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Long non-coding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides 
in length. Recent studies have demonstrated their involvement in regulating gene 
expression and various biological processes. Among these, myogenesis and 
lipogenesis are particularly important because of their direct effects on muscle 
development and fat deposition in farm animals. These processes are crucial for 
determining meat quality, growth rates, and overall economic value in animal 
husbandry. Although the specific mechanisms through which lncRNAs influence 
these pathways are still under investigation, further research into their roles in muscle 
and fat development is crucial for optimizing farm animal breeding strategies. Here, 
we review the characteristics of lncRNAs, including their biogenesis, localization, 
and structures, with a particular focus on their association with myogenesis and 
adipogenesis. This review seeks to establish a theoretical foundation for enhancing 
farm animal production. In particular, focusing on lncRNAs may reveal how these 
molecules can enhance the economic traits of farm animals, thereby contributing 
to the optimization of farm animal breeding processes.
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1 Introduction

Farm animals are important as they can supply the basic nutritional needs of humankind, 
including meat, eggs, and milk. Additionally, animal products such as gelatin are widely used 
as food additives in confectionery, and farm animal waste serves as an excellent fertilizer. 
Optimizing farm animal production is crucial to meet the ever-growing demand for animal 
products. A key strategy would be to improve the amount and quality of farm animal products 
by understanding the molecular mechanisms of the key biological processes that govern 
animal reproduction and well-being. The mechanisms that regulate skeletal muscle growth, 
development, and fat deposition are critical determinants of meat yield and quality.

Numerous studies have attempted to elucidate the molecular mechanisms underlying 
various animal traits, especially skeletal muscle and adipose tissue development. For instance, 
myogenesis regulators such as MyoD, Myf5, Myogenin (MyoG), and MRF4 are crucial for 
skeletal muscle development, satellite cell activation, and regenerative myogenesis (1). In 
addition, genetic variations in fatty acid synthesis and deposition between different cattle 
breeds have been observed to influence beef marbling (2). Recent studies have shown that 
traits in farm animals, such as muscle (3–6) and fat development (7–11), are influenced not 
only by coding genes but also by the regulatory roles of long non-coding RNAs (lncRNAs).

LncRNAs are a type of non-coding RNA (ncRNA) molecule exceeding 200 nucleotides 
(nts) in length and are known to significantly influence various traits in farm animals. For 
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example, lncRNA muscle growth promoting factor (lncMGPF) is a 
conserved lncRNA found in pigs, which promotes muscle growth and 
regeneration by enhancing HuR-mediated mRNA stability of myogenic 
regulators and acting as a molecular sponge for miR-135a-5p (12). 
LncCCPG1  in bovine adipose cells can alleviate the inhibition of 
lncSLC30A9 expression by miR-93 through miR-93 adsorption 
LncSLC30A9 inhibits cell proliferation by downregulating AKT 
expression and promotes bovine adipocyte differentiation through the 
recruitment of FOS proteins to the peroxisome proliferation-activated 
receptor gamma (PPARγ) promoter (8). A highly specific sheep 
enhanced muscularity Transcript lncRNA (lnc-SEMT) has been 
identified in sheep skeletal muscle tissue. Lnc-SEMT acts as a molecular 
sponge by antagonizing miR-125b to control IGF2 protein abundance 
and promote sheep myoblast differentiation in vitro (13). In chicken 
skeletal muscle, a lncRNA named myosin, heavy chain 1G (MYH1G)-
antisense transcript (MYH1G-AS) has been identified. It promotes the 
transcription of SMAD4 by reducing the interaction between FGF18 
and SMARCA5. This action activates the SMAD4-dependent pathway, 
thereby enhancing the proliferation of myoblasts (14). This review will 
examine recent progress in understanding the role of lncRNAs in 
skeletal muscle development and fat deposition in different farm 
animal species. It will also delve into their regulatory mechanisms at 
the epigenetic, transcriptional, and post-transcriptional levels.

2 Biogenesis of lncRNAs

There are several ways to form lncRNAs in living cells (15): (1): 
Protein-coding gene open reading frames (ORFs) can be  cut and 
mutated to produce lncRNAs (15); (2) Chromatin rearrangement can 
cause two distant untranscribed fragments to concatenate, generating 
multi-exon lncRNAs (15); (3) Retro-transposition can produce 
lncRNAs (15); (4) The same sequence can be duplicated resulting in 
the production of lncRNAs with adjacent repeating sequences (15); (5) 
Insertion of transposable elements can produce functional lncRNAs 
(15); (6) Enhancer transcription can produce enhancer-associated 
lncRNAs (elncRNAs) (16); (7) The upstream region of a promoter can 
be  transcribed in order to generate short-lived lncRNAs (17); (8) 
Excised intron-derived small nucleolar RNA (snoRNA)-ended can 
give rise to some lncRNAs (18, 19). LncRNAs, similar to protein-
coding genes, have conserved core promoter sequences. However, 
because there are fewer overlapping motifs bound by TFs in lncRNA 
promoters (Figure 1A), the expression levels of lncRNAs are generally 
lower than those of protein-coding genes (20). The DNA core 
promoter initiates transcription, which results in the production of 
mRNAs and lncRNAs. The pre-mRNAs are transcribed by Pol II and 
must undergo 5′ capping, splicing and 3′ cleavage and polyadenylation. 
Therefore, the lncRNAs produced are frequently cleaved and 
prematurely terminated during co-transcription. Although the splicing 
mechanisms of lncRNAs resemble those of protein-coding genes, the 
splicing efficiency in lncRNAs is typically reduced (Figure 1B).

3 The roles of lncRNAs in the 
regulation of gene expression

LncRNA can function through multiple ways to regulate gene 
expression. They can interact with proteins, RNAs, and DNAs, acting 

as guides (8), scaffolds (21), and bait (22) molecules in order to 
regulate transcription (Figure  2). This section investigates the 
functions of lncRNAs in the contexts of epigenetics, transcription, and 
post-transcription.

3.1 The roles of lncRNAs in epigenetic level 
regulation

In eukaryotes, chromatin is highly folded and compressed, 
which reduces its ability to bind to TFs, promoters, and enhancers. 
Dynamic alterations of the chromatin structure can promote its 
accessibility. One of the key determinants of transcriptional 
activity is the state of the chromatin, and lncRNAs can regulate 
this parameter in several ways to mediate gene transcription and 
silencing. For instance, lncRNAs interact with proteins, histone-
modifying enzymes, and chromatin-modifying complexes (23) 
and are involved in chromatin epigenetic regulation, such as 
chromatin remodeling (24), gene imprinting (25), and dosage 
compensation (26).

