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The risk of hepatocellular carcinoma (HCC) diminishes in patients with hepatitis C

virus (HCV)-related advanced chronic liver disease after virological cure.

However, despite viral clearance, HCV-induced epigenetic alterations, immune

dysregulations, and hepatic parenchymal injuries remain, contributing to de novo

HCC occurrence. While HCC incidence is low (0.45 – 0.5%) in patients with

advanced fibrosis (F3), the presence of liver cirrhosis and clinically significant

portal hypertension increases the HCC risk. The cost-effectiveness of lifelong

HCC surveillance in patients with compensated advanced chronic liver disease

(cACLD) has sparked debate, raising questions about the most reliable

noninvasive tests and stratification models for predicting HCC in patients with

sustained virological response (SVR). Furthermore, identifying cACLD patients

who may not require long-term HCC surveillance after SVR remains crucial.

Several HCC risk stratification scores have been suggested for patients with

cACLD, and emerging evidence supports individualized care based on

personalized risk assessments. This review focuses on revising the

pretreatment and posttreatment predictors of HCC, as well as the indications

for HCC surveillance in cACLD patients treated with direct-acting antivirals.
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1 Introduction

The introduction of direct-acting antivirals (DAAs) has

decreased the incidence of hepatocellular carcinoma (HCC) in

chronic hepatitis C (CHC) patients (1, 2). Achieving a virological

cure after DAAs is associated with 71% reduction in the risk of

developing HCC compared to treatment failure, during a mean 6.1

years of follow up (3). DAAs therapy has also demonstrated

improved survival outcomes in hepatitis C virus (HCV)-related

HCC patients by reducing disease progression and delaying hepatic

decompensation (4).

However, the risk of HCC remains even after HCV clearance.

Particularly in patients with liver cirrhosis, HCC remains the most

common liver-related complication following sustained virological

response (SVR) (5). Early studies conducted following DAA

introduction have reported an increased risk of HCC after SVR

(6, 7). The early recurrence rate of liver cancer after DAA has been

ranged from 12.7%–28.8% (7, 8). A meta-analysis revealed an HCC

recurrence rate of 20% person-years (PY) following DAA treatment

(9). Furthermore, a three-year incidence of de novo HCC

occurrence after SVR was found to be 5.9% (10). Notably, HCC

that arises after DAA-induced viral clearance may exhibit aggressive

behavior and may limit the patient’s eligibility for curative

treatment options (11–13).

Eradicating HCV and achieving SVR serve as a primary means

to prevent HCC and reduce HCC-related mortality. D’Ambrosio

et al. demonstrated that HCC is a frequent liver event in cirrhotic

patients after DAA treatment, regardless of liver dysfunction or

previous liver complications (5, 14). Moreover, patients with a

history of HCC who experienced HCC recurrence after SVR had

higher mortality rates than those without recurrence (5, 14). Recent

studies have revealed that liver cancer accounts for 51.9%–90% of

liver-related deaths in DAA-treated patients after SVR (5, 15, 16).

These findings collectively highlight the significant impact of HCC

occurrence on patient outcomes and underscore the importance of

HCC surveillance despite achieving viral clearance after

DAAs treatment.

Advanced liver fibrosis is widely accepted as a main underlying

mechanism of HCC after SVR. However, the occurrence of HCC in

noncirrhotic livers and its aggressive characteristics following DAA

treatment have created a disparity in expectations regarding the

underlying oncogenic mechanisms (12, 17). HCV-induced HCC

involves both direct and indirect mechanisms, including the

activation of hepatic fibrogenic pathways, cellular pathways and

survival pathways, as well as interactions with the immune and

metabolic pathways. Genomic studies have identified

polymorphisms in different signaling systems associated with an

increased HCC risk (18–20). Furthermore, HCV eradication may

trigger a transient immunosuppression that potentially creates

favorable situation for the growth of latent micronodules (21).

Therefore, gaining more data about the impact of virological cure

on HCV-induced oncogenic mechanisms will aid in identifying the

persistent epigenetic modifications and inflammatory responses

responsible for HCC after SVR, ultimately facilitating the

prediction of individual susceptibility to HCC. This, in turn, will
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guide HCC risk stratification and enable personalized HCC

screening for patients after achieving SVR.

Advanced chronic liver disease (ACLD) patients have a

significantly increased incidence of HCC (1, 2, 22). The Baveno

VI consensus conference in 2015 introduced the concept of

compensated ACLD (cACLD), removing the borderline between

cirrhosis and noncirrhotic status. This term encompasses both

advanced liver fibrosis (F3) and compensated cirrhosis (F4)

patients (23, 24). Prior to treatment, assessing liver stiffness (25–

29) and utilizing noninvasive blood tests for liver fibrosis are

valuable tools for excluding and diagnosing cACLD at baseline

(30). In addition, monitoring the dynamic changes in TE and

noninvasive blood tests over time appears to enhance the

prognostic capability beyond single measurements in assessing

cACLD after achieving SVR. Notably, evaluating these

noninvasive tools may aid physicians in accurately predicting the

HCC risk (low/high) in patients with cACLD following a virological

cure with DAA.

