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Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell

leukemia-lymphoma (ATL) and inflammatory diseases including HTLV-1-associated

myelopathy (HAM). A remarkable feature of HTLV-1 is that this virus transmits primarily

through cell-to-cell contact. HTLV-1 increases the number of infected cells in vivo to

ensure its survival and transmission. Therefore, survival of HTLV-1-infected cells in vivo

is very critical for transmission under the host immune surveillance. HTLV-1 possesses

multiple strategies to evade host immune responses. Among viral genes, Tax and

HTLV-1 bZIP factor (HBZ) play crucial roles in the proliferation of infected cells and the

subsequent development of ATL. Although Tax strongly activates the NF-kB pathway,

the immunogenicity of Tax is very high; it is a major target of cytotoxic T lymphocytes.

Therefore, the virus minimizes Tax production, expressing it only intermittently in vivo. On

the other hand, the immunogenicity of HBZ is low, and its expression is maintained in

all ATL cases. HBZ transforms the immunophenotype of infected cells into regulatory

T cell-like (CD4+ CD25+ CCR4+ TIGIT+ Foxp3+), and promotes the production

of immunosuppressive cytokines. Furthermore, HBZ mRNA not only encodes the

protein but also functions itself like long non-coding RNA. As a result, Tax and HBZ

enable long-term escape from host immunity, persistent infection, and proliferation

of infected cells. Here, we review the viral strategies to counteract to host immune

surveillance system.
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INTRODUCTION

Human T-cell leukemia virus type 1 (HTLV-1) causes the neoplastic disease, adult T-cell
leukemia-lymphoma (ATL), and various inflammatory diseases including HTLV-1 associated
myelopathy (HAM) and uveitis (HU) (1). A part of HTLV-1 carriers (∼5% in Japan) is estimated
to develop ATL after a long latent period (2). HTLV-1 is derived from simian T-cell leukemia
virus type 1 (STLV-1) (3). Interspecies transmission from monkeys to humans is estimated to have
occurred∼ 50,000–20,000 years ago (4). Thus, this virus has survived for a long time in monkeys
and humans. Since this virus causes persistent infection in the host, it must have strategies to survive
in vivo and to enable its transmission to new hosts. To achieve these ends, the virus modulates the
character of infected cells to make them resistant to host immune responses and advantageous
for viral transmission. This article reviews these viral strategies, which are closely linked to the
pathogenesis of HTLV-1.
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HTLV-1 CAUSES THE PROLIFERATION OF
INFECTED CELLS

An important attribute of HTLV-1 is that this virus transmits
primarily through cell-to-cell contact (5). Cell-free virions have
very poor infectivity even in in vitro culture (6). To facilitate
viral transmission, HTLV-1 increases the number of infected T
cells in vivo by causing them to proliferate (7). HTLV-1 transmits
via three main routes: (1) mother-to-infant transmission through
breast feeding, (2) sexual transmission, primarily male-to-female,
and (3) blood transfusion and needle sharing. For transmission
via breast-feeding and sexual contact, HTLV-1 infected cells must
migrate into semen and breast milk. Viral genes must enable
infected cells to have such attributes. T cells in the breast milk and
semen have effector/memory phenotype (8). In HBZ transgenic
(HBZ-Tg)mice, HBZ expressing T cells show effector/memory T-
cell phenotype (9), indicating that HBZ coverts expressing T cells
to effector/memory phenotype. Thus, the immunophenotype of
infected cells is determined by HBZ (10). After entering into new
host, Tax is essential for de novo infection (8).

