy.

SUPPLEMENTARY FIGURE 10

Association of ZWINT expression with clinical characteristics of

NSCLC patients.

SUPPLEMENTARY FIGURE 11

Association of ZWINT expression with (A) immune pathways, (B) metabolic
pathways, and (C) cell death pathways in pan cancer.
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Development and validation of
a contrast-enhanced CT-based
radiomics nomogram for
preoperative diagnosis in
neuroendocrine carcinoma
of digestive system

Liang Xu1, Xinyi Yang1, Wenxuan Xiang2, Pengbo Hu1,
Xiuyuan Zhang1, Zhou Li1, Yiming Li1, Yongqing Liu1,
Yuhong Dai1, Yan Luo3*† and Hong Qiu1*†

1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 2Department of Otolaryngology-Head and Neck Surgery, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
3Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Objectives: To develop and validate a contrast-enhanced CT-based radiomics

nomogram for the diagnosis of neuroendocrine carcinoma of the digestive system.

Methods: The clinical data and contrast-enhanced CT images of 60 patients with

pathologically confirmed neuroendocrine carcinoma of the digestive system and

60 patients with non-neuroendocrine carcinoma of the digestive system were

retrospectively collected from August 2015 to December 2021 at Tongji Hospital,

Tongji Medical College, Huazhong University of Science and Technology, and

randomly divided into a training cohort (n=84) and a validation cohort (n=36).

Clinical characteristics were analyzed by logistic regression and a clinical

diagnosis model was developed. Radiomics signature were established by

extracting radiomic features from contrast-enhanced CT images. Based on the

radiomic signature and clinical characteristics, radiomic nomogram was

developed. ROC curves and Delong’s test were used to evaluate the diagnostic

efficacy of the three models, calibration curves and application decision curves

were used to analyze the accuracy and clinical application value of nomogram.

Results: Logistic regression results showed that TNM stage (stage IV) (OR 6.8,

95% CI 1.320-43.164, p=0. 028) was an independent factor affecting the

diagnosis for NECs of the digestive system, and a clinical model was

constructed based on TNM stage (stage IV). The AUCs of the clinical model,

radiomics signature, and radiomics nomogram for the diagnosis of NECs of the

digestive system in the training, validation cohorts and pooled patients were

0.643, 0.893, 0.913; 0.722, 0.867, 0.932 and 0.667, 0.887, 0.917 respectively. The

AUCs of radiomics signature and radiomics nomogram were higher than clinical

model, with statistically significant difference (Z=4.46, 6.85, both p < 0.001); the

AUC difference between radiomics signature and radiomics nomogram was not
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statistically significant (Z=1.63, p = 0.104). The results of the calibration curve

showed favorable agreement between the predicted values of the nomogram

and the pathological results, and the decision curve analysis indicated that the

nomogram had favorable application in clinical practice.

Conclusions: The nomogram constructed based on contrast-enhanced CT

radiomics and clinical characteristics was able to effectively diagnose

neuroendocrine carcinoma of the digestive system.
KEYWORDS

radiomics, contrast-enhanced CT, neuroendocrine carcinoma, diagnosis model,
digestive system
Introduction
Neuroendocrine neoplasms (NENs) are rare tumors arising

from neuroendocrine cells and peptidergic neurons, which are

characterized by secreting biogenic amines and various peptide

hormones (1). They can develop in almost any organ of the body,

mainly in the digestive and respiratory systems, such as the

esophagus, gastroenteropancreas and lung tissues, and the biology

of the disease is highly heterogeneous (2). Although relatively rare,

the incidence of NENs has been increasing, with a more than 6-fold

increase over a 40-year period, particularly in the digestive system

(3). The latest 2019 WHO guidelines classified NENs into poorly

differentiated and highly aggressive neuroendocrine cancers (NECs)

and highly differentiated and inert neuroendocrine tumors (NETs)

based on mitotic rate and Ki-67 index (4).

Due to the unspecific clinical symptoms of NECs of digestive

system, it is prone to misdiagnose NECs as adenocarcinomas or

squamous carcinomas before surgery in clinical practice. The low-

differentiated digestive system NECs are highly malignant and

aggressive, and most patients have distant metastasis at the time of

diagnosis (5). For patients with combined distant metastasis, surgery

does not benefit due to the rapidly progressive biology of NECs, and

platinum-based chemotherapy is the primary recommended first-line

treatment option. In the case of locally advanced non-NECs such as

adenocarcinomas or squamous carcinomas of the digestive system,

surgery is still an important treatment modality. In addition, the

prognosis of NECs is also significantly worse compared to non-

NECs. If the tumor can be diagnosed preoperatively, it will be

beneficial to select a more suitable treatment modality and judge the

prognosis. Currently, NECs in the digestive system are clearly

diagnosed by postoperative pathological findings, and there is still a

lack of effective and definitive methods for preoperative diagnosis.

Therefore, exploring an effective new method for preoperative

diagnosis is crucial for clinical practice.

Contrast-enhanced CT is one of the most common and important

imaging examinations for diagnosing tumor of the digestive system.

Medical images contain a large amount of invisible data, and it is the

value of radiomics to reveal these invisible disease features. Radiomics
02146
has been defined as the use of mathematical algorithms to transform

the underlying pathophysiological information contained in medical

images into quantitative, high-dimensional image features and to

explore the correlation of these image features with clinical

outcomes or biological properties (6, 7). When radiomics is applied

to cancer research, it is possible to characterize the imaging of tumor

patients non-invasively, quantify the heterogeneity between tissues,

describe the microenvironment of the tumor, assess the effectiveness

of treatment, and predict survival after obtaining radiological images

by CT, MRI, and other examination methods (8, 9).

In recent years, radiomics has been gradually and widely used in

the diagnosis of cancers (10), identification of molecular typing of

tumors (11), prediction of survival status of patients (12), and the

use of imaging genomics to analyze the relationship between

imaging features and genomic features to dissect tumor

heterogeneity (13). Radiomics studies targeting NETs are also

increasing, and radiomics can be applied in the diagnosis of

pancreatic NETs (14), predicting the grading of pancreatic NETs

(15), determining the prognosis of NETs (16), and assessing the

effects of drug therapy for NETs (17). However, there are few

radiomics studies for NECs,Wang et al. (18) identified gastric NECs

from gastric adenocarcinoma with CT radiomics. To our

knowledge, there are no radiomics studies for other digestive

system NECs such as esophageal, intestinal and pancreatic.

Therefore, we aim to conduct a study to extract tumor radiomics

features based on contrast-enhanced CT images and construct a

nomogram in combination with clinicopathological characteristics

to diagnose NECs of the digestive system before surgery.
Materials and methods

Patients

This retrospective study was approved by the Medical Ethics

Review Committee of Tongji Hospital, Tongji Medical College,

Huazhong University of Science and Technology, and written

consent was waived. The inclusion criteria were as follows: patients

with pathological diagnosis of esophageal or gastroenteropancreatic
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NEC by surgery or biopsy; CT examination within 2 weeks before

surgery or biopsy. The exclusion criteria were as follows: receiving the

corresponding treatment before the contrast-enhanced CT

examination; No contrast-enhanced CT examination or

unavailability of contrast-enhanced CT image data; poor image

quality affecting image segmentation and evaluation.

A total of 177 patients pathologically-diagnosed NECs of the

digestive system from August 2015 to December 2021 were

identified from the hospital database. According to the above

inclusion and exclusion criteria, 60 patients with NEC of the

digestive system were finally included, including 23 esophageal

NECs, 22 gastric NECs, 6 intestinal NECs, and 9 pancreatic

NECs. The same number of adenocarcinomas or squamous

carcinomas of the digestive system at the same sites were

systematically sampled and matched as a control group for NECs.

Patients were randomized in a 7:3 ratio into a training cohort

(n=84) and a validation cohort (n=36) (Supplementary Figure 1).
Image acquisition

All 120 patients underwent contrast-enhanced CT examination

within 2 weeks before surgery or biopsy using a 64-slice MDCT

system (Discovery C750 HD, GE Healthcare). Patients were trained

to breathe and hold their breath before the scanning examination.

The patient was advised to be in a supine position during the

examination, and the patient was told to over-supine the neck and

lower the shoulders as much as possible during the scan and avoid

swallowing movements.

Contrast-enhanced CT scans were performed by injecting non-

ionic iodinated contrast agent Iopromide (Ultravist, Bayer Healthcare,

Wayne, NJ, iodine concentration of 370 mg/mL) at a flow rate of 3.0-

3.5 mL/s via the anterior elbow vein. Contrast-enhanced chest CT was

acquired 15 seconds after injection. Bolus tracking technique was used

for contrast-enhanced abdominal CT and arterial phase was

automatically triggered 5-8 seconds after the attenuation of

abdominal aorta reached 150 HU. The main scanning parameters

were as follows: tube voltage 100-120 kV, rotation time 0.5- 0.6 s, tube

current 200-350 mA, and slice thickness 5 mm. The acquired raw data

were reconstructed to a slice thickness of 1.25 mm and exported in

DICOM format for analysis.
Image segmentation and radiomics
feature extraction

On the picture archiving and communication system, two

experienced radiologists reviewed the contrast-enhanced CT

images and discussed together to determine the tumor location

with reference to endoscopy and other findings. Arterial phase

images of the contrast-enhanced CT were used for image

segmentation and radiomics feature extraction. Segmentation was

performed by two experienced oncologist and radiologist who were

blind to clinical information according to the tumor location

recorded by the two radiologists. The 3D Slicer image computing

platform (version 5.0.3) software was used to manually segment the
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3D volume of interest (VOI) of the entire tumor, and the cystic or

necrotic areas were avoided during the segmentation.

A total of 107 features, including First order features, Shape

features (3D), Shape features (2D), Gray level co-occurrence matrix

(GLCM) features, Gray level size zone matrix (GLSZM) features,

Gray level run length matrix (GLRLM) features, Neighbouring gray

tone difference matrix (NGTDM) features and Gray level

dependence matrix (GLDM) features were extracted using the

“Slicer Radiomics” extension package of 3D Slicer software. To

determine the intra- and inter-reader reproducibility of radiomics

features, 20 randomly-selected cases were segmented by the

oncologist after a period of 1 month and by radiologist with 5

years of experience.
Radiomics feature selection and radiomics
signature development

Radiomics features extracted from the images were subjected to

Z-score normalization. Intraclass correlation coefficients (ICC)

were calculated and features with ICC > 0.75 in intra- and inter-

reader reproducibility tests were considered reproducible and

include in feature selection. In the R software (version 4.2.0,

http://www.r-project.org), the least absolute shrinkage and

selection operator (LASSO) logistic regression algorithm using the

“glmnet” package was used to select features that were closely

associated with the diagnosis of NECs of the digestive system.

The features in the training cohort that were strongly correlated

with the diagnosis of NECs of the digestive system were screened by

a 10-fold cross-validation.

Based on the linear combination of the screened features and

their correlation coefficients, radiomics score (Rad-score) was

calculated. Receiver operating characteristic (ROC) curves were

plotted to analyze the efficacy of radiomics signature for

diagnosing NEC of the digestive system.
Clinical model and clinical-radiomics
model development
Clinical characteristics including age, gender, TNM stage,

preoperative CEA and preoperative CA199 were compared

between NECs and non-NECs of the digestive system, and factors

with statistical significance were further included into multivariable

logistic regression analysis to establish a clinical model.

The clinical features associated with the diagnosis of NECs were

combined with radiomics signature using multivariable logistic

regression analysis to build a clinical-radiomics model, and a

nomogram based on these clinical-radiomics model was also

built. ROC curves were plotted to assess the discrimination of the

models, and Delong’s test was used to compare the area under the

curve of different models. Calibration curves were used to estimate

the accuracy of the nomogram, and decision curve analysis (DCA)

was used to assess the clinical utility of the nomogram.
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Statistical analysis

All statistical analyses were performed in R software. The c² test
was used for the comparison of categorical data, and the t-test was

used for the comparison of quantitative data. The “Glm” package of

the R software package was used for logistic regression analysis, the

“Glmnet” package was used for LASSO regression algorithm

analysis, and the “pROC” package was used for ROC curves

plotting. The calibration curve and DCA were executed using the

“Rms” and “rmda” packages, respectively. The differences were

statistically significant at p<0.05.
Results

Patient characteristics and clinical model
construction and validation

There were 84 patients in the training cohort, among which 42

were NECs and 42 were non-NECs; there were 36 patients in the

validation cohort, among which 18 were NECs and 18 were non-NECs.

In the training and validation cohorts, the differences in TNM stage

between the NEC and non-NEC groups were statistically significant

(p<0.05), while the differences in clinical characteristics such as age,

gender, preoperative CEA and CA199 were not statistically significant

(all p>0.05), as shown in Table 1. In the training cohort, logistic

regression was performed on TNM stage, and the results showed that

only TNM stage (stage IV) (OR 6.8, 95%CI 1.320-43.164, p=0.028) was

an independent factor for the diagnosis of NECs, and the variables and
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coefficients of the clinical model are shown in Supplementary Table 1.

The clinical model was constructed from TNM stage (stage IV).

The ROC curves of the clinical models in the training and

validation cohorts were plotted (Figure 1). In the training cohort, the

AUC of the clinical model for diagnosing NECs is 0.643 (95%CI 0.553-

0.733), the sensitivity is 0.405, the specificity is 0.881. In the validation

cohort, the AUC of the clinical model for diagnosing NECs is 0.722

(95%CI 0.592-0.853), the sensitivity is 0.500, the specificity is 0.944.
Radiomics signature construction
and validation

A total of 107 radiomics features were extracted, and the

consistency assessment showed that the ICC of all radiomics

features was >0.75. The best radiomics features with six non-zero

coefficients in the training cohort were determined by the LASSO

regression algorithm (Figure 2) to be closely related to the diagnosis

of NECs, and the best value of the LASSO adjustable parameter (l)
was 0.092. These six radiomics features and their corresponding

coefficients were linearly combined to construct the radiomics

signature with the following equation: Rad-score= 0.00885470+

(0.15453837 × LeastAxisLength) – (0.18987915 × SurfaceVolume

Ratio) – (0.10557837 × Uniformity) + (0.15860176 × Inverse

Variance) + (0.35593795 ×MCC) + (0.11645836 × Large

DependenceLowGrayLevelEmphasis).

The ROC curves were plotted for the Radiomics signature

(Figure 3). In the training cohort, the AUC of the radiomics

signature for diagnosing NECs is 0.893 (95%CI 0.822-0.965), the
TABLE 1 Patient clinical characteristics in the training and validation cohorts.

Characteristics Training cohort Validation cohort

NEC Non-NEC p-value NEC Non-NEC p-value

Age(year), mean ± SD 64.02 ± 9.02 56.24 ± 9.69 0.606 62.72 ± 11.21 56.83 ± 9.488 0.762

Sex 0.503 1.000

Female 27 24 3 3

Male 15 18 15 15

CEA*(ng/ml) 0.357 1.000

<5 27 35 10 12

≥5 8 6 4 4

CA199*(u/ml) 0.281 0.426

<37 29 32 12 10

≥37 2 6 1 4

TNM 0.012 0.014

I 3 6 1 1

II 8 17 6 10

III 14 14 2 6

IV 17 5 9 1
fron
*represents the presence of missing values.
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sensitivity is 0.833, the specificity is 0.833. In the validation cohort,

the AUC of the radiomics signature for diagnosing NECs is 0.867

(95%CI 0.751-0.983), the sensitivity is 0.889, the specificity is 0.778.
Nomogram construction and validation
Logistic regression analysis showed that both radiomics

signature (OR 56.869, 95% CI 11.354-471.239, p<0.001) and

TNM stage (stage IV) (OR 5.03, 95% CI 1.741-16.937, p=0.005)

were independent predictors for the diagnosis of NECs of the

digestive system, and a combined clinical-radiomics diagnostic
Frontiers in Endocrinology 05149
model containing these two predictors was constructed to

generate a radiomics nomogram(Figure 4).

The ROC curves were plotted for the nomogram (Figure 5). In

the training cohort, the AUC of the radiomics nomogram for

diagnosing NECs is 0.913 (95%CI 0.849-0.976), the sensitivity is

0.833, the specificity is 0.833. In the validation cohort, the AUC of

the radiomics nomogram for diagnosing NECs is 0.932 (95%CI

0.857-1.000), the sensitivity is 1.000, the specificity is 0.722.

The ROC curves were plotted for the clinical model, radiomics

signature, and radiomics nomogram in the pooled population

(Figure 6). The AUC of the clinical model for diagnosing NECs is

0.667 (95%CI 0.593-0.741), the sensitivity is 0.433, the specificity is 0.9.

the AUC of the radiomics signature for diagnosing NECs is 0.887 (95%

CI 0.828-0.946), the sensitivity is 0.867, the specificity is 0.783. the AUC

of the radiomics nomogram for diagnosing NECs is 0.917 (95%CI

0.867-0.967), the sensitivity is 0.833, the specificity is 0.85. The

diagnosis performance of three models in the training and validation

cohort is shown in Supplementary Table 2.

Delong’s test was used to compare the significance of the AUCs

of the three different models. The results showed that the AUC of

the radiomics signature and the radiomics nomogram were higher

than those of the clinical model, and the differences were

statistically significant (Z=4.46, 6.85, both p<0.001); the difference

in the AUC of the radiomics signature and the radiomics

nomogram were not statistically significant (Z=1.63, p =0.104).

Calibration curves were developed to verify the discriminative

efficacy of the nomogram, and the mean absolute error of the

calibration curves for the training cohort was 0.017 (Figure 7A); the

mean absolute error of the calibration curves for the validation

cohort was 0.06 (Figure 7B). The calibration curve was close to the

ideal curve, which indicated that the prediction of the constructed

nomogram for the diagnosis of NECs of the digestive system fitted

well with the actual results.

DCA was used to verify the value of the nomogram for clinical

applications, and the results showed that in the training cohort,

DCA in the 4%-99% threshold range was more effective in

diagnosing NECs using radiomics signature or radiomics
FIGURE 1

ROC curves of clinical model in the training and validation cohorts.
A B

FIGURE 2

Radiomics feature selected by LASSO regression algorithm. (A) Plotting of multinomial deviance versus log(l). (B) LASSO coefficient profiles of the
radiomics features.
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nomogram than using clinical model (Figure 8A). In the validation

cohort, DCA in the 1%-35%, 37%-39%, and 69%-99% threshold

range was more effective in diagnosing NECs using radiomics

signature than using clinical model, DCA in the 1%-99%

threshold range was more effective in diagnosing NECs using

radiomics nomogram than using clinical model (Figure 8B). This

suggested that radiomics signature or radiomics nomogram had

great clinical application.
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Discussion

In this study, we developed and validated a new radiomics

nomogram for preoperative diagnosis of NECs and non-NECs in

the digestive system. The radiomics nomogram, which combines

radiomic signature and TNM stage (stage IV), could be an effective

method diagnosing NECs of the digestive system.

Due to the significant differences in treatment and prognosis

between NECs and non-NECs, preoperative diagnosis is significant

for the treatment options and prognosis of patients. At present, there is

still a lack of effective methods. CT examination is an important

examination for the diagnosis of cancer, which can not only detect

cancer lesions but is also essential for the clinical staging of cancer (19),

and contrast-enhanced CT will be more obvious. Contrast-enhanced

CT is largely able to reflect the status of microcirculation inside the

cancer, which could understand the differences between different

cancers and judge the nature of the cancer (20, 21). The internal

blood supply is overly adequate inmost NECs (22), whichmeans that it

is possible to detect differences between NECs and non-NECs by

contrast-enhanced CT, and contrast-enhanced CT is potentially an

effective tool for diagnosing NECs.

Radiomics has a good application in the diagnosis of cancer by

extracting information from the inner data of CT and MRI images,

and the image features reflect the underlying pathophysiological

changes to a certain extent, which can reflect the internal

heterogeneity of cancers noninvasively and at low cost (23, 24).

Radiomics analysis has also shown good clinical value in NETs.

Clinical characteristics of age, gender, TNM stage, preoperative

CEA and preoperative CA199 were included in this study to explore

the role of clinical characteristics in the diagnosis for NECs of the

digestive system. The results showed that TNM stage (stage IV) was

an independent predictor for the diagnosis of NECs. Stage IV
FIGURE 3

ROC curves of radiomics signature in the training and validation
cohorts.
FIGURE 4

Radiomics nomogram constructed based on clinical model and
radiomics signature.
FIGURE 5

ROC curves of radiomics nomogram in the training and validation
cohorts.
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indicated a higher possibility of diagnosis of NECs. This is

consistent with the biological characteristics of NECs, which is

highly malignant, with the majority having developed distant

metastases at the time of diagnosis (5), and has mostly developed

into stage IV at the time of diagnosis. However, we constructed

clinical models with relatively low AUCs developed from TNM

stage (stage IV) in the training cohort, validation cohort, and pooled

population, 0.643, 0.722, and 0.691, respectively, suggesting the

relatively limited predictive value of clinical model.

In this study, six radiomics features, including LeastAxisLength,

SurfaceVolumeRatio, Uniformity, InverseVariance, MCC and

LargeDependenceLowGrayLevelEmphasis were screened to

obtain. Among them, 1 for First Order Features, 2 for Shape

Features (3D), 2 for GLCM, and 1 for GLDM. The First Order
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Features are mainly based on histogram analysis and are used to

depict the texture features associated with the gray frequency

distribution within the Region of Interest (ROI) (25). In this

study, Uniformity belongs to the First Order Features, which

describes the image consistency of the ROI. Shape Features (3D)

include features describing the size of the ROI and the similarity to a

sphere. In this study, LeastAxisLength and SurfaceVolumeRatio

belong to Shape Features (3D), which describe the minimum axis

length as well as the volume of the ROI. Previous studies have

shown that GLCM features are closely related to clinicopathology

and can be used to assess the gray-level spatial dependence of ROI

as well as to reflect tumor heterogeneity (26). InverseVariance and

MCC in this study belong to GLCM features and the texture

features derived from them are correlated with the diagnosis of

NECs. This is the same as the findings of Karahaliou et al. (27) and

Yang et al. (28) in breast and liver cancers, that GLCM features are

sensitive indicators of tumor heterogeneity, and the use of GLCM

features can improve the accuracy of diagnosis. GLDM features can

also reflect tumor heterogeneity to some extent (29).

LargeDependenceLowGrayLevelEmphasis in this study belongs to

GLDM features, which can quantify the image grayscale correlation

of ROI.