This review focuses on a comprehensive analysis of the

literature on predictors of de novo HCC occurrence and the

indications for HCC surveillance in cACLD patients after

achieving a DAA-mediated virological cure.
2 Incidence of de novo HCC after SVR

The use of pegylated interferon (IFN) plus ribavirin resulted in a

significant reduction in HCV-related complications among responders

versus nonresponders. Despite this reduction, HCC still occur after

SVR (31). Advanced liver fibrosis (≥F3) was found to have a higher risk

of de novoHCC than earlier stages offibrosis, regardless of the response

to therapy. Morgan et al.’s meta-analysis revealed that 17.8% of HCV

patients with cACLD (F3–F4) and no SVR developed HCC, with an

incidence rate of 3.3% PY. However, among HCV patients with

cACLD (F3–F4) and SVR after IFN-therapy, 4.2% developed HCC,

with an incidence rate of 1.05% PY (32).

According to a large retrospective study, the HCC incidence in

cirrhotic patients after virological cure was lower in patients treated

with DAA (2.12% PY) and IFN (2.28% PY) than in untreated

patients (4.53% PY) (33).

Recently, a total HCC incidence of 1.46% PY was reported in

DAA-treated patients after SVR (34). The HCC incidence was

2.31% PY and 0.45% PY in cirrhotic patients and in patients with

advanced fibrosis (F3), respectively. Similar HCC incidences of

2.10% PY among patients with cirrhosis and 0.50% PY among

patients with F3 fibrosis, were reported in a large metanalysis (35).
3 Persistence of HCV-induced
oncogenic changes after SVR

HCV-induced epigenetic alterations (36), immune system

dysregulations, metabolic disorders, host genetic mutations, and

hepatic parenchymal injuries (Figure 1) may persist after DAA

treatment and correlate with HCC occurrence after SVR.
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3.1 Persistence of HCV-induced
epigenetic changes

Hepatitis C-infected cells and HCV-induced inflammatory and/or

fibrotic responses in the liver microenvironment can produce hepatic

epigenetic changes. Increasing evidences indicated that CHC infection

induces changes in DNA methylation, histone modification and

chromatin remodeling, and miRNAs expression. These epigenetic

changes may play a pivotal role in hepatocarcinogenesis (37) (Figure 1).

In vitro and in vivo studies have demonstrated the oncogenic

behavior of HCV proteins (NS3, NS5A, and the core protein) (38–41).

Indeed, DNA methyltransferase 1 (DNMT1) and DNA

methyltransferase 3B (DNMT3B) levels were significantly increased

in HCV core protein expressing HepG2 cells and in Huh-7 cells (42–

45). Furthermore, the correlation between CHC infection and aberrant

methylation of multiple genes has been established in HCV-positive

HCC (42, 44, 46–49). Impaired expression of these genes contributes to

hepatocarcinogenesis by promoting cell proliferation, invasion, and

immune evasion (42, 44, 46–49).

Chronic hepatitis C infection is associated with changes in

histone acetylation (50) and histone methylation (51, 52). In vivo

CHC infection induced specific changes in H3K27ac, which

correlated with the expression of HCV messenger ribonucleic

acids and HCV proteins (36). The HCV core protein increased

the levels of DNMT1 and histone deacetylases 1 (HDAC1) and

stimulated their binding to the secreted frizzled related protein 1

(SFRP1) promoter. Silencing of SRFP1 led to activation of the Wnt/

b-catenin signaling and may contribute to hepatocarcinogenesis

(50). Similarly, in vitro CHC infection induces significant

enrichment of the transcriptional active chromatin markers

H3K9ac and H3K4me, and of the transcriptional silent chromatin

marker H3K9me3, changes that may be associated with

hepatocarcinogenesis (53).
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Chronic hepatitis C infection induces changes in cellular

miRNAs expression (54–57). The HCV core protein can stimulate

tumor migration and invasion by DNMT1/methylation-mediated

inhibition of miR-124 expression, and thus preventing miR-124-

induced silencing of set and mynd domain containing 3 (SMYD3)

gene (56). Moreover, HCV core protein can affect H3K27me3

through a miR-124/enhancer of zeste 2 polycomb repressive

complex 2 subunit (EZH2) pathway (58).

While in vitro results showed the reversion of epigenetic

markers levels to a level comparable to uninfected cells after INF-

based HCV clearance (53), in vivo experiment support the

persistence of epigenetic changes after DAA- and IFN-based

HCV clearance (36). The persistence of these epigenetic changes

has been implicated in HCC occurrence after a DAA viral clearance

(36), (Figure 2). Indeed, HCV infection induced H3K27ac

modifications was associated with HCC risk after viral clearance

(36). The functional knockout of Sphingosine kinase 1 gene and

sex-determining region Y-box-9 (SOX-9) gene can inhibit HCC

growth (36). While the expression levels of both genes increased

during chronic hepatitis C, they remained unaltered after the DAA

viral clearance (36). Notably, dysregulation of Wnt/b-catenin
signaling plays a paramount role in HCC development; it can be