The HTLV-1 provirus encodes structural genes (gag, pol,
and env), regulatory genes (tax and rex) and accessory genes
[p12, p13, p30 and HTLV-1 bZIP factor (HBZ)] (7). The HBZ
gene is encoded in the minus strand of the provirus, and
expressed as anti-sense transcripts (11), whereas all other viral
genes are transcribed from the plus strand. Sense and anti-sense
transcription of viral genes in vivo are differentially regulated
and have different functions (Figure 1). Transcription of the
sense strand genes depends on Tax. Tax trans-activates plus-
strand transcription of HTLV-1 through Tax-responsive elements
in long terminal repeat (LTR). Sense-strand genes encode Gag,
Pol, and Env, which are essential for the formation of viral
particles. Thus, sense-strand transcription is necessary for de
novo infection. Tax mediated activation of sense strand genes also
increases Rex expression, which inhibits splicing of viral genes,
resulting in suppressed Tax expression. In contrast, the anti-sense
transcript, HBZ, is not needed for de novo infection, but is critical
for clonal proliferation of infected cells in vivo (12). Thus, Tax and
HBZ have different roles in the life cycle of this virus.

HTLV-1 is susceptible to APOBEC3G (A3G). Non-sense
mutations caused by A3G are frequently observed in the tax gene
(13, 14). HTLV-1 infected cells and ATL cases with mutated tax
genes were also reported (14). Clonal proliferation of infected
T cells with non-sense mutations of tax is found in carriers
and ATL cases (15–17). These findings indicate that HBZ can
induce clonal proliferation of HTLV-1 infected cells and cause
ATL even without Tax (18). HBZ promotes proliferation of T cells
in vitro and in vivo (19). Conversely, a burst of Tax expression
(see below) suppresses cell cycling of T cells rather than inducing
their proliferation (20).

TRANSIENT EXPRESSION OF TAX: TO
EXPRESS OR NOT TO EXPRESS

Tax is essential for de novo infection by HTLV-1 (5). However,
Tax is a highly immunogenic viral protein (21, 22). Cytotoxic

T lymphocytes (CTLs) against Tax are frequently detected in
HTLV-1 infected individuals (23). Tax expression is thus the
Achilles heel of HTLV-1: it is necessary for transmission, but
it renders the expressing cells vulnerable to the host immune
response. Ex vivo culture of peripheral blood mononuclear cells
(PBMCs) induces Tax expression, indicating that Tax expression
is largely suppressed in vivo (24). HTLV-1 minimizes Tax
expression by intermittent transcription (Tax burst) (20, 25).
Stresses like low pH or oxidative stress can induce Tax expression
(20). This Tax burst is strongly associated with the activation of
p38 MAP kinase (p38 MAPK). p38 MAPKs sense extracellular
stress in vivo, including heat shock, ultraviolet light, and hypoxia
(5). Activation of plus-strand viral transcription is associated
with an increase in the tri-methylation at the 4th lysine residue
of the histone H3 protein (H3K4me3) at the HTLV-1 5′LTR
promoter, and reduced levels of histone H2A monoubiquitylated
at lysine 119 (H2AK119ub1) (26). The duration of Tax
expression in PBMCs from an ATL patient with one dominant
clone is estimated to be <1 h using single-molecule RNA
FISH (27).

Transient Tax expression induces dramatic changes in the
transcriptome of expressing cells. In particular, NFkB is strongly
activated and anti-apoptotic genes are upregulated by the
Tax burst (20). Transient Tax expression generates vigorously
proliferating cells, and may be a viral mechanism for maintaining
the infected cell population. This type of Tax expression is
observed in about half of ATL cases (18).

FUNCTION OF HBZ

In contrast to Tax, HBZ is constantly expressed in ATL cells
and HTLV-1 infected cells (19, 28). Transcription of HBZ is
driven by the cellular transcription factor SP1 (29). Since the
immunogenicity of HBZ protein is low (30), the CTL response
to HBZ is weak in vivo: although CTLs to HBZ are critical
for determining the provirus load in HTLV-1 carriers (31).
This is a reason why infected cells and ATL cells can express
HBZ in vivo. Such low immunogenicity of viral proteins is
observed in other oncogenic viruses including Epstein-Barr virus
(EBV) and human papilloma virus (HPV). The necessity for
persistent expression selects for low immunogenicity of these
viral proteins (32).