The results of the radiomics nomogram show that the AUC of

the ROC curves of the radiomics signature or the radiomics

nomogram is higher than the AUC of the ROC curves of the

clinical model, and the differences are statistically significant. This

implies that contrast-enhanced CT and TNM stage (stage IV) can

successfully identify patients with NECs of the digestive system,

demonstrating the value of radiomics signature or radiomics

nomogram to identify NECs of the digestive system. This can

provide a reliable basis for treatment options on the one hand,

and a valuable judgment on the prognosis of patients on the other

hand. The difference in the AUC of the ROC curves of the radiomics

nomogram and the radiomics signature is not statistically

significant. This suggests that TNM stage (stage IV) has little role

in improving the diagnostic efficacy of NECs of the digestive system

and that radiomic signature is more prominent for the diagnostic

value of NECs of the digestive system. In addition, the nomogram
FIGURE 6

ROC curves for clinical model, radiomics signature, and radiomics
nomogram in the pooled population.
A B

FIGURE 7

Calibration curves of the nomogram in the training (A) and validation (B) cohorts.
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developed in this study is easy to use and can be used as a tool for

individualized preoperative diagnostic prediction of patients.

However, some limitations are inevitable in this study: first, this

study was conducted on a malignancy of relatively rare incidence

and was a single-center retrospective study with not particularly

sufficient cases. Given the great clinical applicability of our findings

for the diagnosis of NECs of the digestive system, the next step

could be a large-sample multicenter study with more external

validation of the constructed model. Second, there was sample

selection bias in the retrospective study. Third, clinical

characteristics such as age, gender, TNM stage, preoperative CEA

and CA199 were included, and the study showed that only TNM

stage (stage IV) was associated with the diagnosis for NECs of the

digestive system, but the final diagnostic efficacy of the clinical

model was still limited, and further exploration with a larger sample

of clinical data may be needed in the future. Meanwhile, markers of

neuroendocrine differentiation, such as chromogranin A (CgA),

neuron-specific enolase (NSE) and synaptophysin (SYP) could be

included in the future to allow a more comprehensive analysis of the

diagnostic value of clinicopathological features for NECs of the

digestive system (30). In addition, this study explored the diagnostic

value of contrast-enhanced CT radiomics for NECs of the digestive

system, and functional imaging examinations such as somatostatin

receptor imaging and 18F-FDG-PET/CT (31) could be included in

the future to more systematically assess the diagnostic value of

preoperative radiomics for NECs of the digestive system.

In conclusion, we developed a radiomics nomogram that

combined radiomics signature and clinical characteristics to

effectively diagnose NECs of the digestive system. The nomogram

was validated by multiple methods and showed great predictive

ability. We expect that the radiomics nomogram can be used as a

potential tool to diagnose these patients.
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Ovarian cancer-associated
immune exhaustion
involves SPP1+ T cell and
NKT cell, symbolizing more
malignant progression

Kunyu Wang, Hongyi Hou, Yanan Zhang, Miao Ao,
Haixia Luo and Bin Li*

Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Background: Ovarian cancer (OC) is highly heterogeneous and has a poor

prognosis. A better understanding of OC biology could provide more effective

therapeutic paradigms for different OC subtypes.

Methods: To reveal the heterogeneity of T cell-associated subclusters in OC, we

performed an in-depth analysis of single-cell transcriptional profiles and clinical

information of patients with OC. Then, the above analysis results were verified by

qPCR and flow cytometry examine.

Results: After screening by threshold, a total of 85,699 cells in 16 ovarian cancer

tissue samples were clustered into 25 major cell groups. By performing further

clustering of T cell-associated clusters, we annotated a total of 14 T cell

subclusters. Then, four distinct single-cell landscapes of exhausted T (Tex)

cells were screened, and SPP1 + Tex significantly correlated with NKT cell

strength. A large amount of RNA sequencing expression data combining the

CIBERSORTx tool were labeled with cell types from our single-cell data.

Calculating the relative abundance of cell types revealed that a greater

proportion of SPP1 + Tex cells was associated with poor prognosis in a cohort

of 371 patients with OC. In addition, we showed that the poor prognosis of

patients in the high SPP1 + Tex expression group might be related to the

suppression of immune checkpoints. Finally, we verified in vitro that SPP1

expression was significantly higher in ovarian cancer cells than in normal

ovarian cells. By flow cytometry, knockdown of SPP1 in ovarian cancer cells

could promote tumorigenic apoptosis.

Conclusion: This is the first study to provide a more comprehensive

understanding of the heterogeneity and clinical significance of Tex cells in OC,

which will contribute to the development of more precise and effective therapies.

KEYWORDS

ovarian cancer, SPP1+ T cell, T cell exhaustion, single cell RNA sequencing,
immune environment
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1 Introduction
Ovarian cancer (OC) is one of the deadliest and most aggressive

tumors in women, and its incidence has increased in recent years (1).

Because the early specific signs and symptoms of OC are not obvious

and develop rapidly, the vast majority of patients with OC are not

diagnosed until the late stage (2). Patients with OC often have a poor

prognosis, presumably because their heterogeneity limits reproducible

prognostic classification (3). At present, surgery, chemotherapy and

radiotherapy are the most commonmodalities used in the treatment of

OC. However, the side effects of treatment in these patients are more

severe and there is a serious decrease in the quality of life of the patients

(4). Extensive heterogeneity in OC cells is a critical mechanism for

overall survival and cancer progression (5). Therefore, it is of great

significance to explore specific markers for the early diagnosis of OC to

improve treatment and patient outcomes.

Emerging single-cell technologies provide powerful tools to

explore heterogeneity and thereby aid in problem solving (6, 7).

This technology has been increasingly used in the field of cancer

and provides new mechanisms for understanding carcinogenesis

and revealing therapeutic strategies (8–12). However, only a few

studies have investigated OC at the single-cell level. A recent single-

cell RNA sequencing (scRNA-seq) study investigated tumor

heterogeneity at cellular resolution using OC samples (13).

Another study examined how fallopian tube epithelial cell sources

could accurately predict cancer behavior (14). These studies provide

new insights into the carcinogenesis of OC, and their findings

enhance our understanding of OC.

Tumors are characterized by significant heterogeneity that can

lead to differential responses to the same therapy (15). Until now,

there have been efforts to explore the heterogeneous characteristics

of tumors. However, our understanding of tumor heterogeneity is

still limited to tumor cells due to the limitations of technology.

Recent studies have demonstrated that tumor-infiltrating immune

and stromal cells exhibit heterogeneity (16). In addition, increasing

evidence suggests that the tumor microenvironment (TME) plays

an important role in targeting agents (17). Previous studies have

highlighted CD8+ failure, immune checkpoints, and tumor-

associated macrophages as key therapeutic targets (18, 19). These

data enhance our understanding of TME heterogeneity.

To reveal the heterogeneity of T cell-associated subclusters in

OC, we performed an in-depth analysis of single-cell transcriptional

profiles and clinical information of patients with OC. We then

explored the immune landscape of four different Tex and could

clearly see a significant correlation between SPP1 + Tex and NKT

cells. A large amount of RNA-seq expression data combining the

CIBERSORTx tool and TCGA were labeled with cell types from our

single-cell data. In calculating the abundance of immune cells for

each patient, we found that the abundance of SPP1 + Tex cells was

associated with poor prognosis. In addition, we showed that the

poor prognosis of patients in the high SPP1 + Tex expression group

might be related to the suppression of immune checkpoints. Finally,

we performed in vitro experiments for validation. The expression

level of SPP1 in ovarian cancer cells was significantly higher than

that in normal ovarian cells, and the ability to promote apoptosis
Frontiers in Endocrinology 02155
after knocking down SPP1 in ovarian cancer cells could be seen by

flow cytometry. This is the first study to provide a more

comprehensive understanding of the heterogeneity and clinical

significance of Tex cells in OC, which will contribute to the

development of more precise and effective therapies.
2 Materials and methods

2.1 Data collection

Three single-cell datasets (E-MTAB-8107, GSE154600, and

GSE130000) were obtained from the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/) containing a total of 16

samples from patients with OC. RNA-seq data and accompanying

clinical information from 371 OC samples were downloaded from

the TCGA cohort for further correlation analysis (http://

cancergenome.nih.gov/). This study used a publicly available

dataset that received ethical approval from the original study.
2.2 Data filtering and correction

We used the “Seurat” and “SingleR” software packages for

scRNA-seq data analysis. We filtered cells with unique feature

counts > 2500 or < 200 and cells with mitochondrial counts > 5%.

Then, the feature-expression measurements for each cell were

normalized to the total expression using the default parameters of

the Seurat “NormalizeData” function. Subsequently, all cell data were

transferred to a combined Seurat object using the Harmony package.

Variable genes were then scaled, and the principal component (PC)

was analyzed. Using the “RunUMAP” (min. dist = 0.2, n. neighbors =

20) and “FindClusters” (resolution = 0.5) functions, significant PCs

were selected for Umap and cluster analyses.
2.3 Cell annotation

To identify cell types, we performed two annotation modalities.

Automated annotation (used for the first clustering to select T cell-

related subsets): SingleR is an automated annotation method for

scRNAseq data (20). Given a sample reference dataset (single cell or

batch size) with known labels, it marks new units in the test dataset

based on their similarity to the reference. Thus, for reference

datasets, the burden of manually interpreting clusters and

defining marker genes only needed to be done once, whereas

biological knowledge could be spread to new datasets in an

automated manner.

Manual annotation (used to cluster T cell-related subsets for the

second time): We checked whether the well-studied marker genes

were the top differentially expressed genes (DEGs) and annotated

the most likely identity for each cell cluster. The remaining cell

types were identified by manually searching the cell marker

database (http://biocc.hrbmu.edu.cn/CellMarker/). The R package

“estimate” was used for estimate analysis to classify and score cells

as a whole: estimate score, immune score, and stromal score.
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2.4 GSEA pathway and cell-to-cell
communication analyses

We performed GSEA pathway and cell-to-cell communication

analyses to explore the association between T cell-associated

subsets. R package “ABGSEase” was used to perform biological

pathway enrichment between the two groups, and the reference

gene set was Hallmark, GO, and KEGG. Minimum gene set size

minGSSize = 50, maximum gene set size maxGSSize = 100, and P-

value truncated at P-value cutoff = 0.05 were set for the analysis.

Cell–cell communication analysis uses the R package “CellChat”,

and the pathway selects the secreted signaling pathway. The

reference human ligand–receptor database was CellChatDB. We

examined the interactions between different cell types and filtering

pathways with cell numbers less than 10.
2.5 Unsupervised consensus
cluster analysis

Robust Tex cell infiltration-associated clusters can be found in

TCGA cohort patients by consensus clustering techniques based on

partitioning and expression of Tex cells in 4 with the help of the R

package “ConsensuClusterPlus”. The cumulative distribution

function and consensus heat map were used to determine the

optimal K-value. The method was repeated 1000 times to ensure

the stability of the layering process.
2.6 Prognostic analysis

For the selected cells, univariate cox regression analysis was first

performed to select prognostically relevant Tex cells (P < 0.05).

Kaplan–Meier curves were used to assess the differences in survival

between the high and low groups of such cells.
2.7 Immune infiltrate analysis

Immune infiltration analysis was performed using the

CIBERSORTx algorithm (21), which quantifies the absolute content

of 22 immune cells based on the patient’s transcriptional profile

information, as well as the absolute content of Tex cell infiltrates in 4

derived from a reference dataset of our own single-cell data.
2.8 DEG analysis

The main purpose of this analysis was to identify DEGs between

the SPP1 + Tex high and low groups. DEG analysis was performed

using the “limma” package in R software with thresholds set at log

FoldChange ≥ 1 and adj PVal Filter (adj P) < 0.05. Subsequently,

GSEA was performed for the SPP1 + Tex high and low groups to
Frontiers in Endocrinology 03156
explore the significance of their biological functions. Finally, we

analyzed the expression of immune checkpoints in the high and low

SPP1 + Tex groups.
2.9 Cell culture

Human normal ovarian cells IOSE80 and ovarian cancer cells

A2780 were purchased from American Type Culture Collection

(ATCC, Rockville, MD, USA). Cells were cultured in RPMI-1640

medium containing 10% Fetal Bovine Serum (FBS) at 37° C and

5% CO2.
2.10 Quantitative real-time PCR (qRT-PCR)

Cells were treated with TRIzol reagent (Takara, Japan). We then

extracted all RNA and reverse-transcribed it into cDNA. qRT-PCR was

used to analyze the relative expression of SPP1, and data were

normalized to GAPDH. Reverse transcription system: 500ng RNA,

2ul RT Master Mix, add RNase-free water to fix the volume to 10ml.
qPCR system: 10ml 2xTB Green, 8ul ddH2O, 1ml cDNA, 1ml primer

(22). The primer sequences are as follows: SPP1-F::5’-AGA CCC TGA

CAT CCA GTA CCT G-3’, SPP1-R: 5’-GTG GGT TTC AGC TAC

CTG GT-3’. GAPDH-F: 5’-GGAGCGAGATCCCTCCAAAAT-3’,

GAPDH-R: 5’-GGCTGTTGTCATACTTCTCATGG-3’.
2.11 Apoptosis analysis

We analyzed cell apoptosis using flow cytometry after pre-

cooling PBS washing and digestion with trypsin digestion solution

containing no EDTA (Solarbio, Shanghai, China). Cells were

harvested after centrifugation at 1000 rpm for 5 minutes, followed

by 7-AAD (BD Biosciences, number 559, 925, USA) staining and

annexin-APC (BD Biosciences, number 561, 012, USA) staining for

15 minutes.
2.12 Statistical analysis

The student’s t-test was used for normally distributed

continuous variables. The Mann–Whitney U test was used for

continuous variables that were not normally distributed.

Correlations between continuous variables were evaluated using

Pearson’s correlation analysis. Statistical significance was set at P <

0.05. R software version 4.1.0 (http://www.R-project.org) was used

for data analysis and figure generation.
3 Results

Flowchart (Figure 1).
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3.1 Cell clustering of OC landscapes

First, we performed principal component analysis (PCA) on 16

samples to reduce dimensionality and selected the first 50 PCs for

subsequent analysis (Figure 2A). Following data processing and

screening, we obtained gene expression profiles for 85,699 cells

from 16 OC samples and identified 25 cell clusters using Seurat

(Figure 2B). Cell distributions are visualized by Umap plots for

different samples (Figure 2C). Cells in clusters 0 and 20 were

classified as T cells by defining the annotation of cell identity in

each cluster by cross-referencing the DEGs in each cluster to

canonical marker genes (Figure 2D). The heatmap visualizes the

expression of genes in each cluster of cells, with yellow highlighted

sections representing genes highly expressed in this cluster

(Figure 2E). The expression levels of some signature genes in this

cluster were visualized using violin plots (Supplementary Figure 1).

In addition, we showed the infiltrative content of seven clusters of

cells in each sample by histogram and found that epithelial cells

accounted for the highest proportion in most samples (Figure 2F).
3.2 Cellular clustering of T cell
subsets in OC

We calculated three scores for the three classes of cells using the

package “estimate”. Immune cells had the highest immune score.

tumor cells had the highest tumor purity score, and other cells had

the highest stromal score (Supplementary Figure 2). This score also

demonstrates the accuracy of the grouping.

First, we identified CD8+ T cell locations by determining the

distribution of cell signature genes (Figure 3A) and proceeded with

PCA dimensionality reduction of the T cell clusters (Figure 3B).

Subsequently, Umap dimensionality reduction was performed to
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obtain 14 clusters of cells, and the cell distribution of different

samples is shown (Figures 3C, D). Through bubble plots, we can

visually observe the signature genes of each T cell subcluster

(Figure 3E). The Umap plot shows the distribution of CD8A

markers (Figure 3F). By determining the distribution of the Tex

cell marker, clusters 5, 3, 4, and 1 were identified as CD8+ Tex cells

based on this distribution (Supplementary Figure 3A). Clusters 8, 10,

and 12 were identified as Treg cells based on the distribution of the

two Treg cell markers (Supplementary Figure 3B). Finally, the results

for T cell subsets were determined by manual annotation, with 14 cell

clusters annotated as a total of nine Tex-related cell subsets

(Figure 3G). Using the Umap plot, we determined the distribution

of highly expressed genes in Tex cells (Supplementary Figure 3C). In

addition, we determined the proportion of Tex cells in the samples

using a histogram plot (Figure 3H). We found that the content of T

cells in different samples was significantly different.
3.3 Pathway analysis of four Tex cells

By comparing the enriched pathways in four Tex cells using

GSEA analysis, we found that SPP1 + cluster CD4+ ab T cells were

functionally active (Figure 4A). Comparing the SPP1 + Tex and

ZFP36S2 + Tex cluster cells, we found that the positive regulation of

cell adhesion was significantly activated (Figure 4B). GNB2L1 + Tex

cluster cells showed activation of negative regulation of immune

effector processes (Figure 4C). IL32 + Tex cluster cells showed

significant activation of the lymphocyte-mediated immune function

(Figure 4D). Cell communication analysis revealed a close connection

between these cells (Figure 4E). In addition, we found that the signal

emitted by SPP1 + Tex was very strong in NKT cells, in addition to a

significant link with IL32 + Tex, GNB2L1 + Tex, and other

cells (Figure 4F).
FIGURE 1

Flowchart.
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3.4 Identification of the role of Tex
cell-related pathways

Subsequently, we visualized the cellular role of the sub-

pathways of secretory cell communication. Cell communication
Frontiers in Endocrinology 05158
diagram shows the signaling pathway networks of WNT, TGF-b,
and SPP1. The results showed that endothelial cells expressed the

WNT signaling pathway significantly, and the WNT-based

pathway macrophage Tex cells had a strong effect on

endothelial cells (Figure 5A). In addition, fibroblasts were more
A B

D

E F

C

FIGURE 2

Single cell cluster analysis in patients with ovarian cancer. (A) Single cell data were subjected to PCA dimensionality reduction analysis and the first 50 PC
principal components were selected for subsequent analysis. (B) Umap plots show 25 clusters of cells generated by clustering after dimension reduction.
(C) Umap plot showing cell distribution for different samples. (D) Umap plots show the distribution of cells in each cluster after annotation. (E) Heat map
of signature gene expression in different groups. (F) Histograms show the proportion of infiltrates per cluster of cells in each sample.
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potent based on the TGF-b pathway (Figure 5B). Based on the

fact that SPP1 + Tex is highly active in the SPP1 signaling

pathway, it was demonstrated that the main effect of SPP1 +

Tex is from its marker SPP1 and that it may interact with

fibroblasts (Figure 5C).
Frontiers in Endocrinology 06159
3.5 Identification of the prognostic
role of Tex cells

Using single-cell data as reference data, Tex-related cell

content was calculated from the OC dataset in TCGA using the
A B

D

E F

G H

C

FIGURE 3

Identification of characteristic cell clusters. (A) View CD8 + T cell location by distribution of cell signature genes. (B) PCA Dimensionality Reduction
Analysis of T Cell Clusters. (C) Umap shows 14 clusters of cells after dimension reduction. (D) Umap Plot of cell distribution by sample. (E) Bubble
plots showing signature genes for each T cell subcluster. (F) Umap plot showing distribution of CD8marker. (G) Umap plots show results after
annotation of T-cell clusters. (H) Histogram plot showing cell proportions for each sample.
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CIBERSORTx algorithm. A heat map showing the expression of

four cells in the TCGA cohort was created (Figure 7A). Patients

with OC were divided into two groups according to the median

expression level. Many samples had expression values of 0 in

ZFP36L2 + Tex cells, which may have affected the analytical

results. hence, we did not perform subsequent analysis on them.

Survival curves showed differences in survival between the high
Frontiers in Endocrinology 07160
and low groups of the three Tex cells, with IL32 + Tex and

GNB2L1 + Tex cells not being associated with survival

(Figures 7B, C), whereas SPP1 + Tex cells showed a correlation

with survival, and the high group had a poor prognosis

(Figure 7D). In addition, univariate cox regression demonstrated

that SPP1 + Tex cells are an unfavorable prognostic factor for

OC (Figure 7E).
A B

D

E F

C

FIGURE 4

Cell-enriched pathway analysis. (A-D) GSEA analysis comparing enriched pathways in four Tex cells. (E) Shown the pathway analysis between cells.
(F) Signaling pathway of SPP1 + Tex to other cells.
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3.6 Identification of components of
immune cell infiltration of Tex cells and
their correlation

By performing immune cell infiltration analysis between the

high and low groups of three Tex cells, we found significant
Frontiers in Endocrinology 08161
differences in immune cell composition between the high and low

groups. The results showed a significant difference between plasma

cells and CD8 T cells in the high and low GNB2L1 + Tex cell groups

(Figure 8A). There were significant differences in plasma cells,

follicular helper T cells, and neutrophils between the high and

low IL32 + Tex groups (Figure 8B).
A

B

C

FIGURE 5

Network diagram showing (A) WNT, (B) TGF -b and (C) SPP1 related signaling pathways, respectively. The role of TGF-b-related pathways among all
cells was shown by bubble plots, in which TGF-b 1 (TGF-b R1 + TGF-b R2) was generally more active among various types of cell communication
(Figure 6A). In addition, analysis of the effect of related pathways between Tex cells showed that the effect of BMP4- and GDF5-related pathways
differed between Tex cells, in which GNB2L1 + Tex actively interacted with stem cells, while SPP1 + Tex cells communicated mainly with stem cells
through BMP4 (BMPR1B + ACVR2A) and GDF5 (BMPR1B + ACVR2A) (Figure 6B).
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Plasma cells, CD8 T cells, follicular helper T cells, and NK cells

were significantly different between the high and low SPP1 + Tex cell

groups (Figure 8C). The proportion of helper infiltration of plasma

cells, CD8 T cells, and T cell follicles in the low-expression group was

significantly higher than that in the high-expression group, whereas

the proportion of NK cell infiltration in the high-expression group

was higher than that in the low-expression group. This result suggests

that the difference in survival between the high and low SPP1 + Tex

groups may be due to improved immune control.

Radar plots showed the correlation between the four Tex cells

and other immune cells (Figure 8D). A significant negative

correlation between SPP1 + Tex and IL32 + Tex cells, and a

negative correlation was found between SPP1 + Tex and plasma

cells, T cell follicular helper using correlation heat maps (Figure 8E).