activated by directly binding to HCV-NS5A protein; and promotes

proliferation, angiogenesis, and epithelial–mesenchymal transition

(59). Of note, Wnt/b-catenin signaling can be switched on in spite

of DAA-induced HCV clearance (60), possibly due to the dual effect

of DAA treatment; eradicating HCV while activating Wnt/b-
catenin signaling (60). The exact mechanism of this phenomenon

remains unidentified (60). In cirrhosis, exosomes are crucial

modifiers of the tumor microenvironment, and miR-122

downregulation is related with HCC occurrence. In fact, liver-

specific miR-122 levels exhibited a significant drop after DAA

therapy (61) and remained low among SVR achieved patients
FIGURE 1

Chronic hepatitis C-induced oncogenic changes. CHC, chronic hepatitis C; DNA, Deoxyribonucleic acid; miRNAs, micro ribonucleic acids; TNF-a,
tumor necrosis factor -alpha; IL-1b, interleukin-1 beta; IL-23, interleukin – 23; IL-6, interleukin -6; NK, natural killer cells; NKT, natural killer T cells;
T-reg, regulatory T cells; ER, endoplasmic reticulum.
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(62). In cirrhotic tissue, Angiopoietin-2 (ANGPT2) expression

before DAA treatment significantly relates to circulating vascular

endothelial growth factor (VEGF) and independently relates to

HCC occurrence after DAA. Notably, VEGF and ANGPT2

increased following DAA treatment and up to 3-month follow-up

(63, 64). Interestingly, the epigenetic signature induced by CHC and

persist after DAA treatment is reverted in vitro by the epidermal

growth factor receptor (EGFR) inhibitor, Erlotinib (53).
3.2 Persistence of immune dysregulation

Inflammation is a major constituent of HCV-induced HCC.

The inflammatory cells predispose to HCC occurrence by reactive

oxygen species (ROS) and reactive nitrogen species production, and

lipid peroxidation. Numerous inflammatory cytokines secreted

during chronic HCV infection, such as tumor necrosis factor-

alpha (TNF-a), interleukin-1b (IL-1b), interleukin-23 (IL-23),

and interleukin-6 (IL-6), are associated with HCC occurrence

(65–67). The decreased members of innate immunity, particularly

natural killer and natural killer T (NKT) cells, and the increased

number of regulatory T (T-reg) cells may correlate with HCC

occurrence in chronic HCV infection (68), (Figure 1).

The downregulation of IFN-stimulated genes was rapid after a

DAA-induced virological cure (69). The incomplete restoration of

innate immune surveillance following DAA-induced HCV eradication

has been related to the rapid decrease or normalization of

immunosurveillance, potentially leading to early HCC development

post-DAA treatment (21, 70). Notably, serum TNF-a expression was

persistently downregulated and significantly related to the HCC risk

after SVR (71). Moreover, the exhausted phenotype of the HCV-

specific CD8 T cell response is not restored by DAA-induced SVR (72–

74). Similarly, the intrahepatic regulatory CD4 T cells and CD4(+)

CD25(+) FoxP3(+) T-reg cells did not decrease after DAA-induced

virological cure (75, 76). This failure of immune function restoration
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after DAA-induced virological cure may be implicated in HCC

occurrence after achieving SVR (77), (Figure 2).
3.3 Persistence of liver injury

The persistence of advanced liver fibrosis and liver injury after

DAA treatment are associated with HCC development (78),

(Figure 1). Emerging data regarding cirrhosis regression after

DAA-induced HCV cure are primarily derived from transient

elastography (TE)-based liver stiffness measurement (LSM) (79–

84). However, true liver fibrosis regression cannot be solely equated

with regressed liver stiffness (85). The hepatic venous pressure

gradient (HVPG) stands as the most accurate predictor for liver-

related outcomes in cACLD patients (86). Indeed, the disappearance

of clinically significant portal hypertension (CSPH) is a rare event

after SVR. TE measurements after SVR do not correlate with the

HVPG measurements (87, 88), suggesting that viral clearance does

not indicate regression of liver cirrhosis (85) and indicating a

persistent risk of clinical progression and occurrence of liver-

related events after SVR. Liver fibrosis progression after SVR may

be triggered by obesity, diabetes mellitus, and alcohol consumption

(89). Recently, it was suggested that the persistence of abnormal

endoplasmic reticulum after a virological cure is associated with de

novo HCC occurrence (90). Collectively, these data proposed that

overlapping liver injury associated with viral and nonviral causes may

lead to the persistence of HCC risk after SVR (Figure 2).
4 Pretreatment predictors of de novo
HCC after SVR

Pretreatment risk stratification for HCC is useful for identifying

patients who require long-term surveillance following DAA

treatment (Table 1). The prognostic importance of baseline
FIGURE 2

Persistence of hepatitis C-induced oncogenic changes after viral clearance. SOX-9, SYR-box transcriptional factor 9; VEGF, vascular endothelial
growth factor; ANGPT2, Angiopoietin-2; miR-122, miRNA-122; TP53, tumor protein P53; PNPLA3, Patatin-like phospholipase domain-containing
protein 3; HLA-DQB1, Major histocompatibility complex, class II, DQ beta1; HCV, hepatitis C virus; DAA, direct-acting antiviral; HCC, hepatocellular
carcinoma.
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demographic characteristics and noninvasive tests in predicting

