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Viral infection is an indisputable causal factor for nearly 17% of all human cancers.

However, the diversity and complexity of oncogenic mechanisms raises new questions as

to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified

for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities

that may or may not be utilized in a particular tumor cell. In addition, stochastic events,

like viral mutation and integration, as well as heritable host susceptibilities and immune

deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor

biology highlights the importance of evolutionary forces that select for phenotypes better

adapted to a complex and changing environment. Given the challenges of prioritizing

singular mechanistic causes, it may be necessary to integrate concepts from evolutionary

theory and systems biology to better understand viral cancer-driving forces. Here,

we propose that viral infection provides a biological “entropy” that increases genetic

variation and phenotypic plasticity, accelerating the main driving forces of cancer cell

evolution. Viruses can also influence the evolutionary selection criteria by altering the

tumor microenvironment and immune signaling. Utilizing concepts from cancer cell

evolution, population genetics, thermodynamics, and systems biology may provide new

perspectives on viral oncogenesis and identify novel therapeutic strategies for treating

viruses and cancer.

Keywords: KSHV, plasticity, hepatitis B virus, epigenetic, cancer, Merkel cancer, HPV–human papillomavirus,

EBV–Epstein-Barr virus

INTRODUCTION

Viruses have well-established causal roles in numerous human and animal cancers, collectively
responsible for almost one fifth of all cancers (1, 2). Viral associated cancers are a special
case of cancer biology and virology. To date, there are seven human viruses with strong
epidemiological links to human cancers. These include members of the high-risk human
papillomavirus (HPVs), hepatitis viruses B and C (HBV and HCV), human gammaherpesviruses
(HHV4/Epstein-Barr Virus (EBV) and HHV8/Kaposi’s Sarcoma-Associated Herpesvirus (KSHV),
Merkel cell polyomavirus (MCPyV), and human T-cell leukemia virus I (HTLV-1). These
oncoviruses represent members of vastly different families of virus, including DNA, RNA and
retroviridae. Despite this species diversity, these oncoviruses are thought to share common
features that enable them to drive cancer. Oncoviruses usurp key cellular pathways important
for the control of cell growth and metabolism. However, many non-cancer-causing viruses
perturb these pathways and have similar viral-host interactions. Consequently, it is not fully
understood what features confer viruses with oncogenic potential in human populations.

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org/journals/virology#editorial-board
https://www.frontiersin.org/journals/virology#editorial-board
https://www.frontiersin.org/journals/virology#editorial-board
https://www.frontiersin.org/journals/virology#editorial-board
https://doi.org/10.3389/fviro.2021.753366
http://crossmark.crossref.org/dialog/?doi=10.3389/fviro.2021.753366&domain=pdf&date_stamp=2021-11-15
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lieberman@wistar.org
https://doi.org/10.3389/fviro.2021.753366
https://www.frontiersin.org/articles/10.3389/fviro.2021.753366/full


Tempera and Lieberman Viral Plasticity Drives Pathogenesis

Oncogenic viruses perturb numerous cellular pathways
described as the hallmarks of cancers (3, 4). As expected, viral-
associated cancer pathways can be readily superimposed on these
cancer hallmarks (5) (Figure 1). And while the pathways of viral
carcinogenesis are ultimately cellular, viruses do provide foreign
genomes and gene products that create new interactions and
pathways for oncogenesis. How do these viral products and viral-
specific pathways work coordinately over time to overcome the
many barriers to cellular carcinogenesis?Whatmakes these seven
viruses different from their non-oncogenic relatives? Here, we
suggest that oncogenic viruses are unique in their ability to
increase the adaptability and evolvability of infected cells, and
that multiple perturbations over time enable formation of cancer
cell fate choices. We suggest that a more in-depth knowledge of
virus-host interactions over the time-course of cancer evolution
will provide a more complete understanding of viral oncogenesis.

A PLETHORA OF ONCOGENIC
MECHANISMS

A major challenge in the field of viral oncology, and cancer
biology in general, is the very large number of mechanisms and
pathways that contribute to carcinogenesis. While early studies
focused on one or a few viral oncogenes, we now know that
viruses can promote cancers through a much greater diversity of
mechanisms and pathways. Many of these mechanisms can be
well-defined in the context of a particular tumor type or tissue
environment. However, the diversity of mechanisms confounds
the identification of single causal agent or event. Given the
abundance of potential and actual mechanisms, a new challenge
arises to both understand the impact of each oncogenic event and
the accumulation of multiple distinct oncogenic events over time
or in the context of a transient stress challenge. Here, we provide
a brief overview of some classic mechanisms of viral oncogenesis,
highlighting many from the human gammaherpesviruses, and
argue that the multiplicity of these mechanisms makes sense only
in the context of cancer cell evolution and systems biology.

Classical Viral Oncogenes Are Not
Sufficient for Cancer
Viruses have been shown to induce tumor formation through
numerous and diverse mechanisms (5). From the pioneering
studies of Peyton Rous in 1920s, retroviruses were found
to encode oncogenes, like v-src, v-myc, v-ras, which could
potently transform normal cells to grow as tumors in animal
models (6). Several of these viral oncogenes were subsequently
recognized as host genes captured by viral recombination and
their oncogenicity due to combinations of activating mutations
and deregulated expression in infected cancer cells. DNA tumor
viruses were found to encode novel oncoproteins, such as SV40
T-antigen, adenovirus E1A and E1B, and papillomavirus E6
and E7 that interact with and disable cellular tumor suppressor
proteins, such as p53 and Rb (7). While these viral oncogenes
may be necessary for transformation in laboratory models, they
are not sufficient for tumor formation in the overwhelming
majority of natural infections. In addition, some viruses, such

as adenovirus, encode potent inhibitors of cellular tumor
suppressors p53 and Rb, but rarely associate with human cancers
(8). This is consistent with the observation that most oncogenic
viruses typically cause benign infections, that only rarely lead
to cancer.