In addition, the correlation analysis of the 4 Tex cells also showed

the strongest correlation between SPP1 + Tex and IL32 + Tex cells

(Supplementary Figure 4).
3.7 Identification of differences between
high and low SPP1 + Tex cell groups

By performing differential gene expression analysis between the

SPP1 + Tex high and low groups, we drew a volcano plot for
Frontiers in Endocrinology 09162
visualization (Figure 9A). GO analysis revealed that these DEGs

were enriched in terms of extracellular matrix. therefore, SPP1 +

Tex may be associated with extracellular matrix remodeling

(Figure 9B). GSEA analysis, based on KEGG data, showed that

DEGs were significantly enriched in chemokine signaling pathways,

cytokine receptor interactions, ECM receptor interactions, and local

adhesion signaling pathways (Figures 9C, D). In addition, the

expression of immune checkpoints in the SPP1 + Tex high and

low groups was analyzed, and the results showed significant

differences in CD274, NRP1, NRP1.1, CD28, and CD44 between

the high and low groups (Figure 9E). Interestingly, the number of

patients in the high SPP1 + Tex expression group was larger than

that in the low SPP1 + Tex expression group among these immune

checkpoint inhibitors, corresponding to the worse outcome in the

high-expression group.
3.8 In vitro validation

With the previous results, it can be seen that only SPP1 + Tex

has prognostic value in KM analysis and COX analysis. Therefore,

we mainly chose SPP1 as the subject of further study in our

subsequent study. To validate the validity of our model and

identify a potential biomarker, we performed in vitro

experimental validation from selection of SPP1. It can be found

by boxplots that SPP1 has a very high expression level in ovarian

cancer patients (Figure 10A). The SPP1 gene was expressed at a

significantly higher level in ovarian cancer cells A2780 than in

normal ovarian cells IOSE80, which also demonstrated the accuracy

of our experiment (Figure 10B). In addition, we knocked down the

expression level of SPP1 gene in A2780 cells and quantified it again

to verify our knockdown efficiency (Figure 10C). By flow cytometry,

we analyzed the function of SPP1 in ovarian cancer. The results

showed that knockdown of SPP1 significantly promoted apoptosis

in ovarian cancer cells (Figure 10D). Therefore, SPP1 may be a

potential therapeutic target for ovarian cancer.
4 Discussion

The past decade has witnessed a shift in the paradigm of cancer

therapy with the advent of approaches to target or manipulate the

immune system (“immunotherapy”) (23–25). Cancer cells are often

immunogenic while in the organism, but the immune system is

often unable to clear it. This is because cancer cells have

mechanisms that prevent recognition by the immune system,

including central tolerance, ignorance or failure to be activated in

the periphery, extrinsic regulation of T cells (e.g., regulatory T cells,

myeloid-derived suppressor cells, and suppressor cytokines), and

intrinsic dysfunction of T cells, resulting in inappropriate or

excessive antigenic stimulation (anergy and depletion) (26–28).

Antibodies targeting inhibitory pathways, including CTLA-4 and

PD-1, have paved the way for a new generation of cancer

therapeutics (29–31).

T cell depletion is characterized by the overexpression of multiple

inhibitory receptors, including PD-1 (CD279), cytotoxic T-
A

B

FIGURE 6

Analysis of cell-related pathways. (A) Bubble plots demonstrate the
role of TGF-b related pathways across all cells. (B) Bubble plots
demonstrate the role of Tex cell-associated pathways.
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lymphocyte antigen-4 (CTLA-4, CD152), lymphocyte activation gene

3 (Lag-3), T cell immunoglobulin domain and mucin domain 3 (Tim-

3), CD244/2B4, CD160, T cell immune receptor-containing Ig and

ITIM domains (TIGIT), and other receptors (32). Blocking the PD-1
Frontiers in Endocrinology 10163
pathway partially reverses failure and leads to reduced viral or tumor

burden, which is a breakthrough (33, 34). These data suggest that Tex

is not an ultimate dysfunction but can be revitalized and is important

for the treatment of diseases, including cancer.
A B

D

E

C

FIGURE 7

Identify Tex-related cellular features. (A) Heat map showing expression of four Tex-related cells in the TCGA cohort. (B-D) Survival curves showing
survival differences between the three Tex cells in the high and low groups divided according to the median. (E) Forest plot showing the results of
univariate cox regression.
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To reveal the heterogeneity of T cell-associated subclusters in

OC, we performed an in-depth analysis of single-cell transcriptional

profiles and clinical information of patients with OC. By

performing further clustering of T cell-associated clusters, we

annotated a total of 14 T cell subclusters. We then explored the

immune landscape of four different Tex and could clearly see a

significant correlation between SPP1 + Tex and NKT cells. A large

amount of RNA-seq expression data combined with the
Frontiers in Endocrinology 11164
CIBERSORTx tool and TCGA were labeled with cell types from

our single-cell data. In all OC patients, we found that the higher the

abundance of SPP1 + Tex cells, the worse prognosis of the patients.

We found a greater association between SPP1+ Tex and NKT cells

by cell communication analysis. NKT cells are T cells with T-cell

receptors that primarily recognize lipid antigens presented by CD1d. In

cancer, NKT cells tend to play different roles, and type I NKT cells,

which activate NK and CD8+ T cells by producing interferon-g, are
A B

D

E

C

FIGURE 8

Clinical value of Tex cell clusters identified by our scRNA-seq analysis in patients from the TCGA OC cohort. (A-C) Difference in overall cellular
infiltration between high and low groups according to median values for the 3 Tex cells. (D) Radar plots show the correlation of 4 cells with other
immune cells. (E) Heat map showing correlation between all cells. * means <0.05,** means <0.01,*** means <0.001. ns means >0.05.
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mostly protective (35). In contrast, type II NKT cells, characterized by

a more diverse T cell receptor recognizing CD1d-presented lipids,

predominantly suppress tumor immunity (36). Moreover, type I and

II NKT cells counter-regulate each other and form a novel

immunomodulatory axis (35). Thus, manipulating this balance along

the NKT regulatory axis may be critical for cancer immunotherapy.
Frontiers in Endocrinology 12165
In addition, we found that SPP1 + Tex significantly enhanced

the regulation of cell adhesion compared to other Tex cells. Unlike

most other tumor types that metastasize via the vasculature, OC

metastasizes predominantly via the transcavitary route within the

peritoneal cavity (37). In the peritoneal cavity, tumor-mesothelial

adhesion is an important step in cancer dissemination (38).
A B

D E

C

FIGURE 9

Differential enrichment analysis between high and low SPP1 + Tex groups. (A) Volcano plot of differentially expressed genes analysis between high
and low groups. (B) GO enrichment analysis bubble plot. (C) Ridge plots for KEGG enrichment analysis. (D) Pathway plots for GSEA enrichment
analysis. (E) Box plots show results of immune checkpoint analysis between SPP1 + Tex high and low groups. * means <0.05,** means <0.01,
*** means <0.001. ns means >0.05.
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therefore, we reasoned that cell adhesion pathways could be

potential pathways to inhibit OC.

Immunocyte infiltration analysis showed that the proportion of

plasma cell, CD8 T cell, and follicular helper T cell infiltration in the

low-expression group was significantly higher than that in the high-

expression group. Plasma cell infiltration in OC has a significant
Frontiers in Endocrinology 13166
impact on tumor progression and prognosis (39). Follicular helper

T cells are specialized providers of T cells that contribute to B cells

and the formation of germinal center responses, and numerous

studies have demonstrated their important role in various

malignancies (40, 41). Immune checkpoint inhibitor analysis

revealed that the levels of immune checkpoint inhibitors were
A B

D

C

FIGURE 10

In vitro experiments validated SPP1 as a potential target. (A) Boxplot showing differential expression of SPP1 gene between ovarian cancer patients
and normal patients. (B) Histogram showing expression levels of SPP1 gene in normal ovarian cells and ovarian cancer cells. (C) Histogram showing
knockdown of SPP1 gene expression levels in ovarian cancer cells. (D) Flow cytometry scatter plot showed that SPP1 gene could affect apoptosis of
ovarian cancer cells. *** means <0.001.
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significantly higher in the high SPP1 + Tex expression group than

in the low SPP1 + Tex expression group. This corresponds to the

outcome of poor prognosis in the high-expression group.

Additionally, patients in the high SPP1 + Tex group may benefit

more from anti-immune checkpoint inhibitors. In addition, we

found that only SPP1 + Tex had better prognostic efficacy among

the four previously studied Tex. Therefore, we selected SPP1 for

further study in ovarian cancer. Finally, we verified in vitro that

SPP1 expression was significantly higher in ovarian cancer cells

than in normal ovarian cells. By flow cytometry, knockdown of

SPP1 in ovarian cancer cells could promote tumorigenic apoptosis.

SPP1 may be a potential therapeutic target for ovarian cancer.

Also, we must acknowledge the potential limitations of our

analysis. First of all, our study is based on the analysis of public

databases. Therefore, further multicenter, large sample, prospective

studies that may follow are needed. Secondly, the screened gene

SPP1 was only partially phenotypically experimented, and further

exploration about the molecular mechanism needs to be

followed up.

In addition, the cell type-specific marker expression patterns

described in this study may contribute to a better understanding of

the heterogeneity and biological characteristics of OC. The present

work revealed markers for cells of different Tex subsets that may be

better in diagnostics or other biological experiments. In conclusion,

our study provides new insights into the heterogeneity of OC and

may contribute to the development of new and efficient therapies

for OC.
5 Conclusions

This is the first study to provide a more comprehensive

understanding of the heterogeneity and clinical significance of

Tex cells in OC, which will contribute to the development of

more precise and effective therapies.
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Genetic characteristics
and clinical-specific
survival prediction in elderly
patients with gallbladder
cancer: a genetic and
population-based study

Hao Zhou †, Junhong Chen †, Hengwei Jin and Kai Liu*

Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of
Jilin University, Changchun, China
Background: Biliary system cancers aremost commonly gallbladder cancers (GBC).

Elderly patients (≥ 65) were reported to suffer from an unfavorable prognosis. In this

study, we analyzed the RNA-seq and clinical data of elderly GBC patients to derive

the genetic characteristics and the survival-related nomograms.

Methods: RNA-seq data from 14 GBC cases were collected from the Gene

Expression Omnibus (GEO) database, grouped by age, and subjected to gene

differential and enrichment analysis. In addition, a Weighted Gene Co-expression

Network Analysis (WGCNA) was performed to determine the gene sets

associated with age grouping further to characterize the gene profile of elderly

GBC patients. The database of Surveillance, Epidemiology, and End Results

(SEER) was searched for clinicopathological information regarding elderly GBC

patients. Nomograms were constructed to predict the overall survival (OS) and

cancer-specific survival (CSS) of elderly GBC patients. The predictive accuracy

and capability of nomograms were evaluated through the concordance index

(C-index), calibration curves, time-dependent operating characteristic curves

(ROC), as well as area under the curve (AUC). Decision curve analysis (DCA) was

performed to check out the clinical application value of nomograms.

Results: Among the 14 patients with GBC, four were elderly, while the remaining

ten were young. Analysis of gene differential and enrichment indicated that

elderly GBC patients exhibited higher expression levels of cell cycle-related

genes and lower expression levels of energy metabolism-related genes.

Furthermore, the WGCNA analysis indicated that elderly GBC patients

demonstrated a decrease in the expression of genes related to mitochondrial

respiratory enzymes and an increase in the expression of cell cycle-related

genes. 2131 elderly GBC patients were randomly allocated into the training

cohort (70%) and validation cohort (30%). Our nomograms showed robust

discriminative ability with a C-index of 0.717/0.747 for OS/CSS in the training
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cohort and 0.708/0.740 in the validation cohort. Additionally, calibration curves,

AUCs, and DCA results suggested moderate predictive accuracy and superior

clinical application value of our nomograms.

Conclusion: Discrepancies in cell cycle signaling and metabolic disorders,

especially energy metabolism, were obviously observed between elderly and

young GBC patients. In addition to being predictively accurate, the nomograms

of elderly GBC patients also contributed to managing and strategizing clinical

care.
KEYWORDS

energy metabolism, cell cycle, nomogram, elderly gallbladder cancer, OS, CSS
1 Introduction

Gallbladder cancer (GBC) is a kind of carcinoma mainly

derived from gallbladder secretory cells; hence adenocarcinoma is

the absolute dominant category. It is the predominant malignancy

in the biliary duct system, making up more than 95% of cases (1). As

reported by GLOBOCAN 2020, GBC ranks as the 25th most

prevalent cancer and has a global mortality rate of 0.9% (2).

However, the mortality of GBC (average 0.09%) is far lower than

that of other highly malignant tumors, like lung cancer (18%) or

female breast cancer (15%), the prognosis of GBC remains

unsatisfying, which is possibly associated with non-specific

manifestations, absence of early diagnosis and highly invasiveness

of tumor itself (1, 3, 4). Nearly 1 out of 5 patients with GBC got

timely diagnosis and treatment in the US (5). Because of

characteristics like the peculiar anatomic site and blood supply of

gallbladder, patients’ physical differences and heterogeneity of

cancer cells, etc., GBC is not well responsive to traditional

chemotherapy and radiotherapy; as a result, surgical resection

remains the primary treatment approach for individuals

diagnosed with GBC (6). Possibly due to GBC taking decades for

full development, a majority of patients are old (≥ 65), and GBC is

typically diagnosed at an average age of 72 in the US (5). The SEER

database revealed that the incidence rates of GBC (per 100,000)

were age-adjusted and varied by age group in 2015. The rates

increased with age, from 0.2 for those aged 20-49 years, to 1.6 for

those aged 50-64 years, to 4.3 for those aged 65-74 years, and to 8.1

for those aged over 75 years. The mortality rates (per 100,000)

followed a similar pattern, rising from 0.1 for those aged 20-49

years, to 0.7 for those aged 50-64 years, to 2.1 for those aged 65-74

years, and to 4.9 for those aged over 75 years (7). This informed us

that older people are a high-risk population for GBC and, in the

meanwhile, for patients with GBC, the older they are, the poorer

prognosis they may suffer. Therefore, it is crucial to exploit

innovative biomarkers or robust models for predicting survival

probability of elderly patients (≥ 65) with GBC to aid clinical

management better.
02170
Nomograms are digital graphical tools with the integration of

several key variables, which are now commonly applied for event

prediction, especially for prognosis prediction in cancers.

Compared to the traditional TNM stage, it can include more

tumor characteristics and has gained extensive usage in

forecasting the outcomes of various cancer types (8–10). Several

nomograms have been established for prognosis prediction, lymph

node metastasis prediction, or distant metastasis prediction in GBC

(11–16). Still, there are no nomograms that are exploited based on

elderly patients with GBC. Owing to the specificity of the elderly

patients, creating a new model for this group is necessary. The GEO

database (https://www.ncbi.nlm.nih.gov/geo/) is a widely used gene

sequencing database from which we retrieved 14 cases of GBC with

age-specific characteristics. Therefore, this study investigated the

genetic characteristics of elderly GBC patients based on the

sequencing data from the GEO database. The SEER database

(https://seer.cancer.gov/) is a reliable and thorough online

resource for collecting cancer statistics from the US population.

With the goal of assisting clinical decision-making and maximizing

benefits, our aim was to pinpoint prognostic factors and construct a

trustworthy nomogram for calculating the likelihood of survival in

elderly GBC patients relying on the SEER database.
2 Materials and methods

2.1 RNA-seq data collection and analysis

The present study employed RNA-seq data from 14 GBC

patients, sourced from two chips available in the GEO database,

namely GSE62335 and GSE76633. In order to eliminate batch

effects, all RNA-seq data were de-identified using the Combat

method, and log2 normalization was performed, following the

protocol of prior studies (17, 18). The young and elderly

subgroups were defined by an age cutoff of 65 years, with 10 and

4 patients respectively. To identify differentially expressed genes

between the two subgroups, limma was employed with the
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screening criteria of |log2FC| > 1 and p-value < 0.05 (19). Gene Set

Enrichment Analysis (GSEA) was then performed using the Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and ReactomePA pathway gene sets. Additionally, Gene

Set Variation Analysis (GSVA) was performed with the KEGG gene

set as the reference gene set (20). WGCNA was applied to the

differential genes between the two subgroups to further explore gene

sets associated with aging (21). The important gene sets were

annotated with gene function and Protein-Protein Interaction

(PPI) analysis, and the top 10 hub genes in the PPI network were

identified using the cytoHub method. To assess immune cell

infiltration in the tumor microenvironment of the 14 GBC

patients, immune cell prediction algorithms of the TIMER2.0

platform were employed (22). Finally, drug sensitivity and

immunotherapy sensitivity analyses were conducted using the

oncoPredict R package and TIDE analysis, respectively (23). The

TIDE analysis for evaluating immunotherapy sensitivity is based on

the TIDE website (http://tide.dfci.harvard.edu). The TIDE value

obtained from the analysis can be used to assess the efficacy of

immunotherapy. Generally, a higher TIDE value indicates lower

sensitivity to immunotherapy.
2.2 Cohorts formation and data collection

The primary patient cohort was acquired from the SEER

database (site code C23.9), including all patients diagnosed with

GBC between 2010 and 2017. Inapplicable patients were screened

out. Exclusion principles were detailed as follows (1): young

patients (< 65) (2), without a pathological diagnosis (3), unknown

tumor grade (4), unknown TNM stage (5), unknown tumor size (6),

unknown surgery information and (7) survival period of under one

month or indeterminate duration of survival.

Following exclusion, the training and validation cohorts were

assigned at random in a 7/3 split. The SEER database provided

clinicopathological information, which encompassed age, race,

marital status, tumor size, gender, tumor grade, AJCC TNM

stage, surgery information, radiotherapy, chemotherapy, overall

survival (OS), and cancer-specific survival (CSS). The workflow is

demonstrated in Supplementary Figure.
2.3 Nomograms construction
and validation

The training cohort was subjected to both univariate and

multivariate Cox regression analyses to identify independent

prognostic variables. The resulting significant variables from the

latter were then utilized to create nomograms for predicting CSS

and OS, respectively. To assess the effectiveness of the nomograms,

various methods were utilized. Calibration curves were used to

display the accuracy of the predictions made by the nomograms.

Meanwhile, time-dependent receiver operating characteristic

(ROC) curves and area under the curve (AUC) were employed to

evaluate how well the nomograms were able to distinguish between

different groups over time. In order to ensure the validity of the
Frontiers in Endocrinology 03171
results, the nomograms were then tested in a validation cohort, and

the analyses were reperformed accordingly.
2.4 Clinical associations

Decision curve analysis (DCA) was performed to assess the

suitability of the nomograms for practical clinical use in contrast to

the AJCC TNM stage. Nomograms were utilized to calculate the

optimal cut-off value for the risk score via the ROC curve for each

patient. After calculating the risk scores, patients in the training and

validation cohorts were classified into high-risk and low-risk

categories. To evaluate the survival differences, we utilized K-M

survival curves to analyze both CSS and OS between these groups in

both cohorts. Additionally, we investigated the impact of various

surgery conditions on survival differences for both high-risk and

low-risk patients.
2.5 Statistical analysis

To compare between groups, either chi-square tests or non-

parametric U tests were employed. Frequency distribution (%),

obtained through the chi-square test, was used to describe the

remaining variable types. The survival disparities between the

groups were examined using the Log-rank test and K-M curves.

The statistical analysis was conducted using R software (version

3.6.2). R packages utilized in this study included “rms,” “survival,”

“survminer,” and “ggDCA.” All statistical significance in this study

was determined using a P-value of ≤ 0.05.
3 Results

3.1 Gene differential analysis and gene
enrichment analysis of GBC

In this study, we enrolled a total of 14 patients with GBC and

recorded their ages for further analysis. Through gene differential

analysis, we identified 272 highly expressed genes and 150 lowly

expressed genes in the elderly GBC group compared to the young

GBC group (Figure 1). Further, using GSEA analysis based on the

GO gene set, we observed an increased function of chromosomal

and keratin-related genes and a decreased function of metabolism-

related genes in elderly GBC patients (Figure 1). Similarly, GSEA

analysis of differential genes based on the KEGG gene set showed an

increased function of cell cycle-related genes and a decreased

function of bile secretion-related genes in elderly GBC patients

(Figure 1). Furthermore, the GSEA analysis based on the

ReactomePA gene set showed an increased function of cell cycle-

related genes and a decreased function of drug metabolism-related

genes in elderly GBC patients (Figure 1). Finally, we performed

GSVA analysis based on the KEGG gene set and found a decrease in

metabolism-related pathways and an increase in cell cycle-related

pathways in elderly GBC patients (Figure 1). By integrating the

results of the above gene enrichment analyses, our study reveals a
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significant decrease in the expression of genes related to aerobic and

lipid metabolism and an increase in the expression of genes related

to cell cycle and mitosis in elderly GBC patients.
3.2 WGCNA analysis, drug sensitivity
analysis, and immune microenvironment
analysis of GBC

In this study, we conducted WGCNA analysis on sequencing

data from two groups of GBC patients, employing a soft threshold

of 14 (Figure 2A). We partitioned 13,991 genes into 22 gene set

modules and subjected them to correlation analysis (Figures 2B, C).

Our analysis revealed that the aging traits of GBC patients were

significantly correlated with two gene modules, namely MEgreen

(0.61, p = 0.02) and MEbrown (0.59, p = 0.03) (Figure 2D). Gene

function annotation of the MEgreen gene module suggested that
Frontiers in Endocrinology 04172
genes within this module were primarily associated with foreign

body stimulation and aerobic metabolism (Figure 2E). On the other

hand, functional annotation of the MEbrown gene module revealed

that this module was mainly associated with the cell cycle and

mitosis (Figure 2F). These findings corroborated our gene

enrichment analysis results, demonstrating a low expression of

energy metabolism-related genes and a high expression of cell

cycle-related genes in elderly GBC patients.

We further performed a PPI analysis of the MEgreen and

MEbrown gene modules and identified their top 10 hub genes

(Figures 3A). The key hub genes, identified with the MT

(mitochondrial) prefix, indicate that the majority of these genes

originate from the mitochondrial genome (Figure 3). The top10 hub

genes of MEgreen included ND1, ND2, ND3, ND4, ND4L, CYTB,

COX1, COX2, ATP6, and ATP8, and the expression of these genes

was reduced in elderly GBC patients (Figure 3). Moreover, they

exhibited a high correlation (Figure 3). The top10 hub genes of
D
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C

FIGURE 1

Gene differential analysis and gene enrichment analysis. (A) Volcano map of limma analysis. (B) GSEA enrichment analysis based on GO gene set.
(C) GSEA enrichment analysis based on KEGG gene set. (D) GSEA enrichment analysis based on ReactomePA gene set. (E) GSVA pathway analysis
based on KEGG gene set.
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MEbrown were mainly AURKA, AURKB, CCNA2, CCNB1, CDK1,

DLGAP5, KIF11, MELK, NCAPG, and TPX2, and these genes were

elevatedly expressed in elderly GBC patients (Figure 3) and had a

high correlation (Figure 3). These results indicated that elderly GBC

patients had a high expression of cell cycle-related genes and a low

expression of mitochondrial respiratory enzyme-related genes,

reflecting the genetic characteristics of elderly GBC that promote

metastasis and deterioration of GBC cells.