HCC risk after DAA treatment has been reported (91).
4.1 Host-related risk factors

4.1.1 Age and male sex
Age has been recognized as an independent risk factor (92) and

a valuable marker for de novoHCC following SVR (93). The rates of

HCC occurrence in patients aged ≥73 and <73 years were 2.2% and

0.5%, 3.9% and 0.7%, 6.1% and 2.1%, and 7.6% and 3.3% at one,

two, three, and four years, respectively. Notably, patients aged 75–

84 years carried a higher risk of HCC even after DAA-induced

virological cure, irrespective of the existence of baseline cirrhosis

(94). Early development of HCC after SVR is independently

associated with male sex (95), as evidenced by a higher 3-year

estimated cumulative HCC occurrence rate in males (9%) than in

females (2%) (96).
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4.1.2 Continuous alcohol intake
Alcohol can increase HCC risk via the formation of active

carcinogen molecules from pro-carcinogens (97). Kanwal et al. (1)

recorded a higher annual occurrence rate of HCC in alcohol

consumed-patients (1.01% PY) compared to those without

alcohol use (0.72% PY) after achieving SVR post-DAA treatment

(1). A recent multicenter retrospective study (98) linked baseline

alcohol intake to an elevated risk of HCC development after a

virological cure.

4.1.3 Diabetes mellitus
Degasperi et al. (96) recognized diabetes mellitus (DM) as a

potent independent risk factor for de novo HCC. Notably, early

HCC occurrence was independently related to the existence of DM

(95). Moreover, the 3-year estimated cumulative rate of HCC

occurrence after DAA treatment was 16% in DM patients

compared to 4% in patients without DM (96).

4.1.4 Host genetics
Whole-exome sequencing was performed on HCC specimens

that developed in HCV patients after treatment. The analysis

detected higher incidence of TP53 mutations in HCV-SVR-DAA

tumors than in HCV-SVR-IFN tumors (99). Host genetic variations

can contribute to HCC development after HCV eradication. Recent

studies have identified PNPLA3 and HLA-DQB1 polymorphisms as

independent risk factors for HCC occurrence following SVR (100)

(Figure 2). These findings hold the potential for refining and

customizing HCC risk stratification models and surveillance

guidelines after SVR.
4.2 Virus-related risk factors

4.2.1 HCV genotype
HCV genotype 3 patients exhibit a more progressive liver

disease than those with other genotypes (101). An elevated

occurrence of de novo HCC has been identified in HCV genotype

3 patients after DAA treatment, particularly among those with pre-

existing liver cirrhosis (102).

4.2.2 HCV/HIV coinfection
HCV-infected patients with advanced liver fibrosis, coinfected

with human immunodeficiency virus (HIV), appears to have a

lower risk of HCC after SVR. The occurrence rates of HCC were

recorded as 0.3% PY (103) and 1.2% PY (104) after median follow-

up periods of 31.6 and 43 months, respectively. The specific

underlying causes that result in the reduced HCC risk among

HCV/HIV-coinfected patients remain unknown (104).
4.3 Liver-related risk factors

4.3.1 Hepatic steatosis
In CHC patients, liver steatosis is independently associated with

the progression to advanced fibrosis, and both liver steatosis and
TABLE 1 Prediction of hepatocellular carcinoma in cACLD after DAAs-
induced HCV clearance.

Low risk High risk

Pretreatment predictors
of HCC

Bassline M2BPGi <
1
Bassline FIB-4 < 1.5

Diabetes mellitus
Alcohol intake
Hepatic steatosis
Bassline M2BPGi ≥ 4
Bassline Fib-4 ≥ 3.25
LSM ≥ 20 kPa
Non-characterized hepatic
nodule
HCV genotype 3 plus liver
cirrhosis

Predictors of HCC at
SVR

FIB-4 remained
<1.50
FIB-4 improved to
<1.50
Platelet count
≥120,000/ml

Diabetes mellitus
Continuous alcohol intake
Hepatic Steatosis
EOT-AFP is elevated
Elevated AFP
FIB-4 ≥ 3.25
PLT count ≤120,000/ml

Predictors of HCC after
SVR
1-year post-SVR
3-years post-SVR
5-years post-SVR

FIB-4 remained at
<1.50
FIB-4 improved to
<1.50
Platelet count
≥120,000/ml

Diabetes mellitus
Steatosis
EOT-AFP is elevated
FIB-4 ≥3.25
Platelet count ≤120,000/ml

FIB-4 remained at
<1.50
FIB-4 improved to
<1.50
Platelet count
≥120,000/ml

Diabetes mellitus
Platelet count ≤120,000/ml

FIB-4 remained at
<1.50
FIB-4 improved to
<1.50

—

DAAs, direct-acting antivirals; HCV, hepatitis C virus; cACLD, compensated advanced
chronic liver disease; HCC, hepatocellular carcinoma; M2BPGi, Mac-2 binding protein
glycosylation isomer; Fib-4, fibrosis-4; LSM, liver stiffness measurement; SVR, sustained
virological response; EOT-AFP, end of treatment alfa foetoprotein; AFP, alfa foetoprotein.
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advanced fibrosis are significant risk factors for HCC in CHC (105).