Multiple Host Targets of Viral Oncogenes
Pioneering studies identified a few cellular targets universally
exploited by tumor viruses, such as p53 DNA damage
surveillance and Rb cell cycle control. However, it is now
known that subversion of these targets are not sufficient for
viral tumorigenesis, and that additional and alternative host
proteins and pathways are targeted by viral oncogenes (Figure 1).
For example, the small viral oncoprotein E7 is well known
to bind and degrade Rb (9), but can also interact with the
Rb-associated DREAM complex (10), phosphatase PTPN1(11),
histone modifying enzyme HDACs (12), stem cell promoting
factors APH1B and OCT4 (13, 14), and Cullin2 to stabilize
APOBEC3a (15). In addition, E7 can cooperate with another
viral oncoprotein E6 to activate hTERT to overcome replicative
senescence (16, 17). Viral subtypes, as well as host cell type can
determine whether these different interactions are oncogenic,
further demonstrating the diversity of targets for one small
viral oncoprotein and its potential effects on different cancer
pathways. Similarly, the MCPyV small T antigen can interact
with MYCL and EP400 to alter chromatin and transcription
regulatory networks implicated in cell lineage control (18),
4EBP1 affecting translational control (19), protein phosphatase
2A to affect ubiquitin ligases (20), the F-box proteins FBW7 to
activate NF-kB signaling (21, 22), as well as binding iron-sulfur
clusters (23). This promiscuous multitasking is likely to be a
general feature of viral oncoproteins that target multiple cellular
proteins and pathways.

Larger DNA tumor viruses, such as EBV and KSHV, encode
numerous viral genes implicated in oncogenesis. Many of
these oncogenes target pathways important for the tissue-
specific functions of the host cell. EBV encodes two membrane
oncoproteins, LMP1 and LMP2, that cooperate to immortalize
primary B-lymphocytes by mimicking B-cell receptor and CD40
co-receptor (24, 25). LMP1 interacts with multiple TRAFs
and TRADDs to activate NF-kB pathways (26), but can also
interact with other proteins involved in membrane vesicle
formation (27). LMP2 can interact with several different src-
family kinases (28). EBV also encodes 6 nuclear antigens,
EBNA-LP, 1, 2, 3a, 3b, and 3C, that are all implicated in
oncogenic mechanisms (29). EBNA2 is absolutely required for
B-cell immortalization in vitro (30), and natural mutations
in EBNA2 correlate with B-cell transformation activity (31).
However, some EBV associated tumors fail to consistently express
EBNAs and LMPs. Like EBV, KSHV also encodes candidate
oncogenes, including the nuclear antigen LANA that can bind
host chromatin and alter p53 and Rb function, vGPCR that
can induce endothelial tumors in transgenic mouse models,
vCyclin that can drive cell cycle progression, vFLIP and K12
that can activate NF-kB and STAT3 signaling (32). In addition
to these viral encoded proteins, both EBV and KSHV have
numerous non-coding RNAs implicated in oncogenesis. EBV
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FIGURE 1 | Diversity of viral oncogenic mechanisms. Viral oncogenes have been shown to perturb multiple hallmarks of cancer. How each of these viral-host

interactions contribute to carcinogenesis in a particular viral cancer is a challenge for identifying primary driving forces of viral cancers. Examples highlighted from EBV

proteins EBNA-LP, BNA1, EBNA2, EBNA3A, 3B, 3C, BNRF1, BZLF1; KSHV LANA, vGPCR, vCyclin, vIL6, ORF75; HPV E6, E7; MCPyV LT, ST; HBV HbX; HTLV-1

Tax, HBZ.

small non-coding RNA EBERs can interact with transcription
factor PAX5 (33), ribosomal protein L22 (34), TLR receptors (35),
and provide paracrine signals through exosome transmission
(36). Numerous viral miRNAs target oncogenic pathways
implicated in EBV and KSHV carcinogenesis (37, 38). EBV
miRNA are highly expressed in tumors, especially EBV-
associated gastric carcinomas (EBVaGC) along with other non-
coding RNAs that arise from the same genomic locations
(BARTs) and have additional oncogenic potential (39, 40).
Remarkably, these viral genes are expressed at variable levels
and heterogeneously in most viral-associated cancers, further
confounding the problem of complexity and diversity of viral
oncogenic mechanisms.