We also performed a drug sensitivity analysis for both groups,

demonstrating that elderly GBC patients were less responsive to

cisplatin and gemcitabine (Figure 3). Sensitivity analysis of

immunotherapy revealed that elderly GBC patients displayed

elevated expression of CD274 (PD-L1) and CTLA4, and

demonstrated reduced responsiveness to immunotherapy, as

indicated by a higher TIDE value (Figure 3). Finally, we employed

a series of immunocyte prediction algorithms, which highlighted
Frontiers in Endocrinology 05173
potential discrepancies in the tumor immune microenvironment

between elderly and young GBC patients (Figure 4).
3.3 Clinicopathological characteristics
of patients

8583 individuals with GBC between 2010 and 2017 were

enrolled in the primary cohort. According to the exclusion

criteria, 6452 inapplicable patients were screened out, including

2779 young patients (< 65), 866 patients without a pathological

diagnosis, 1331 patients with unknown tumor grade, 436 patients

with unknown TNM stage, 897 patients with unknown tumor size,

14 patients with unknown surgery information and 129 patients’

survival period of under one month or indeterminate duration of

survival. As a result, 2131 elderly patients with GBC were finally
D
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FIGURE 2

WGCNA analysis of two groups. (A) Scale independence and mean connectivity. (B) Cluster dendrogram of 22 modules. (C) Eigengene adjacency
heatmap. (D) Module-trait relationships. (E) GO enrichment analysis of MEgreen gene module. (F) GO enrichment analysis of MEbrown gene module.
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identified and randomly allocated to the training cohort (1492,

70%) and validation cohort (639, 30%). The clinicopathological

characteristics of enrolled patients in both cohorts were

summarized in Table 1. Females accounted for 67.95% of all

patients, while males accounted for 32.05%. 55.89% of patients

have aged over 74, and 44.11% of patients are aged between 65 and

74. Patients who didn’t get married (51.99%) were approximately

the same as patients who got married (48.01%). Most patients were

white (77.48%). Tumor grades contained grade I (14.97%), grade II

(44.91%), grade III (37.59%), and grade IV (2.53%). Patients were

labeled as stage T1 (12.62%), stage T2 (47.82%), stage T3 (36.84%),

and stage T4 (2.72%). Most patients were in the N0 stage (70.06%)

and M0 stage (81.79%). Tumor size < 3 cm accounted for 49.37%,

and tumor size ≥ 3 cm accounted for 50.63%. A majority of patients

had local tumor excision/partial cholecystectomy surgery (82.40%),

11.78% of patients got radical cholecystectomy surgery, and only
Frontiers in Endocrinology 06174
5.82% of patients did not have surgery. A small part of patients

(16.05%) got radiotherapy, and others (83.95%) did not. Also, the

patients who had chemotherapy (34.58%) were less than those who

did not (65.42%). There were no significant differences in these

clinicopathological characteristics in both cohorts (P > 0.05).
3.4 Independent prognostic predictors
from Cox regression analysis

Next, in the training cohort, univariate Cox regression analyses

were conducted to determine risk factors associated with OS and

CSS, respectively. Detailed information was integrated in Tables 2,

3. The results turned out to be that older age (> 74), higher tumor

grade (grade II&III&IV), advanced TNM stage (T2&3&4, N1&2,

and M1), and larger tumor size (≥ 3 cm) were significantly
D
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FIGURE 3

PPI analysis of WGCNA and drug sensitivity analysis. (A) Core network of the MEgreen gene module (MT: mitochondrial). (B) Gene expression of top
10 genes in MEgreen gene module. (C) Gene relation of top 10 genes in MEgreen gene module. (D) Core network of the MEbrown gene module.
(E) Gene expression of top 10 genes in MEbrown gene module. (F) Gene relation of top 10 genes in MEbrown gene module. (G) Drug sensitivity
analysis in common chemotherapy drugs. (H) Drug sensitivity analysis in immunotherapy.
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FIGURE 4

The discrepancies in immune cell infiltration between elderly and young GBC patients.
TABLE 1 Clinicopathological characteristics of elderly patients with GBC.

All
N = 2131

Training Cohort
N = 1492

Validation Cohort
N = 639 P-value

Sex 0.591

Male 683 (32.05%) 484 (32.44%) 199 (31.14%)

Female 1448 (67.95%) 1008 (67.56%) 440 (68.86%)

Age 0.952

65-74 940 (44.11%) 657 (44.03%) 283 (44.29%)

> 74 1191 (55.89%) 835 (55.97%) 356 (55.71%)

Marital status 0.523

No 1108 (51.99%) 783 (52.48%) 325 (50.86%)

Married 1023 (48.01%) 709 (47.52%) 314 (49.14%)

Race 0.745

White 1651 (77.48%) 1160 (77.75%) 491 (76.84%)

Black 211 (9.90%) 149 (9.99%) 62 (9.70%)

Other 269 (12.62%) 183 (12.27%) 86 (13.46%)

Grade 0.497

I 319 (14.97%) 223 (14.95%) 96 (15.02%)

II 957 (44.91%) 685 (45.91%) 272 (42.57%)

III 801 (37.59%) 548 (36.73%) 253 (39.59%)

IV 54 (2.53%) 36 (2.41%) 18 (2.82%)

(Continued)
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negatively correlated with OS. In contrast, married status and

receiving surgery (local tumor excision/partial cholecystectomy

surgery and radical cholecystectomy surgery) were positively

correlated with OS. In terms of CSS, the risk factors mentioned

above were still significantly associated with CSS, but age and

marital status were. Receiving chemotherapy was mainly

determined as a negative risk factor for CSS (HR = 1.267, 95%

CI: 1.102-1.456). Results from subsequent multivariate Cox

regression analyses further identified older age (> 74), married

status, higher tumor grade (grade III&IV), advanced TNM stage

(T2&3&4, N1, and M1), and receiving surgery (local tumor

excis ion/part ial cholecystectomy surgery and radical

cholecystectomy surgery) as independent prognostic predictors

for OS. Meanwhile, higher tumor grade (grade III&IV), advanced

TNM stage (T2&3&4, N1, and M1), larger tumor size (≥ 3 cm),

receiving surgery (local tumor excision/partial cholecystectomy

surgery and radical cholecystectomy surgery), and receiving
Frontiers in Endocrinology 08176
chemotherapy were determined as independent prognostic

predictors for CSS.
3.5 Construction of nomograms to predict
OS and CSS at 1-, 3-, and 5-year

Based on the results of Cox regression analysis, two distinct

nomograms were created for predicting the OS and CSS at 1-, 3-, and

5-year, respectively (Figure 5). The nomograms revealed that certain

demographic and clinical factors, such as age, marital status, tumor

grade, surgery information, and TNM stage, played crucial roles in

predicting OS. On the other hand, tumor grade, tumor size, surgery

information, chemotherapy, and TNM stage were critical prognostic

indicators for predicting CSS. In particular, T stage emerged as the

most significant risk factor for both OS and CSS, as it had a

considerable impact on the overall point score in the nomograms.
TABLE 1 Continued

All
N = 2131

Training Cohort
N = 1492

Validation Cohort
N = 639 P-value

T stage 0.817

T1 269 (12.62%) 185 (12.40%) 84 (13.15%)

T2 1019 (47.82%) 709 (47.52%) 310 (48.51%)

T3 785 (36.84%) 555 (37.20%) 230 (35.99%)

T4 58 (2.72%) 43 (2.88%) 15 (2.35%)

N stage 0.333

N0 1493 (70.06%) 1043 (69.91%) 450 (70.42%)

N1 562 (26.37%) 401 (26.88%) 161 (25.20%)

N2 76 (3.57%) 48 (3.22%) 28 (4.38%)

M stage 0.402

M0 1743 (81.79%) 1213 (81.30%) 530 (82.94%)

M1 388 (18.21%) 279 (18.70%) 109 (17.06%)

Tumor size 0.773

< 3 cm 1052 (49.37%) 733 (49.13%) 319 (49.92%)

≥ 3 cm 1079 (50.63%) 759 (50.87%) 320 (50.08%)

Surgery 0.912

No 124 (5.82%) 88 (5.90%) 36 (5.63%)

Local tumor excision/partial
cholecystectomy

1756 (82.40%) 1226 (82.17%) 530 (82.94%)

Radical cholecystectomy 251 (11.78%) 178 (11.93%) 73 (11.42%)

Radiotherapy 0.694

No/Unknown 1789 (83.95%) 1249 (83.71%) 540 (84.51%)

Yes 342 (16.05%) 243 (16.29%) 99 (15.49%)

Chemotherapy 0.960

No/Unknown 1394 (65.42%) 977 (65.48%) 417 (65.26%)

Yes 737 (34.58%) 515 (34.52%) 222 (34.74%)
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TABLE 2 Univariate and multivariate Cox regression analysis of OS in training cohort.

Hazard ratio Univariate
95% CI P-value Hazard ratio Multivariate

95% CI P-value

Sex

Male

Female 0.972 0.858-1.101 0.651

Age

65-74

> 74 1.339 1.188-1.510 < 0.001 1.535 1.356-1.737 < 0.001

Marital status

No

Married 0.869 0.772-0.978 0.019 0.851 0.754-0.960 0.009

Race

White

Black 0.992 0.815-1.207 0.933

Other 0.851 0.706-1.026 0.090

Grade

I

II 1.312 1.083-1.589 0.005 1.166 0.961-1.414 0.120

III 2.194 1.808-2.661 < 0.001 1.540 1.264-1.878 < 0.001

IV 3.059 2.097-4.463 < 0.001 2.053 1.397-3.017 < 0.001

T stage

T1

T2 1.670 1.334-2.090 < 0.001 1.556 1.239-1.955 < 0.001

T3 4.306 3.434-5.401 < 0.001 3.340 2.625-4.250 < 0.001

T4 8.008 5.533-11.592 < 0.001 5.373 3.643-7.923 < 0.001

N stage

N0

N1 1.599 1.404-1.820 < 0.001 1.215 1.058-1.395 0.006

N2 1.964 1.428-2.702 < 0.001 0.991 0.712-1.381 0.959

M stage

M0

M1 3.119 2.703-3.598 < 0.001 2.167 1.847-2.542 < 0.001

Tumor size

< 3 cm

≥ 3 cm 1.659 1.473-1.868 < 0.001 1.113 0.979-1.265 0.101

Surgery

No

Local tumor excision/partial
cholecystectomy

0.249 0.199-0.313 < 0.001 0.658 0.513-0.845 0.001

Radical cholecystectomy 0.292 0.223-0.384 < 0.001 0.481 0.363-0.638 < 0.001

(Continued)
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TABLE 2 Continued

Hazard ratio Univariate
95% CI P-value Hazard ratio Multivariate

95% CI P-value

Radiotherapy

No/Unknown

Yes 0.927 0.794-1.084 0.344

Chemotherapy

No/Unknown

Yes 1.069 0.946-1.209 0.283
F
rontiers in Endocrinology
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OS, overall survival; CI, confidential interval.
TABLE 3 Univariate and multivariate Cox regression analysis of CSS in training cohort.

Hazard ratio Univariate
95% CI P-value Hazard ratio Multivariate

95% CI P-value

Sex

Male

Female 0.909 0.788-1.049 0.193

Age

65-74

> 74 1.135 0.988-1.302 0.073

Marital status

No

Married 0.928 0.810-1.065 0.288

Race

White

Black 0.954 0.756-1.204 0.692

Other 0.834 0.670-1.038 0.104

Grade

I

II 1.414 1.116-1.792 0.004 1.238 0.975-1.571 0.080

III 2.611 2.063-3.305 < 0.001 1.886 1.480-2.405 < 0.001

IV 4.244 2.825-6.376 < 0.001 2.676 1.765-4.058 < 0.001

T stage

T1

T2 1.708 1.287-2.265 < 0.001 1.653 1.241-2.203 0.001

T3 5.256 3.973-6.952 < 0.001 4.082 3.029-5.499 < 0.001

T4 10.345 6.809-15.718 < 0.001 7.635 4.913-11.866 < 0.001

N stage

N0

(Continued)
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3.6 Validation of nomograms and
performance evaluation

The nomograms were subjected to internal validation in the

validation cohort, where the concordance index (C-index) was

calculated. In the training cohort, the C-index for OS was 0.717

(95% CI: 0.701-0.732), and for CSS, it was 0.747 (95% CI: 0.730-
Frontiers in Endocrinology 11179
0.764). The C-index for the validation cohort was also calculated for

both OS and CSS, which were found to be 0.708 (95% CI: 0.682-

0.733) and 0.740 (95% CI: 0.715-0.766), respectively. The C-index

values for the validation cohort were found to be moderate,

indicating a reasonable degree of accuracy for the nomograms. To

assess the predictive performance of our nomograms, we utilized

two evaluation methods: calibration curves and time-dependent
TABLE 3 Continued

Hazard ratio Univariate
95% CI P-value Hazard ratio Multivariate

95% CI P-value

N1 1.787 1.542-2.071 < 0.001 1.397 1.187-1.643 < 0.001

N2 2.285 1.614-3.236 < 0.001 1.034 0.720-1.486 0.855

M stage

M0

M1 3.792 3.242-4.435 < 0.001 2.640 2.209-3.155 < 0.001

Tumor size

< 3 cm

≥ 3 cm 1.891 1.645-2.174 < 0.001 1.222 1.051-1.421 0.009

Surgery

No

Local tumor excision/partial
cholecystectomy

0.214 0.168-0.273 < 0.001 0.671 0.513-0.878 0.004

Radical cholecystectomy 0.297 0.222-0.398 < 0.001 0.547 0.405-0.739 < 0.001

Radiotherapy

No/Unknown

Yes 1.004 0.841-1.198 0.965

Chemotherapy

No/Unknown

Yes 1.267 1.102-1.456 0.001 0.570 0.485-0.669 < 0.001
fron
CSS, cancer-specific survival; CI, confidential interval.
A B

FIGURE 5

The nomograms to predict OS and CSS at 1-, 3-, and 5-year for elderly patients with GBC. (A) The nomogram to predict OS for elderly patients with
GBC. (B) The nomogram to predict CSS for elderly patients with GBC.
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ROC curves. The calibration curves, as depicted in Figure 6,

demonstrated the accuracy of the predicted survival probabilities

for both OS and CSS in both the training cohort and validation

cohort. These curves exhibited a high degree of linearity, closely

mirroring the actually observed survival probabilities. As such, our

nomograms displayed robust predictive accuracy in both cohorts.

Moreover, we also generated time-dependent ROC curves, as

illustrated in Figure 7, to evaluate the discriminative ability of our

nomograms. The AUCs for OS and CSS were calculated at 1-, 3-,

and 5-year intervals for both the training and validation cohorts.

The results revealed that our nomograms possessed excellent

discrimination capabilities, with AUCs at 1-, 3-, and 5-year

intervals ranging from 0.770 to 0.827 for OS and 0.784 to 0.816

for CSS across both cohorts. In summary, our nomograms

demonstrated a high degree of accuracy in predicting survival

probabilities, as evidenced by the calibration curves, and excellent

discrimination capabilities, as indicated by the time-dependent

ROC curves. These results support the robustness of our

nomograms as a valuable tool for predicting survival outcomes.
3.7 Clinical application of nomograms

Figure 8 displays the outcomes of the DCA analysis, which

showcases the superiority of our nomograms in terms of clinical
Frontiers in Endocrinology 12180
benefits over the conventional TNM stage at 1-year in both the

training and validation cohorts. However, the clinical benefits

appeared to be out of advantage for our nomograms compared to

the conventional TNM stage for 3-year and 5-year. This approved

that our nomograms have better clinical application value to help

clinicians assess early survival probability (1-year) both for OS and

CSS compared to the conventional TNM stage. The nomograms were

utilized to calculate the risk score and optimal cut-off value for each

patient by means of the ROC curve. Patients were categorized into

either a high-risk group, characterized by a total score greater than or

equal to 96.00 for OS comparison and 88.91 for CSS comparison, or a

low-risk group, with a total score less than the aforementioned cut-off

values. The K-M survival curves demonstrated that patients who were

classified as high-risk had a notably worse prognosis for both OS and

CSS in both the training cohort and validation cohort, with all P-

values being less than 0.0001 (Figure 9). For OS, the predicted

survival probabilities at 1-, 3-, 5-year were 37.7%, 12.7%, and 7.1%

for the high-risk group and 79.8%, 51.9%, and 42.8% for the low-risk

group. For CSS, the predicted survival probabilities at 1-, 3-, 5-year

were 48.1%, 21.9%, and 16.9% for the high-risk group and 87.3%,

66.8%, and 61.7% for the low-risk group. We found that the vast

majority of patients underwent surgical treatment, both in the high-

and low-risk groups. Moreover, survival probabilities (both OS and

CSS) of patients who received surgery got significant improvements

in contrast to that of patients who didn’t receive surgery in the high-
D

A B

C

FIGURE 6

Calibration curves of the nomograms to predict OS and CSS at 1-, 3-, and 5-year for elderly patients with GBC. (A) Calibration curve of the
nomogram to predict OS at 1-, 3-, and 5-year in the training cohort. (B) Calibration curve of the nomogram to predict CSS at 1-, 3-, and 5-year in
the training cohort. (C) Calibration curve of the nomogram to predict OS at 1-, 3-, and 5-year in the validation cohort. (D) Calibration curve of the
nomogram to predict CSS at 1-, 3-, and 5-year in the validation cohort. The horizontal axis of the nomogram represents the expected value, while
the vertical axis represents the observed value.
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risk group (P < 0.0001, Figures 10A). It appeared to be that receiving

radical cholecystectomy surgery contributes to slight OS

improvement in the early five years, compared to receiving local

tumor excision/partial cholecystectomy surgery (Figure 10).

However, it revealed no apparent difference in CSS improvement

between the local tumor excision/partial cholecystectomy surgery

subgroup and the radical cholecystectomy surgery subgroup

(Figure 10). In the low-risk group, patients who received surgery

got significant CSS improvement in contrast to that of patients who

didn’t receive surgery. However, there were no significant survival

improvements for both OS and CSS between the local tumor

excision/partial cholecystectomy surgery subgroup and the radical

cholecystectomy surgery subgroup (Figures 10C).
4 Discussion

In this study, we acquired GBC RNA-seq data from the GEO

database and analyzed the genetic characteristics of elderly GBC

patients. Our data set comprised 14 GBC patients, including four

elderly and ten young patients. We performed genetic correlation

analysis on age subgroups and discovered significant differences in

the gene expression profiles of elderly and young GBC patients.

Using WGCNA analysis, we identified a significant reduction in the

expression of ND1, ND2, ND3, ND4, ND4L, CYTB, COX1, COX2,
Frontiers in Endocrinology 13181
ATP6, and ATP8 genes, all of which are associated with

mitochondrial respiratory enzyme functions in elderly

GBC patients.

Additionally, pathway enrichment analysis results suggested

that elderly GBC patients experience a significant decrease in

aerobic metabolic processes, leading to reduced energy

metabolism. Notably, few studies have investigated the metabolic

aspects of GBC, making our findings particularly noteworthy. The

reduced energy metabolic process observed in elderly GBC patients

may hinder antitumor immune processes and drug metabolism,

exacerbating the malignancy of aged GBC. Moreover, our study

revealed an upregulation in the expression of cell cycle genes in

elderly GBC patients, which could further contribute to their

higher malignancy.

In addition, we successfully developed two nomograms to

predict OS and CSS at 1-, 3-, and 5-year for elderly patients with

GBC based on a large population from the SEER database. The

predictive accuracy and capability of our nomograms were further

verified in both the training cohort and validation cohort. Several

independent prognostic predictors were identified and enrolled in

our nomograms. Marital status, age, tumor grade, surgery

information, T stage, N stage, and M stage were applied for OS

prediction. Tumor grade, tumor size, chemotherapy, surgery

information, T stage, N stage, and M stage were applied for

CSS prediction.
D
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FIGURE 7

Time-dependent ROC curves to predict OS and CSS at 1-, 3-, and 5-year for elderly patients with GBC. (A) AUCs at 1-, 3-, and 5-year for OS
prediction in the training cohort. (B) AUCs at 1-, 3-, and 5-year for CSS prediction in the training cohort. (C) AUCs at 1-, 3-, and 5-year for OS
prediction in the validation cohort. (D) AUCs at 1-, 3-, and 5-year for CSS prediction in the validation cohort.
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Good experience and emotional support from marriage may

positively help patients to struggle with cancer. Marital status has

been determined as a protective risk factor of OS for patients with

GBC (24). Accordingly, our results also identified married status

as a protective prognostic predictor of OS for elderly patients with

GBC, but the marital status was inapplicable for CSS prediction.

Age appears to be a common risk factor for prognosis in many

cancer types (25–30), as well as in GBC (12). Generally, the older

patients are, the poorer prognosis they may suffer. We came to the

same conclusion that elderly patients aged over 74 (> 74) have a

poorer prognosis (both OS and CSS) in contrast to elderly patients

aged no more than 74 (≥ 65, ≤ 74). Tumor grade and TNM stage

are essential evidence for clinicians to evaluate the clinical

outcomes of patients. Higher tumor grade and more advanced

TNM stage underline enhanced malignant potentials of cancer

cells, naturally inferring worse clinical outcomes. In accordance

with previous studies (12, 31), we verified that patients with higher

tumor grades and more advanced TNM stage were calculated with

higher risk scores and worse prognoses (both OS and CSS).

Notably, results from DCA revealed the superior advantage of

our nomograms to predict OS and CSS at 1-year compared to the

traditional TNM stage for elderly patients with GBC. There is no

common standard for tumor size grouping in GBC. In previous
Frontiers in Endocrinology 14182
studies, the cut-off points include 2 cm and 5 cm (32), 1.4 cm and

6.3 cm (33), 1.9 cm and 4.8 cm (24), 4.5 cm (34), and 5 cm (35),

etc. In this present study, we selected 3 cm as the cut-off point.

Although the standards vary, the results all pointed out that tumor

size is associated with the prognosis of patients with GBC (24, 32–

35). Particularly, Zhang et al. (33) and Yan et al. (35) reported that

larger tumor size is negatively associated with CSS of patients with

GBC, which was consistent with our finding.