Liver steatosis exhibit higher occurrence rate of HCC (5.23% PY) in

comparison with advanced fibrosis (3.51% PY). When categorized

based on their baseline fibrosis and steatosis status, patients with

liver steatosis without advanced fibrosis have higher rates of HCC

incidence compared to those with advanced fibrosis but without

steatosis (106).

4.3.2 Noncharacterized hepatic nodule
DAA treatment has been associated with an early elevated HCC

incidence in patients with noncharacterized hepatic nodules (107).

The presence of noncharacterized hepatic nodules before DAA

treatment is accompanied by an approximate 30% cumulative risk

of de novo HCC within the first year following treatment (34).

Similarly, the presence of noncharacterized hepatic nodules prior to

DAA treatment is accompanied by a threefold increased risk of

HCC (98). Notably, in patients with Child-Pugh class A, the

incidence of HCC in those with noncharacterized hepatic nodules

before DAA therapy was 7.24% PY compared to 2.77% PY in those

without noncharacterized nodules (98). These noncharacterized

hepatic nodules are presumed to represent low/high-grade

dysplastic nodules, macro regenerative nodules (98), or

microscopically undetectable tumors (108). The temporal relation

between initiating DAA therapy and HCC development, along with

the existence of noncharacterized hepatic nodules at baseline,

indicates that antiviral treatment may trigger a mechanism that

promotes the growth and clinical recognition of HCC shortly after

treatment (98). This association emphasizes the importance of

rigorous surveillance when noncharacterized hepatic nodules are

present prior to initiating DAA therapy (10).
4.4 Noninvasive tests

Various baseline noninvasive tests are available for anticipating

HCC in cACLD patients after a DAA-induced virological cure.

4.4.1 Alpha-fetoprotein
An elevated pretreatment alpha-fetoprotein (AFP) level before

DAA therapy strongly correlates with hepatocarcinogenesis (109).

This elevated AFP level may indicate liver regeneration, ongoing

inflammation, liver fibrosis, or microscopic HCC. The significant

decrease in AFP levels from pretreatment to the end of treatment

(EOT), along with the normalization of liver enzymes and viral

suppression, suggests that the elevated pretreatment AFP level may

reflect the degree of liver inflammation (110). However, a

nonreduction in the elevated pretreatment AFP level during

treatment is independently related to HCC occurrence (110). In

addition, if this level remains elevated after achieving a virological

cure, it may suggest advanced liver fibrosis or microscopic HCC.

4.4.2 Mac-2 binding protein (M2BP) glycosylation
isomer (M2BPGi)

Liver fibrosis is a major risk factor for developing hepatic

carcinogenesis. The M2BPGi level is highly associated with the
Frontiers in Virology 06
liver fibrosis stage (111–116). Yamasaki et al. found that the average

serum levels of M2BPGi were 1.3, 2.2, 3.3, and 5.2 in patients with

fibrosis stages of F0–F1, F2, F3, and F4, respectively, as determined

by liver histopathology (117). M2BPGi cutoff values of less than

1.51, 2.48, and 3.50 can exclude the existence of ≥F2, ≥F3, and F4,

with negative predictive values of 95.9%, 95.1%, and 99.6%,

respectively. However, M2BPGi cutoff values of more than 2.08,

2.87, and 4.35 can propose the existence of ≥F2, ≥F3, and F4, with

positive predictive values of 94.2%, 83.1%, and 85.3%, respectively.

Several studies have reported that an elevated serum M2BPGi levels

more than 1.70–2.00 is associated with increased risk of HCC

occurrence or recurrence (118–124). Indeed, the risk of HCC

steadily increasing when the serum M2BPGi levels are ranked as

<1.00, 1.00–4.00, and ≥4.00 (117).

4.4.3 FIB-4 index
A baseline FIB-4 index ≥3.25 is strongly related to HCC risk (1,

125). The persistent elevation of FIB-4 ≥3.25 before treatment is

linked to an increased HCC risk (5.07% PY) in HCV-related ACLD

following DAA treatment. Conversely, a persistently lower FIB-4

level (<3.25) before treatment is linked to the lowest HCC risk (1.0%

PY) (126). Notably, changes in the FIB-4 score before treatment and

after achieving SVR are correlated with modifications in HCC risk.

A reduction in FIB-4 from >3.25 to <3.25 after SVR is linked to a

decline in HCC risk, while an elevation from <3.25 to ≥3.25 is

linked to a raised HCC risk (126).

4.4.4 Liver stiffness
Patients with cACLD are of particular interest, as a significant

proportion of them (50%–60%) have CSPH (127). Among the

cACLD patients it is crucial to identify those with low HCC risk.

LSM has emerged as a useful tool for stratifying cACLD patients

who have attained SVR based on their HCC risk (128, 129).