LncRNAs can organize chromatin domains to coordinate gene 
activation. LncRNAs can regulate gene expression by recruiting 
chromatin-modifying complexes, such as PRC2, G9a, and hnRNPK, 
to specific gene loci for chromatin remodeling. The HOX Transcript 
Antisense Intergenic RNA (lncRNA HOTAIR) recruits PRC2, leading 
to histone H3 lysine-27 trimethylation (H3K27me3) and 
transcriptional silencing of a ~ 40-kb region at the HOXD locus in 
various human fibroblasts cultured in vitro (24). Chromatin looping 
involves alterations in the three-dimensional structure of chromatin. 
LncRNAs promote the construction of chromatin loops by recruiting 
specific chromatin modification complexes (27, 28), which can alter 
the expression of adjacent genes (Figures 3A,B). LncRNA HOTTIP 
attracts the MLL1 protein’s histone lysine methyltransferase complex 
by directly binding to the WDR5 protein. This targets MLL1 to the 
HOXA site by chromatin looping, which then induces histone H3 
lysine 4 trimethylation (H3K4me3) and promotes HOXA gene 
transcription (27).

DNA methylation silencing is a common form of epigenetic 
regulation that suppresses gene transcription. LncRNAs often 
influence gene expression by modulating the methylation status of 
CpG islands within promoter regions. DNA methylation silencing is 
a common epigenetic regulatory mechanism that inhibits gene 
transcription. LncRNAs regulate DNA methylation in a bidirectional 
manner, promoting both DNA methylation and demethylation 
(Figure  3C). For instance, LncRNA CRNDE enhances NDRG2 
expression through DNA methylation in B lymphocytes, thereby 
inhibiting cell proliferation and promoting apoptosis (29).

3.2 The role of lncRNAs in transcriptional 
regulation

Gene transcription is a rigorous and complex biological process, 
and lncRNAs can regulate it through various mechanisms. The 
multidimensional mechanisms by which lncRNAs participate in gene 
regulation suggest that we can only learn more about how lncRNAs 
are used for gene regulation by elucidating the RNA sequences and 
structural elements that make the lncRNAs functional.
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LncRNAs can modulate gene transcription by either recruiting 
TFs to target the gene promoter regions or by interfering with Pol II 
at the targeted loci. When lncRNAs are transcribed, they can interfere 
with TF binding to the promoter, thus inhibiting gene transcription. 
A case of this kind of transcriptional interference effect is when the 
lncRNA SRG1, upstream of the yeast gene SER3, straddles the SER3 
promoter sequence during transcriptional elongation, sequestering 
Pol II from binding to the SER3. This results in the repression of SER3 
transcription (30). LncRNAs can also influence gene transcription by 
functioning as co-transcriptional factors (co-TFs). For instance, the 
lncRNA Evf2 interacts with the TF DLX2, forming a complex that 
enhances the transcriptional activity of the Dlx-5/6 enhancer, thereby 
regulating the expression of Dlx5 and Dlx6 (31). LncRNAs can also 

influence gene transcription by hybridizing with DNA to form triple 
helices, recruiting transcriptional cofactors to target gene promoter 
regions. For example, the lncRNA Khps1 generates a DNA–RNA 
triplet with the upstream region of the SPHK1 enhancer, which in turn 
promotes the recruitment of the histone acetyltransferase p300/CBP 
to the SPHK1 promoter. This process activates SPHK1-eRNA 
transcription and enhances SPHK1 expression (32). Numerous studies 
have demonstrated that DNA elements like enhancers (33) and 
promoters (34) located at lncRNA sites, rather than lncRNA 
transcripts, play a regulatory role in gene transcription (Figure 4A). 
For instance, a DNase hypersensitive site on the Lockd locus promoter 
interacts with multiple TFs and regulates Cdkn1b gene expression by 
binding to the Cdkn1b promoter. A study demonstrated a significant 

FIGURE 1

Distinguishing the Characteristics of Long Noncoding RNAs and mRNAs. (A) Compared with mRNAs, lncRNAs have fewer transcription factors (TFs) 
bound to their promoters. In addition, the splicing efficiency of lncRNAs is lower than that of mRNAs. mRNAs are associated with H3K4me1 (associated 
with enhancers) and H3K4me3 modifications (associated with promoters). In addition, lncRNAs are characterized by enrichment of H3K9me3 
modifications at the promoter site, which correlates with tissue specificity. RNA Pol II, RNA polymerase II; TSS, transcription start site. (B) Unlike mRNAs, 
many lncRNAs transcribed by RNA polymerase II (Pol II) are processed inefficiently and most remain in the nucleus. Only a small proportion which are 
similar to mRNAs enters the cytoplasm, and some lncRNAs which are located in the nuclei are degraded by exosomes. While mRNAs are more 
abundant in the cytoplasm and these are invariably associated with ribosomes.

https://doi.org/10.3389/fvets.2025.1540613
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2025.1540613

Frontiers in Veterinary Science 04 frontiersin.org

reduction in Cdkn1b expression following the deletion of the 25 kb 
Lockd locus. However, the reduction of Lockd lncRNA transcripts did 
not affect the expression of Cdkn1b (34). In addition, lncRNAs can 
promote enhancer circularization and regulate gene transcription and 
expression by recruiting chromatin activation complexes to target 
gene promoters (Figure  4B). For example, the Colon Cancer 
Associated Transcript 1, the Long isoform (lncRNA CCAT1L), 
situated within a super-enhancer region, regulates MYC transcription 
by facilitating the long-range interaction between the MYC promoter 
and its enhancer (28).

3.3 The roles of lncRNAs in 
post-transcriptional regulation

LncRNAs are crucial in the regulation of RNA splicing. 
Specifically, metastasis-associated lung adenocarcinoma transcript 1 
(lncRNA-MALAT1) influences the alternative splicing of precursor 
mRNA by affecting the activity of serine/arginine-rich splicing factors 
(35). Additionally, lncRNAs can be cleaved and processed into smaller 
non-coding RNAs, such as miRNAs and piwi-interacting RNAs 
(piRNAs), which are involved in regulating gene expression 
after transcription.

Furthermore, LncRNAs can regulate RNA activity by interacting 
with proteins (36) and RNAs (37). For example, LncMyoD directly 
binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively 
regulates IMP2-mediated translation of proliferation genes such as 
N-Ras and c-Myc (36). LncRNAs can regulate mRNA stability by 
absorbing miRNAs (Figure  5A). For example, intramuscular fat 
deposition-associated long noncoding RNA 1 (lncRNA IMFlnc1) 

binds to miR-199a, preventing it from degrading the target gene, 
caveolin-1 (CAV-1), and promoting adipogenesis (37). LncRNAs can 
influence mRNA stability and translation by binding to mRNAs 
through base pairing interactions (Figure 5B). For example, PU.1 AS 
lncRNA can form a sense-antisense RNA duplex with PU.1 mRNA, 
thereby inhibiting the translation of porcine PU.1 mRNAs (38).

Moreover, extensive research has shown that lncRNAs can encode 
small functional peptides. Most lncRNAs are classified as ncRNAs 
because they typically contain only small open reading frames 
(smORFs), ORFs with 100 codons or less, potentially able to 
be  translated into proteins shorter than 100 aa before post-
translational modifications (such as proteolytic cleavage) (39). 
However, recent research has indicated that lncRNAs can encode 
small peptides, which have been found to be critical for muscle growth 
(40) and relaxation (41, 42). By interacting with lysosomal v-type 
ATPase, the short peptide, SPAR, encoded by LINC00961, can limit 
muscle regeneration by selectively reducing the ability of mTORC1 to 
recognize amino acid stimulation (40).