The clinical treatment of GBC is a comprehensive strategy, with

the chief component being surgical resection (6, 36). Currently, a

combination of PD-1/PD-L1-based immunotherapy and traditional

cytotoxic drugs is rising to be an option for first-line treatments (37).

Radiotherapy is set as a postoperative treatment for patients with

GBC, especially for those with lymph node involvement and positive

resection margins (38). In this present study, we determined that

surgical section does improve survival probabilities (both OS and

CSS) of elderly patients with GBC in contrast to patients without

surgical resection in the high-risk group. Further, radical

cholecystectomy surgical resection may contribute to slight OS

improvement in the early five years compared with local tumor

excision/partial cholecystectomy surgical resection. In the low-risk

group, no significant survival improvements were observed for both

OS and CSS between the local tumor excision/partial
D
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FIGURE 8

DCA of the nomograms to predict OS and CSS compared with TNM stage. (A) DCA of the nomogram to predict OS at 1-, 3-, and 5-year compared
with TNM stage in the training cohort. (B) DCA of the nomogram to predict CSS at 1-, 3-, and 5-year compared with TNM stage in the training
cohort. (C) DCA of the nomogram to predict OS at 1-, 3-, and 5-year compared with TNM stage in the validation cohort. (D) DCA of the nomogram
to predict CSS at 1-, 3-, and 5-year compared with TNM stage in the validation cohort. When the threshold probability is between 20 and 100%, the
net benefit of the model exceeds all deaths or none. DCA, decision curve analysis.
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cholecystectomy surgery subgroup and the radical cholecystectomy

surgery subgroup. In other words, radical cholecystectomy surgical

resection may not achieve more satisfying clinical benefits as we

expected in contrast to local tumor excision/partial cholecystectomy

surgical resection for patients in the low-risk group. This finding may

provide evidence for the choice of operation types, and it is possible to

provide more rational treatment management for patients based on

their risk stratification. However, to the best of our knowledge, our

nomograms were the first to analyze the associations between survival

benefits and surgery options based on risk score grouping in elderly

patients with GBC. Receiving chemotherapy was determined to be a

protective prognostic predictor for CSS prediction of elderly patients

with GBC (HR = 0.57, 95% CI = 0.485-0.669), which was consistent

with reported results (39, 40).

Radiotherapy can serve as a valuable supplementary therapy for

particular groups of patients, particularly those at a higher risk of

recurring cancer, such as individuals who have undergone an R1

resection or those who have tested positive for lymph nodes. A

study conducted previously demonstrated that the implementation

of adjuvant radiotherapy resulted in an increased survival rate

among patients who had been diagnosed with gallbladder cancer

and were also affected by regional lymph node metastasis (41).

However, in our study, radiotherapy was not an influential factor in

the prognosis of elderly patients with GBC. It could be because
Frontiers in Endocrinology 15183
elderly patients often cannot tolerate having radiotherapy or cannot

obtain more benefits because of the combination of multiple

underlying diseases.

Despite the robust predictive accuracy and capability of our

nomograms, there were still several limitations of this present

study. Above all, relevant treatment information, blood test data,

and essential clinical characteristics of patients with GBC were not

provided in the SEER database, such as chemotherapy regimens,

radiation dose, blood routine tests, liver function, tumor markers,

smoke, alcohol consumption, etc. Recruitment of these factors

may help to optimize the predictive accuracy of nomograms.

Second, multi-omics data are recommended to improve

nomograms to emphasize precision medicine. Besides, our data

are all from the U.S. population, and their applicability to

populations in other countries remains to be verified, and

additional multicenter prospective studies are needed to validate

our findings.
5 Conclusions

Discrepancies in cell cycle signaling and metabolic

disorders, especially energy metabolism, were obviously
D
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FIGURE 9

K-M survival curves of elderly patients with GBC in the high-risk and low-risk groups. (A) OS comparison of elderly patients with GBC based on risk
score grouping in the training cohort. (B) CSS comparison of elderly patients with GBC based on risk score grouping in the training cohort. (C) OS
comparison of elderly patients with GBC based on risk score grouping in the validation cohort. (D) CSS comparison of elderly patients with GBC
based on risk score grouping in the validation cohort.
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observed between elderly and young GBC patients. In addition

to being predictively accurate, the nomograms of elderly GBC

patients also contributed to managing and strategizing

clinical care.
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FIGURE 10

K-M survival curves of elderly patients with GBC under different surgery options. (A) OS comparison between patients under different surgery
options in the high-risk group. (B) CSS comparison between patients under different surgery options in the high-risk group. (C) OS comparison
between patients under different surgery options in the low-risk group. (D) CSS comparison between patients under different surgery options in the
low-risk group.
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Characterization of anoikis-
based molecular heterogeneity
in pancreatic cancer and
pancreatic neuroendocrine
tumor and its association
with tumor immune
microenvironment and
metabolic remodeling

Ning Li1,2,3†, Xingqing Jia4†, Zhong Wang2†, Kaige Wang3,
Zumin Qu5, Dong Chi2, Zhubo Sun2, Jian Jiang1*,
Yougang Cui1,6* and Changmiao Wang1*

1Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China, 2Department of General Surgery, Wafangdian Central Hospital, Dalian,
Liaoning, China, 3Graduate School of Dalian Medical University, Dalian, Liaoning, China, 4Department
of Digestive, Jinan City People’s Hospital, Jinan, Shandong, China, 5Department of Pathology,
Wafangdian Central Hospital, Dalian, Liaoning, China, 6Department of General Surgery, The Affiliated
Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
Background: Accumulating evidence suggests that anoikis plays a crucial role in

the onset and progression of pancreatic cancer (PC) and pancreatic

neuroendocrine tumors (PNETs); nevertheless, the prognostic value and

molecular characteristics of anoikis in cancers are yet to be determined.

Materials and methods: We gathered and collated the multi-omics data of

several humanmalignancies using the TCGA pan-cancer cohorts. We thoroughly

investigated the genomics and transcriptomics features of anoikis in pan-cancer.

We then categorized a total of 930 patients with PC and 226 patients with PNETs

into distinct clusters based on the anoikis scores computed through single-

sample gene set enrichment analysis. We then delved deeper into the variations

in drug sensitivity and immunological microenvironment between the various

clusters. We constructed and validated a prognostic model founded on anoikis-

related genes (ARGs). Finally, we conducted PCR experiments to explore and

verify the expression levels of the model genes.

Results: Initially, we identified 40 differentially expressed anoikis-related genes

(DE-ARGs) between pancreatic cancer (PC) and adjacent normal tissues based

on the TCGA, GSE28735, and GSE62452 datasets. We systematically explored the

pan-cancer landscape of DE-ARGs. Most DE-ARGs also displayed differential

expression trends in various tumors, which were strongly linked to favorable or

unfavorable prognoses of patients with cancer, especially PC. Cluster analysis

successfully identified three anoikis-associated subtypes for PC patients and two
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anoikis-associated subtypes for PNETs patients. The C1 subtype of PC patients

showed a higher anoikis score, poorer prognosis, elevated expression of

oncogenes, and lower level of immune cell infiltration, whereas the C2

subtype of PC patients had the exact opposite characteristics. We developed

and validated a novel and accurate prognostic model for PC patients based on

the expression traits of 13 DE-ARGs. In both training and test cohorts, the low-

risk subpopulations had significantly longer overall survival than the high-risk

subpopulations. Dysregulation of the tumor immune microenvironment could

be responsible for the differences in clinical outcomes between low- and high-

risk groups.

Conclusions: These findings provide fresh insights into the significance of anoikis

in PC and PNETs. The identification of subtypes and construction of models have

accelerated the progress of precision oncology.
KEYWORDS

pancreatic adenocarcinoma, pancreatic neuroendocrine tumors, anoikis, molecular
characteristics, metabolic remodelling, tumor immune microenvironment
Introduction

Globally, pancreatic cancer (PC) is regarded as a lethal

gastrointestinal malignancy with a mortality rate proportional to

its occurrence (1, 2). Exposure to risk factors such obesity, diabetes,

cigarette use, and alcohol intake is connected to the poor prognosis

and steady incidence rates of PC patients; however, early-stage

nonspecific symptoms also contribute to the diagnosis (3). In

addition to pancreatic cancer, neuroendocrine tumors are also

relatively common types of pancreatic tumors. The origin of

pancreatic neuroendocrine tumors (PNETs) is concealed, and

their biological activity is highly variable, being characterized by

passive growth, invasive development, and even early metastasis;

their biological characteristics may change as the disease progresses.

As a result of the tumor’s function in hormone release, PNETs may

produce hormone-related symptoms or syndromes, and there are

significant differences in prognosis between PNETs of different

grades and stages. In modern medicine, surgery remains the

therapeutic cornerstone of PC and PNETs, complemented by

other, more all-encompassing treatments like radiation and

chemotherapy (4). Despite extensive therapy, PC has a dismal 5-

year survival rate of around 7% at present (4). The urgent need to

establish the potential heterogeneity of PC and PNET patients is a

necessary step in addressing this issue. This would enable

physicians to generate more accurate prognoses on patient

outcomes and swiftly execute tailored treatment programs.

Anoikis was initially identified in 1994, indicating that normal

adhering cells would die of “homelessness” if they were suspended

for an extended period of time (5). Anoikis is a kind of programmed

cell death and is associated with “suicidal” cell activity (5). It is

caused by separation from extracellular matrix (6). It is essential for

maintaining the integrity of the body’s tissues, and its primary role

is to inhibit improper cell proliferation or attachment to abnormal
02187
extracellular matrix (7). Loss of nested apoptosis resistance is the

basis of tumor spread, metastasis, and invasion, since it enables

tumor cells to migrate to distant new tissues or lymph nodes

through lymphatic or blood circulation and continue to grow (8).

Loss of tumor cells and resistance to apoptosis play a significant role

in the invasion and metastasis of pancreatic cancer.

In this study, we systemically summarized the pan-cancer

landscape of anoikis for the first time. Based on the anoikis

scores, 930 patients with PC were precisely stratified into three

subtypes accompanied by distinct prognoses and tumor immune

microenvironment. These three subtypes included anoikis-active,

anoikis-normal, anoikis-inactive subpopulations. The patients in

anoikis-active subtype had higher anoikis scores and worse

prognoses, indicating the carcinogenic effects of anoikis in PC.

226 patients with PNETs were also stratified into S1 and S2 subtypes

with distinct molecular characteristics. Finally, we also developed a

novel anoikis-based prognostic model for patients with PC, which

help promote the development of oncology precision.
Methods

Data collection and processing

A total of 794 anoikis-related genes (ARGs) were downloaded from

the GeneCard website (https://www.genecards.org/). Among them, 501

ARGs with gene scores > 0.4 were preserved for further analysis (Table

S1). Pan-cancer cohorts including gene expression profiles, mutation

information, methylation levels, and clinical data were obtained from

the Firehose (http://gdac.broadinstitute.org) and Xena Browser

(https://xenabrowser.net/datapages/) platforms (9). A total of 930 PC

and 171 para-cancerous tissues’ transcriptomics data and their

corresponding clinical data were acquired from the publicly free
frontiersin.org
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platforms, including ArrayExpress (https://www.ebi.ac.uk/

arrayexpress), The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov), International Cancer Genome Consortium

(ICGC, https://dcc.icgc.org/), Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), and Genotype-Tissue Expression

(GTEx) databases (10–14). Of note, patients without follow-up

information were excluded in this study.

In addition to these, the transcriptomics data of 226 patients

with PNETs were also collected and complied from the

public websites. The ICGC-PAEN-AU cohort provided the data

of 32 PNETs samples, GSE98894 cohort (15) provided the data of

113 PNETs samples, GSE73338 cohort (16) provided the data of 81

PNETs samples. A total of 171 normal pancreas samples consisting

of 4 samples from TCGA platform and 167 samples from GTEx

website were also collected as the control group. In order to

eliminate the batch effects derived from the different platforms, a

well-recognized bioinformatics algorithm, called ComBat, was

utilized. The ComBat function was developed on the basis of the

“sva” package in R (17).

The overall analysis strategies of this research are summarized

as follows: a) To filter ARGs significantly associated with the

occurrence of PC, the differentially expressed ARGs (DE-ARGs)

were determined with the help of limma package in R. In the

process of above analysis, three cohorts including GSE28735 (18,

19) (45 tumor samples vs 45 normal samples), GSE62452 (20) (69

tumor samples vs 61 normal samples), and TCGA+GTEx cohorts

(178 tumor samples vs 171 normal samples) were utilized, and DE-

ARGs were identified by taking the intersection of the results of

above three cohorts. Subsequently, pan-cancer analysis highlighted

the pivotal contributions of DE-ARGs in multiple human cancers.

The specific analytic methods were similar to the previous studies

(21, 22). b) The single sample gene set enrichment analysis

(ssGSEA) was performed to evaluate the relative activities of 930

PC patients’ anoikis signaling pathway. Cluster analysis was then

carried out to classify 930 PC patients into three distinct subtypes

with different anoikis activities. c) Considering the limitations for

the clinical application of cluster results, a novel anoikis-related

prognostic model (ARPM) was developed and validated. We

separated 930 PC patients into two cohorts (i.e. training dataset

and validation dataset). Among them, GSE57495 (23), GSE28735,

GSE62452, E-MTAB-6134 (24), and TCGA-PC datasets including a

total of 635 PC samples were compiled as a training cohort for

future research, while 295 PC patients in the ICGC-CA and ICGC-

AU datasets were defined as a validation cohort. d) 226 patients

with PNETs were also performed cluster analysis to determine the

possible heterogeneity.
Cluster analysis based on anoikis activities

Using single-sample gene set enrichment analysis (ssGSEA),

enrichment scores for the anoikis pathway in patients with PC and

PNETs were calculated. The “Gplots” and “pheatmap” R packages

were used to display heatmaps incorporating DE-ARGs expression,

anoikis scores, and clinical clusters for both PC and PNETs. Brown

indicated that the expression of the gene was larger in tumor
Frontiers in Endocrinology 03188
samples than in normal samples, while dark blue indicated the

opposite. The status of mRNA expression in tumor tissues was

categorized into 3 clusters: high expression of the ARGs, normal

expression of the ARGs, and low expression of the ARGs. The violin

plots were depicted to compare the anoikis enrichment scores

between distinct clusters. Of note, those clusters with similar

enrichment scores were further consolidated into one cluster.

Higher scores indicated increased DE-ARG expression levels,

whereas lower scores indicated the reverse. More importantly, we

also evaluated the disparities in the distribution of immunological

and metabolic pathways among diverse clusters.
Drug sensitivity analysis for PC patients

The R package “pRRophetic” was used to predict chemotherapy

response in order to better comprehend the relationship between

anoikis pathway gene expression and malignancy medication

treatment. As one of the largest public repositories of information

on cancer drug sensitivity, drug responses, and molecular targets,

the “pRRophetic” package, which was based on the Cancer Genome

Project (CGP) and contained 138 anticancer drugs against 727 cell

lines, allowed for the identification of novel therapeutic targets to

improve cancer treatment (25). Meanwhile, the semi-maximum

inhibitory concentration (IC50) of the samples was calculated using

the ridge regression approach. A smaller IC50 was usually related to

a lower semi-inhibitory mass concentration of the drug in cancer

cells, suggesting that the cancer cells were more vulnerable to

the medication.
Associations of the anoikis scores with the
classical cancer-related genes and tumor
immune microenvironment in PC patients

The fundamental unit of genetic information is the gene. In

general, two types of genes (i.e. oncogenes and tumor suppressor

genes) in cells are intimately associated with the emergence and

growth of tumors. Oncogenes are usually genes with the functions

of promoting cell growth, activating cell cycle and inhibiting the

level of apoptosis. Tumor suppressor genes negatively control cell

development and cell cycle, induce apoptosis, and repair DNA

damage. Considering the important role of oncogenes and tumor

suppressor genes in tumorigenesis, we further analyzed the

correlation between anoikis scores and these genes. Using the

“pheatmap” and “gplots” packages in RStudio, we produced a

heatmap showing the expression levels of various oncogenes and

tumor suppressor genes in the three clusters in order to explore the

likely regulatory mechanism of the anoikis pathway in PC.

The tumor immune microenvironments of three PC subtypes

were then compared. We intensively examined the algorithms

MCPCOUNTER, XCELL, CIBERSORT, EPIC, CIBERSORT-ABS,

and TIMER for assessing cell immune responses or cellular

components across the three subtypes of PC. Several algorithms

were used to plot a heatmap to identify shifts in immune response.

Immune checkpoint functioned as the major manager of immune
frontiersin.org
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cell activity. Thus, we also investigated the expression features of

immune checkpoint-related genes among various clusters.

In addition, the 29 well-recognized immune-associated gene sets

were also quantified for assessing the scores of immune cells and

immune-related functions using ssGSEA (26). The scores of immune

cells and immune-related functions might partially represent the

quantity of immune cell infiltration and the activation of

immunological-related processes. Subsequently, the Spearman

correlation analysis was employed to explore the correlation between

ARG scores and immune scores. We created a scatter plot using the

“ggscatterstats” package to show the relationships between the four

immune-infiltrating components (macrophages, parainflammation,

TIL, and Th1 cells) and the anoikis pathway scores. Finally, using

Spearman’s correlation coefficient, the R Studio tools “ggplot2” and

“dplyr” were then applied to generate a heatmap illustrating the

relationship between ARGs and immune cell infiltration (ICI).
Development and validation of a
prognostic signature based on DE-ARGs

As a further step, we performed LASSO regression analysis on 40

DE-ARGs, with the minimal criteria determining the penalty

parameter (l). Risk score  =on
k=1expk  ∗ bk. Using the median

risk score, 930 individuals with PC from the training and validation

cohorts were classified into high- and low-risk categories. The

training cohort involved 635 PC patients from GSE57495,

GSE28735, GSE62452, MTAB-6134, and TCGA-PC datasets,

whereas, the validation cohort involved 295 PC patients from

ICGC-CA and ICGC-AU datasets. For both training and validation

cohorts, survival analyses using the KM technique were carried out to

determine whether the signature could be used to forecast survival.

ROC curves of 1-, 3-, 5-, and 7-years were also plotted to

quantitatively evaluate the predictive ability of our prognostic model.
Immune cell infiltration and immune
checkpoint gene expression differences
between low-risk and high-risk subgroups

Based on the previous results of ICI assessment, the heatmaps

were utilized to show the discrepancies in the tumor immune

microenvironment between low- and high-risk subgroups. Each

color represented different ICI prediction algorithms. The

differential expression of common immune checkpoint genes

(ICGs) in high-risk and low-risk categories was also examined,

with only statistically significant results (p< 0.05) being displayed.

The above analysis is performed in both the train and test cohorts.
Clinical significances of model genes in PC

We integrated the prognosis information, clinical stage, and

expression of model genes to highlight their clinical significances.

Both univariate Cox regression analysis and Kaplain-Meier analysis

were employed to explore and validate their prognostic values. The
Frontiers in Endocrinology 04189
GEPIA2 platform (http://gepia2.cancer-pku.cn/#analysis) was

implemented to analyze their association with clinical stages. The

BEST platform (https://rookieutopia.com/app_direct/BEST/

#PageHomeAnalysisModuleSelection) was utilized to explore the

expression traits of ARGs with clinical significances. Only DE-ARGs

with prognostic significances and stage correlation were considered to

be closely related to the occurrence and progression of PC.
Quantitative real-time PCR,
immunohistochemistry and
immunofluorescence

The MiaPaca-2 cell line was procured from BeNa Culture

Collection, and Procell Life Science & Technology Co., Ltd.

supplied the HPDE6-C7, CF-PAC1, Panc-1, and BxPC-3 cell

lines. DMEM mixed with 10% FBS (Gibco, USA) was utilized to

culture HPDE6-C7 (a human pancreatic ductal epithelium cell

line), MiaPaca-2, and Panc-1 cell lines, while IMDM mixed with

10% FBS (Procell, China) was used for CF-PAC1, and BxPC-3 was

cultured with 1640 mixed with 10% FBS (Procell, China). All the

cell lines were incubated in a cell incubator maintained at a

temperature of 37°C and with a CO2 concentration of 5%.

By using TRIzol extraction tool provided by Accurate

Biotechnology, mRNAs associated with five different cell lines

were isolated. These mRNAs were then reversed transcribed into

cDNAs using the Reverse Transcription Reagent. The RT-PCR was

executed by utilizing the qPCR Kit from Accurate Biotechnology.

All reagents used in the experiment were provided by our

laboratory. b-actin was selected as the control standard for the

experiment, and the mRNA expression level analysis was calculated

using the DDCt method. The primer sequences were synthesized

from Sango Biotech (Shanghai, China) shown as follows: HK2: 5’-

TCCCCTCTCGCGTCTCC-3’(F), 5’- AGAGATACTGGTCAA

CCTTCTGC-3’(R); MMP11, 5’- GATCGACTTCGCCAGGTACT

-3’(F), 5’- CCCCGATAGTCCAGGTCTCA-3’(R); CDH3, 5’- GA

CACCCATGTACCGTCCTC-3’(F), 5’- TCTCTCCCCTCCCCTC

AATTA-3’(R); PDK4, 5’- CCAAGCCACATTGGAAGCAT-3’(F),

5’- TGAACACTCAAAGGCATCTTGG-3’(R); SERPINB5, 5’-

ATGCCAAGGTCAAACTCTCCATTCC-3’(F), 5’- CAGCCCTA

GATTTTCCAGACAAGCC-3’(R); SLC2A1, 5’- TGGCATCAAC

GCTGTCTTCT-3’(F), 5’- AGCCAATGGTGGCATACACA-3’(R);

b -ac t in : 5 ’ -CCTGGGCATGGAGTCCTGTG-3 ’ (F ) , 5 ’ -

TCTTCATTGTGCTGGGTGCC-3’(R).