Populations with a high pretreatment LSM are at an elevated

potential of developing de novo HCC (7, 96). The failure to

reduce pretreatment LSM by <30% after treatment is

independently linked to HCC development (130). Notably, the

five-year occurrence rate of HCC increased with higher

pretreatment LSM values (9.7% for LSM ≥15 kPa and 11.4% for

LSM ≥20 kPa). Different pretreatment LSM cutoff values (14.3 kPa,

20 kPa (34), and ≥30 kPa (96)) have been suggested as the best

predictors of de novo HCC following SVR. Collectively, these

varying cutoff values indicate that increased LSM at the bassline

implies increased attributed risk. Thus, rigorous inclusion of

patients with pretreatment LSM ≥20 kPa in HCC surveillance

programs is recommended (34, 131).
4.5 DAA-related risk

It was found that early HCC incidence is linked to sofosbuvir

(SOF)-based therapy without ribavirin, whereas ribavirin usage

seems to exert an immunomodulating protective effect on HCC

occurrence (95, 132). While SOF increased the cell proliferation in

OR-6 and Huh 7.5.1 cells, the cell proliferation was not significantly
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influenced after treatment of OR-6 and Huh 7.5.1 cells with

different doses of interferon-a and ribavirin (133). Next

generation sequencing (NGS) studies revealed that PHOSPHO2-

KLHL23, TSNAX-DISC1, TRIM39, RPP21 were upregulated by

SOF in OR-6 cells. Indeed, the SOF-increased cell proliferation is

improved after siRNA mediated knockdown of PHOSPHO2-

KLHL23, TSNAXDISC1, TRIM39 and RPP21 in OR-6 and Huh

7.5.1 cell cultures. Tsai et al. concluded that SOF-induced gene

expression in mouse liver cells increased HCC proliferation and

migration, which may be related to HCC occurrence (133).

However, Ogawa et al. (134) concluded that DAA–SOF treatment

was not linked to HCC occurrence within five years after treatment.
5 Post treatment predictors of de
novo HCC after SVR

Post treatment DM, alcohol intake, and hepatic steatosis are

linked to elevated HCC risk. The sustained elevation of

pretreatment AFP and FIB-4 values, alongside with the failure of

liver stiffness regression after virological cure, strongly relates to

HCC occurrence. The dynamic changes in noninvasive liver fibrosis

markers following SVR have been correlated with HCC risk

(91) (Table 1).

DM was found as a risk factor for HCC in DAA-treated

populations after achieving SVR (135) and maintained a

significant risk factor for HCC following four years of SVR (136).

Although the HCC–DM interrelationship is incompletely

understood, hyperinsulinemia and oxidative stress are considered

the main factors facilitating DM progression to cancer (137).

Hyperinsulinemia is directly involved in carcinogenesis, as it

promotes cancer initiation and progression, and is indirectly

involved via its stimulation of insulin-like growth factor 1 (IGF-

1). In patients with diabetes, increased oxidative stress is linked to

DNA damage, mutation in oncogenes, and development of cancer

(138, 139).

Alcohol’s effects on hepatic fibrogenesis persist post-SVR in

alcohol-consuming individuals (1), as evidenced by the increased

annual rate of HCC reported among DAA-treated populations who

consumed alcohol post-SVR (1). Similarly, while hepatic steatosis is

linked to increased HCC risk after DAA (116), liver steatosis is

identified as a major predictor of HCC up to two years following

SVR, irrespective of fibrosis stage (116).

EOT-AFP (140, 141) and SVR24-AFP levels (142, 143) were

identified as predictors of HCC occurrence in DAA treated patients.

An increased one-year cumulative HCC occurrence rate correlated

with an elevated EOT-AFP level (144). FIB-4 ≥3.25 estimated at

SVR or at any time post-SVR was linked to HCC risk, while FIB-4

≤1.45 was not linked to HCC risk post-SVR in IFN-treated patients

(145). Patients treated with DAA whose FIB-4 elevated post-SVR to

at least 3.25 had a higher HCC occurrence rate than those who

remained persistently below 3.25 (2.29% vs. 1.02%) (93, 126). In

addition, patients whose FIB-4 decreased to <1.50 or persisted at

<1.50 during follow-up post-SVR had extremely low rates of

hepatocarcinogenesis (146). Finally, many studies have confirmed
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method to differentiate patients who may require intensive HCC

surveillance after a DAA-induced virological cure (147, 148).

The long-term HCC risk profile in ACLD patients, after DAA-

mediated HCV eradication, suggested the reliable predictability of

portal hypertension indicators (149). Indeed, posttreatment platelet

count ≤ 120,000/µl is independently linked to de novo HCC

occurrence, after age adjustment (149).

A reduction in LSM of less than 30% in cACLD patients after

SVR is an independent risk factor for HCC (96). The estimated

three-year incidence of de novo HCC was 20% and 5% in patients

with LSM > 30 kPa and ≤ 30 kPa, respectively.

