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Background: Heart rate variability (HRV) is believed to possess the potential 
for disease detection. However, early identification of heart disease remains 
challenging, as HRV analysis in dogs primarily reflects the advanced stages of 
the disease.

Hypothesis/objective: The aim of this study is to compare 24-h HRV with sleep 
HRV to assess the potential utility of sleep HRV analysis.

Animals: Thirty healthy dogs with no echocardiographic abnormalities were 
included in the study, comprising 23 females and 7 males ranging in age from 
2  months to 8  years (mean [standard deviation], 1.4 [1.6]).

Methods: This study employed a cross-sectional study. 24-h HRV and sleep 
HRV were measured from 48-h Holter recordings. Both linear analysis, a 
traditional method of heart rate variability analysis, and nonlinear analysis, a 
novel approach, were conducted. Additionally, circadian rhythm parameters 
were assessed.

Results: In frequency analysis of linear analysis, the parasympathetic index 
nHF was significantly higher during sleep compared to the mean 24-h period 
(mean sleep HRV [standard deviation] vs. mean 24  h [standard deviation], 95% 
confidence interval, p value, r-family: 0.24 [0.057] vs. 0.23 [0.045], 0.006–0.031, 
p  =  0.005, r  =  0.49). Regarding time domain analysis, the parasympathetic 
indices SDNN and RMSSD were also significantly higher during sleep (SDNN: 
179.7 [66.9] vs. 156.6 [53.2], 14.5–31.7, p  <  0.001, r  =  0.71 RMSSD: 187.0 [74.0] vs. 
165.4 [62.2], 13.2–30.0, p  <  0.001, r  =  0.70). In a geometric method of nonlinear 
analysis, the parasympathetic indices SD1 and SD2 showed significantly higher 
values during sleep (SD1: 132.4 [52.4] vs. 117.1 [44.0], 9.3–21.1, p  <  0.001, r  =  0.70 
SD2: 215.0 [80.5] vs. 185.9 [62.0], 17.6–40.6, p  <  0.001, r  =  0.69). Furthermore, 
the circadian rhythm items of the parasympathetic indices SDNN, RMSSD, SD1, 
and SD2 exhibited positive peaks during sleep.

Conclusion: The findings suggest that focusing on HRV during sleep can provide 
a more accurate representation of parasympathetic activity, as it captures the 
peak circadian rhythm items.
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1 Introduction

Heart rate variability (HRV) refers to the variation in time 
between successive heartbeats, or RR intervals, caused by the 
changes in autonomic nerve stimulation to the sinus node (1). HRV 
analysis in human medicine has emerged as a valuable analytical tool 
for early disease detection and prognostic prediction across various 
conditions. For example, in COVID-19, a decrease in HRV has been 
observed to predict cardiac injury earlier than myocardial markers, 
suggesting that its early detection could potentially enhance patient 
prognosis (2). In the context of cardiovascular abnormalities, studies 
have suggested that decreased resting HRV in children conceived 
through assisted reproduction techniques may predispose them to 
premature cardiovascular aging (3). Abnormal HRV parameters 
have also been suggested to be associated with the development of 
congestive heart failure in asymptomatic individuals (4). On the 
other hand, recent findings in dogs suggest that combination therapy 
involving pimobendan, furosemide, and enalapril restores normal 
autonomic nervous system activity in dogs with myxomatous mitral 
valve degeneration (MMVD) stage C (5). It has been reported that 
both sympathetic and parasympathetic tone are altered in dogs with 
mitral valve disease before clinical signs appear, as demonstrated by 
the using of short-term HRV analysis (6). Some reports have also 
evaluated the influence of the dog-owner relationship on emotional 
reactivity in dogs and whether medication can positively affect stress 
indicators (7, 8). In dogs, it has been utilized to assess cardiac 
autonomic balance in therapy, disease assessment, and behavioral 
research (5–7). Other have been reported in a variety of areas, such 
as assessing stress levels related to animal welfare, evaluating 
intraoperative analgesia and nociceptive balance, and assessing 
intraoperative pain to improve postoperative care (9–11). In all of 
this cases there is a predominant sympathetic tone and a consequent 
endocrine response that directly influences heart rate and, therefore, 
HRV (12–15).