Ultimately, the HPA platform was employed to investigate the

protein levels and cellular location of model genes in PC through

immunohistochemistry and immunofluorescence techniques.
Results

Identification of DE-ARGs between tumor
and normal tissues

The workflow of this study was displayed in Figure 1. In order

to explore the ARGs closely associated with occurrence of PC, the
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differential expression analyses of three public cohorts were carried

out through the limma package in R. The results of GSE28735,

GSE62452, and TCGA+GTEx cohorts identified 47, 41, and 295

DE-ARGs, respectively, which were further visualized via the

heatmap package (Figures 2A–C). After taking the intersection of

three cohorts, a total of 40 shared DE-ARGs were determined for

further analysis (Figure 2D; Table S2).
Pan-cancer analysis characterization of the
important roles of DE-ARGs

Up to now, the potential roles of DE-ARGs in the occurrence and

progression of human multiple cancers remained unclear. Thus, we

systematically summarized their pan-cancer characteristics through a

series of complex bioinformatics algorithms. Interestingly, differentially

expressed genes in pancreatic cancer and para-cancerous tissues
Frontiers in Endocrinology 05190
showed a similar expression trend in other malignant tumors

(Figure 3A). The expression levels of SLC2A1, MMP11, HK2,

MMP7, and MMP13 in most tumors were significantly increased

compared to corresponding para-cancerous tissues, suggesting their

potential carcinogenesis. The expression levels of PDK4, LMO3 and

PAK3 in most tumors were significantly decreased compared to

corresponding para-cancerous tissues, suggesting their potentially

protective roles. More importantly, nearly all the DE-ARGs exerted

the pivotal parts in the clinical outcomes of patients with PAAD, LGG,

UVM, and KIRC, which further highlighted their crucial contributions

in the carcinogenesis (Figure 3B). Genomics data of pan-cancer

revealed their CNV and SNV landscape, which might be responsible

for their expression traits (Figures 3C–E). Specifically, SLCO1B3,

PAK3, NOX4, MUC4, MMP9, MET, LAMB3, LAMA3, ITGB4,

ITGA2, FN1, and EDIL3 genes exhibited obvious SNV traits.

Furthermore, almost all of the DE-ARGs exhibited evident

mutational patterns in patients diagnosed with SKCM and UCEC
FIGURE 1

The study-flow of this research.
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(Figure 3C). Among the 40 DE-ARGs, the top three genes in the

proportion of mutations were MUC4, LAMA3 and FN1, respectively

(Figure 3D). Additionally, the methylation levels of DE-ARGs showed

a significant difference in pan-cancer tissues and para-cancerous tissues

(Figure 3F). CDH3, EDIL3, PDK4, and PLAT displayed relatively high

methylation levels, while SLPI, CEACAM5, PAK3, TRIM31, and

MMP13 displayed relatively low methylation levels (Figure 3F).

Ultimately, the results of ssGSEA uncovered the significant

correlation between DE-ARGs and several typical cancer-related

pathways (Figure 3G). In particular, DE-ARGs were significantly

correlated with the activities of typical cancer-related pathways.
Cluster analysis of 930 patients with PC
based on the anoikis scores

Initially, ssGSEA was utilised to compute the anoikis scores of each

PC patient. Subsequently, cluster analysis was conducted to classify 930

PC patients into three subtypes, namely C1, C2, and C3 (Figure 4A).
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The anoikis scores among the three subtypes demonstrated a

significant difference, with C1 having the highest score, followed by

C3, and C2 having the lowest score (Figure 4B). More significantly,

subtype C1 demonstrated the poorest prognosis while subtype C2

exhibited the most favourable prognosis (Figure 4C). Additionally, the

C1 subtype was observed to be accompanied by oncogene activation,

whereas the C2 subtype was characterised by oncogene inhibition

(Figure 4D). The aberrant expression of oncogenes may account for the

variation in clinical outcomes among PC subtypes. Furthermore, our

investigation revealed that immune and metabolic pathways were

differentially activated in PC patients with distinct anoikis scores,

which is of great significance (Figures 5A, B).
Tumor immune microenvironment analysis

As shown in Figure 6A, C2 subtype exhibited a higher proportion

of immune cell infiltration, while C1 subtype demonstrated a lower
B

C

D

A

FIGURE 2

Identification of differentially expressed anoikis-related genes (DE-ARGs). Differential expression analysis of DE-ARGs in (A) GSE28735, (B) GSE62452,
and (C) TCGA+GTEx cohorts. (D) Identification of 40 shared DE-ARGs.
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proportion of immune cell infiltration. It is widely acknowledged that

immune cells play a crucial role in anti-tumor biological processes. A

higher proportion of immune cells often indicate a stronger

anticancer activity in the tumor microenvironment, although the

regulatory role of ICGs cannot be ignored. Therefore, we conducted

additional analysis on the expression distributions of ICGs among the

three subtypes. The findings revealed that C1 subtype exhibited

higher expression levels of ICGs, whereas C2 subtype demonstrated

lower expression levels of ICGs (Figure 6B).

To examine the regulatory functions of anoikis in the tumor

immune microenvironment, Spearman correlation analysis was

conducted to explore the close relationship between anoikis scores

and the immunemicroenvironment (Figure 6C). The findings revealed

a positive correlation between anoikis scores and macrophage

infiltration and parainflammation (Figures 6D, E), but a negative

correlation with TIL and Th1 cell infiltration (Figures 6F, G).
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Ultimately, we also discovered that the majority of DE-ARGs

exhibited significant correlations with immune cell infiltration and

immune-related functions (Figure 6H). Specifically, MMP9, MMP13,

MMP11, and CEMIP were positively associated with the tumor

immune microenvironment, while SLPI, SLC2A1, SERPINB5, HK2,

CEACAM6, and CEACAM5were negatively associated with the tumor

immune microenvironment.
Cluster analysis of 226 patients with PNETs
based on the anoikis scores

According to the enrichment scores of each patient with PNETs,

226 samples were successfully classified into three clusters

(Figure 7A). The enrichment scores of clusters C2 and C3 were

significantly higher than that of cluster C1; however, there was no
B

C

D

E

F

G

A

FIGURE 3

Pan-cancer overview of DE-ARGs. (A) mRNA expression traits of DE-ARGs in pan-cancer. (B) Prognostic values of DE-ARGs in pan-cancer.
(C, D) SNV traits of DE-ARGs in pan-cancer. (E) CNV traits of DE-ARGs in pan-cancer. (F) Methylation levels of DE-ARGs in pan-cancer. (G) Pathway
regulation ability of DE-ARGs in pan-cancer.
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significant difference between clusters C2 and C3 (Figure 7B). Hence,

C1 cluster was redefined as S1 subtype with low enrichment scores,

while C2 and C3 clusters were merged and redefined as S2 subtype

with high enrichment scores (Figure 7C). Further investigation was

conducted to examine the differences in immune and metabolic

characteristics between the two subtypes. Notably, there was no

significant variation in the typical immune pathways between the

S1 and S2 subtypes (Figure 8A). However, the activities of cysteine

and methionine metabolism, propanoate metabolism, selenoamino

acid metabolism, and sulfur metabolism were found to be

significantly different between the S1 and S2 subtypes (Figure 8B).
Identification and verification of a novel
ARG-based prognostic model

Taking into account the pathogenic impact of anoikis on PC, we

postulated that DE-ARGs could facilitate the development of a new
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and robust prognostic model. The 40 DE-ARGs were inputted into a

LASSO regression model in both the training and test datasets,

resulting in the identification of 13 genes (Figures S1A, B). The risk

score of prognostic model was computed as following: risk score = 0.19

0969310613421 * HK2 + 0.0519064867507077 *MMP11 + 0.04894081

94769506 * MMP9 + (-0.0210122866868812) * CEACAM5 + (-0.0168

359640064986) * MMP13 + 0.100798963932116 * BNIP3 + 0.0774100

41091489 * SLCO1B3 + (-0.0694892084881754) * EDIL3 + 0.059

818949860188 * CDH3 + (-0.00847433457654591) * PDK4 +

0.028246530675805 * SERPINB5 + (-0.052088581916376) * CEMIP

+ 0.0833490721065633 * SLC2A1. The patients in both the training

and test cohorts were classified into high-risk and low-risk PC

subgroups. In both cohorts, there was a significant survival

advantage in the low-risk group compared to the high-risk group

(P< 0.05) (Figures S2A, B). The risk scores were computed, and the

median threshold of the risk score was set at 2.364683 to differentiate

between high- and low-risk groups (Figures S2C, D). Survival scatter

plots of the two cohorts demonstrated a negative association between
B

C

D

A

FIGURE 4

Cluster analysis help identify molecular heterogeneity of patents with PC. (A) Cluster analysis based on the anoikis scores obtained from the ssGSEA
algorithms. (B) Distribution of anoikis enrichment scores among three subtypes (Score: C1 > C3 > C2). (C) Cluster-based survival analysis. The overall
survival time is C2 > C3 > C1. (D) Expression traits of cancer-related genes among three subtypes. *p<0.05, ***p<0.001,****p<0.0001.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1153909
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1153909
survival time and the risk score, suggesting that patients in the high-risk

group had poorer prognosis (Figures S2E, F). The time-dependent

ROC curves for overall survival at 1, 3, 5, and 7 years in the training and

test groups demonstrated excellent predictive performance using this

model (Figures S2G, H). Ultimately, we also investigated the differences

in ICI between the high- and low-risk subgroups. As shown in

Figures 9A, B, low-risk PC patients exhibited a higher proportion of

ICI than the high-risk subgroup, consistent with the finding that the

low-risk subgroup had a significant survival advantage.
Clinical significances of model genes in PC

To emphasise the clinical significance of the 13 model genes in

PC, we investigated the relationship between these genes and

clinical outcomes, as well as clinical stages. The outcomes of

univariate Cox regression analysis and KM survival analyses

indicated that HK2, MMP11, MMP9, SLCO1B3, CDH3, PDK4,

SERPINB5, and SLC2A1 were significantly associated with the

survival time of PC patients (Figures 10A, B). In addition to

PDK4, high expression levels of the other seven genes are

unfavourable for the clinical outcomes of PC patients

(Figures 10A, B). Moreover, HK2, MMP11, CDH3, PDK4,

SERPINB5, and SLC2A1 expression were closely associated with

tumour stages (Figure 10C).

After compiling a series of public PC cohorts, we also observed

significant differences in the expression trends of HK2, MMP11,

CDH3, PDK4, SERPINB5, and SLC2A1 between PC and para-

cancerous tissues (Figure 11). It should be noted that HK2, MMP11,

CDH3, SERPINB5, and SLC2A1 exhibited increased expression

levels in PC tissues, while PDK4 showed decreased expression levels

in PC compared to para-cancerous tissues (Figure 11).
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Furthermore, the qPCR results from cell lines confirmed the

aforementioned expression trends of HK2, MMP11, CDH3,

PDK4, SERPINB5, and SLC2A1 (Figure 12). More significantly,

the IHC results were in line with the previous transcriptomics

findings. The protein expression levels of HK2, CDH3, SERPINB5,

and SLC2A1 were significantly higher in PC samples compared to

para-cancerous samples. In contrast, the translational level of PDK4

was significantly lower in PC samples (Figure 13).
Discussion

The severity and progression of PC and PNETs pose a

challenging clinical problem. Multi-omics has refined our

understanding of the rudimentary genetics of PC and PNETs.

Although multimodal therapy, including surgery, chemotherapy,

radiation, targeted therapy, and immunotherapy, has extended the

survival time of pancreatic tumor patients, treatment outcomes

remain inadequate. Varied prognoses and clinical responses are

observed among individuals with distinct subtypes of PC and

PNETs. Prognostic models may accurately identify patients who

would benefit from more aggressive treatment, such as extensive

surgery, radiation therapy, neoadjuvant chemotherapy, or

immunotherapy. Therefore, the development of molecular

diagnostic biomarkers and therapeutic targets for PC and PNETs

should be given priority.

Anoikis, a specialized kind of programmed cell death, plays a

crucial role in body development, tissue homeostasis, disease

manifestation, and tumor spread. In-depth research on anoikis

has progressively identified the underlying molecular process.

Anoikis triggers cell death, integrins sense and transduce

extracellular matrix signals, and classical apoptotic pathways
B

A

FIGURE 5

The discrepancies in the activities of (A) immune and (B) metabolism pathways among three PC clusters. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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regulate cell adherence and survival. Bcl2 and its associated proteins

play a significant role in the control of apoptosis, and several protein

kinase signal molecules serve as regulatory hubs. Previous

researches have highlighted the crucial role of anoikis in multiple

human diseases, such as cancers.

Firstly, a pan-cancer analysis summarised and emphasised the

essential role of ARGs in the onset and development of cancers.

Significant differences in expression of certain ARGs were detected

between cancers and para-cancerous tissues. These DE-ARGs were

also closely associated with the clinical prognosis of patients with

cancer, particularly PC. The aberrant expression patterns may be

caused by genomic alterations. Therefore, we investigated the CNV

and SNV patterns of DE-ARGs in pan-cancer, which further

validated the above aberrant expression patterns. Additionally, we

explored the methylation levels and pathway regulation relationship

of DE-ARGs in pan-cancer. Most ARGs acted as high-methylation

genes in PC. Furthermore, the tumour necrosis factor signalling,

interferon signalling, inflammatory signalling, endothelial-to-

mesenchymal transition signalling, and IL-6/JAK/STAT3
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signalling pathways exhibited obvious correlations with the

anoikis pathways in PC. Overall, this research was the first to

systematically elaborate on the cancer landscape of anoikis,

providing a foundation for future studies.

Bioinformatics technology helped to establish molecular

classifiers associated with anoikis for patients with PC and

PNETs. The classifier successfully stratified a total of 930 patients

with PC into three clusters. Significant differences were observed in

the activities of anoikis among different subtypes. Patients with high

anoikis scores (C1 cluster) had worse clinical outcomes, while those

with low anoikis scores (C2 cluster) had favorable prognoses.

Moreover, the expression of most oncogenes varied among the

three clusters. Specifically, CMYA5, HMCN1, GLI3, PCDHB7,

ADAMTS12, CCND1, ROCK1, CSMD2, RNF43, ECT2, CENPJ,

FAT3, ZFHX4, ABCA13, and COL24A1 exhibited significant

overexpression trends in the C1 cluster.

To investigate the potential mechanisms underlying clinical

outcome differences among patients with distinct anoikis scores,

we conducted an intensive analysis of the components of the
B
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FIGURE 6

Analysis of tumor immune microenvironment. (A) Discrepancies in the immunocyte infiltration among three clusters. (B) Discrepancies in the
immune checkpoint expression among three clusters. (C) Correlation among anoikis scores, immune cell infiltration and immune-related functions.
Correlation between anoikis scores and (D) macrophages, (E) parainflammation, (F) TIL, and (G) Th1 cells. (H) Correlation among DE-ARGs
expression and immune cell infiltration and immune-related functions. *p < 0.05; **p < 0.01; ***p < 0.001.
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immune microenvironment and expression of ICGs. Increasing

evidence suggests that the immunocompetent cell response plays a

crucial role in anti-tumour processes. The C2 subtype was

associated with a higher proportion of many anti-tumour

immune cells and lower expression levels of ICGs. Previous

research has demonstrated a correlation between tumour-

infiltrating B lymphocytes and favourable prognoses in cancer

patients (27–29). The potential mechanisms underlying B-cell-

mediated antitumor immunity may involve the secretion of

effector cytokines, such as IFN-g, by B cells, which can polarise

T cells towards a Th1 or Th2 response or enhance T-cell responses

through their antigen-presenting cell function (30). This

distinctive ability of B cells to directly induce cytotoxicity in

cancer is demonstrated by CpG-activated B cells, which can

eliminate tumour cells through TRAIL/Apo-2L-dependent

pathways (31). Similarly, the C2 subtype with favourable

prognoses exhibited higher infiltration of B cells. It has been

reported that NK cells recognized most tumor cells through two

mechanisms: “missing-self recognition” and “stress-induced

recognition” (32–34). After recognition, NK cells primarily exert

anti-tumor effects through both direct and indirect pathways (35).
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Additionally, our findings revealed a higher proportion of NK cells

in the C2 subtype. Overall, the dysregulation of the immune

microenvironment among different anoikis subtypes may

account for the differences in clinical outcomes.

In addition, we also explored the potential regulatory

association between ARGs and ICI. Anoikis scores were positively

correlated with macrophage levels and para-inflammation, and

negatively correlated with TIL and Th1 levels, which were

consistent with our previous cluster results. Patients with low

anoikis scores (i.e. C2 subtype) had a higher infiltration level of

TIL and CD4+T cells. This strong anti-tumor immune response

might partly explain why the prognosis of these patients was

relatively good. We then systematically investigated the

correlation between each ARG and ICI. Interestingly, different

genes possessed varying immunomodulatory properties. PDK4,

MMP9, MMP13, MMP11, and EDIL3 were positively correlated

with ICI and immune-related functions, while SLPI, SLC2A1,

SERPINB5, HK2, CEACAM6, and CEACAM5 were negatively

correlated with ICI and immune-related functions.

Subsequently, we classified a total of 226 PNET patients into

three clusters; however, there was no significant difference between
B C

A

FIGURE 7

The cluster results of 226 patients with PNETs. (A) The unsupervised cluster of 226 patients with PNETs based on anoikis scores. (B) The enrichment
scores of three clusters of PNETs. (C) The enrichment scores of two subtypes of PNETs.
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C2 and C3 PNET patients. Therefore, we combined C2 and C3 PNET

patients into one subtype. As we did not have follow-up information,

we were unable to compare the survival time of patients with different

PNET subtypes. While there were no significant differences in

immune pathways among different PNET subtypes, differences in

several metabolic pathways were notable.
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Despite the fact that molecular typing is tremendously

important for functional mining of anoikis, we must acknowledge

that clustering is, to some extent, a black box. It cannot precisely

predict the anoikis scores and clinical outcomes for individual

patients. Therefore, we have developed a unique and robust

prognostic model related to anoikis using the LASSO regression
B

A

FIGURE 8

The activities of (A) immune and (B) metabolism pathways in S1 and S2 subtypes with PNETs. *p < 0.05, **p < 0.01.
BA

FIGURE 9

Tumor immune microenvironment analysis in (A) training and (B) test cohorts.
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technique. This model includes 13 genes associated with anoikis,

including HK2, MMP11, MMP9, CEACAM5, MMP13, BNIP3,

SLCO1B3, EDIL3, CDH3, PDK4, SERPINB5, CEMIP, and

SLC2A1. There was a significant difference in survival outcomes

between high-risk and low-risk pancreatic cancer patients in both

the training and validation cohorts. More importantly, ROC curves

further validated the prediction accuracy of the model and

demonstrated its ability to predict the survival outcome of 930

patients with pancreatic cancer, which could have wide applications

in the future and provide a reference value for individual

patient intervention.

Hexokinase 2 (HK2) catalyzes the phosphorylation of glucose, a

step required for glucose metabolism (36, 37). Anderson et al. have

reported that HK2 had the potential to enhance tumor proliferation,

growth, invasion, andmetastasis via regulation of lactate metabolism in

PC (38). In individuals with PC, HK2 also prevented cell apoptosis

mediated by gemcitabine through voltage-dependent anion channel

(39). Remodeling of the extracellular matrix (ECM) by matrix

metalloproteinases (MMPs) was a crucial stage in the invasion and

metastasis of solid malignant tumors as it enabled tumor cells to

modify ECM components and release cytokines, thus promoting

protease-dependent tumor progression (40). Cell adhesion,

intracellular and intercellular signal transduction, cancer

development, inflammation, angiogenesis, and metastasis are just a
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few of the activities of carcinoembryonic antigen-related cell adhesion

molecules (CEACAMs) in complex biological processes. CEACAM5 is

now considered a reliable clinical biomarker and a promising

therapeutic target for melanoma, lung cancer, colorectal cancer, and

pancreatic cancer (41).

However, there are some limitations associated with our research.

Our signature was constructed using retrospective data from public

datasets. To further establish the predictive significance of our

prognostic signature, extensive prospective clinical research is

necessary. Furthermore, as the signature was developed using

bioinformatics research, additional fundamental research is required

to validate our findings. Despite these limitations, our study still holds

unique clinical significance. The pan-cancer comprehensive analysis of

anoikis is particularly useful for the advancement of further

fundamental research in the future. The molecular classifier and

prognostic model based on anoikis score aid in identifying the

inherent heterogeneity of pancreatic cancer patients, thus promoting

the development of personalised intervention therapy for tumors.
Conclusion

This is the first study to systematically investigate anoikis in

pan-cancer, categorize patients with PC and PNETs into unique
B
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FIGURE 10

Clinical significances of model genes in PC. (A) Uninariate Cox regression analysis. (B) Kaplan-Meier survival analysis. (C) Correlation between clinical
stage and gene expression.
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FIGURE 11

The transcriptomic levels of model genes in tumor and normal tissues. *p < 0.05.
FIGURE 12

PCR experiments validated the expression levels of model genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, no significance.
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molecular subtypes according to their levels of anoikis, and create a

dependable predictive model for PC based on anoikis. The

functional status, tumor immune microenvironment, and clinical

outcomes of patients with PC displayed considerable diversity. The

survival rate of PC patients could be accurately anticipated by the

risk model based on anoikis. Our findings hold the potential to

enhance anoikis research and the targeted therapy of patients with

pancreatic tumors.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

NL and ZW: The authors are responsible for the study

design, data collection, data analysis, writing the manuscript,

making the figures. XJ, KW, ZQ: The author is responsible for

data collection, data analysis, revising the manuscript, making

the figures. DC, ZS: The authors contribute to the study design,

data collection, and writing the paper. JJ, YC, and CW: The

authors supervised the project, designed this study, revised the

manuscript. All authors contributed to the article and approved

the submitted version.
Frontiers in Endocrinology 15200
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1153909/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The processing of LASSO algorithms.

SUPPLEMENTARY FIGURE 2

Developmentandvalidationof theanoikis-basedprognosticmodel.Survivalcurves

of theanoikis-basedprognosticmodel in (A) trainingand (B) testcohorts.Divisionof
high-risk and low-risk groups in (C) training and (D) test cohorts. Distribution of
survive time and risk scores in (E) training and (F) test cohorts. ROC curves of the

anoikis-based prognostic model in (G) training and (H) test cohorts.
FIGURE 13

Immunocytochemistry and immunofluorescence results of model genes.
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Background: Glioma is one of the commonest malignant tumors of the brain.

However, glioma present with a poor clinical prognosis. Therefore, specific

detection markers and therapeutic targets need to be explored as a way to

promote the survival rate of BC patients. Therefore, we need to search for quality

immune checkpoints to support the efficacy of immunotherapy for glioma.

Methods: We first recognized differentially expressed telomere-related genes

(TRGs) and accordingly developed a risk model by univariate and multivariate

Cox analysis. The accuracy of the model is then verified. We evaluated the

variations in immune function and looked at the expression levels of immune

checkpoint genes. Finally, to assess the anti-tumor medications often used in

the clinical treatment of glioma, we computed the half inhibitory concentration

of pharmaceuticals.