Collectively, these data indicate that patients with cACLD

should be closely monitored after SVR for de novo HCC

occurrence in the presence of severe portal hypertension, elevated

AFP, and other risk factors for ongoing liver injury (e.g., DM,

alcohol drinking, and steatosis).
6 HCC surveillance after SVR

The recent introduction of DAA for treating HCV has

significantly influenced the disease outcome course, in particular

the occurrence of de novo HCC (1, 150). HCC surveillance

primarily aims to early detection of HCC to enable curative

management, and increasing overall survival (Table 2). Following

a DAA-induced virological cure, society guidelines recommend

HCC surveillance in cirrhotic (F4) patients, often with biannual

abdominal ultrasonography with or without AFP. However, there

has been considerable discussion regarding the cost-effectiveness

and potential risks of lifelong HCC surveillance in patients with

advanced fibrosis (F3) following SVR.
6.1 Cost-effectiveness of HCC surveillance

Although a higher frequency of ultrasound scans during the two

years before HCC diagnosis increases the chance of receiving

curative treatment (151), surveillance is deemed cost-effective and

advantageous to an individual if it increases life expectancy at a cost
TABLE 2 Surveillance of hepatocellular carcinoma in cACLD after
hepatitis C virological cure.

Indication

Patient who should underwent
surveillance

Liver cirrhosis on histopathology
Pretreatment LSM ≥20 kPa
Posttreatment FIB-4 ≥3.2

Patients who should not underwent
surveillance

Pretreatment LSM of < 10
Posttreatment FIB-4 < 1.5

Controversial indications of HCC
surveillance

F3 fibrosis on histopathology
cACLD pretreatment LSM 10 - 20
kPa
cACLD posttreatment Fib-4 1.5 -
3.2
HCC, hepatocellular carcinoma; cACLD, compensated advanced chronic liver disease; LSM,
liver stiffness measurement; FIB-4, fibrosis-4.
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of less than $50,000 per additional year (152). Lin et al. assessed the

cost-effectiveness of HCC surveillance in cirrhotic patients and

found that biannual AFP and annual abdominal ultrasonography

were effective, with a cost-effectiveness ratio of less than $50,000 per

quality-adjusted life-year (QALY) (153). Moreover, a recent meta-

analysis revealed the beneficial effect of HCC surveillance programs

for cirrhotic patients, revealing a lower risk of mortality in the

continued surveillance versus nonsurveillance arms. Surveillance

was also associated with a greater ability to detect early-stage

tumors and receive curative treatment (154). In contrast, biannual

HCC surveillance after virological cure was not cost-effective for

patients with F3 fibrosis (155).
6.2 Potential harms of HCC surveillance

Physicians must consider both the clear advantages and possible

drawbacks of HCC surveillance. These may include financial,

psychological, and physical costs, as well as the efficiency of

biannual abdominal ultrasound. Patients may suffer physical

harm due to false positive or inconclusive surveillance results.

Financial harms include the price of diagnostic testing and

screening, as well as travel expenses and lost workdays. Being

constantly informed of one’s chance of contracting fatal cancer

and having to wait to learn the outcome every six months can be

emotionally exhausting and result in fear, anxiety, and despair

(156). The low efficiency of biannual abdominal ultrasound was

recently highlighted, as 10,376 abdominal ultrasound scans were

performed to allow curative treatment for only 49 patients (151).

Taken together, although the benefits of HCC surveillance

significantly outweighing the risks (157, 158), additional research

is required to accurately quantify the financial and psychological

burdens of this surveillance (156).
6.3 Individualization of HCC surveillance

Patients with compensated cirrhosis (F4) and advanced liver

fibrosis (F3) were enrolled in the cACLD group. Long-term

monitoring is necessary for patients with liver cirrhosis who

receive DAA treatment due to their high risk of developing HCC

after SVR (159). Notably, patients with cirrhosis were found to

benefit financially from biannual HCC surveillance following SVR,

whereas those with F3 fibrosis were not (155), demonstrating that

more specified stratification models are required to estimate the risk

magnitude and benefits of long-term surveillance in the latter.

Numerous HCC risk categorization scores for cACLD patients

who obtained SVR after DAA treatment have been reported (160,

161). Liu and colleagues developed a recently simplified risk

analysis approach for de novo HCC due to LSM and the FIB-4

index (162). Patients with pretreatment LSM 12 kPa and SVR-FIB-4

3.7 had the lowest likelihood of developing de novo HCC after SVR;

those who did not meet one or both of these criteria were classified

as intermediate-risk (3.6% PY) or high-risk (5% PY), respectively.

The low-risk group’s HCC incidence was below the cost-

effectiveness cutoff for HCC surveillance (163). Semmler et al.
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cACLD based on their risk of de novo HCC after SVR. This

algorithm was based on posttreatment age, albumin, LSM, and,

optionally, AFP and alcohol use. In both the derivation and

validation cohorts, around two-thirds of patients with cACLD

were found to have an HCC risk of less than 1% PY, and falling

below the cost-effectiveness criterion for HCC surveillance (129).