A Growing List of Viral Oncogenic
Mechanisms
Inhibition of Apoptosis
Resistance to programmed cell death, particularly apoptosis,
is among the most fundamental hallmarks of cancer and
viral infection. Viruses provide numerous mechanisms to
resist apoptosis (41–43). For example, EBV encodes two viral
proteins, BHRF1 and BALF1, dedicated to inhibition of the
Bcl2 family of pro-apoptotic factors. BHRF1 and BALF1 have
some overlapping, but not completely redundant activities
in the inhibition of programmed cell death mediated by
Bcl2 (44, 45). In addition, EBV encodes multiple miRNAs

that target the pro-apoptotic genes BIM (46) and Puma
(47). KSHV also encodes numerous genes directed at the
disruption of apoptosis (42), including a Bcl2 homologue
ORF16 that may have mitochondrial and nuclear functions
required for viral reactivation and lytic replication (48). MCPyV
large T protein enhances BIRC5/survivin mRNA and protein
expression to prevent caspase-mediated apoptosis (49). HBV
HbX protein has been shown to have a BH3-like domain
that interacts with Bcl2 and Bcl-xL to prevent apoptosis
during viral replication (50). HCV non-structural protein NS5A
can attenuate apoptosis by enhancing GRP78 expression and
reducing ER-stress (51). HTLV-1 Tax suppresses transcription
of pro-apoptotic genes Bid and Bim, while activating expression
of pro-survival Bcl-2 members (52). In general, oncoviruses
demonstrate numerous and diverse anti-apoptotic mechanisms,
often encoding multiple, partially redundant viral genes that may
be expressed heterogeneously in tumors.

Reprogramming Host Metabolism
Cancer cells frequently undergo a metabolic shift to aerobic
glycolysis (Warburg effect) and utilize alternative metabolites,
such as glutamine and serine for energy production and
macromolecular biosynthesis (53). Oncogenic viruses
can reprogram cellular metabolism in various ways (54).
Overexpression of both HPV16 E6 and E7 promote glucose
metabolism through activation of glucose transporter 1 (55).
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E6 was shown to stabilize HIF1A induced Warburg effect
during hypoxia in keratinocytes (56, 57). E7 can bind and
inhibit pyruvate kinase M2 to promote glycolysis (58). MCPyV
small T has been shown to increase glucose consumption and
lactate production indicative of Warburg aerobic glycolysis
(59). These changes correlate with transcriptomic changes in
hypoxia, AMPK activation, and mTOR signaling. EBV infection
of resting B-cells induces a hyperproliferative state that is rate
limited by nucleotide metabolism (60), and EBNA2 activates
a myc-dependent metabolic program to increases amino acid
and nucleotide metabolism during hyperproliferation (61).
EBNA2 also activates SREBP2 to promote lipid biosynthesis
and fatty acid metabolism (62). KSHV miRNAs induce a
metabolic shift from OXPHOS to glycolysis (63). Thus,
oncogenic viruses shift cellular metabolism through multiple
factors and pathways to promote infected cell fitness, similar to
cancer cells.

Modulation of the Cellular Microenvironment
Viral-infected cells and associated tumors thrive in harsh
microenvironments that reinforce viral-infected and cancer cell
selection, requiring Warburg metabolism and adaptation to low
oxygen and acidification (64, 65). Variations in oxygenation
due to competitive crowding or vascular insufficiency can have
dramatic effects on viral gene expression and cellular stress
response (65). Hypoxia plays a central role in KS tumorigenesis
and regulating KSHV latency (66, 67). Hypoxia inducible
factors (HIF1A) can modulate KSHV oncogenes, including
vIL6 and vGPCR to upregulate VEGF and angiogenesis (68,
69). Hypoxia has a strong immunosuppressive effect (70), and
oncogenic viruses may induce pseudohypoxia to escape immune
recognition (71). Viral induced Warburg effect can also be
immunosuppressive by competing with immune cells for glucose
and oxygen consumption (72). Hypoxia is known to induce EBV
lytic cycle genes that have pro-survival and immune modulatory
functions. EBV BRLF1 can inhibit interferon response genes
IRF3 and IRF7 and interferon production (73) while BZLF1
can inhibit interferon gamma and TNFβ signaling pathways
(74, 75). EBV immediate early protein BZLF1 can also induce
SOCS3 to inhibit cytokine signaling (76), and the viral kinase
BGLF4 can degrade TLR9 mRNA (77). Oncogenic viruses also
reprogram the tumor microenvironment through production of
extracellular vessicles (EV) that transmit cargo to neighboring
cells (63, 78). EBV positive NPC produce EVs that transfer viral
miRNAs and oncoproteins, such as LMP1, to neighboring cells
(36, 79) causing a microenvironment selective for infected cell
persistence (80) and immune suppression through recruitment
of regulatory T-cells (81). Thus, virus infection can alter
the microenvironment to promote selection of viral-infected
cells that survive at the expense of uninfected and non-
transformed cells.

Attenuation of Host Immune Control
In Darwinian terms, viruses and cancer are most limited
by the predatory function of the immune system. Viral
associated cancers are particularly adept at modulating immune
surveillance, and are most virulent in immunosuppressed

conditions, such as HIV-AIDS and solid-organ transplants. HPV
and EBV associated tumors upregulate T-cell checkpoint proteins
PD-L1 and PD-L2, as well as the CTLA-4 immunosuppressive
pathways (82). Multiple different mechanisms act on this
pathway. For EBV, EBNA2 can down regulate miR-34a to up-
regulation of PD-L1 in lymphoid cancers (83). LMP1 activates
PD-L1 through interferon gamma pathway in NPC (84). LMP1
activates PD-L1 through NF-kB pathway in NKTCL (85). HPV
E5 protein suppresses HLA expression and immune recognition
of infected tumor cells, rendering them resistant to checkpoint
immunotherapy (86). HBV sAg binds to SIGLEC-3 (CD33)
on myeloid cells to induce immunosuppression (87). HCV
core protein interaction with cellular gC1qR can modulate
macrophage cytokines to restrict immune targeting to HCC (88).
Clearly, diverse and novel viral mechanisms function to disable
the immunological barriers to cancer.