Several reports aiming early detection of cardiac disease in dogs 
have shown that sympathetic indices of HRV parameters increase as 
heart disease progresses (16). Respiratory arrhythmias, characterized 
by variations in the heart rate that are synchronized with the 
respiratory cycle, commonly occur during parasympathetic (vagal) 
tone. Particularly in the presence of heart disease, these respiratory 
arrhythmias can be  a factor in assessing the progression of the 
condition, as they may diminish or become less prominent as the 
disease progresses (17). On the other hand, canine respiratory 
arrhythmias can complicate HRV analysis. Normal RR interval 
variability in dogs during sleep and rest can reach as high as 77%, 
while extrasystoles have been observed to exhibit variability ranging 
from 50 to 60%. This variability can make them challenging to 
distinguish in conventional linear analysis, which may result in the 
exclusion of data that could potentially contain valuable information 
for disease identification (16, 18, 19). Therefore, some reports indicate 

that HRV analysis in dogs may only reflect only advanced disease, 
posing challenges for its use in early detection and prognosis 
prediction unlike in human medicine (11). Additionally, in humans, 
daytime activity is also a factor that disrupts heart rate variability (20). 
Even in the same individual, unrestricted activity can vary from day 
to day, unpredictably affecting 24-h HRV (21). In recent years, sleep 
has been proposed as a time-efficient measure of HRV that is less 
susceptible to environmental factors than daytime measurements (22). 
Although the relationship between sleep HRV and cardiovascular 
events in humans is emerging, there is limited data specifically on 
sleep HRV in dogs.

Based on the above, we hypothesized that there is a difference 
between sleep HRV and 24-h HRV in dogs. We focused on the sleep 
period, during which the parasympathetic nervous system is 
dominant, and respiratory arrhythmia is high, unaffected by daytime 
activities. The aim of this study is to compare 24-h HRV with sleep 
HRV to assess the potential utility of sleep HRV analysis. A 
comparison between 24-h HRV and sleep HRV was conducted using 
both conventional analysis method, such as linear analysis, and a 
novel analysis method, nonlinear analysis, which has been shown to 
be  an indicator with high specificity, sensitivity, and diagnostic 
accuracy for identifying dogs at risk of death (23).

2 Materials and methods

This is a cross-sectional study.

2.1 Animals

Dogs for the study were selected from those brought to the 
Department of Dog & Cat Pediatric Hospital in Tokyo, Japan. Healthy 
dogs were chosen from among those admitted to the hospital for pet 
boarding or temporary dog care. Additionally, experimental Beagle 
dogs from our laboratory at Kitayama Labes in Nagano, Japan, were 
enrolled between August 2018 and January 2023. G*Power (The 
G*Power Team, G*Power 3.1.9.7 version, Germany) was used to 
calculate sample sizes. To adapt a paired t-test, we  set α = 0.05, 
1-β = 0.8, and effect size (d-family) = 0.5. The sample size was 
calculated to require at least 34 cases, so efforts were made to collect 
dogs for the study as a target value. Healthy dogs with normal physical 
examination and echocardiography were selected as the test subjects 
for this study. Dogs with obvious pain on physical examination were 
excluded. Puppies weighing less than 1.0 kg and too small to be fitted 
with a Holter electrocardiograph were also excluded from the study. 
All dog owners provided their consent for their pets to participate in 
the study. Experimental dogs were handled according to the guidelines 
established by the Institutional Animal Care and Use Committee of 
the TUAT (Approval number: R05-140).
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2.2 Holter monitoring

The Holter electrocardiograph used in this study was 
manufactured by NIHON KOHDEN CORPORATION (RAC-5203, 
Japan). Prior to electrode placement, the dogs’ thoraxes were shaved 
vertically from the sternal scape to the xiphoid process and 
horizontally around the fifth and sixth intercostal spaces and cleaned 
with alcohol. Disposable ECG electrodes (XUNDA BRAND, China) 
were positioned using the M-X induction method and the R-L 
induction method, which is perpendicular to the M-X method. 
Subsequently, the induction cords were attached to the electrodes, 
CH1- (red) electrodes placed on the manubrium of the sternum, 
CH1+ (yellow) on the xiphoid process, CH2- (orange) on the right 
5th ~ 6th intercostal space, CH2+ (blue) on the left 5th ~ 6th intercostal 
space, and a ground electrode (black) in the middle (24) (Figure 1). 
Both M-X and R-L leads were recorded. To secure the Holter recorder 
and leads to the dog, an elastic bandage and a vest utilized (Figure 2). 