4 Research progress in farm animals

Pigs, cattle, sheep and poultry are four key farm animals that 
provide abundant animal products for population worldwide, 
including meat, eggs and milk. LncRNAs have been demonstrated to 
influence economic traits in farm animals, though research on their 
role in these animals remains in the early stages. In this section, 
we  review the recent studies that explore the functions and 
mechanisms of lncRNAs on myogenesis, lipogenesis in the 
aforementioned four farm animals.

FIGURE 2

Interactions between lncRNAs and regulatory factors. (A) As guide molecules, lncRNAs can bind to transcription factors to prevent them from attaching 
to the promoters of target genes, thereby regulating gene expression. (B) As guide molecules, lncRNAs can recruit epigenetic regulators (such as 
proteins) to chromatin and regulate the expression of target genes. (C) As scaffold molecules, lncRNAs can recruit different protein complexes to 
regulate target gene expression. (D) LncRNAs can also act as decoys for transcription factors and proteins, preventing them from binding to chromatin, 
thereby regulating gene expression.
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4.1 The roles of lncRNAs in myogenesis of 
farm animals

Skeletal muscle is the main component of animal bodies, and its 
formation and structure directly influence meat yield and quality. 
Recent decades of research have underscored the vital role of lncRNAs 
in the development of skeletal muscle (Table 1).

4.1.1 The roles of lncRNAs in myogenesis of pigs
NONCODE is a comprehensive knowledge database focusing on 

ncRNA genes. Among farm animals, this database1 contains the 
highest number of lncRNA transcripts in pigs, totaling 29,585. In 
recent years, researchers have studied the expression of several 
lncRNAs in porcine muscle tissues (11, 43–47). They have examined 
the differential expression of lncRNAs between muscle and other 
tissues (48), in cloned and normal breeding piglets (49), and in 
gene-edited and normal pigs (50). They have identified numerous 

1 http://www.noncode.org/

lncRNAs linked to the development of porcine muscle in research on 
pig breeds with varying growth rates (43–46). Specifically, 1,407 
differentially expressed lncRNAs (DELs) were found in the skeletal 
muscles of pigs with distinct muscle growth rates throughout their 
lifespans (43). Both RNA-seq and miRNA-seq techniques were used 
to analyze the expression of ncRNAs in the longissimus dorsi muscles 
(LDMs) of pigs (46). By predicting quantitative trait loci (QTL) for the 
DELs, it was observed that most of them were associated with muscle 
development (45).

The quality of pork, including color, water retention and 
tenderness, has been a concern for decades. Breed is a significant 
factor that can affect meat quality in various ways, such as total fiber 
count, fiber cross-sectional area (CSA), and the composition of fiber 
types in a specific muscle within the species. The differential 
expression of lncRNAs among different pig breeds may be crucial in 
accounting for differences in growth rates and meat quality among 
these breeds (44). In the study of lncRNAs in the longest muscle of 
pigs from the same breed at different life stages (11, 47), QTL mapping 
analysis of the DELs identified several loci associated with growth and 
meat quality traits (47). Since vertebrate skeletal muscle consists 
mainly of muscle fibers, the quality of fresh meat is closely linked to 

FIGURE 3

LncRNA-mediated chromatin regulation. (A) LncRNAs can interact with chromatin modification complexes and recruit them to target gene promoters 
in order to activate or repress the transcription of target genes. For example, the lncRNALUNAR1 can promote and interact with chromosome looping, 
and activate the transcription of IGF1R by recruiting the chromatin modification complex mediator to the promoter region of the IGF1R gene. (B) The 
lncRNA, WiNTRLINC1K, can bind to the TCF4/b-catenin complex and mediate the formation of chromatin loops between the promoter of 
WiNTRLINC1 and the regulatory domain of transcription factor, ASCL2. In turn, ASCL2 can bind to the WiNTRLINC1 promoter and positively regulate 
WiNTRLINC1 transcription. (C) LncRNAs can bi-directionally regulate DNA methylation levels. They can, not only promote DNA methylation in 
promoter regions (such as lncRNA Xist), but also play a role in DNA demethylation.
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FIGURE 4

LncRNAs produced through enhancer-mediated gene activation. (A) When the lncRNAs were transcribed, the H3K27ac active enhancer tag in the Uph 
locus is guaranteed to activate transcription of the proximal Hand2 gene. (B) LncRNAs have the function of activating gene expression. LncRNAs can 
promote enhancer cyclization and are able to recruit chromatin-activated complexes (such as transcription factors) to the promoter of the protein 
coding genes. These are capable of regulating the transcription and expression of target genes. TF, transcription factors.

FIGURE 5

LncRNAs regulate mRNA degradation, stability and translation. (A) MiRNAs bind to mRNAs to regulate the degradation and translation of mRNAs, while 
lncRNAs can prevent miRNAs from degrading the target gene mRNAs and regulate mRNAs translation by absorbing to microRNAs (miRNAs). 
(B) Cytoplasmic lncRNAs can bind to mRNAs to form double-stranded RNAs in order to increase the stability and regulate the translation of the mRNAs.
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TABLE 1 LncRNA-mediated regulation of muscle tissues.

LncRNAs Cell localization Role in myogenesis Partner Species Reference

Dum Nucleus/Cytoplasm
DNA methyltransferase inhibits Dppa2 transcription through its neighboring gene Dppa2, 

and promotes myoblast differentiation and muscle regeneration.
DUMTs

Mus musculus
(124)

LncYY1 Nucleus
By recruiting PRC2 to myogenic genes, thereby inhibiting myoblast differentiation. Remove 

YY1/PRC2 to stimulate myogenic activity genes to promote the differentiation of myoblasts.
YY1

Mus musculus
(125)

Gtl2 (Meg3) Nucleus
As a cofactor of PRC2, it can promote the combination of PRC2 and Dlk1 gene and inhibit 

its expression to regulate the development of skeletal muscle.
PRC2

Mus musculus
(126)

Malat1 Nucleus/Cytoplasm Suv39h1 was recruited to the MyoD binding site to inhibit myoblast differentiation. MiR-133/miR-181a/Suv39h1 Mus musculus (19)

RAM Nucleus/Cytoplasm Directly combines with MyoD to promote muscle cell differentiation. MyoD Mus musculus (127)

SRA Nucleus
As a molecular scaffold for the co-activation complex, RNA helicase coregulators P68, P72 

and MyoD.
p68/p72/MyoD

Mus musculus
(128)

MUNC (DRRRNA) Nucleus
Muscle differentiation can be regulated by regulating the transcriptional expression of MyoD 

promoters combined with DRR.
MyoD

Homo sapiens
(129)

CERNA Nucleus
Regulate the chromatin remodeling of the MyoD promoter and the recruitment of Pol II, 

regulate the expression level of MyoD and then regulate muscle development.
MyoD

Mus musculus
(130)