HBZ expression affects the host cell in myriad ways, some
of which are summarized in Figure 2. Of particular interest is
the fact that HBZ induces transcription of the Foxp3 gene by
activating the TGF-b/Smad pathway (33). Indeed, most ATL cells
express Foxp3 and ∼30–40% of infected T cells express Foxp3
(34). Foxp3 is the master gene of regulatory T (Treg) cells for
their differentiation and functions. Therefore, HBZ-expressing T
cells acquire Treg-like immunophenotypes. Furthermore, HBZ
induces the expression of other Treg-associated molecules,
including CCR4 and T cell immunoglobulin and ITIM
domain (TIGIT) (35, 36). Treg cells express immunosuppressive
molecules on their surfaces and produce immunoinhibitory
cytokines like TGF-b and IL-10. These attributes of Treg cells
benefit the survival of infected cells in vivo.
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FIGURE 1 | Expression patterns and functions of tax and HBZ. Tax is intermittently transcribed from the 5′LTR, whereas HBZ is constantly expressed from the 3′LTR.

Tax function is essential for de novo infection. HBZ promotes the proliferation of expressing T cells and drives infected cells toward a Treg-like immunophenotype.

HBZ contains bZIP domain that is similar to that of c-Fos (12).
Therefore, HBZ interacts with the transcription factors of AP-1
family, such as c-Jun, JunD and ATF3 (37, 38).

Interaction between JunD and HBZ promotes proliferation
of ATL cells by the following mechanism (38, 39). JunD mRNA
produces two protein isoforms using alternative translation
initiation sites: full-length JunD (JunD-FL) and1-JunD that
is an N-terminal truncated form of JunD-FL. HBZ promotes
translation of 1-JunD by depleting the ribosomal protein S25
(39), which is unable to bind to a tumor suppressor, menin.
Thus, enhanced 1-JunD expression by HBZ results in promoted
proliferation. In addition, HBZ protein interacts with Rb/E2F1
complex and activates the transcription of E2F-target genes
associated with cell cycle progression (40).

HBZ strongly inhibits canonical Wnt pathway by interacting
with lymphoid enhancer-binding factor 1 (LEF-1), and
upregulates expression of non-canonical Wnt ligand, Wnt5a
(41). Since knocking down of Wnt5a in ATL cells repressed
cellular proliferation, activated non-canonical Wnt pathway by
HBZ plays an important role in the pathogenesis of ATL.

Different from protein, RNA itself is not recognized by
CTLs. Therefore, functional RNAs are of advantage for viral
replication and survival of infected cells. Epstein-Barr virus
(EBV) and Kaposi sarcoma herpes virus (KSHV) encode viral
microRNAs (42, 43). In addition, viral microRNAs of bovine
leukemia virus (BLV) are critical for proliferation of infected
cells and oncogenesis (44, 45). HBZ is a unique viral gene in
that HBZ mRNA functions not only to produce the protein
but also as mRNA itself, in a manner resembling that of long
non-coding RNAs (19, 46). Such mRNAs are named coding

non-coding RNAs (cncRNAs) or bifunctional RNAs (47). Using
RNA FISH, HBZ mRNA is found to be mainly present in the
nucleus. When HBZ is expressed by its native promoter, the
3′LTR, HBZ mRNA is mainly present in the nucleus, but it
resides in the cytoplasm when expressed by the exogenous strong
promoter. The difference between the HBZ mRNAs in these two
scenarios is the length of the poly A tail: poor polyadenylation is
the cause of the nuclear localization of HBZ mRNA (48). HBZ
mRNA expressed by the 3′LTR can promote the proliferation of
T cells, whereas HBZ mRNA expressed by a strong promoter
did not promote T-cell proliferation, indicating that nuclear
localization is involved in this function. Interestingly, the anti-
sense transcript of human immunodeficiency virus type 1 (HIV-
1), ASP, is also chiefly localized in the nucleus with poor
polyadenylation, indicating that this nuclear localization is
common to anti-sense transcripts of the retrovirus.