Transcriptional Reprogramming
Perturbations in transcription factor and gene regulatory
networks are also hallmark changes in cancer. Viral immediate-
early genes and oncogenes frequently target transcription factors
and transcription factor networks that are fundamental to host
cell differentiation and identity. E6, E7, and T-antigens are known
to interact with cellular transcription factors, such as p53 and the
Rb-family complexes. EBV and KSHV encode numerous other
nuclear factors that alter transcription control, and these viral
factors have been implicated in viral carcinogenesis. All six EBV-
encoded EBNAs interact with host transcriptional regulators
to perturb regulatory networks in distinct and complex ways.
EBNA2 can interaction with B-cell regulatory factors RBPJ,
EBF1, RUNX1, and PU.1 to affect cooperative DNA binding
site selection (89) as well as facilitate formation of super-
enhancers, such as found at the cMyc locus (90, 91). EBNA1
can activate transcription of the EBNA2 gene, while EBNA2 can
auto-activate its own transcription along with that of EBNA3Cs
and LMPs to change the EBV viral gene regulatory network.
Similarly, these factors cooperate to regulate expression of
host cell genes including the repression of tumor suppressor
genes, like BIM and p16, by EBNA3C (92, 93). In contrast,
KSHV encodes one major nuclear protein LANA that can
affect viral and cellular transcription and chromatin structure
through multiple mechanisms including direct binding to core
histones H2A/H2B through its N-terminus and to GC-rich
DNA through its C-terminal domain (94, 95). KSHV also
encode Interferon Regulatory Factors (vIRFs) that can alter
transcriptional control of cellular IRFs, but these viral factors
are not typically expressed in most KSHV-associated tumor
cells, unless lytic reactivation occurs (96). EBV and KSHV
miRNAs and longer non-coding RNAs can also impact cellular
and viral regulatory networks (97). All other oncogenic viruses
have similar perturbations in host gene regulation. HBV alters
the miRNA-mRNA regulatory network in HCC (98). HPV has
a distinct viral gene network signature in HPV-positive head
and neck squamous cell carcinoma (99). The complexity of
gene regulatory networks and diversity of viral mechanisms for
disrupting these networks reveals the challenges of pinpointing a
single or primary causal factor.
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Epigenomic Reprogramming
Epigenetic modifications represent an important mode of
adaptive and heritable gene regulation. Persistent viral infection
can impact host epigenomes in diverse ways. DNA infection
in the nucleus can alter the DNA methylation patterns,
frequently resulting in hypermethylation of viral and cellular
genes (100). Host genome hypermethylation is detected in HPV
and EBV associated carcinomas (100). EBV infection can induce
host hypermethylation in a number of experimental models,
including non-neoplastic gastric epithelial cells (101), telomerase
immortalized keratinocytes (102), and gastric carcinoma derived
AGS cells (103). Hypermethylation has been correlated with
the inactivation of the dioxygenases TET1 (104) and TET2
(105) that play a role in active demethylation. For EBV, LMP1
and LMP2 can induce DNMT1 expression and subsequent
methylation of cellular genes for CDH1 (E-cadherin)(106–108)
and tumor suppressors p16 and p21 (109, 110). HPV is also
found to alter the host epigenome, including DNA methylation
and histone modification patterning (111). Other mechanisms
for host epigenetic modification in response to foreign DNA
have been described, including modulation of the Sting (112) and
Apobec (113) pathways.

Viruses can also induce changes in host chromosome
conformation leading to the rewiring of gene regulatory circuits.
EBNA-LP, EBNA2, and EBNA3C have been implicated in the re-
organization of DNA regulatory loops to form super-enhancers
regulating cellular oncogenes, such as c-myc, to drive resting B-
lymphocytes into proliferating and immortalized lymphoblastoid
cells (91, 114). EBNA2 has been shown to interact cooperatively
with several cellular transcription factors, including EBF1 and
RBPJ (89), and RUNX1 (115), and this cooperativity may
explain some of the capacity to facility new DNA-DNA loop
interactions. Episomal viruses may also influence host chromatin
and histone modifications through chromosome tethering
mechanism. For example, one study found EBV tethering to
reinforce heterochromatic H3K9me3 silencing of neuronal genes
in EBV positive BL cells (116). Another study found that
EBV genome tethering caused transition of heterochromatic
H3K9me3 to euchromatic H3K4me3 along with transcriptional
activation of cancer-related genes in EBVaGC (117). EBV
genomes were also found to transit within open chromosome
territories during the switch to reactivation (118). In contrast to
viral integrations, episomal tethering may be dynamic over time
and provide epigenetic plasticity to both virus and host.

COMMON THREADS: ONCOVIRAL
PERSISTENCE AND PLASTICITY

Viral Persistence at Tumor Sites
All known human tumor viruses persist, in one form or another,
at the site of tumor formation. Tumor viruses can persist
as chronic infections (HCV), nuclear episomes (HBV, HPV,
MCPyV, EBV, KSHV) or integrated genomes in viral-associated
tumor cells (HTLV-1). HCV is an unusual oncovirus in that
it does not infect the cancer cell, but its long-term persistence
causes inflammation conducive to cancer cell emergence. In

contrast, episomal DNA tumor viruses, like EBV, KSHV and
HPV have viral-specific programs dedicated to viral genome
persistence in a dividing cell that can serve as a clonal
outgrowth in cancer (119–121). These viruses encode proteins,
such as EBNA1, LANA, and E2, dedicated to binding viral
DNA and maintaining the viral genome over generations in
proliferating cells. HTLV-1 persists through integration into the
host genome as part of its normal life cycle (122). Integration is
inherently mutagenic and there is evidence that some, albeit rare
integrations are oncogenic.