Six1 Nucleus/Cytoplasm
It regulates its neighboring gene Six1 in cis to promote the expression of genes related to 

muscle growth.
Six1

Gallus gallus
(86)

LncMD1 Cytoplasm
By competitively binding miR-133 and miR-135 to regulate the expression of muscle-specific 

genes MAML1 and MEF2C, thereby regulating the differentiation of muscle cells.
MiR-135/miR-133

Homo sapiens、 

Mus musculus
(131)

H19 Nucleus/Cytoplasm Regulates muscle differentiation by acting as a sponge for let-7. Let-7
Homo sapiens、 

Mus musculus
(132)

Lnc-mg Nucleus/Cytoplasm
As a molecular sponge of miR-125b, it controls the protein level of IGF2, thereby affecting 

the myogenic differentiation of mice.
MiR-125b

Mus musculus
(133)

LncMD Nucleus/Cytoplasm
By absorbing miR-125b to increase the expression level of insulin like growth factor 2 (IGF2) 

to promote the differentiation of bovine myoblasts.
MiR-125b

Bos taurus
(134)

Yam1 Nucleus/Cytoplasm

By activating the expression of miR-715 to inhibit the differentiation of myoblasts, miR-715 

targets Wnt7b, which promotes skeletal muscle differentiation, to promote muscle 

development.

MiR-715

Mus musculus

(135)

LncMyoD Nucleus/Cytoplasm
By competing with IGF2 mRNA to bind IMP2 protein, thereby blocking the cell cycle and 

promoting myoblast differentiation.
IMPs

Mus musculus
(36)

1/2-sbsRNAs Cytoplasm It controls myogenesis by base pairing with the 3’-UTR of ARF mRNA and triggering SMD. SINE-contai ning mRNA 3’ UTRs Mus musculus (136)

Sirt1 AS Nucleus/Cytoplasm
Stabilizes Sirt1 mRNA through competitive binding with miR-34a, thereby promoting the 

proliferation of myoblasts.
Sirt1 mRNA

Mus musculus
(137)

MLN SR/ER membrane
It interacts with SERCA to control muscle relaxation by regulating the uptake of calcium ions 

by SR.
SERCA

Mus musculus
(41)

(Continued)
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TABLE 1 (Continued)

LncRNAs Cell localization Role in myogenesis Partner Species Reference

DWORF SR membrane
Improves SERCA activity by replacing SERCA inhibitors, enhance SR Ca2+ uptake and 

myocardial cell contractility.
SERCA

Mus musculus
(42)

DBE-T Nucleus
DBE-T binds to the TrxG protein Ash1L and recruits it to the FSHD site, leading to cis-

disinhibition of nearby genes.
TrxG protein Ash1L

Homo sapiens
(138)

MGPF Nucleus/Cytoplasm Promote muscle growth and regeneration by acting as a miR-135a-5p molecular sponge. MiR-135a-5p Sus scrofa (12)

IRS1 Nucleus/Cytoplasm

Promotes IRS1 gene expression by absorbing the miR-15 family, activate the IGF1-PI3K/

AKT signaling pathway, and promote the proliferation and differentiation of chicken 

myoblasts.

MiR-15

Gallus gallus

(85)

IGF2 AS Nucleus/Cytoplasm
Directly binds with ILF3 protein to affect the expression of genes related to muscle 

proliferation and differentiation to regulate cattle muscle production.
ILF3

Bos taurus
(3)

SYISL Nucleus/Cytoplasm

The recruitment of PRC2 protein leads to the occurrence of H3K27me3 in the promoter 

region of the target gene, thereby promoting the proliferation and fusion of myoblasts, while 

inhibiting myogenic differentiation.

PRC2

Mus musculus

(139)

MDNCR Nucleus/Cytoplasm
Combining with miR-133a to inhibit the expression of GosB promotes myoblast 

differentiation and inhibits cell proliferation.
MiR-133a

Bos taurus
(67)

Lnc-smad7 Nucleus/Cytoplasm
Promotes myoblast differentiation and promotes skeletal muscle regeneration by acting as a 

competitive endogenous RNA of miRNA-125b.
MiRNA-125b

Mus musculus
(140)

Lnc23 Nucleus
Reduces the inhibitory effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby 

promoting myogenesis in bovine skeletal muscle satellite cells.
PFN1

Bos taurus
(115)
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these fibers’ characteristics. Morphological features, including total 
fiber number (TNF) and (CSA), are key determinants of muscle mass 
and meat quality (51). In addition, the quality of fresh meat was 
closely correlated with the fiber type component (FTC) within muscle 
tissue (51). One study identified 92 differentially expressed lncRNAs 
in the muscles of fast-twitch Biceps femoris (Bf) and slow-twitch Soleus 
(Sol). The study found that lncRNA MSTRG.42019 is linked to fiber 
types in porcine skeletal muscle and associated with meat quality 
traits (52).

Meat production can be directly increased by increasing the cross-
sectional area of muscle fibers (53, 54). Biological pathways that 
effectively increase meat yield include promoting cell proliferation, 
differentiation, and muscle cell hypertrophy, leading to increased 
muscle fiber cross-sectional area. Research has shown that lncRNAs 
influence the proliferation and differentiation of porcine muscle cells 
via diverse mechanisms, thereby regulating muscle development at the 
epigenetic level. LncMREF, a conserved lncRNA found in both 
humans and pigs, promotes myogenic differentiation and muscle 
regeneration through its interaction with Smarca5/p300 complexes. 
This interaction leads to the upregulation of key myogenesis 
regulators, including MyoD (55). Certain lncRNAs, such as 
MSTRG.59589, can impact biological processes by modulating the 
expression of adjacent genes. Specifically, lncRNA MSTRG.59589 
increases PALLD expression and promotes the differentiation of 
porcine skeletal muscle satellite cells (PSCs) (5). As members of the 
ceRNA (competitive endogenous RNA) family, lncRNAs play a critical 
regulatory role in the growth of porcine muscle. For example, lncRNA 
maternally expressed gene 3 (lncRNA MEG3) can competitively bind 
to miR-423-5p, thereby upregulating serum response factor (SRF) 
expression and facilitating the differentiation of porcine skeletal 
muscle (6). Some lncRNAs are known to regulate muscle atrophy in 
pigs. Synaptopodin-2 (SYNPO2) intron sense-overlapping lncRNA 
(SYISL), a conserved lncRNA, has been shown to regulate myogenesis 
across mice, humans, and pigs. Additionally, SYISL can promote 
muscle atrophy by interacting with miR-23a-3p/miR-205-5p, and 
miR-103-3p (56). Interestingly, certain lncRNAs, such as H19, can 
influence pig muscle development through various mechanisms. 
Specifically, lncRNA H19 regulates the differentiation of PSCs via 
distinct pathways (57). H19 exhibits two distinct roles: it serves as a 
molecular sponge for miR-140-5p, inhibiting PSCs differentiation, and 
directly binds to the DBN1 protein to regulate their differentiation. 
Additionally, lncRNA H19 interacts directly with the DNA/
RNA-binding protein TDP43 to promote PSCs differentiation (58).