The 5′ region of HBZmRNA is responsible for its functions in
the nucleus (46). This region forms a strong stem-loop structure,
which is likely involved in interaction of HBZ mRNA with
cellular factors.HBZmRNA promotes the proliferation of T cells
and enhances transcription of anti-apoptotic genes including
survivin (46). Furthermore, HBZ mRNA interferes with the
basal transcription machinery, leading to suppression of sense-
transcription from the LTR (49). It is reported that HBZ protein
also suppresses sense-transcription from the LTR (11). Thus,
both HBZ mRNA and protein are involved in the suppression of
sense transcription of viral genes (11, 49). Viral proteins that are
encoded in the plus strand are well-recognized by CTLs. Silencing
of transcription of sense-strand viral genes helps infected cells to
escape from the host immune response.
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FIGURE 2 | Functions of HBZ protein and HBZ RNA. HBZ protein and HBZ RNA have a variety of functions in expressing T cells. HBZ RNA is mainly present in the

nucleus, where it promotes the proliferation of T cells and suppresses apoptosis. HBZ protein induces transcription of the Foxp3 gene by activation of TGF-b/Smad

pathway.

Since HBZ is critical for survival of ATL cells, its knockdown
strongly suppresses proliferation of ATL cells (19). Therefore,
HBZ is the ideal therapeutic target of ATL. HBZ functions as
RNA and protein. TargetingHBZRNA is the best choice although
delivery to ATL cells is very difficult. Immunization by HBZ
protein can suppress ATL cells (50) although method of strong
immunization with adjuvants or mRNA should be established to
overcome low immunogenicity of HBZ protein.

HOW INFECTED CELLS EVADE HOST
IMMUNOSURVEILLANCE

HTLV-1 largely depends on clonal proliferation of infected cells
to persist in vivo. It is critical for infected cells to evade the
host immune system. One mechanism for this evasion is that
HBZ causes infected cells to acquire a Treg-like phenotype.
Treg cells express immunosuppressive surface molecules and
produce immunosuppressive cytokines like TGF-b and IL-10,
which enable the virus to evade host immunosurveillance. IL-
10 secretion is elevated in HTLV-1 infected cells of carriers
and ATL patients (51). IL-10 is an immunomodulating cytokine

that is critical for suppressing excessive immune activation and
consequent tissue damage (52). IL-10 suppresses the antigen
presenting capacity of dendritic cells (DCs) and leads to the
exhaustion of T cells, which allows viruses to persist (52, 53).
Several viruses utilize the immunosuppressive function of IL-
10 to establish persistent infection (54). For HTLV-1, HBZ-
mediated enhanced expression of the co-inhibitory receptor
TIGIT is thought to be a mechanism of increased IL-10
production (Figure 3) (36). TIGIT-mediated signaling increases
IL-10 production from not only DCs but also T cells. Since TIGIT
is a co-inhibitory receptor, its signaling normally inhibits the
proliferation of T cells. However, HBZ impairs this inhibitory
signaling from TIGIT via interaction with THEMIS, which forms
a complex with Grb2 and SHP-2 (55). Thus, HBZ induces
TIGIT expression but impairs its inhibitory function within
infected cells.

IL-10 does not promote the proliferation of normal T cells.
However, it is reported to promote the proliferation of ATL cells
(56). This difference is thought to be due to another activity
of HBZ: HBZ modulates intracellular signaling from the IL-10
receptor by interacting with STAT1 and STAT3 (Figure 3) (34).
Combining HBZ mediated enhancement of IL-10 production
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FIGURE 3 | HBZ increases production of IL-10 and alters intracellular signaling from the IL-10 receptor. HBZ induces expression of TIGIT. When TIGIT binds to its

ligand, CD155, IL-10 production by DC’s is enhanced. In addition, the reverse signal from TIGIT to the infected T cell increases its IL-10 production. TGF-b production

is also enhanced by HBZ (not shown). Thus, the immunosuppressive cytokines TGF-b and IL-10 inhibit the host immune response. HBZ also binds to STAT1 and 3

and modulates intracellular signaling from the IL-10 receptor, enhancing proliferation of the infected cell even while the response of neighboring uninfected cells is

suppressed.

with modulated signaling from the IL-10 receptor seems to
be a clever strategy of HTLV-1 – a strategy that enables
both proliferation of infected T cells and suppression of host
immune responses.