Results: We finally identified nine TRGs and built a risk model. Through the

validation of the model, we found good agreement between the predicted and

observed values. Then, we found 633 differentially expressed genes between

various risk groups to identify the various molecular pathways between different

groups. The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts, endothelial

cells, macrophages M0, M1, and M2, mast cells, myeloid dendritic cells, and

neutrophils was favorably correlated with the risk score, but the enrichment of B

cells and NK cells was negatively correlated with the risk score. The expression of

several immune checkpoint-related genes differed significantly across the risk

groups. Finally, in order to create individualized treatment plans for diverse

individuals, we searched for numerous chemotherapeutic medications for

patients in various groups.
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Conclusion: The findings of this research provide evidence that TRGs may

predict a patient’s prognosis for glioma, assist in identifying efficient targets for

glioma immunotherapy, and provide a foundation for an efficient, customized

approach to treating glioma patients.
KEYWORDS

glioma, signature, immunotherapy, checkpoint, clinical treatment
1 Introduction

According to the World Health Organization, glioma is one of

the most prevalent malignant tumors of the brain and is categorized

as grades 1, 2, 3, or 4; grades 1 and 2 are low grade glioma (LGG),

while grades 3 and 4 are high grade glioma (glioblastomamultiforme,

GBM) (1, 2). 30% of all primary brain and spinal cord tumors are

glioma, which make up more than 80% of all malignant brain tumors

and are clinically very likely to be fatal (3). Glioma currently have a

poor clinical prognosis upon presentation. Despite advancements in

chemotherapeutic agents, radiation, and surgical methods for

resecting tumors, the overall survival of glioma patients is still not

encouraging (4). After conventional surgery, radiation and

chemotherapy, glioma patients have a median survival period of

about 14 months and an estimated 5-year survival rate of about 9.8%

(5). So far, immunotherapy for glioma is the more effective treatment

modality. Immune checkpoint inhibitor therapy allows effector T

cells to reactivate and exert cytotoxicity on tumor cells through a

combination of specific antibodies and checkpoint molecules

(10.3389/fimmu.2020.578877). Therefore, we need to search for

quality immune checkpoints to support the efficacy of

immunotherapy for glioma.

Telomere is a region at the end of a chromosome that is

composed of two parts, the repetitive TTAGGG DNA sequence

and the shieldin complex (6). Telomeres ensure the stability of

chromosomes, providing security, and are significant for cell

division and certain diseases (7). In addition, telomere

abnormalities can lead to many diseases and are closely associated

with the development of many mental health problems and cancer

(7, 8). A study elucidated polymorphisms in telomere length-related

genes and found that some telomeric loci were associated with a

high risk of liver cancer (9). It has been shown that the length of the

telomere-related genes (TRGs) is associated with the development

of glioma (10). Malignant glioma usually exhibit telomerase activity,

although normal brain tissue hardly ever does (11). Malignant
grade glioma; GBM,

s; DEGs, differentially

d genomes; GO, gene

clusion; TMB, tumor

chment analysis; IC50,
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glioma cells may be capable of unrestricted proliferation and

apoptosis inhibition due to abnormal telomerase reactivation (11).

In the research, we screened and correlated TRGs with the aim

of identifying immune checkpoints associated with glioma

immunotherapy to improve the efficacy of clinical glioma and

improve patient survival.
2 Materials and methods

2.1 Preparation of data

The TCGA-glioma and GEO-GSE74187 databases provided the

RNA-seq data and clinical information for glioma (12). Data that

was missing or had a survival time of less than 30 days was removed.

TRGs were downloaded from TelNet (http://www.cancertelsys.org/

telnet/; Table S1) (13).
2.2 Construction and validation of model

To find TRGs that were differently expressed between normal

and glioma samples (|logFC| >= 1 and P value< 0.05), the R package

limma and wilcox tests were used (14). Prognostic TRGs were

identified using univariate Cox analysis (P< 0.001), and a risk model

was created using multivariate Cox analysis. Each patient with

glioma had their risk score calculated using a formula: ok
i=1biSi.

To validate this model, the GEO-GSE74187 dataset was used as an

external validation set. To compare the survival rates of various

groups, a Kaplan-Meier analysis was used. To evaluate the accuracy

of survival prediction, the receiver operating characteristic (ROC)

curves and the area under curve (AUC) were used.

Based on clinical characteristics, we divided the patients into

several groups and investigated the survival rates of various groups

within various groupings. The model was tested using univariate and

multivariate Cox analyses to ensure that it was an accurate predictor of

prognosis. The consistency index (C-index) was used to calculate the

model’s accuracy. A nomogram was developed to predict the 1, 3, and

5-year survival rates of glioma patients using the model and clinical

data. We found differentially expressed genes (DEGs) in different

groups (|logFC > 1| and FDR< 0.05) and ran kyoto encyclopedia of

genes and genomes (KEGG) and Gene Ontology (GO) enrichment

analyses on these DEGs (P< 0.05) using clusterProfiler 4.0 (15).
frontiersin.org

http://www.cancertelsys.org/telnet/
http://www.cancertelsys.org/telnet/
https://doi.org/10.3389/fendo.2023.1145722
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xie et al. 10.3389/fendo.2023.1145722
2.3 Evaluation of immune landscape

The number of gene mutations was determined using mutational

analysis, and scores for tumor immune dysfunction and exclusion

(TIDE) and tumor mutation burden (TMB) were computed to

forecast immunotherapy response (16, 17). Additionally, we

computed survival variations between various TMB groups and

other groups. Immune cell infiltration was calculated using the

EPIC, TIMER, MCP-COUNTER, XCELL, QUANTISEQ,

CIBERSORT, and CIBERSORT-ABS algorithms (18–24). To

evaluate the variations in immune function and look into the

expression levels of several immunological checkpoint genes, we

used a single-sample gene set enrichment analysis (ssGSEA).
2.4 Identification of anti-tumor drugs

To assess the anti-tumor medications often used in the clinical

treatment of glioma, we calculated the half inhibitory concentration
Frontiers in Endocrinology 03204
(IC50) of pharmaceuticals and compared the IC50 across various groups

using the “pRRophetic” R package (10.1371/journal.pone.0107468).
3 Result

3.1 Construction and validation
of signature

Differential expression analysis revealed 22 differentially

expressed TRGs (Figure 1A), univariate Cox analysis revealed 19

prognostic TRGs (P< 0.001; Figure 1B), and multivariate Cox

analysis produced a signature with 9 prognostic TRGs

(Figure 1C). The findings of the survival analysis (P< 0.001;

Figure 1D) and the validation set from GSE74187 (P = 0.011;

Figure 1E) both indicated that the high-risk group had a shorter

survival time. The signature was used to forecast glioma patients’ 1-,

3-, and 5-year survival rates, with the corresponding AUC values of

0.867, 0.909, and 0.867 (Figure 1F). Compared to other clinical
A B

D E

F G

C

FIGURE 1

(A) Differential expression analysis. (B) and (C) Univariate and multivariate Cox analyses. (D) and (E) The survival analysis from TCGA-glioma and
GSE74187. (F) The AUC values for the model. (G) The AUC of the model was also higher than other clinical features.
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features, the model’s AUC was greater, indicating that it is more

trustworthy (Figure 1G).

Patients in the low-risk group had a longer survival time,

according to the various clinical subgroups, suggesting that the

model is applicable to patients with a range of clinical features

(Figure 2A). In both univariate and multivariate Cox analyses, the

risk score was shown to be an independent prognostic predictor (P<

0.001; Figures 2B). The C-index showed that the model performed

better in predicting the prognosis of glioma than did traditional

clinical criteria (Figure 3A). The correlation plot showed that the

observed 1, 3, and 5-year survival rates and the anticipated rates

agreed strongly (Figure 3B). We developed a nomogram using the

signature and clinical characteristics that might be used to precisely

forecast the survival of glioma patients (Figure 3C).
3.2 Assessment of immunological
landscape

We found 633 DEGs between various risk groups to analyze

the various molecular pathways between different groups (Table
Frontiers in Endocrinology 04205
S2). Figures 4A, B show the results of the GO and KEGG analyses,

while Tables S3, S4 give more information. In comparison to the

high-risk group, the frequency of gene mutations was much

greater in the low-risk group (Figures 5A, B). Lower TIDE

scores (P = 0.019; Figure 5C) and higher TMB scores (P< 0.001;

Figure 5D) in the high-risk group indicated that they were more

likely to respond to immunotherapy. According to survival

research, distinct TMB and risk groups had statistically different

survival rates, suggesting that integrating TMB scores might

improve the ability to predict the prognosis of glioma patients

(Figures 5E, F).

The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts,

endothelial cells, macrophages M0, M1, and, M2, mast cells,

myeloid dendritic cells, and neutrophils was favorably correlated

with the risk score, but the enrichment of B cells and NK cells was

negatively correlated with the risk score (Figure 6). The various risk

groups showed statistically significant differences in all

immunological activities (Figure 7A). The expression of several

immune checkpoint-related genes, such as CTLA-4 (P< 0.001),

PDCD1 (P< 0.001), LAG3 (P< 0.001), and CD274 (P< 0.001),

differed significantly across the risk groups (Figure 7B).
A

B

FIGURE 2

(A) According to the various clinical subgroups, patients in the low-risk group had a longer survival time. (B) It was discovered that the risk score was
a standalone prognostic factor.
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A B
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FIGURE 3

(A) The model performed better in predicting the prognosis of glioma than did traditional clinical criteria. (B) The observed survival rates demonstrated a
strong agreement with the projected rates in the correlation plot. (C) A nomogram with signature and clinical characteristics.
A B

FIGURE 4

(A, B) The GO and KEGG analyses for 633 DEGs.
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3.3 Selection of anti-tumor drugs

Along with immunotherapy, we are looking for chemotherapeutic

drugs for patients in different risk groups. Finally, in order to create

individualized treatment plans for diverse individuals, we searched for

numerous chemotherapeutic medications for patients in various

groups (P< 0.001; Figure 8).

4 Discussion

With a low patient survival rate and a poor clinical prognosis,

glioma has a high occurrence (25). The overall survival rate of glioma
Frontiers in Endocrinology 06207
patients continues to be dismal despite the quick development of

surgical resection methods, chemotherapy, and radiation (4).

Therefore, to ensure that immunotherapy for glioblastoma is

effective, we must discover superior immune checkpoints.

High-throughput sequencing data and computational biology

are currently used extensively in the study of biomedicine (26, 27).

Wang et al., for instance, identified biomarkers in several tumors

using computational biology techniques like WGCNA, which gives

us a methodologically sound foundation on which to examine the

process of carcinogenesis (28–30). In the research, we first created a

risk model linked to TRGs by discovering TRGs. After that, using
A B

D

E F

C

FIGURE 5

(A, B) The specific genes that have been altered differed substantially between groups. (C) and (D) The high-risk group have a lower TIDE score and a
higher TMB score. (E) High-TMB groups had considerably reduced survival rates. (F) The four groups’ survival rates varied greatly from one another.
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this methodology to determine the risk score for glioma patients, we

divided them into low- and high-risk groups. In order to confirm

the validity of the model, we did univariate and multivariate Cox

analyses on the patients in the high-risk group and discovered that

they all had shorter survival rates than those in the low-risk group.

As expected, the predictive accuracy of the risk model was high.

Then, we analyzed the immune infiltration in the high-risk and

low-risk groups and found that the enrichment of CD4+ T cells,
Frontiers in Endocrinology 07208
CD8+ T cells, fibroblasts, endothelial cells, macrophages M0, M1

and, M2, mast cells, myeloid dendritic cells, and neutrophils was

favorably correlated with the risk score, but the enrichment of B

cells and NK cells was negatively related to the risk score. CD8+ T

cells are a common type of T cells, and the CD8+ T cell family

establishes a neuronal-immune-cancer axis through midkine

activation to enhance favorable conditions for the growth of low-

grade glioma (31). In addition, in one study performed by Ge. et al,
FIGURE 6

The enrichment of CD4+ T cells, CD8+ T cells, fibroblasts, endothelial cells, macrophages M0, M1 and, M2, mast cells, myeloid dendritic cells, and
neutrophils was favorably correlated with the risk score, but the enrichment of B cells and NK cells was negatively related to the risk score.
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related discussions elucidated that macrophages, neutrophils and

fibroblasts can be regulated by TP53I13, altering tumor immune

infiltration and thus promoting glioma development and metastasis

(32). The potential of neutrophils as therapeutic targets in cancer

biology has now been extensively studied. Neutrophils play a

complex role in cancer, including their ability to exert pro- or

anti-tumor activity (33). However, further studies are needed to

investigate their exact roles and mechanisms of action to develop

targeted therapeutic approaches. Furthermore, although the degree

of neutrophil infiltration correlates with glioma grade, the

underlying mechanisms are unknown (33).

In addition, in our study, we also found some significant TRGs

such as CTLA-4, PDCD1, LAG3, and CD274 (PD-L1). A critical

part of the tumor immune response pathway is played by CTLA-4

(34). Although it has been shown that CTLA-4 positively correlates

with immune-related proteins in glioma, excessive CTLA-4

expression is associated with a worse prognosis for glioma

patients (35). An immunoglobulin superfamily cell surface

membrane protein, encoded by the PDCD1 gene, is responsible

for programmed cell death. Activated monocytes, NK cells, T cells,

and B cells are the main cell types that express it. Additionally, B or
Frontiers in Endocrinology 08209
T cell receptor signaling can cause PDCD1 expression, and tumor

necrosis factor stimulation can further increase it (36). LAG3, an

inhibitory receptor that is predominantly located on activated

immune cells and is frequently co-expressed with PD-1 on

depleted T cells, has emerged as a crucial immunomodulator

target (37). CD274 (PD-L1) is considered a major prognostic

biomarker for immunotherapy of many cancers. CD274 (PD-L1)

is not only associated with decreased cytotoxic T lymphocytes and

increased Tregs in glioma lesions, but also has an intrinsic

oncogenic effect through interaction with Ras (10.3389/

fphar.2018.01503). It has been shown that LAG3 is realized to be

highly expressed in glioma patients, but the sample size is small and

further experimental validation is needed (38). In addition, in

addition to immunotherapy, we have studied a large number of

drugs for different groups of patients in order to develop

individualized treatment plans.

Although we tried to avoid errors as much as possible to make

our experiments credible, there are still some shortcomings that need

to be improved. First, due to database limitations, we were unable to

accurately compare the corresponding checkpoint inhibitor IC50. In

addition, we did not conduct simultaneous in vitro experimental
A

B

FIGURE 7

(A) The various risk groups showed statistically significant differences in all immunological activities. (B) The expression of immune checkpoint-
related genes differed significantly across the risk groups. *** means P < 0.001.
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validation, and further in-depth experiments are needed for this part.

We believe that our risk model construction is reasonable and

acceptable for further validation in future clinical trials based on

the above analysis, validation, and previous relevant reports. Most

importantly, the current data is limited and we need to collect more

data from the clinic to expand the database for future studies.
Frontiers in Endocrinology 09210
Conclusion

The present study support that TRGs could predict the

prognosis of glioma patients and help to find effective targets for

glioma immunotherapy and can serve as a basis for effective

individualized treatment of glioma patients.
FIGURE 8

Identification of traditional chemotherapy medications.
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N6-methyladenosine with
immune infiltration and PD-L1 in
hepatocellular carcinoma: novel
perspective to personalized
diagnosis and treatment

Yanlong Shi †, Yizhu Wang †, Wenning Zhang †, Kaiyi Niu †,
Xinyu Mao, Kun Feng and Yewei Zhang*

Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing,
Jiangsu, China
Background: Increasing evidence elucidated N6-methyladenosine (m6A)

dysregulation participated in regulating RNA maturation, stability, and

translation. This study aimed to demystify the crosstalk between m6A

regulators and the immune microenvironment, providing a potential

therapeutic target for patients with hepatocellular carcinoma (HCC).

Methods: Totals of 371 HCC and 50 normal patients were included in this study.

GSE121248 and GSE40367 datasets were used to validate the expression of

HNRNPC. The R package “ConsensusClusterPlus” was performed to screen

consensus clustering types based on the expression of m6A regulators in HCC.

The R package “pheatmap”, “immunedeconv”, “survival”, “survminer” and “RMS”

were applied to investigate the expression, immunity, overall survival, and clinical

application in different clusters and expression groups. Comprehensive analysis

of HNRNPC in pan-cancer was conducted by TIMER2 database. Besides,

HNRNPC mRNA and protein expression were verified by qRT-PCR and

immunohistochemistry analysis.

Results: Most of m6A regulators were over-expressed excerpt for ZC3H13 in

HCC. Three independent clusters were screened based on m6A regulators

expression, and the cluster 2 had a favorable prognosis in HCC. Then, the

cluster 2 was positively expression in macrophage, hematopoietic stem cell,

endothelial cell, and stroma score, while negatively in T cell CD4+ memory and

mast cell. We identified HNRNPC was an independent prognostic factor in HCC,

and nomogram performed superior application value for clinical decision

making. Moreover, PD-L1 was significantly up-regulated in HCC tissues, cluster

1, and cluster 3, and we found PD-L1 expression was positively correlated with

HNRNPC. Patients with HCC in high-expression groups was associated with

tumor-promoting cells. Besides, HNRNPC was correlated with prognosis, TMB,

and immune checkpoints in cancers. Particularly, the experiments confirmed

that HNRNPC was positively expression in HCC cells and tissues.
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Abbreviations: COAD, Colon Adenocarcinoma; DFS,

HCC, Hepatocellular carcinoma; LGG, Lower Grade

Squamous Cell Carcinoma; m6A, N6-methyladenosine
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READ, Rectum Adenocarcinoma; STAD, Stomach Ad
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Conclusion: The m6A regulators play irreplaceable roles in prognosis and

immune infiltration in HCC, and the relationship of HNRNPC and PD-L1

possesses a promising direction for therapeutic targets of immunotherapy

response. Exploration of m6A regulators pattern could be build the prognostic

stratification of individual patients and move toward to personalized treatment.
KEYWORDS

N6-methyladenosine, hnRNPC, PD-L1, hepatocellular carcinoma, prognosis, immune
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Introduction

Liver cancer is the sixthmost common cancer in humans and the

fourth leading cause of cancer-related death worldwide (1).

Hepatocellular carcinoma (HCC) is characterized by rapid

progression and poor prognosis, accounting for 90% of primary

liver cancer (2). HCC can be attributed to adverse factors, mainly

including hepatitis B virus, alcohol, and aflatoxin (3).Moreover,most

HCC patients suffer from recurrence and metastasis due to tumor

heterogeneity, resulting in a poor prognosis (4). Immunotherapy, a

promising therapeutic strategy, refers to artificially enhancing or

inhibiting body’s immune function to treat diseases (5). Although

immunotherapy has fewer toxic side effects than chemotherapy, the

blocking of the immune checkpoints by immune microenvironment

is still the leading cause of poor prognosis in HCC patients (6).

Furthermore, the expression of PD-L1 is regulated by adverse of

factors, resulting in differentmeanings of PD-L1 positivity1.Hence, it

is essential to further understand the molecular mechanisms of

immunotherapy of HCC and improve the therapeutic effect.

N6-methyladenosine (m6A) modification, the most abundant

internal modification of RNA in eukaryotic cells, is attracting wide

attention from researchers (7). m6A methylation is regulated by

regulatory factors: writer, reader and eraser, which contribute to

physiological and pathological occurrence (8). It affects almost every

aspect of RNA metabolism, playing a crucial role in regulating RNA

maturation, stability, and translation (9). It was reported that IGF2BP1,

a crucial m6A-dependent manner, might be a novel drug candidate for

cancer therapeutics by modulating tumor immune microenvironment

in m6A regulation (10). Increasing evidence reported that m6A

dysregulation participated in various cancers, including HCC (11,

12). For example, methyltransferase-like 3 (METTL3), the critical

component of m6A RNA methyltransferase, was obviously up-

regulated in HCC, and knockdown of METTL3 could weaken lung
Disease free survival;
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metastasis (11). Moreover, an important study elaborated on the vital

role of m6A in both primitive and adaptive immune responses,

suggesting the potential role of m6A in tumor immunity (13). The

combination of m6A regulators and programmed cell death protein 1

(PD-1) inhibitors was required to maintain of cell and tissue

homeostasis, and had a synergistic effect to enhance the efficacy of

cancer immunotherapy (14). Although progress has been made in the

modification ofm6A inHCC, itsmechanism in tumor immunotherapy

remains unclear. Therefore, demystifying the crosstalk between m6A

regulators and the immune microenvironment could be a potential

therapeutic target for HCC patients.

In this study, we comprehensively assessed the roles of m6A

regulators based on molecular subtypes in HCC, and identified and

validated a key m6A regulator HNRNPC in different datasets and

basic experiments. Moreover, we systematically undertook the

relationship of HNRNPC and PD-L1 in expression, prognosis, and

immune microenvironment.
Materials and methods

Data acquisition

The RNA-seq data and relevant information were obtained

from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/), with 371 HCC and 50 normal tissues.

Pan-cancer analysis included totals of 33 types tumors and

adjacent normal tissues in TIMER2 database. GSE121248 and

GSE40367 datasets were used to validate the expression of

HNRNPC (https://www.ncbi.nlm.nih.gov/geo/) (15, 16).
Analysis and evaluation of m6A regulators
consensus clustering

The R package “ConsensusClusterPlus” was used for consensus

analysis for HCC, and the parameter was set as clusterAlg = “hc”,

innerLinkage=‘ward.D2’ (17). The cluster heatmap was analyzed by

R package “pheatmap”. The gene expression heatmap retained

genes with variance above 0.1. In correlation analysis, the circles

represent genes related to m6A, the lines represent the

interrelationships between genes, and the different colors of the
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circles represent different clustering categories. Among them, red

and blue represent positive and negative correlation respectively.

The prognosis of various clusters was determined by Kaplan-Meier

survival curve in HCC, following HR with 95% confidence interval.

The R package “immunedeconv” was applied to immune

infiltration cells and score between cluster 1 and cluster 2 (18).

Then, we extracted the expression values of immune checkpoint-

related genes from RNA-seq data to observe the expression of

immune checkpoint-related genes in different clusters.
Identification, validation, development of
key m6A regulators

The key m6A regulator was identified by Venn diagram. The

boxplot of gene expression was plotted using R package “Boxplot”.

The R package “survival” and “survminer” was performed to

compare the survival differences between the two or more groups,

and the timeROC analysis was used to compare the prediction

accuracy. The Kaplan-Meier plot database was conducted to

investigate overall survival (OS), progression free survival (PFS),

and disease free survival (DFS) in HCC. The univariate and

multivariate cox regression estimated the independent prognostic

value, then presented it by R package “forestplot”. Based on the

results of multivariate Cox regression, the R package “RMS”

developed the nomogram to predict survival probability. The

proportion of immune infiltration cells was calculated by

CIBERSORT algorithm.
Cell culture

The hepatic normal cell (LO2) and HCC cell line (HepG2) were

donated from School of Basic Medicine, Anhui Medical University.