4.1.2 The roles of lncRNAs in myogenesis of 
cattle

The current NONCODE database2 shows that the number of 
known lncRNAs in cattle is second only to that in pigs, with a total of 
23,515. Recent research has extensively identified lncRNAs in bovine 
muscle tissue. Huang et al. created the first extensive genome-wide 
catalog of bovine intergenic lncRNAs, identifying a total of 449 
lncRNAs situated in intergenic regions (59). Since then, a series of 
studies have characterized lncRNAs in bovine muscle tissue and 
explored their functions.

2 http://www.noncode.org/

Research has suggested that lncRNAs influence beef quality. 
Billerey et al. assessed lncRNA expression in LDMs and discovered 
that numerous lncRNAs are positioned within QTLs linked to meat 
quality (60). Since then, several studies have found that lncRNAs are 
located in bovine QTL chromosomal regions associated with muscle 
development (61, 62), and these are mainly linked to those of 
intramuscular fat (IMF), lean meat, and longissimus muscle regions 
and are associated with shear forces. One study found that the DELs 
in hard and tender beef tissues appeared to play important roles in 
physiological processes associated with meat quality (63). In addition, 
one study that analyzed bovine and buffalo meat, which had 
significant differences in shear forces and muscle fiber content, 
detected 2,161 DELs, which allowed the construction of co-expression 
and ceRNA networks (64).

Promoting cell proliferation and differentiation can increase 
meat production. Numerous studies have highlighted the critical 
role of lncRNAs in regulating the proliferation and differentiation 
of bovine skeletal muscle. For example, lncRNA H19 facilitates the 
differentiation of bovine skeletal muscle satellite cells (BSCs) by 
downregulating myogenic suppressor genes such as SIRT1 and 
FoxO1 (65). LncRNAs have been identified to regulate muscle 
production in cattle through a variety of pathways. LncRNAs can 
modulate muscle development in cattle through the adsorption of 
miRNAs. For instance, Liu et  al. discovered and analyzed the 
lncRNAs in the LDM of Shandong Black and Luxi cattle breeds and 
found that LOC104975788 could compete with miR-133a for 
binding to Pax7. This allowed Pax7 expression to regulate skeletal 
muscle development (66). An additional instance is the binding of 
lncRNA MDNCR (67) to miR-133a, which stimulates GosB 
expression, leading to the differentiation of bovine myoblasts and 
reducing cell growth. LncRNA-MEG3 interacts with miRNA-135 
and MEF2C to promote differentiation in bovine skeletal muscle 
(68). LncRNAs also influence bovine muscle development by 
modulating the expression of nearby genes, such as lnc403. Lnc403 
is specifically expressed in bovine myoblasts and myotubes, where 
it suppresses the differentiation of BSCs by disrupting the expression 
of the neighboring gene, Myf6 (69). In addition, lncRNAs influence 
muscle development through interactions with proteins. Lnc23 
promotes myogenesis in BSCs by binding to PFN1 protein and 
reducing its inhibitory effect on RhoA and Rac1 (70). Importantly, 
some lncRNAs such as IGF2 AS can regulate bovine myogenesis 
through more than one pathway. IGF2 AS acts as a complement to 
the IGF2 gene’s intronic area, subsequently influencing the stability 
and expression levels of IGF2 mRNA. Additionally, it interacts with 
the interleukin enhancer binding factor 3 protein to facilitate the 
proliferation and differentiation of bovine myoblasts.

In addition, some studies have explored lncRNAs in yak muscle. 
These studies revealed that some lncRNAs had varying expression 
levels between yaks and bovine-yak hybrids. These lncRNAs could 
regulate muscle growth and development in bovines through multiple 
signaling pathways (71). In yak embryos, Ma et al. discovered many 
DELs in muscle tissues at various developmental stages. Some 
regulatory elements, like IGF2 and Pax7, were incorporated into the 
co-expression networks of these lncRNAs along with their 
corresponding target genes (72). Furthermore, Huang et al. sequenced 
the transcriptomes of the LDMs from hybrids of cattle and yaks at 
different ages and identified 857 differentially expressed lncRNAs (73). 
In addition, this group also identified 791 DELs in cattle-yak and yak 
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LDM samples and constructed six differentially expressed lncRNA-
dominated ceRNA networks (71).

4.1.3 The roles of lncRNAs in myogenesis of 
sheep

Compared to pigs and cattle, research on lncRNAs in sheep 
skeletal muscle is less extensive, with only a limited number of lncRNA 
transcripts identified. However, by analyzing the lncRNAs in the 
skeletal muscle of sheep at different developmental stages, a total of 
4,738 lncRNAs were identified, including 997 that were DELs. Among 
these, lncGTL2 was highly expressed during the differentiation of 
skeletal muscle satellite cells (SCs) and was shown to promote 
myogenic differentiation in sheep by affecting the phosphorylation 
levels of PKA and CREB (74). Multiple studies have analyzed lncRNAs 
in the skeletal muscle of embryos at both gestational and postnatal 
stages. Li et al. identified 404 lncRNAs with differential expression 
between prenatal and postnatal stages of sheep skeletal muscle 
development, providing a detailed expression profile of these lncRNAs 
in the context of sheep skeletal muscle (75). Yuan et al. also identified 
several lncRNAs that regulate myogenic differentiation through 
interactions with miRNAs (76).

At present, research into the roles and mechanisms of lncRNAs in 
sheep muscle formation is still scarce. However, evidence indicates 
that lncRNAs could function as miRNA sponges, potentially playing 
a pivotal role in skeletal muscle development. The lncRNA CTTN-IT1 
restores YAP1 expression by absorbing miR-29a, thereby promoting 
the proliferation and differentiation of satellite cells in sheep skeletal 
muscle (77).

4.1.4 The roles of lncRNAs in myogenesis of 
poultry

Numerous studies, including those by Li et al., have highlighted 
the critical role of lncRNAs in muscle development in poultry, with Li 
et al. being the first to identify 281 novel lincRNAs in chicken skeletal 
muscle at different embryonic stages using RNA-seq technology. 
Notably, the lncRNA gga-lnc-0181 exhibits high expression levels in 
skeletal muscle, indicating its potential importance in muscle 
development (78). Since then, numerous studies have identified 
lncRNAs in chicken skeletal muscle at different embryonic stages 
(79–81). Comparing lncRNA expression in skeletal muscle tissues of 
border chickens with different muscle growth rates at various 
embryonic stages revealed that specific DELs may be  essential in 
explaining these differences in growth rates (82). Recently, several 
DELs have been identified at various stages of chicken muscle 
development. For example, Li et al. investigated lncRNA expression in 
the breast muscles of both juvenile and laying chickens, indicating that 
these lncRNAs could be involved in breast muscle development via 
the MAPK signaling pathways (83). Furthermore, Ju et al. also found 
that lncRNAs play potential regulatory roles in oxidative and glycolytic 
muscle fibers in chickens (84).