Chang and Moore proposed that viral cancers arise due
to aberrations in the normal productive life cycle, including
genetic mutations and integrations that disrupt normal viral
gene expression (123). Consistent with this, aberrant integrations
are frequently observed for oncoviruses that typically persist as
extrachromosomal episomes, such as HBV, HPV, and MCPyV.
HBV has been found to integrate in oncogene hot-spots, such
as the TERT (telomerase) or KMT2B (MLL4) loci (124), and
HPV has been found to integrate at ERBB2 and PTPN13 loci
(125). In each case, integration alters normal gene regulation to
promote oncogenesis. Integrations can also lead to loss of viral
DNA and deregulation of viral oncogenes. HPV integration with
loss of viral E2 repressor protein leads to the upregulation of viral
oncogenes E6 and E7 in cervical carcinomas (126, 127). InMerkel
cell carcinomas, MCPyV frequently integrates as incomplete
genomes with deletions in large T and overexpression of small T
(18, 128). There is some evidence that viruses can transform host
cells without viral genome persistence through heritable changes
in the host epigenome or regulome (129). Such “hit and run”
mechanisms have been reported but are difficult to demonstrate
in naturally occurring human cancers. Thus, most viral cancers
are associated with long-term persistence of viral genetic material
transmitted for multiple cellular generations.

Viral and Host Heterogeneity as Oncogenic
Drivers
Tumor cell heterogeneity is a central hallmark of cancer (130–
134). Viruses can be highly heterogeneous, as well as induce
a more heterogeneous phenotype in the host cells. Viral gene
programs are inherently unstable with potential shifts from
productive to non-productive, or latent to lytic infection cycles
with variable gene expression patterns. Viral genomes may be
more relaxed than host chromatin and free to move from
one chromosome compartment to another. Viral genes may be
activated or repressed with greater flexibility, including sporadic
bursts of lytic amplification and gene expression. Oncoviruses
can also increase variability in host gene expression. Viral
infected tumor cells maintain a poorly differentiated state, and
may toggle between the lympho-epithelial features of EBV NPC
and GC, and the mesenchymal-endothelial features of KSHV
infected KS spindle cells (135). This loss of fixed cell identity
has been referred to as cellular plasticity. Increasing cellular
plasticity provides cancer cells with the advantage of increase
variation, or the capacity to adapt more rapidly to changing
environmental conditions (such as hypoxia), relocate to new
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niches (metastasize), evade immune surveillance, and develop
drug resistance (136).

Viruses can be highly heterogenous and mutate during the
course of infection to increase carcinogenic risk. High and low
risk subtypes of HPV may be considered a form of species
heterogeneity, while integrations and deletions can be a source
of mutational variation (123, 137). Tumor heterogeneity based
on viral and host gene expression (including single cell RNAseq),
epigenetic modifications, and immune infiltration have been
observed for cancers associated with HPV (138), MCPyV (139),
HBV (140), HCV (141), and HTLV-1 (142), indicating that
such heterogeneity is a general rule for viral and non-viral
cancers. Variations in viral gene expression and genome copy
number may also account for cancer-risk. For EBV, viral latency
types can contribute to genetic heterogeneity and plasticity.
EBV can adopt different latency types in different host cells
and tumor types. Epigenetic factors are known to regulate the
different latency types, including differences in DNAmethylation
patterning. Among the viral genes with variable expression is the
potent oncogene LMP1, involved in constitutive TNF-pathway
signaling. LMP1 gene can be expressed at ranges that vary 100
fold among single cells in a population (143). Variations in LMP1
expression in NPC correlated with cellular genes linked to E2F
and cellular DNA replication, as well as to changes in NF-kB
and JAK/STAT signaling (144). Another variable in viral gene
expression is the genome copy number (145). Viral episomes
can range from 1 to several 100 copies per cell. Viral genome
amplification is closely linked with over-expression of some viral
genes, especially the lytic cycle genes of the gammaherpesviruses.
Although a complete lytic cycle is rarely detected in viral tumors,
abortive lytic cycle gene expression is likely to contribute to
viral carcinogenesis. These lytic cycle genes provide numerous
potential contributions to viral carcinogenesis, including anti-
apoptotic, immunomodulatory, and paracrine activities required
for tumorigenesis (146).