Holter electrocardiogram (ECG) measurements were conducted by 
veterinarians and clinical laboratory technicians in the TUAT 
laboratory for 48 h period, during which the animals were allowed free 
movement within the enclosure.

2.3 Heart rate variability

For the 48-h Holter ECG measurements, the period from 12 p.m. 
on the first night to 12 a.m. on the second night was designated for 
24-h HRV, while the period from 12 p.m. on the first night to 8 a.m. on 
the second day was earmarked for analysis as sleep HRV. HRV analysis 
was conducted using the Juntendo University algorithm with 
MATLAB (MathWorks, R2022a, United  States). Both traditional 
linear analysis and a newer nonlinear analysis method were employed 
under the following conditions.

2.3.1 Linear heart rate variability
HRV variables for frequency analysis include total power (TP, 

0–0.4 Hz), ultra low frequency (ULF, 0–0.00333 Hz), very low 
frequency (VLF, 0.00333–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), 
and high frequency (HF, 0.15–0.4 Hz). The parameters utilized in this 
study were normalized high frequency (nHF) and LF/HF ratio. 
Normalization eliminates much of the significant within-subject and 
between-subject variation, resulting in increased reproducibility. 
Therefore, HF and LF were normalized using the equations nHF = HF 
/ (LF + HF) and normalized low frequency (nLF) = LF / (LF + HF) (25). 
Regarding time domain analysis in linear analysis, standard deviation 
on NN intervals (SDNN) and root mean squared of successive RR 
intervals (RMSSD) were employed. SDANN, SDNN index and pNN50 
were not included in the analysis for the following reasons (26). (1) 
SDANN is correlated with SDNN and is generally considered 
redundant. (2) SDNN index only estimates variability due to factors 
affecting HRV within a 5 min period. (3) RMSSD typically provides a 
better assessment of respiratory sinus arrhythmia (RSA) and most 
researchers prefer it over pNN50.

2.3.2 Nonlinear heart rate variability
For the nonlinear analysis, both geometric and fractal analyses 

were employed. Geometric analysis involved plotting a Poincaré 
plot by graphing every RR interval against the prior interval, thus 
creating a scatter plot. This plot can be analyzed by fitting an ellipse 
to the plotted points. The standard deviation of the distance of each 
point from the y = x axis was measured as SD1 (width of ellipse), 
While the standard deviation of the distance of each point from 
y = x + mean R-R interval was measured as SD2 (length of ellipse) 
(26–31). The ratio SD1/SD2 was measured to assess autonomic 
balance. Since the healthy heartbeat interval are complex and 
variable, detrended fluctuation analysis (DFA) was utilized for 
fractal analysis. DFA quantifies the correlative properties in 
non-stationary physiological series by examining correlations 
between consecutive RR intervals (32, 33).

2.3.3 Circadian rhythm
Circadian rhythms were measured to identify the maximum peak 

for each item. The entire 24-h normal beat RR interval data were 
divided into 5-min segments for circadian rhythm analysis. HRV 
circadian rhythm items were fitted to a cosine periodic function and 

FIGURE 1

The M-X induction method and the R-L induction method. CH1- 
(red) electrodes placed on the manubrium of the sternum, CH1+ 
(yellow) on the xiphoid process, CH2- (orange) on the right 5th  ~  6th 
intercostal space, CH2+ (blue) on the left 5th  ~  6th intercostal space, 
and a ground electrode (black) in the middle.

FIGURE 2

A vest to secure the Holter recorder and leads to the dog.
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measured (34). These measurements included nHF, LF/HF, SDNN, 
RMSSD, SD1, SD2, SD1/SD2, and DFA.