An accessory protein p12 interferes with the intracellular
trafficking of major histocompatibility complex class I heavy
chain (MHC-I-Hc) of HLA-A2, -B7, and -Cw4, resulting
in downmodulates its cell surface expression (57). Down-
modulated MHC-I-Hc impairs recognition of HTLV-1 infected
cells by CTLs. It is noteworthy that p12 is expressed from
the plus-strand of the provirus by Tax-dependent transcription.
Immunosuppressive effect of p12 enables Tax expressing cells to
escape from CTLs. Loss of MHC-I allows attack from natural
killer (NK) cells. However, p12 also down-modulates expression
of intercellular adhesion molecule 1 (ICAM-1) and ICAM-2, and
K cell activating receptors, NCR and NKG2D (58), which confers
resistance of HTLV-1 infected cells to NK cells.

HTLV-1 INFECTION IN HEMATOPOIETIC
STEM CELLS

High throughput sequencing enables us to identify a wide variety
of HTLV-1 provirus integration sites (17). The presence of
identical integration sites among cells of different hematopoietic
lineages (CD4T cells, CD8T cells, B cells, monocytes and
neutrophils) in the same HTLV-1 infected individuals (59). This

is also demonstrated by the report of two cases with ATL
clones that had different T-cell receptor gene rearrangements
and identical proviral integration sites (60). These data suggest
that HTLV-1 infects hematopoietic stem cells and that infected
cells differentiate in vivo. It is possible that HBZ directs the
differentiation toward Treg cells. What is the advantage for
HTLV-1 to infect hematopoietic stem cells? Since the bone
marrow (BM) is under hypoxic conditions, immune responses
are suppressed (61), which likely allows infected cells to express
Tax. Indeed, an unexpectedly high frequency of tax mRNA-
expressing cells was reported in the BM of HAM patients
(62). Newly infected hematopoietic stem cells at the BM can
differentiate without Tax expression. HBZ directs differentiation
of infected cells to Treg cells and promotes their proliferation.
Since the actions of HBZ are specialized to Treg cells, it is unlikely
that HBZ increases the number of other hematopoietic cells.
Thus, most infected cells only have to express the HBZ gene and
the necessity to express more immunogenic Tax is not essential
in the periphery.

DIFFERENT SUBTYPES IN ATL CASES

Latently infected cells lead to development of ATL in some
HTLV-1 carriers. Although ATL is caused by HTLV-1, the
requirements of ATL cells for viral genes are not uniform. Tax is
not expressed in approximately half of ATL cases, whereas HBZ
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is expressed in all (63). Importantly, mutations that abrogate
Tax expression can occur very early, before proviral integration,
and ATL can still develop. Non-sense mutations of the tax
gene are formed by APOBEC3G, which means that they are
generated before the proviral integration (14). Furthermore,
deletion of the 5′LTR also occurs before the integration of HTLV-
1 provirus, since the genomic regions adjacent to the LTR retain
six bp repeats (64). Since Tax is not expressed before proviral
integration, these findings indicate that leukemogenesis of these
ATL cases depends on HBZ alone (18).

In the other half of ATL cases, the HTLV-1 provirus retains
the structure to express Tax (intact tax gene and 5′LTR,
unmethylated 5′LTR). In these cases, the level of tax transcription
is low, indicating that ATL cells in these cases are similar to
the MT-1 cell line, which expresses Tax intermittently (20). It is
noteworthy that only in vitro cultured HTLV-1 infected cell lines
produce abundant Tax. Most of these cell lines are established
only in vitro and do not reflect ATL cells in vivo.

CONCLUDING REMARKS

HTLV-1 has existed in humans for a long time since its
interspecies transmission from monkeys. STLV-1 has existed in

monkeys for even longer. These viruses have acquired strategies
to evade the host immune response and to increase their chances
of transmission. Treg like cells are suitable resident cells for
HTLV-1 to escape from CTLs. Treatments that intervene in these
strategies could be useful in preventing the development of ATL.
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