All cells were cultured with DMEM containing 10% fetal bovine

serum (VivaCell, Shanghai, China), and culture conditions were as

follows: 5% CO2, 37°C.
Quantitative real-time polymerase
chain reaction

Experimental procedures were performed as in previous studies

(19). The SYBR Green qPCR Mix (Takara) was used to quantitative

HNRNPC expression in different groups compared to GADPH

expression. The results were calculated as 2−DDCt method. All primer

sequences were as follows: HNRNPC:5’-aattgtgggctgctctgttc-3’; 3’-

aacctggccagcaatcattc-5’, GADPH: 5’-CTCACCGGATGCACCAAT

GTT-3’; 3’-CGCGTTGCTCACAATGTTCAT-5’.
Analysis of immunohistochemistry

The detailed procedure of Immunohistochemistry in a previous

study has been described (20). HNRNPC protein expression was
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detected by immunohistochemistry in normal and HCC tissues. In

the HPA database, we detected the image ofHNRNPC expression in

“tissue” and “pathology”modules (21). All results were re-judged by

two pathologists. Regents as follows: HNRNPC: Atlas Antibodies

Cat#AMAb91010, RRID : AB_2665761, dilution 1:1500.
Statistical analysis

The version 3.8.1 was used for all R packages. The Spearman

analysis was applied to the correlation among m6A regulators. The

significance of two groups was determined by the Wilcox test, and

the significance of three groups or more was determined by the

Kruskal-Wallis test. The log rank test was used for survival

differences. The expression of HNRNPC was analyzed by

Student’s t-test in tissues and cell lines. P<0.05 was defined as a

statistical difference.
Results

Differences in the expression of m6A
regulators between HCC and
normal tissues

Totals of 20 m6A regulators across 33 cancer types were

obtained from previous study (17) (Supplement Table 1). To

understand the role of m6A regulators in HCC, we investigated

the expression of m6A regulators between 371 HCC and 50 normal

tissues in the TCGA database. It was found that the majority of

m6A regulators was up-regulated in HCC except ZC3H13,

including METTL3, METTL4, WTAP, VIRMA, RMB15B,

YTHDC1, YTHDC2, YTHDF3, YTHDF1, YTDHF2, HNRNPC,

IGF2BP1, IGF2BP2, IGF2BP3, RBMX, HNRNPA2B1, FTO, and

ALKBHS (Figures 1A, B). A correlation analysis indicated a

positive correlation among writers, readers, and erasers of m6A

(Figure 1C). These findings suggest that m6A regulators might act

as a vital role in mediating the development and progression

of HCC.
Identification and evaluation of HCC
subtypes based on m6A regulators

Based on the expression of m6A regulators, we applied to

consensus clustering analysis in HCC. In Figure 2A, the optimal

matrix value shows a good distribution in different parts. From the

relative change in area under cumulative distribution function

curves, the delta area of 3~4 was steepest from k=2 to 6

(Figure 2B). Therefore, the k value of 3 was conducted to follow-

up analysis. The baseline characteristics of the three clusters and

associations are presented in Table 1. Then, the expression

difference in three clusters was shown by heatmap analysis. We

found that the cluster 1 and cluster 3 were up-regulated in m6A

regulators of HCC, but down-regulated in cluster 2 (Figure 2C).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1153802
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shi et al. 10.3389/fendo.2023.1153802
Moreover, Kaplan–Meier curves suggested that patients with cluster

2 had favorable overall survival (P < 0.05) (Figure 2D), progression-

free survival (P < 0.05) (Figure 2E), and disease free survival (P <

0.05) (Figure 2F) than cluster 1 and cluster 3. These results revealed

an obvious distinction among cluster 1, cluster 2, and cluster 3 of

patients with HCC.
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Relationship of m6A subtypes with
immune microenvironment and PD-L1
expression in HCC

To determine the association between cluster subtypes and

immune microenvironment, we first explored the difference in
A B

C

FIGURE 1

The expression and correlation of m6A regulators in HCC. (A) Heatmap of m6A regulators between HCC and normal tissues. (B) The expression of m6A
regulators in HCC and normal tissues by Box plot analysis. (C) The correlation of m6A regulators in HCC by Spearman analysis. **P<0.01, ***P<0.001.
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FIGURE 2

The expression and prognosis of m6A regulators of HCC in different clusters. (A) The optimal consensus clustering matrix k=3. (B) The relative change in
area under cumulative distribution function curves. (C) The expression of m6A regulators in three clusters of HCC by heatmap. (D–F) The prognostic
value for three clusters of HCC patients by Kaplan–Meier curves. (D) Overall survival. (E) Disease-free survival. (F) Progression free survival. ***P<0.001.
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TABLE 1 Clinical characteristics of three clusters of patients with HCC.

Characteristics Cluster 1 (n=155) Cluster 2 (n=150) Cluster 3 (n=66) P_value

Status
Alive 101 (65.2%) 103 37

0.201
Dead 54 (34.8%) 47 29

Age Mean (SD) 61.3 (12.6) 59.8 (13.3) 54.2 (14.9) 0.004

Gender
FEMALE 52 44 25

0.443
MALE 103 106 41

Race

AMERICAN INDIAN 1 1

0.266

ASIAN 66 60 32

BLACK 11 3 3

WHITE 75 78 31

Not known 2 8

Grade

G1 23 28 4

0.006
G2 73 80 24

G3 51 38 33

G4 4 4 4

Not known 4 1

T stage

T1 80 82 19

0.056

T2 37 36 21

T3 16 13 16

T3a 12 11 6

T3b 3 2 1

T4 6 5 3

Not known 1 1

N stage

N0 108 97 47

0.288
N1 1 1 2

NX 46 52 16

Not known 1

M stage

M0 111 108 47

0.936MX 44 39 18

M1 3 1

pTNM_stage

I 73 79 19

0.028

II 34 35 17

IIIA 27 20 18

IIIB 5 2 1

IIIC 3 2 4

III 1 2

IV 4 1

Not known 13 7 4
F
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immune cell infiltration levels in three clusters using by XCELL

algorithm. The cluster 2 was positively expressed in macrophage,

hematopoietic stem cell, endothelial cell, microenvironment score,

and stroma score, while negative in T cell CD4+memory andmast cell

(Figure 3A). The three clusters were lower expression in B cell naive.

The correspondingproportion of immune infiltration cells is presented

in Figure 3B. Then, the connection of immune checkpoints and cluster

subtypes was assessed by heatmap of gene expression in HCC, and the

results showed a significant difference in the expression of immune

checkpoints and cluster subtypes (Figure 3C). Then, we selected PD-L1

for further study. Compared with normal tissues and cluster 2, the

expression of PD-L1was significantly up-regulated in HCC tissues and

the other two clusters (Figures 3D, E). Moreover,we further analyzed

the correlation between m6A regulators and PD-L1 expression. PD-L1

expression was positively correlated with m6A regulators, mainly

including FTO, HNRNPA2B1, HNRNPC, RBM15, WTAP, YTHDC1,

and YTHDF2, while negatively in IGF2BP1 (Figure 3F).
The m6A regulator HNRNPC was over-
expressed in HCC

To further investigate the potential effects of m6A regulators in

HCC, we conducted an intersection analysis to screen key m6A

regulators among up-regulated expression of HCC, positively

correlated with the expression of PD-L1, and associated with worse
Frontiers in Endocrinology 06218
prognosis. We identified 11 relevant genes (Figure 4A). However, only

HNRNPC expression was correlated with tumor stages (Figure 4B).

These results indicated that HNRNPC might play a vital role in HCC

progression and metastasis. In Figure 4C, we first validated the

expression of HNRNPC between HCC and normal tissues in

GSE121248 database. The result showed HNRNPC expression was

over-expressed in HCC. Subsequently, compared with hepatic

hemangioma tissues, HNRNPC expression was also significantly

increased in HCC with metastasis tissues, and metastatic HCC tissues

respectively based on GSE40367 database (Figures 4D, E). Moreover,

our experiment demonstrated the expression of HNRNPC was up-

regulated in HCC cell lines by qRT-PCR analysis (Figure 4F). Notably,

the protein expression of HNRNPC was detected by HPA database.

HNRNPC protein was positively expressed inHCC tissues compared to

normal tissues, and was mainly located in nuclear (Figure 4G).
HNRNPC independent prognostic
value in HCC

The Kaplan-Meier plotter showed the low expression group had

a better prognosis (Figure 5A). In Figure 5B, HCC patients in low

expression group had a longer survival than high expression group.

Then we further explored the relationship between HNRNPC

expression and overall survival. Subsequently, the AUC values of

HNRNPC expression in 1-, 3-, and 5-year were 0.676, 0.613, and
D
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FIGURE 3

Association of cluster subtypes with immune microenvironment and PD-L1 expression in HCC. (A) The relationship between m6A subtypes and immune
cell infiltration level in HCC by heatmap analysis. (B) Proportion of immune infiltration cells in different cluster groups. (C) The relationship between cluster
subtypes and immune checkpoint expression in HCC. (D) PD-L1 expression in HCC and normal tissues. (E) The difference of PD-L1 expression in cluster 1,
cluster 2, and cluster 3. (F) The correlation of m6A regulators and PD-L1 expression. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.
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0.637 for forecasting survival (Figure 5C). Moreover, forest plots of

univariate and multivariate Cox analysis suggested HNRNPC

expression (P=0.001, HR=1.715; P=0.049, HR=1.705), and pTNM

−stage (P<0.001, HR=1.376; P=0.006, HR=1.530) was associated

with OS (Figures 5D, E). Besides, to evaluate the predictive

efficiency of HNRNPC expression, we established the nomogram

to predict 1-, 2-, and 3-years survival probability, with the value of

C-index as 0.743(0.687−1) (Figure 5F). The calibration curve of

nomogram performed a superior application for clinical decision

making (Figure 5G). These results revealed that HNRNPC could

serve as a novel independent prognostic biomarker for

HCC patients.
Analysis of the correlation between
HNRNPC expression and PD-L1, and
immune infiltrating cells

We explored the relationship between immune infiltration cells

and HNRNPC low- and high-expression groups by CIBERSORT
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algorithm. Patients in high-expression groups were increased in

mast cell, T cell CD4+ Th2, class-switched memory B cell, B cell

naive, T cell CD4+ memory, and common lymphoid progenitor,

but decreased in microenvironment score, macrophage M2,

granulocyte-monocyte progenitor, hematopoietic stem cell, and

stroma score (Figure 6A). Moreover, the proportional abundance

of immune infiltrating cells was visualized by heatmap in HNRNPC

low- and high-expression groups (Figure 6B). To definite the role of

immunity in HNRNPC expression, we conducted a correlation

analysis between HNRNPC expression and PD-L1 expression in

HCC. HNRNPC was positively correlated with PD-L1 expression in

HCC (P=1.31e-08, Spearman=0.29) (Figure 6C). The Oncoplot

showed the somatic landscape of HCC, altered in 270 (75.42%) of

358 samples (Figure 6D). TP53mutation is most common, followed

by TTN and CTNNB1 mutations. The mutation pattern of

HNRNPC was Nonsense_Mutation and Missense_Mutation,

accounting for 1%. In Figure 6E, We further exhibit the variation

distribution of variant classifications, types and SNV class, so as to

provide novel theories into immunotherapy for different

risk groups.
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FIGURE 4

Identification and validation of HNRNPC expression in HCC. (A) Screening of 11 hub genes among up-regulated genes, genes of poor prognosis, and
genes with PD-L1 positively by venn graph. (B) Expression of HNRNPC in HCC based on individual cancer stages. (C) HNRNPC expression in 70 HCC
tissues and 37 normal tissues in GSE121248 database. (D) HNRNPC expression in 21 hepatic hemangioma tissues and 5 HCC with metastatic tissues
in GSE40367 database. (E) HNRNPC expression in 15 hepatic hemangioma tissues and 5 metastatic HCC in GSE40367 database. (F) HNRNPC
expression in HCC cell lines by qRT-PCR analysis. (G) HNRNPC protein expression in HCC and normal tissues by HPA database. **P<0.01,
***P<0.001, and ****P<0.0001.
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Comprehensive analysis of HNRNPC
in pan-cancer

To reveal the potential role of m6A regulator HNRNPC, we

further analyzed HNRNPC expression, prognosis, TMB, immune

checkpoints, and immune infiltration cells in pan-cancer. The up-

regulation in HNRNPC expression was shown among 17 types

cancers (Figure 7A). Importantly, we noticed that HNRNPC was

down-regulated in Kidney chromophobe compared with normal

tissues. Then, the forest suggested that HNRNPC had a poor

prognosis in Adrenocortical Carcinoma (ACC), Head and Neck

Squamous Cell Carcinoma (HNSC), Kidney Renal Papillary Cell

Carcinoma (KIRP), LIHC, Lung Adenocarcinoma (LUAD),

Pancreatic Adenocarcinoma (PAAD), and Sarcoma (Figure 7B).

TMB has been considered as a quantifiable and profound immune

response biomarker to forecast immunotherapy effects (22). The

expression level of HNRNPC was associated with TMB in several

cancers, including STAD, LUAD, Lung Squamous Cell Carcinoma
Frontiers in Endocrinology 08220
(LUSC), Skin Cutaneous Melanoma (SKCM), Thyroid Carcinoma

(THCA), Thymoma (THYM) (Figure 7C). Moreover, we estimated

the relationship between the HNRNPC expression and immune

checkpoints, and the results identified that the expression of

HNRNPC was positively associated with most immune

checkpoints in BLCA, LIHC, PAAD, PCPG, STAD, UVM, while

negatively correlated with immune modulators in BRCA, GBM,

LUSC, TGCT and THYM (Figure 7D). In addition, we observed T

cell regulatory (Tregs), CD8+ T cell, NK cell activated, CD4+ T cell,

Macrophage M1, and B cell memory were linked with theHNRNPC

expression (Figure 7E).
Discussion

The emergence of immunotherapy, aiming to eradicate

malignant cells and reinforce human immune system, is a

revolutionary innovation for cancer treatment (23). Recently, with
D

A B

E

F G

C

FIGURE 5

Independent prognostic value of HNRNPC in HCC. (A) The prognosis of HCC patients with low and high HNRNPC expression by Kaplan-Meier
plotter database. (B) The overall survival probability of HNRNPC in HCC patients of TCGA database. (C) The AUC value of HNRNPC in 1-, 3-, and 5-
years. (D) The univariate Cox regression between HNRNPC expression and clinicopathological characteristics. (E) The multivariate Cox regression
between HNRNPC expression and clinicopathological characteristics. (F) Evaluation of overall survival in 1-, 2-, and 3-years for HCC patients by
nomogram. (G) Calibration curve of the nomogram model.
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RNA modification coming into scientific arena, m6A modification,

as a critical process in transcript expression, has collected enormous

interest. Amounts studies have illustrated that the aberrant

expression of m6A regulators is involved in cancer formation and

progression, thus providing a new direction for immunotherapy

(24). For example, m6A modification affects the IL-7/STAT

pathway by regulating the mRNA of SOCS family genes to

influence T cells (25). Moreover, the downregulation of METTL14

was involved in tumor metastasis, and it performed an adverse

prognostic factor for survival without recurrence in HCC patients

(26). However, the relationship of m6A regulator and PD-L1 is not

fully elaborated.

Herein, we identified different m6A regulators subtypes by

consensus clustering based on the differential expression of 20 m6A

regulators inHCC. Then, we performed the relationship between three

independent clusters and different clinicopathological characteristics,

prognosis, immune microenvironment, and PD-L1 in HCC. The

cluster 2 was down-regulated expression in HCC, suggesting that

patients with cluster 2 had a favorable prognosis by Kaplan-Meier

curves analysis. An adequate characterization and validation

determined HNRNPC as a prognosis biomarker and immune

infiltration-related m6A regulator in HCC by public databases, qRT-

PCR and immunohistochemistry analysis. Moreover, the pan-cancer
Frontiers in Endocrinology 09221
analysis further demonstrated the comprehensive landscapes of

HNRNPC in different cancers.

HNRNPC, a key m6A regulator belonging to the hnRNP family,

regulates multiple functions in RNA splicing, RNA expression,

RNA stabilization, and RNA translation (27–29). Increasing

evidence suggested that up-regulation HNRNPC expression was

associated with the occurrence and progression of tumors, such as

breast cancer (30), gastric cancer (31), and glioblastoma (32).

HNRNPC expression was correlated with tumor stage, lymph

node metastasis, and poor prognosis in oral squamous cell

carcinoma (33). Moreover, HNRNPC impairs vascular endothelial

function and promotes the occurrence of vascular complications in

type 2 diabetes (34). In our study, we found that HNRNPC was up-

regulated in HCC tissues compared to normal tissues, and this

result was validated by GSE121248 and GSE40367 datasets.

Importantly, the qRT-PCR and immunohistochemistry analysis

suggested the expression level of HNRNPC was over-expressed in

HCC cells, and HNRNPC protein was positively expressed in HCC

tissues. The Kaplan-Meier plotter showed the low expression group

had a better prognosis. Furthermore, the univariate and

multivariate Cox analysis indicated HNRNPC expression was an

independent prognostic factor. Besides, based on HNRNPC

expression and clinical features, we established the nomogram to
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FIGURE 6

The relationship between immune microenvironment and HNRNPC expression groups and HNRNPC somatic landscape in HCC. (A) Analysis of
immune cell infiltration level and low and high HNRNPC expression in HCC by heatmap analysis. (B) Proportion of immune infiltration cells in low
and high HNRNPC expression groups. (C) The correlation of HNRNPC expression and PD-L1. (D) Lollipop charts of the mutated HNRNPC gene. (E)
The variation distribution of variant classifications, types and SNV class in HCC. *P<0.05, ***P<0.001.
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evaluate the predictive efficiency, and the results performed a

superior application for clinical decision making. However, the

underlying function and mechanism need to exploit in HCC

in detail.

The combination of m6A regulators and immune inhibitors have

an active influenced on cancer immunotherapy efficacy. In this study,

patients with HCC were classified into three clusters based on m6A

regulators. Various differences in immune infiltration cells among

three clusters with HCC were identified by the XCELL algorithm. For

example, the infiltration levels with anti-tumor cells like T cell CD4+

effector memory, endothelial cell, and macrophage M2 were

significantly up-regulated in cluster 2. Meanwhile, tumor-

promoting cells like mast cell, T cell CD4+ Th2, T cell CD4+

memory, and T cell CD8+ central memory were higher in HCC

patients with cluster 1 and cluster 3. The expression of Treg cells and

NK cells was no difference in different clusters and expression groups.

However, Li et al. reported that HNRNPC regulated the activation of
Frontiers in Endocrinology 10222
Treg cells by activating the immune microenvironment, which may

be a potential therapeutic target for prostate cancer (35). In pancreatic

cancer, HNRNPC induced DNA damage repair and cancer-

associated fibroblast activation through the RhoA/ROCK2-YAP/

TAZ signaling pathway (36). Moreover, we also investigated the

relationship between HNRNPC expression and immune infiltration

cells based on HNRNPC low- and high-expression groups.

Interesting, the results of infiltration levels in patients with low

HNRNPC expression were consistent with cluster 2. These findings

are in accordance with the role T cell CD4+ effector memory (37) and

endothelial cell (38) act in regulating anti-tumor responses.

Furthermore, previous studies reported mast cell promoted tumor

growth and invasion in the tumor microenvironment, leading to poor

overall clinical prognosis (39). Our results confirmed that m6A

regulators in low-expression group could enhance tumor immune

microenvironment to kill tumors. Notably, this study is the first to

reveal the correlation between HNRNPC and PD-L1 in HCC,
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FIGURE 7

Comprehensive analysis of key m6A regulator HNRNPC in pan-cancer. (A) The expression of HNRNPC was up-regulated in various cancers. (B) The
prognosis of HNRNPC in pan-cancer by forest plot. (C) The association between tumor mutation load and HNRNPC expression. (D) The correlation
of HNRNPC expression with immune checkpoints in pan-cancer. (E) The correlation of HNRNPC expression with immune infiltrating cells in pan-
cancer. *P<0.05, **P<0.01, and ***P<0.001.
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resulting be a potential biomarker for prognosis, and offering novel

theory for immunotherapy response and therapeutic target related to

PD-L1.

TMB could be consider a potential immunotherapy parameter

that can determine patients responsiveness to immune checkpoint

blockers (40). The higher mutation rate in patients with HCC

provides novel insights into immunotherapy in different risk

groups. Moreover, the immune microenvironment of HCC

mainly involved the upregulation of PD-L1 and PD-L2 in Kupffer

cells, hepatic sinus endothelium and leukocyte (41). It was reported

that inflammatory responses with overexpression of PD-1 and PD-

L1 were detected in 25% of HCC patients (6). Tumor cells can use

PD-L1 to bind to the PD-1 of T cells, evading recognition and

allowing them to continue to spread throughout the body (42). We

found that PD-L1 expression was significantly up-regulated in HCC

tissues and other two clusters, and there was a closely relationship

between PD-L1 and m6A regulators. Moreover, HNRNPC

expression was positively correlated with PD-L1 expression in

HCC. The combination of anti-PD-L1 and other therapy

strategies is gradually improving the prognosis of advanced

cancers in HCC, maintaining its ability to recognize and kill

tumor cells (43). Besides, comprehensive analysis indicated that

the key m6A regulator, HNRNPC, is not only a novel prognostic

biomarker in multiple cancers, but also regulates tumor immune

microenvironment and immune checkpoints, providing a vital

opportunity for developing immune targets.

This study has some potential limitations that deserves to be

noticed. Firstly, m6A regulators were obtained from previous study,

some m6A regulators may have not been included in this study.

Secondly, although the TCGA cohort was used to clustering and

grouping, further validation is still needed in multi-center and

prospective cohorts in the future. Besides, it is necessary to

explore the biological function and mechanism between m6A key

regulator HNRNPC and PD-L1 in HCC in vivo and vitro.
Conclusion

An extraordinary analysis was undertaken, referring to the

expression and the relationship with prognosis, immune

microenvironment, and PD-L1 of m6A regulators in HCC based

on different clusters and expression groups. The key m6A regulator

HNRNPC could be a prognostic biomarker, which discloses the

association between HNRNPC and immune microenvironment in

HCC. Further exploration should focus on the potential mechanisms

by whichHNRNPCmodulates the immunotherapy and offer a novel

theory for therapeutic targets related to PD-L1 in HCC.
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