2.4 Statistical analysis

Statistical analyses were conducted using R software (R 
Development Core Team, version 4.1.0, New zealand). The 
significance level set at p < 0.05. A difference test was adapted to 
examine the difference between 24-h HRV and sleep HRV. Normality 
was confirmed using the Shapiro–Wilk test. If the distribution 
followed a normal distribution, a paired t-test was used. Conversely, 
if the distribution did not follow a normal distribution, the Wilcoxon 
signed-rank sum test was applied. Parametric data are presented as 
means and standard deviations, with 95% confidence intervals also 
calculated. Nonparametric data are presented as median and 
interquartile range. The effect size was calculated using R-family. HRV 
circadian rhythm times were quantified.

3 Results

3.1 Animals

A total of 30 dogs were included in the present study, comprising 
23 females and 7 males, with ages ranging from 2 months to 8 years 
(mean [standard deviation], 1.4 [1.6]), and weights ranging from 1.7 
to 9.3 kg (5.6 [2.9]). The breeds included Beagles (n = 16), Chihuahuas 
(n = 4), Miniature Schnauzers (N = 2), Mongrels (n = 3), Miniature 
Pinscher (n = 1), Yorkshire Terrier (n = 1), Maltese (n = 1), Border 
Collie (n = 1), and Miniature Dachshund (n = 1). No abnormal rhythm 
findings that would affect HRV were detected on the Holter ECG.

3.2 Linear heart rate variability

Linear HRV data were summarized in Table 1. Frequency analysis 
nHF was significantly higher in sleep HRV compared to in 24-h HRV 
(mean [standard deviation], 95% confidence interval, p value, 
r-family: 0.24 [0.057] vs. 0.23 [0.045], 0.006–0.031, p = 0.005, r = 0.49). 

Meanwhile, there was no statistically significant difference in LF/HF 
between 24-h HRV and sleep HRV (0.87 [0.38] vs. 0.84 [0.49], −0.11-
0.15, p = 0.72, r = 0.067). In time domain analysis, both SDNN and 
RMSSD were significantly higher in sleep HRV than in 24-h HRV 
(SDNN: 179.7 [66.9] vs. 156.6 [53.2], 14.5–31.7, p < 0.001, r = 0.71) 
(RMSSD: 187.0 [74.0] vs. 165.4 [62.2], 13.2–30.0, p < 0.001, r = 0.70).

3.3 Nonlinear heart rate variability

Nonlinear HRV data were summarized in Table  1. In the 
geometric analysis, both SD1 and SD2 were significantly higher sleep 
HRV than 24-h HRV (SD1: 132.4 [52.4] vs. 117.1 [44.0], 9.3–21.1, 
p < 0.001, r = 0.70) (SD2: 215.0 [80.5] vs. 185.9 [62.0], 17.6–40.6, 
p < 0.001, r = 0.69). However, there was no significant difference in 
SD1/SD2 between 24-h HRV and sleep HRV (median [interquartile 
range], 0.63 [0.59–0.66] vs. 0.60 [0.54–0.65], p = 0.43, r = 0.041). 
Additionally, DFA in fractal analysis showed no statistically significant 
difference between 24-h HRV and sleep HRV (0.71 [0.11] vs. 
0.71[0.12], −0.024-0.040, p = 0.62, r = 0.092).

3.4 Circadian rhythm

An average example of circadian rhythm elements for HRV 
indicators is shown in Figure 3, while a representative example is 
illustrated in Figure 4. The parasympathetic indicators SDNN (mean 
[standard deviation]: 6.42 [5.07]), RMSSD (7.45 [6.41]), SD1 (7.45 
[6.41]), and SD2 (5.8 [3.82]) exhibited positive peaks during sleep 
HRV. However, the positive peak for nHF (9.92 [8.06]), a 
parasympathetic index, was observed to fall outside the range defined 
as sleep HRV.

4 Discussion

4.1 Brief summary

One of the main objectives of the present study was to compare 
24-h HRV with sleep HRV to delineate the differences. The findings 

TABLE 1 Heart rate variability variables during 24  h and sleep in 30 dogs.