Temporal Heterogeneity and Cancer Cell
Evolution
Temporal history of viral infection may also contribute to
tumor heterogeneity (Figure 2). Viral cancers are often clonal
expansions of a virally infected progenitor cell (147, 148).
However, the progenitor cell is likely to have acquired somatic
mutations or other aberrations enabling viral transformation.
Pre-existing somatic cell mutations appear to be required for
the formation of EBV-associated NPC (149). EBV infected
nasopharyngeal cells undergo cell cycle arrest, unless infected
cells have pre-existing mutations in cell cycle control. Gene loss
from 9p21 to 3p21.3 (inactivating RASSF1A and CDKN2A1,
respectively), and activation of telomerase, have been found
to precede acquisition of EBV infection in the evolution of
NPC (150). EBV infection further drives clonal expansion of
infected cells, as has been demonstrated in NPC by examining the
uniformity of the viral terminal repeat DNA (148). Subsequent
genomic hypermethylation follows the infection of EBV, and
then activation of NF-kB pathways, loss of MHC I, mutations
in PI3K/MAPK, and chromatin remodeling, and subsequently

FIGURE 2 | Viral contributions to tumor evolution over time. The viral

contributions to carcinogenesis may differ and change depending on the

temporal stage of cancer cell evolution. The dynamic properties of viral

genomes and infection enable greater plasticity than cellular genomes and

gene expression mechanisms. Examples from EBV suggest that viral cancers

evolve through changes in viral and cellular gene expression, including the loss

of viral oncogenes, such as EBNA2 in BL and LMP1 in NPC, and

compensatory oncogenic mutations in cellular genes, such as myc

translocations and NFkB activation, at later stages of cancer cell development.

In this way, viruses provide lower cost pathways to cellular oncogenesis.

TP53 and RAS, along with other mutations (151) are frequently
observed in the course of NPC formation (Figure 3).

Host genetic variation, whether inherited or acquired through
somatic mutation, also contribute to the risk of viral cancers.
Variations in the HLA locus correlate with risk of viral cancers,
suggesting that presentation of viral antigens plays a key role
in immune resistance to viral-driven cancers. Genetic analysis
of NPC susceptibility revealed risk loci at hTERT, CDKN2A/B,
MECOM, and TNFRSF19, all of which have known roles in
oncogenic pathways. Other susceptibility pathways have been
linked to Notch signaling, magnesium transport (NIPAL1), EBV
entry into epithelial cells (ITGB6), modulation of apoptosis
(NEDD4L, BCL2L12), cAMP signaling, or DNA repair (MLH1,
PRKDC) (153). Inherited mutations in magnesium channel
MAGT, as found in XMEN syndrome is associated with defects
in NK and T-cell control of EBV infected B-cell (154, 155), and
may also contribute to risk of NPC and KSHV associated KS.

Other aberrations also contribute to variations in viral-
host interaction. Rare tumors of atypical tissue types, such
as EBV leiomyosarcomas, NK-T cell lymphoma, peripheral T-
cell lymphoma (156) and pulmonary lympho-epithelium-like
carcinoma (LELC) (157) are likely due to aberrant entry of
EBV into unnatural host cells. Environmental factors, such as
coinfection with HIV or malaria, can alter the immune control of
viral infected cells. Thus, host cell type, immune functionality and
other environmental factors can impact the course of infection
and cancer progression in a temporal-dependent manner.

Stage specific effects on viral oncogenesis are observed for
most oncoviruses. HPV has been shown to have different patterns
of infection, integration, and gene expression at different stages
of viral-associated cancers (158). Similarly, MCPyV T-antigen
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FIGURE 3 | Heterogeneity of viral tumors. Hypothetical “fishplot” of EBV NPC

tumors demonstrate highly heterogeneous patterns of viral and host gene

expression in the different cells of an emerging tumor (151). Fishplots measure

the clonal evolution of cells in a tumor microenvironment over time (152). Such

fishplots reflect temporal, historical events in the cancer evolution process, and

spatial, topological variations in the tumor microenvironment. Viruses

contribute to the adaptability of tumor cells to these rapid changes in

microenvironment.

was found to have stage specific tumor promoting activity in
a mouse model treated with defined carcinogens (159). HTLV-
1 antigen expression changes in response to T-cell activity,
providing evidence for viral adaptation and co-evolution with
tumor cell progression (160). HBV X-protein interaction with
miRNA production impacts multiple stages of HCC through
very different pathways, ranging from cell cycle control at
early stages to immune suppression at later stages (161). These
multifunctional viral oncoproteins can affect stage specific events

in cancer cell evolution, and therefore may adapt their oncogenic
activities activities over time.

SYSTEMS APPROACHES TO VIRAL
ONCOLOGY

Virus-Driven Gene Regulatory Networks
and Attractor States
Oncogenic viruses increase the number of possible ways a cell
can propagate, survive and achieve oncogenic transformation.
In terms of Darwinian evolutionary dynamics and population
genetics, virus infection increases the phenotypic diversity and
fitness of the population. A more heterogeneous population
has a fitness advantage by adapting more rapidly to changing
and stressed environments. To borrow from systems biology,
a stable phenotype requires a stable gene regulatory network
(GRN). GRNs are considered a thermodynamic “attractor” state
(162) (Figure 4). GRNs are related to the developmental states
described by Waddington (164) using an energy landscape and
the canalization patterns that separate two or more distinct cell
fates or GRNs. It has been proposed that cancer cells converge
on a common GRN attractor state akin to the embryonic and
unicellular cell states (165). Oncogenic viruses perturb major
hubs in GRNs enabling greater plasticity between phenotypic
states (136). Experimental validation of this concept has been
provided by measuring the intrinsic plasticity of EBV positive
Burkitt lymphoma cell lines (162). Viruses can also increase
signal noise in a GRN [reviewed in (166)]. Viral genomes may
have inherently higher “noise” than their cellular counterparts
due, in part, to their relaxed epigenetic regulation, subcellular
localizations, and copy number variations. Viral genomes and
gene products destabilize GRNs and facilitate the transition from
one attractor state to another (167). Thus, we propose that a
major feature of oncogenic viruses is their ability to accelerate the
rates of cancer cell evolution by increasing the genetic variability
and phenotypic plasticity, and inherent cellular adaptability to
changing and stressful microenvironments (168, 169).