Although these data open the door for a more individualized

surveillance approach for patients with cACLD after a virological

cure, no HCC risk score has been demonstrated to be significantly

better than others or adequately validated for incorporation into

existing standard practice. However, a number of models are

currently undergoing late-stage clinical validation and could

become widely available soon (164).
6.4 Duration of post-SVR surveillance

As no rule specifies a certain age beyond which surveillance

should end, Mueller et al., 2022 conducted a comparative cost-

effectiveness study determining the age at which the advantages of

HCC surveillance outweigh the costs by modeling the life course of

people who have been cured of HCV (165). They came to the

conclusion that abdominal ultrasound-based biennial screening for

HCC is cost-effective in patients with cirrhosis up to age 70 and in

those with severe (F3) fibrosis up to age 60.
6.5 Patients with ACLD who are ineligible
for HCC surveillance

HCC surveillance is not advised for people with Child-Pugh

class C cirrhosis who are ineligible for transplantation, as HCC

surveillance will not offer longer life expectancy with the increased

mortality risk from liver failure in those patients. Similarly, evidence

suggesting that patients without cirrhosis or advanced fibrosis (F3)

deserve a universal surveillance approach is insufficient (166). In

addition, those with advanced (F3) fibrosis and extremely low

estimated risk for HCC based on the recent stratification

algorithms could have a more prolonged interval or even

discontinue surveillance, particularly when resources are limited.

Ciancio et al. (2023) did a recent study in Italy over a span of 2 years

and involving 1000 cACLD patients demonstrated that patients

with baseline LSM between 9.5 and 14.5 kPa, FIB-4 below 3.25, and

APRI below 1.5, who have achieved SVR posttreatment with DAAs,

could be considered eligible for suspension from HCC surveillance

programs due to the negligible risk (0.09% PY) for HCC

occurrence (148).
6.6 Patient adherence to surveillance

Despite clear advantages, such as early tumor diagnosis, only

20% of cirrhotic patients receive HCC surveillance (148, 151, 167).

The underutilization of HCC surveillance can be attributed to some

screening process errors, including the failure of the provider to
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recognize liver disease, identify the silent progression to cirrhosis,

the failure to order HCC screening tests, and the failure of the

patient to follow screening advice (167).

Based on 2015 survey (167), it was discovered that 65% of the

physicians claimed to order annual HCC screening, whereas only

15% reported to request biannual screening. Furthermore, there are

significant differences in the rate of HCC screening utilization

between individuals followed in gastroenterology clinics (73.7%)

and those in population-based cohorts (8.8%) (168). Notably,

interventions such public health outreach, reminder and recall

systems, and patient-provider education are thought to be

beneficial for improving the rates of HCC screening

utilization (168).
7 Interventions reducing HCC risk
after SVR

7.1 Metformin

Metformin could reduce HCC incidence in patients who

achieved a virological cure after INF-based therapy (169). The

five-year cumulative HCC incidence was 10.9% in DM-non-

metformin users and 2.6% in DM-metformin users, compared to

3.0% in patients without DM. In this study, DM-non-metformin

use was significantly associated with HCC risk (169). Interestingly,

metformin was found to revert Wnt/b-catenin signaling after DAA-

induced virological cure through PKA/GSK-3b-mediated b-catenin
degradation (60). These data indicate that metformin may stop the

growth of HCC by blocking Wnt/b-catenin signaling and may be

recommended to reduce the risk of HCC after SVR.
7.2 Zinc

Hosui et al. (170), showed that zinc supplementation reduced the

long‐term cumulative incidence of de novo HCC in DAA‐treated

patients after SVR. Zinc administration is required for the activation

of many liver enzymes, such as superoxide dismutase (SOD), which

has strong antioxidant activity. SOD deactivation increases ROS

formation, subsequently inducing DNA damage, and protein

modification, which are characteristics of hepatocarcinogenesis. The

cellular loss of zinc in malignant hepatoma cells compared with the

higher zinc levels in normal hepatocytes establishes the consistency of

the zinc role in HCC (171). Furthermore, zinc supplementation

directly inhibits fibrosis progression, which may decrease the risk

of hepatocarcinogenesis (172). Similarly, zinc deficiency delays

extracellular ATP clearance, which promote inflammation and the

risk of hepatocarcinogenesis (173). Overall, these data indicate that

zinc therapy may reduce the risk of HCC in cACLD patients after a

virological cure.
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cACLD encompasses a diverse range of patients with varying

risks of HCC after HCV eradication. Although individualized risk

stratification of cACLD patients appears reasonable and appealing,

no validated HCC risk score has been established for tailoring HCC

surveillance after achieving SVR. However, certain factors such as

old age, DM, ongoing alcohol intake, and hepatic steatosis indicate a

high risk for HCC and require close monitoring. In addition, the

existence of noncharacterized hepatic nodules before DAA

treatment indicates the need for short-term, meticulous HCC

surveillance. Specifically, pretreatment values of FIB-4 index

≥3.25, M2BPGi >1.70–2.00, and LSM ≥20 kPa warrant rigorous

HCC surveillance. Prolonged HCC surveillance is recommended

when the pretreatment values of AFP, FIB-4 index, and LSM remain

elevated after SVR. Conversely, pretreatment values of FIB-4 <1.5,

M2BPGi <1, and LSM <12 kPa suggest a lower HCC risk, allowing

for the suspension of HCC surveillance after virological cure.

A more clarification of the impact of DAA-induced HCV

eradication on the persistence of HCV oncogenic effects may

facilitate the prediction of individual susceptibility to HCC,

leading to more accurate risk categorization for patients

with cACLD.
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