Indices Units 24  h HRV Sleep HRV 95% 
Confidence 

interval

p value r-family

Mean 
(SD)

Median 
(range)

Mean 
(SD)

Median 
(range)

nHF ms2 0.23 (0.045) – 0.24 (0.057) – 0.006–0.031 0.005* 0.49

LF/HF ms2 0.87 (0.38) – 0.84 (0.49) – −0.11 - 0.15 0.72 0.067

SDNN ms 156.6 (53.2) – 179.7 (66.9) – 14.5–31.7 < 0.001* 0.71

RMSSD ms 165.4 (62.2) – 187.0 (74.0) – 13.2–30.0 < 0.001* 0.7

SD1 ms 117.1 (44.0) – 132.4 (52.4) – 9.3–21.2 < 0.001* 0.7

SD2 ms 185.9 (62.0) – 215.0 (80.5) – 17.6–40.6 < 0.001* 0.69

SD1/SD2 % – 0.63 (0.59–0.66) – 0.60 (0.54–0.65) – 0.43 0.041

DFA 0.71 (0.11) – 0.71 (0.12) – −0.024–0.040 0.62 0.092

Data are expressed as mean, standard deviation, and median, range. Asterisks (*) are used to compare significance between 24 h HRV and sleep HRV (*p < 0.05). nHF, SDNN, RMSSD, SD1, 
and SD2 were significantly higher for sleep HRV. For abbreviations of HRV variables, nHF, normalized high frequency; LF, low frequency; SDNN, Standard deviation of NN intervals; RMSSD, 
Root mean square of successive RR interval differences; SD1, Poincaré plot standard deviation perpendicular the line of identity; SD2, Poincaré plot standard deviation along the line of 
identity; DFA, Detrended fluctuation analysis.
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of the present study suggest that the parasympathetic indices nHF, 
SDNN, RMSSD, SD1, and SD2 predominantly reflect parasympathetic 
activity during sleep. Moreover, as the positive peaks of the circadian 
rhythm elements of the parasympathetic indices fall within the range 
defined as HRV during sleep, HRV during sleep can serve as an 
indicator of the peak parasympathetic activity during the day. These 
results support the hypothesis that differences exist between 24 h HRV 
and sleep HRV.

4.2 Comparison with previous studies

Previous studies in humans have suggested that parasympathetic 
activity increases during the night with the circadian rhythm 
components of the HRV parasympathetic index exhibiting a positive 
peak during nighttime (34). The data presented in the present study 
suggest that sleep HRV may be useful metric in dogs, as a valuable 
analytical tool for early detection and prognosis of various diseases, as 
they exhibit similar changes to those observed in humans. This study 
distinguishes itself from previous studies by utilizing circadian 
rhythms to identify the maximum peak of circadian rhythm elements 
of parasympathetic indices within a 24-h period focusing specifically 
on the measurement range of sleep HRV. Rasmussen et al. (35) defined 
sleep HRV as the period starting from 30 min after the dog enters 
sleep and extending to 6 h. Blake et al. (28) also defined resting HRV 
as the period from 0:00 to 6:00 and activity HRV as the period from 
12:00 to 18:00. Since both measurements are based on activity records, 

the measurement times are back and forth. Therefore, it would 
enhance the external validity of the results if the peak time of the HRV 
circadian rhythm item could be utilized as a reference when evaluating 
the HRV index.

4.3 Possible explanation and implications

The nHF observed in the frequency analysis was consistent with 
expectations, showing high values during HRV in sleep. However, the 
circadian rhythm item of the parasympathetic index deviated from 
expectations by falling outside the range defined in this study as HRV 
during sleep. Identifying the peak time of parasympathetic activity 
proves challenging even when utilizing circadian rhythms due to 
significant individual variation in nHF and the discrepancy between 
the average peak derived from each case and the peak calculated from 
the average curve. nHF demonstrates respiratory variability due to 
interference from the respiratory center and reflexive input from the 
periphery, which is transmitted to the sinus node to become 
HF. Therefore, it is plausible that nHF may not be considered a pure 
indicator of the cardiac vagus nerve activity (20, 36). SDNN in time 
domain analysis is known to be influenced by the duration of analysis. 
In short-term recordings, the primary source of SDNN variability is 
parasympathetically mediated RSA, whereas in 24-h recordings, 
sympathetic nerves contribute significantly to SDNN (20, 31). 
Therefore, it is expected that the difference in analysis time between 
24-h HRV and 1-h sleep HRV would impact SDNN values. RMSSD is 