Research has not only identified numerous lncRNAs in chicken 
muscle through sequencing but has also highlighted their crucial 
roles in regulating muscle development in poultry. These lncRNAs 
play a role in multiple processes, including the proliferation and 
differentiation of myoblasts, muscle fiber differentiation and 
transformation, and muscle atrophy. Similar to other species, some 
lncRNAs regulate skeletal muscle development by acting as miRNA 
sponges. For example, lncRNA-Six1 functions as a ceRNA by 

binding to miR-1611, thereby modulating the expression of the Six1 
protein. This interaction influences both the proliferation and 
differentiation of chicken myoblasts and the transition between 
different muscle fiber types (4). LncIRS1 has been demonstrated to 
regulate muscle mass and fiber composition in living organisms. 
This lncRNA promotes the proliferation and differentiation of 
chicken myoblasts in  vitro by activating the IGF1-PI3K/AKT 
signaling pathways through adsorption of miR-15 (85). Besides 
ceRNA mechanisms, some lncRNAs regulate gene expression 
through both cis and trans interactions. For example, the lncRNA 
Six1, which is highly expressed in chicken breast tissue, regulates the 
expression of the Six1 gene in cis. It encodes a micro-peptide that 
activates the Six1 gene, thereby enhancing skeletal muscle cell 
proliferation and promoting muscle growth in chickens (86). In 
addition, lncRNAs can interact with proteins to regulate muscle 
development in chickens. For example, epidermal differentiation 
protein containing cysteine histidine motifs 1(lncEDCH1) is a 
lncRNA that shows varying levels of expression between fat broilers 
and lean Chinese native breeds. The lncEDCH1 acts as a decoy to 
bind SERCA2 protein in order to increase its stability and its activity. 
This modulates Ca2+ homeostasis, promotes the slow-twitch 
phenotype, and helps reduce muscle atrophy (87). Additionally, 
lncRNA-FKBP1C, found to be differentially expressed between Bai 
Yinyan (WRR) and Xinghua (XH) chickens, binds to MYH1B to 
stabilize its protein, thereby influencing myoblast proliferation, 
differentiation, and the transformation of skeletal muscle fiber 
types (88).

4.2 The roles of lncRNAs in lipogenesis of 
farm animals

Mammalian skeletal muscle is an important aspect of meat quality 
research, and there is a significant correlation between animal fat 
deposition and meat production traits. The directional deposition of 
fat determines the efficiency of feed utilization by farm animals. High 
subcutaneous fat content leads to poor meat quality, but IMF is crucial 
for regulating the tenderness, water retention, and flavor of the meat. 
In recent decades, a growing number of lncRNAs have been 
recognized for their significant roles in adipose tissue (Table  2). 
Research indicates that lncRNAs can regulate gene expression and 
signaling pathways associated with adipogenesis through 
various mechanisms.

4.2.1 The roles of lncRNAs in lipogenesis of pig
For the past few years, reports have emerged about the discovery 

of lncRNAs in porcine intramuscular (PIM) tissue (89–91), dorsal (92, 
93), and subcutaneous adipose tissues (94–96). LncRNAs are critical 
in porcine adipogenesis and can influence processes such as 
proliferation (97) and differentiation (98) of porcine adipocytes, 
which in turn affects meat quality. Inadequate IMF and excessive 
subcutaneous (SC) fat present the primary challenges to pork 
quality (99).

The content of intramuscular fat was positively associated with the 
flavor, tenderness, and juiciness of pork and was closely linked to 
overall pork quality (97, 100). LncRNAs were found to be involved in 
intramuscular lipogenesis in pigs. Zou et al. conducted transcriptome 
sequencing of porcine LDM at four developmental stages with varying 
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TABLE 2 LncRNA-mediated regulation of adipose tissues.

LncRNAs Role in adipogenesis Partner Species Reference

ADNCR
As a competitive the endogenous RNA absorbs miR-204, it prevents miR-204 from inhibiting its target gene-histone deacetylase 1 (sirtuin 

1, SIRT1), thereby inhibiting adipogenesis.
MiR-204

Bos taurus
(110)

MIR221HG Inhibits the differentiation of bovine adipocytes. YY1 Bos taurus (107)

BADLNCR1 By negatively regulating the expression of GLRX5 gene, it can inhibit the differentiation of bovine adipocytes. GLRX5 Bos taurus (7)

CCPG1
As the sponge of miR-93, the inhibitory effect of miR-93 on the expression of lncSLC30A9 is relieved, and lncSLC30A9 promotes 

adipocyte differentiation by recruiting FOS protein to the promoter of PPARγ.
MiR-93

Bos taurus
(8)

ADINR Activation of C/EBPa transcription and regulation of adipogenesis through histone modification. C/EBPα Homo sapiens (141)

Plnc1
Promotes adipocyte differentiation by reducing the methylation level of the CpG region of the PPAR-γ2 promoter and increasing the 

activity of the PPAR-γ2 promoter.
PPAR-γ2

Mus musculus
(142)

NEAT1 The mature miR-140 binds to NEAT1 to increase NEAT1 expression. MiR-140 Mus musculus (143)

HOXA11-AS1 Regulates adipogenesis by promoting the transcription of adipogenesis-related genes (CEBP-α, DGAT2). CEBP-α/DGAT2 Homo sapiens (144)

ADAL Interacts with hnRNPU and IGF2BP2 to regulate adipocyte differentiation and adipogenesis. HnRNPU/IGF2BP2 Homo sapiens (145)

H19
Inhibits adipogenesis by inhibiting the expression of HDAC in the process of adipogenesis and negatively regulate the expression of Lcor 

adipogenesis by adsorption of miR-188.
MiR-675/miR-188

Homo sapiens
(146)

Uc.417 Inhibits the phosphorylation of p38-MAPK, a key regulator of brown fat activation, to inhibit adipogenesis. p38-MAPK Mus musculus (147)

LncBATE1 Combines with hnRNP U to form a functional ribonucleoprotein complex to promote brown fat production. HnRNP U Mus musculus (148)

LncBATE10 Increase the expression of PGC1α by competitively binding Celf1 to regulate brown adipogenesis. PGC1α Mus musculus (149)

BLNC1 Regulates adipogenesis by forming a ribonucleoprotein complex with EBF2. EBF2 Mus musculus (150)

SRA Promote fat differentiation by activating IGF-1 related signaling pathways. IGF1 Mus musculus (151)

PU.1 AS Prevent PU.1 translation and promote adipogenesis by forming mRNA/AS lncRNAs duplex with PU.1 mRNA. PU.1 Sus scrofa (38)

MIR31HG Promotes adipogenesis by regulating histone modifications at the Fabp4 promoter. Fabp4 Homo sapiens (152)

Paral1 Regulates adipogenesis by binding to RBM14 to enhance PPARγ transcriptional activity. PPARγ Mus musculus (153)

TCONS_00041960 Causes inhibition of adipogenic differentiation by regulating the expression of Gilz as a competitive endogenous RNA of miR-125a-3p. MiR-204/miR-125a Rattus norvegicus (154)

LncRNA-Adi Interacts with microRNA (miR)-449a to enhance cyclin-dependent kinase (CDK)6 expression during adipogenesis. MiR-449a Rattus norvegicus (155)

LncRNA-NEF Inhibition of adipogenesis by modulating the miR-155/PTEN axis. MiR-155/PTEN axis Homo sapiens (156)

RP11-142A22.4 Regulation of Wnt5β expression by sponge miR-587 promotes adipogenesis. MiR-587 Homo sapiens (157)
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IMF content, and identified 1,032 lincRNAs, among which 6 lincRNAs 
might be crucial for IMF development (91). Another investigation 
discovered 6 DELs associated with pathways related to fat deposition 
and lipid metabolism in the IMF of Jinhua and Landrace pigs (89). 
Additionally, the differentially expressed lnc_000414 has been shown 
to inhibit the proliferation of porcine intramuscular adipocytes in 
fat-type versus lean-type pigs (97).