Viruses as “Entropic” Drivers of Cancer
Evolution
In thermodynamics and statistical mechanics, terms like entropy
were developed to explain the behavior of complex systems
with excessively large numbers (ensembles) of microstates.
In this respect, the term entropy can be used to describe
the number of microstates of a complex biological system,
such as the gene regulatory interactions in a viral infected
tumor cell. While we can not provide a rigorous definition
of biological entropy, we do suggest that viruses increase the
number of possible microstates available to the host cell, and
therefore may be considered a form of “genetic entropy.” In
the most simplistic terms, genetic entropy may be the ability
to reconfigure the genome and its programmed processes.
Viruses reconfigure genomes, gene expression programs, and
biochemical pathways.We further suggest that this be considered
in terms of Shannon information theory, where viral genomes
may be considered a source of signal noise enabling the freedom
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FIGURE 4 | Thermodynamic landscape of viral oncogenesis. A Waddington-like developmental landscape conceptualizes how viruses create alternative gene

programs and biochemical pathways that facilitate the transition to an oncogenic state (163). The oncogenic state may be considered in terms of alternative attractor

states (e.g., M1 and M2) with favorable thermodynamic properties and increased Darwinian fitness. The Waddington developmental landscape is related to the

thermodynamic landscape for chemical reactions. Oncogenic viruses enable new attractors states by providing additional genetic and biochemical flexibility. This

viral-borne adaptability may be considered an entropic driver of cancer cell evolution.

to find a lower energy state, or alternative GRN, such as the
oncogenic state. Viruses can increase signal noise and alternative
outputs for cellular developmental programs, and this enables
transcriptional plasticity and phenotype heterogeneity associated
with tumorigenesis. Efforts to quantify cellular information and
thermodynamic entropy may be useful for understanding the
emergence of the cancer phenotype. In this regard, virus infection
may be considered an entropic driving force for cancer (170).

Implications for Cancer Therapy
The diversity of oncogenic mechanisms and the plasticity of
cancer cells raise enormous challenges in developing precision
therapies. For most cancers, early detection provides the best
opportunity for effective treatment. Viral cancers have the
advantage of having viral-specific targets and biomarkers. For
example, early-stage NPC can be predicted from cell-free EBV
DNA in plasma (171) and EBV-specific IgA (172) and can
be effectively treated with radiation. However, most cancers
are discovered at later stages and fail treatment or develop
resistance and recurrence. This is largely attributed to tumor
heterogeneity and plasticity and the emergence of resistant clonal
populations. Oncogenic viruses provide a rich resource for tumor
cell heterogeneity and evolutionary diversity. Elimination of
persistent oncogenic viruses at early stages is ideal, but not
always possible. Reduction of genetic plasticity and modulation
of selection pressure may be attractive alternative approaches
for treatment of viral cancers. It may also be possible to use
evolutionary principles to improve dosing and timing of therapy.
Additionally, it may be possible to exploit viral genetic plasticity
to eliminate viral cancers. Since excessive genetic variability can
be incompatible with life (173), it may be possible to amplify
viral-induced plasticity through drug intervention. Treatments
that increase gene regulatory noise, such as epigenetic modifiers,
could provoke chaotic and lethal gene expression patterns in
cancer cells that would be resisted by normal cells.

CONCLUSIONS

Viruses are thought to be simple biological systems, yet their
contributions to cancer can be fiendishly complex. If we return
to the question of why some viruses cause cancers but not
closely related others, we have only a partial answer. Among the
common features, is that of long-term persistence of tumor virus
in localized tissue compartments. Another common feature,
as highlighted by Chang and Moore, is the frozen accident
of the defective virus entering the wrong cell type, or cell
with precancerous mutation, or acquired mutation in host or
virus that blocks the natural infection and immune clearance.
Host and virus genetic variations can be susceptibility factors
that enable viral oncogenesis. One additional feature is the
plasticity provided by chronic virus infection, and how that
effects the survival options for infected tumor cells and tumor
fields. Viruses co-opt and perturb numerous cellular pathways
implicated in cancer. These perturbations may occur at different
times (temporal heterogeneity) and in different subpopulations
(spatial heterogeneity) andmay be replaced by cellular oncogenic
drivers at different stages of tumor evolution (interchangeability).
Viral-specific cancer mechanisms may have unique features and
provide new insights into cancer biology and genetic plasticity.

Despite this complexity, viral cancers may be considered low

hanging fruit for cancer therapeutic intervention. Prevention of

virus infection and virus-specific inhibitors have been shown to

diminish cancer risk, and immune targeting of viral proteins

show clinical promise. Deeper understanding of the basic
mechanisms driving cancer cell evolution may also be required
for more effective intervention.