FIGURE 3

The averaged circadian rhythm averaging curve for the 24-h HRV index is shown. Bold lines indicate mean curves and dotted lines indicate standard 
deviations.
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considered a superior indicator of parasympathetic activity compared 
to SDNN. However, RMSSD is less affected by respiration than SDNN, 
but more influenced by RSA (37). RSA also depend on a number of 
control mechanisms due to interference from cardiovascular centers 
in the medulla oblongata, the degree of lung distension, and reflexive 
input from right atrial wall distension (38). Therefore, interpretations 
other than cardiac vagal activity must be considered, but this potential 
influence is rarely taken into account in linear analysis methods (39). 
Consequently, it was hypothesized that dogs with physiological 
respiratory arrhythmias might be affected by this phenomenon. Linear 
analysis of HRV during sleep in dogs may be susceptible to several 
biases, including those related to respiration, duration, and respiratory 
arrhythmia. Therefore, utilizing linear analysis for HRV measurement 
in dogs may not be an appropriate analytical method.

On the contrary, nonlinear analysis is an analytical method that 
circumvents the drawbacks associated with linear analysis. While 
linear analysis entails examining the time series of RR intervals 
obtained. Life is inherently nonlinear, meaning that the relationship 
between variables cannot be  plotted as a straight line. Nonlinear 
analysis serves as a method of assessing the unpredictability of a time 
series and reveals correlations when the complexity arises from the 
same underlying process (26). In humans, nonlinear analysis has 
attracted attention due to its potential to predict the onset of heart 
failure (4). Additionally, HRV measurement during sleep, which is less 
susceptible to environmental factors compared to daytime 
measurements, has been proposed (22). Therefore, considering that 
SD1 and SD2  in this study were nonlinear analyses and showed 
significant increases during sleep compared to the 24-h period, and 

that the maximum peak of circadian rhythm items occurred during 
sleep, we believe that future investigations into heart disease in dogs 
utilizing sleep HRV and nonlinear analyses could be advantageous for 
early detection of heart disease mirroring approaches used in humans.

4.4 Limitations

One limitation of this study is the lack of consideration for breed 
differences, as well as the wide age range of the subjects, spanning 
from 2 months to 8 years. In humans, studies such as those by 
Bonnemeier et al. (40) have shown that HRV indices experience the 
most significant decline between the ages of 20 and 30. Additionally, 
Almeida-Santos et al. also reported that RMSSD decreases between 
the ages of 40 and 60, followed by an increase after the age of 70 (41). 
Therefore, age may have influenced the findings of the present study. 
As a perspective for future studies to clarify the effects of breed and 
age on HRV in dogs, it may be  necessary to equalize breeds or 
differentiate between small, medium, and large dogs, or to conduct 
HRV studies by age stratification. Another limitation is the inclusion 
of brachycephalic breeds. It has been suggested that brachycephalic 
breeds may exhibit higher cardiac vagal activity compared to 
non-brachycephalic breeds (42). Furthermore, the heterogeneity of 
the rearing environment of the experimental animals is another 
limitation. If future studies are conducted with domestic dogs living 
in human households, the circadian rhythm may be influenced by the 
human life rhythm, potentially impacting HRV measurements. In 
practice, we  are investigating the early detection of 

FIGURE 4

The circadian rhythm items of the 24-h HRV index are shown. This is one representative example. The red curve represents the circadian rhythm and 
the blue dots represent the 5-min readings for each indicator.
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doxorubicin-induced myocardial damage. If myocardial damage is 
detected before irreversibility, it can be treated. Sleep HRV may detect 
smaller myocardial changes.

5 Conclusion

In conclusion, SDNN, RMSSD, SD1, and SD2 significantly 
reflected parasympathetic activity during sleep. Focusing on HRV 
during sleep enables us to capture the maximum peak of the circadian 
rhythm items of the parasympathetic index of HRV and more 
accurately represents parasympathetic activity than 24-h HRV.
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