SC fat accumulation correlates with lean carcass percentage (101); 
however, excessive deposition of subcutaneous fat can impair growth 
performance and reduce meat production efficiency (95). LncRNAs 
can also regulate subcutaneous fat deposition (94–96). For instance, 
Zhang et al. performed transcriptome sequencing on subcutaneous 
adipocytes from Jiaxing black pigs and Large White pigs, which 
exhibit substantial differences in subcutaneous fat deposition. They 
observed that several DEL target genes were implicated in the 
PI3K-Akt and MAPK signaling pathways, which are associated with 
fat formation and lipid metabolism (96).

Adipocyte maturation must go through two important steps: 
adipocyte proliferation and adipocyte differentiation. Currently, 
many lncRNAs are considered to be  key regulators of porcine 
adipocyte proliferation and differentiation. For example, lncIMF4 
inhibited adipogenesis in PIM pre-adipocytes by promoting 
lipolysis (102). LncRNAs regulate porcine lipogenesis through 
various mechanisms, including interactions with other RNAs. For 
instance, PU.1 AS lncRNAs, transcribed from the porcine PU.1 
gene, can suppress PU.1 protein expression and promote porcine 
adipogenesis by forming sense-antisense duplexes with PU.1 mRNA 
(38). Furthermore, lncRNAs can also interact with proteins to 
regulate porcine fat development. LncMYOZ2 was shown to 
interact with adenosylhomocysteinase (AHCY) protein to regulate 
MYOZ2 expression and thus promote adipogenesis and 
differentiation in porcine pre-adipocytes (98). Several lncRNAs are 
known to regulate adipogenesis by acting as ceRNAs. The lncRNA 
IMFlnc1 promoted adipogenesis in PIM adipocytes by absorbing 
miR-199a, thereby upregulating the expression of the caveolin-1 
gene in a similar way to some ceRNAs (37). In addition, lncIMF2 
can promote adipogenesis in PIM pre-adipocytes by sponging 
miR-217 (103).

4.2.2 The roles of lncRNAs in lipogenesis of cattle
Tenderness, flavor, juiciness, and color are crucial parameters for 

assessing beef quality. The deposition of fat is related to the quality of 
beef. LncRNAs have been identified as essential regulators of 
lipogenesis. Recent research has revealed numerous lncRNAs linked 
to bovine adipose development by analyzing their expression across 
various developmental stages of adipose tissue (104, 105) and by 
contrasting them with muscle tissues (64).

The IMF content influences the degree of marbling and is regarded 
as a key factor impacting the sensory quality of beef (106). However, 
the function of lncRNAs in intramuscular fat deposition in cattle is 
not yet fully understood, with only a few studies addressing this 
aspect. Yang et  al. performed comprehensive transcriptional 
sequencing and analyzed intramuscular preadipocytes at various 
differentiation stages in Qinchuan cattle, identifying 501 differentially 
expressed lncRNAs. In addition, they found that the lncRNAs’ target 
genes are linked to pathways related to lipogenesis and adipocyte 
differentiation. They proposed that some lncRNAs may absorb 
miRNAs and regulate lipogenesis (105). Another study identified 

lncRNAs in the longest back muscles of yaks with varying 
intramuscular fat content and made a similar finding (9). The function 
of lncRNAs in bovine intramuscular fat still requires 
further investigation.

Preadipocytes such as fibroblasts gradually develop into 
adipocytes, and adipocytes continue to accumulate and eventually 
form adipose tissue within. Adipogenesis occurs through the 
proliferation and differentiation of adipocytes. LncRNAs play a vital 
role in regulating the proliferation and differentiation of adipocytes. 
The novel lncRNA miR-221 host gene (MIR221HG), located in the 
transcripts of beef cattle, was identified as having differential 
expression during adipocyte differentiation in beef cattle, and its 
inhibition significantly increased adipocyte differentiation (107). 
Furthermore, the expression of lncFAM200B, which had higher levels 
in fat than in muscles, reduced cyclin D1 expression and notably 
suppressed the proliferation of bovine pre-adipocytes (108). LncRNAs 
have been shown to affect both the proliferation and differentiation of 
bovine adipocytes through multiple pathways. LncRNAs can influence 
the proliferation and differentiation of bovine adipocytes by 
cis-regulating gene expression. GLRX5 acts as a stimulator that 
enhances lipid droplet formation and the expression of adipogenic 
genes. Conversely, the bovine adipocyte differentiation–related 
lncRNA 1 (lncRNA BADLNCR1) suppresses bovine lipogenesis by 
downregulating GLRX5 expression (7). In addition, lncRNAs can also 
regulate cattle fat development as ceRNAs. For example, lncPRRX1 
functions as a ceRNA to promote bovine myoblast proliferation by 
releasing CDC42 by competitively binding to miRNA-137 (109). The 
lncRNA, adipocyte differentiation-associated lncRNA (ADNCR), 
inhibits adipocyte differentiation by competing with miR-204 for 
binding, preventing it from inhibiting its target gene, SIRT1, which is 
a histone deacetylase (110). In buffalo adipocytes, lncRNA 
NDUFC2-AS promotes adipogenic differentiation by increasing the 
expression of C/EBP-α and THRSP (111). Sorting and assembly 
machinery component 50 (LncSAMM50) was also implicated to 
promote adipogenic differentiation of buffalo adipocytes by 
upregulating adipogenic markers in a 3 T3-L1 cell line in vitro (112). 
The regulation of lncRNAs in adipose tissue is intricate and 
encompasses various pathways. Therefore, evaluating their effects on 
adipocyte proliferation and differentiation requires consideration of 
their impact on signaling pathways as well.