Precision medicine requires discrete knowledge of the causal
factors in disease. Identification of the specific drivers and
treatment with selective drugs for each driver pathway is
a reasonable, rational, and reductionist approach to cancer
therapy. Viral cancers are likely to have different vulnerabilities
than their non-viral counterparts, including mechanisms driving
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cellular plasticity and evolvability. Studying viral cancers may
also help us to solve some of the key questions in cancer biology.
What are the rate-limiting steps in cancer evolution? What are
the most vulnerable nodes of a gene regulatory network for
a particular type of cancer and how can we dampen genetic
and environmental noise to reduce cancer cell plasticity and
evolvability? Can we reverse tissue microenvironment conditions
that preferentially select for cancer cell evolution? Ultimately,
understanding the evolutionary and thermodynamic driving
forces of virus infection and carcinogenesis will provide a more
coherent conceptual framework for research and new avenues
for therapy.
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GLOSSARY

DREAM, Dimerization partner (DP), Retinoblastoma (RB)-
like, E2F and MuvB Complex; EBV, Epstein-Barr Virus;
EBVaGC, Epstein-Barr Virus associated Gastric Carcinoma;
ER, Endoplasmic reticulum; EV, Extracellular Vessicles; GRN,
Gene Regulatory Network; GPCR, G-protein coupled receptor;
KSHV, Kaposi’s Sarcoma Associated Herpesvirus; HSV, Herpes
Simplex Virus; HTLV-1, Human T-cell Leukemia Virus 1;
MCPyV, Merkel Cell Polyomavirus; NK, Natural Killer; HCC,
Hepatocellular carcinoma; HDACs, Histone Deacetylase; HLA,
Human Leukocyte Antigen; NPC, Nasopharyngeal Carcinoma;
NKTCL, Natural Killer-T Cell Lymphoma; NS5A, Non Structural
Protein 5A (Influenza); OXPHOS, Oxidative Phosphorylation;
SV40, Simian Virus 40; XMEN, X-linked immuno-deficiency
with magnesium defect, Epstein-Barr virus infection, and
neoplasia; Viral Genes—EBV Genes: BGLF4, Kinase; BALF1,
Anti-apoptotic; BART, Non-coding RNAs; BHRF1, Anti-
apoptotic; BZLF1, Immediate early b-Zip protein; EBNAs,
Epstein-Barr Nuclear Antigens (EBNA-LP, EBNA1, EBNA2,
EBNA3A EBNA3B, EBNA3C; LMP1, Latency Membrane
Protein 1 (EBV oncogene); LMP2, Latency Membrane Protein
1 (EBV oncogene); KSHV Genes: LANA, Latency Associated
Nuclear Antigen; ORF16, Open Reading Frame 16; vIRFs,
Viral Interferon Regulatory Factors; Polyoma (SV40, MCPyV):
Tag, Tumor Antigen; LT, Large T antigen; ST, Small T antigen;
Adenovirus: E1A, E1B—Early 1A, 1B; HPV: E5, E6, E7—Early
5, 6, 7; HBV: HbX; HTLV-1: Tax; HBZ, Antisense B-zip protein;
Cellular Genes and Proteins: APH1B, Aph-1 Homolog B,

Gamma-Secretase Subunit); APOBEC, Apolipoprotein B mRNA

Editing Catalytic protein; AMPK, Adenosine Monophosphate
Kinase; Bcl2, Breakpoint cluster 2 (anti-apoptotic); Bcl-xL,

BCL2 like; Bid, BH3 Interacting Domain Death Agonist; BIRC5,
Baculoviral IAP Repeat Containing 5/aka Survivin; Bim, Bcl2
like protein 11 (BCL211); CDKN2A1, Cyclin-dependent kinase
inhibitor 2A (aka p16); CTLA4, Cytotoxic T-Lymphocyte
Associated Protein 4; DNMT, DNA methyltransferase; EP400,
E1A Binding Protein P400; GRP, Gastrin Releasing Peptide;
HIF1, Hypoxia Inducible Factor 1; IRF, Interferon Regulatory
Factor; JAK/STAT, Janus Kinase/Signal Transducer and
Activator of Transcription; KMT2B, Lysine Methyl Transferase
2B; NF-kB, Nuclear Factor kB; OCT4, Octamer Binding
Factor 4; PD-L1, Programmed death-ligand 1 (CD274); PI3K,
Phosphatidylinositol 4,5-bisphosphate 3-kinase; PTPN, Protein
Tyrosine Phosphatase Non-Receptor Type; PU.1, Purine Rich
Box Binding factor 1; Puma, p53 upregulated modulator
of apoptosis; P16, Tumor suppressor (CDKN1A1); P53, Tumor
suppressor protein 53; gC1qR, Globular heads of the human
C1q receptor; MAGT, Magnesium Transporter 1; MAPK,
Mitogen-Activated Protein Kinase 1; MLL, Mixed Lymphocytic
Leukemia; Myc, Myc Proto-oncogene; MYCL, Myc-like
gene; mTOR, Mechanistic Target Of Rapamycin Kinase; Ras,
Ras oncogene; RASSF1A, Ras Association Domain Family
Member 1; Rb, Retinoblastoma Tumor suppressor gene; RBPJ,
Recombination Signal Binding Protein For Immunoglobulin
Kappa J Region; RUNX1, Runt-related transcription factor 1;
SIGLEC, Sialic Acid Binding Ig Like Lectin 1; SOCS2, Suppressor
Of Cytokine Signaling 2; Src, Rous sarcoma virus oncogene;
SREBP2, Sterol regulatory element (SRE)-binding protein-2;
STING, Stimulator of interferon genes; TET, Ten-Eleven
Translocation (methylcytosine dioxygenase); TLR, Toll-Like
Receptor; TNF, Tumor Necrosis Factor; TRAFF, TNF receptor
(TNFR) associated factor; TRADD, TNFRSF1A Associated Via
Death Domain.
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