4.2.3 The roles of lncRNAs in lipogenesis of sheep
At present, research on the regulatory functions of lncRNAs in 

sheep fat development is limited, with the majority of studies 
concentrating specifically on tail fat. Some DELs were identified by 
sequencing adipose tissue from different sheep breeds. Ma et  al. 
performed high-throughput sequencing on tail adipose tissue from 
sheep breeds with varying levels of tail fat and identified 37 DELs (113). 
The study revealed that certain lncRNAs are involved in fatty acid 
metabolism and elongation, as well as in other pathways contributing 
to fat deposition. Another study identified 7 DELs in fat-tailed versus 
thin-tailed sheep, with target genes associated with fat development 
pathways. Notably, three of these lncRNAs were located within the 
QTLs linked to ‘tail fat deposition,’ indicating their potential role in lipid 
metabolism (114). Su et al. performed comprehensive transcriptome 
sequencing on tail tissues from sheep breeds with varying tail types, 
identifying 728 DELs. Among them, lncRNA-MSTRG.24995 directly 
affected tail fat deposition through the FASN gene, while 
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lncRNA-MSTRG.36913 indirectly affected this process through the 
THRSP gene (115). In addition, Bao et al. investigated a DEL in the 
longissimus thoracis muscle of Tibetan sheep at four different 
developmental stages. This lncRNA was characterized as a trans-
regulator of FASN and plays a role in regulating fatty acid metabolism 
throughout the growth and development of the animals (116). A recent 
study characterized lncRNAs in sheep intramuscular fat, finding that 
61 lncRNAs were differentially expressed during fat deposition in 
Aohan fine wool sheep. The pathways associated with lipid 
accumulation were significantly enriched among the target genes of 
these lncRNAs (117).

4.2.4 The roles of lncRNAs in lipogenesis of 
poultry

Different from mammalian adipose cells, poultry adipose cells 
have limited capacity to generate fat. The body fat of broilers is mainly 
deposited in abdominal fat. Research has demonstrated that lncRNAs 
can modulate abdominal fat deposition in poultry. Jing et  al. 
performed transcriptome sequencing on the abdominal adipose tissue 
of both fat and lean broilers, identifying 30 DELs. Among them, 16 
lncRNAs were specifically expressed in adipose/lean cells (118).

The first fat to be deposited is intermuscular fat, and the amount 
of intermuscular fat determines the tenderness of the meat. Research 
has revealed that lncRNAs can modulate intermuscular fat 
accumulation in poultry. 7 DELs were identified during the 
differentiation of intramuscular pre-adipocytes, which may have 
significant roles in the development of intramuscular pre-adipocytes 
in chickens (119). LncRNA IMFNCR can also absorb miR-128-3p and 
miR-27b-3p, which increases the expression of PPARγ and promotes 
the differentiation of chicken intramuscular adipocytes (120).

Many lncRNAs have been discovered to regulate adipogenesis in 
chickens through various mechanisms. Some lncRNAs can influence 
gene expression through a cis-regulatory mechanism. For instance, 
adipocyte differentiation-associated lncRNA (lncAD) was identified to 
promote the expression of TXNRD1, thus promoting adipogenic 
differentiation and inhibiting the proliferation of chicken pre-muscular 
adipocytes (121). Other studies have also revealed that lncRNAs regulate 
fat development in chickens at an epigenetic level. For example, Chen 
et al. sequenced lncRNA in abdominal adipose tissue of broiler strains 
with different abdominal fat content, and found one DEL, lncPRDM16. 
The 5′-end functional element of lncPRDM16 is essential for it to inhibit 
the proliferation of adipocytes and regulate the activity of the PRDM16 
promoter (122). Furthermore, some lncRNAs can also absorb miRNAs 
and release the expression of their target gene in order to regulate 
adipose formation in chickens. For example, Tian et al. identified 19,212 
potential lncRNAs in the abdominal fat of chickens. MSTRG.25116.1 
can absorb miR-1635, leading to increased FAAH expression, which is 
essential for adipogenic differentiation in chicken pre-adipocytes (119). 
LncRNA FNIP2 has been shown to accelerate chicken lipid synthesis 
through the release of FNIP2 by adsorption of miR-24-3p (123).

5 Discussion and perspectives

In this review, we  discuss the latest developments in lncRNA 
research concerning the biogenesis, myogenesis, and lipogenesis of 
lncRNAs in farm animals, including pigs, cattle, sheep, and poultry. 

Our review highlights the growing understanding of lncRNAs and 
their significant impact on various biological processes affecting farm 
animal production. Advancements in modern molecular biology and 
next-generation sequencing technologies have led to the identification 
of an increasing number of lncRNAs associated with farm animal 
traits, including muscle and fat development (7–11). However, a 
comprehensive understanding of lncRNA functions and mechanisms 
in farm animals remains incomplete, with many lncRNAs and their 
roles still to be fully elucidated.

A major objective in farm animal production is to enhance meat 
yield and quality through the regulation of lncRNA expression. This 
involves developing strategies to harness lncRNAs, which are known 
to play a vital role in regulating muscle cell proliferation, 
differentiation, and atrophy. Techniques such as gene editing, RNA 
interference, and antisense oligonucleotides have been employed to 
overexpress or knock down specific lncRNAs, thereby influencing 
muscle hypertrophy and overall meat yield.

However, progress in lncRNA research in farm animals is limited 
by several factors. Firstly, there is a lack of data regarding the 
recognition and functional annotation of lncRNAs. Current lncRNA 
databases primarily cover humans and mice, with only a few providing 
expression profiles of lncRNAs in farm animals. The lncRNA 
sequences are generally less conserved among farm animal species, 
which can lead to recognition impairment due to insertions and 
deletions within these sequences, which may occur at the same 
position in the genome. Secondly, the annotation of lncRNAs in farm 
animals is far less complete than in humans and mice, both regarding 
the quantity of gene loci and the variety of alternative isomers 
identified. Therefore, there is a concerted and urgent need to accelerate 
the annotation of the non-coding regions of the farm animal genome. 
Thirdly, the focus is primarily on identifying lncRNAs, with a need for 
further research into their functions and regulatory mechanisms, 
particularly in cattle and sheep.

Future studies need to explore the functions and mechanisms of 
action of lncRNAs, as well as clarify their roles in myogenesis, 
adipogenesis, and other traits in farm animals. In research on the 
mechanisms of lncRNAs, there are fewer studies on their epigenetic 
and transcriptional roles, as well as their involvement in pre/during/
post transcriptional processes. To explore the mechanisms of 
lncRNAs more effectively, further development and application of 
advanced techniques, such as domain-specific chromatin isolation by 
RNA purification and capture hybridization analysis coupled with 
RNA target mass spectrometry, are needed. Moreover, existing 
research on lncRNA functionality is primarily confined to in vitro 
studies involving farm animal cells or cell lines, with a limited 
number of in  vivo investigations. Therefore, specific lncRNAs 
knockout models in vivo are required as their effects on the whole 
organism remain largely unknown. The potential of lncRNA 
knockout or overexpression for enhancing farm animal breeds still 
requires further investigation.

In conclusion, lncRNAs represent a promising frontier in farm 
animal research, with the potential to revolutionize animal breeding 
and production. The insights gained from studying lncRNAs in 
myogenesis and lipogenesis offer valuable opportunities for 
improving farm animal traits. Continued research, supported by 
technological advancements and interdisciplinary approaches, will 
be essential for fully realizing the potential benefits of lncRNAs in 
animal husbandry.
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