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Animal and human dirofilariosis is a vector-borne zoonotic disease, being one 
of the most important diseases in Europe. In Serbia, there are extensive studies 
reporting the presence of Dirofilaria immitis and D. repens, mainly in the north 
of the country, where the human population is concentrated and where there 
is a presence of culicid mosquitoes that transmit the disease. Ecological niche 
modeling (ENM) has proven to be a very good tool to predict the appearance 
of parasitosis in very diverse areas, with distant orography and climatologies 
at a local, continental, and global level. Taking these factors into account, 
the objective of this study was to develop an environmental model for Serbia 
that reflects the suitability of the ecological niche for the risk of infection with 
Dirofilaria spp. with which the predictive power of existing studies is improved. 
A wide set of variables related to the transmission of the parasite were used. 
The potential number of generations of D. immitis and the ecological niche 
modeling method (ENM) were used to estimate the potential distribution of 
suitable habitats for Culex pipiens. The highest probability of infection risk was 
located in the north of the country, and the lowest in the southern regions, 
where there is more orographic relief and less human activity. The model was 
corroborated with the location of D. immitis-infected dogs, with 89.28% of 
the country having a high probability of infection. In addition, it was observed 
that the percentage of territory with optimal habitat for Culex spp. will increase 
significantly between now and 2080. This new model can be  used as a tool 
in the control and prevention of heartworm disease in Serbia, due to its high 
predictive power, and will serve to alert veterinary and health personnel of the 
presence of the disease in the animal and human population, respectively.
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1 Introduction

Vector-borne diseases have a significant negative impact on both 
animals and humans worldwide (1). One of the most important 
factors to consider is anthropogenic global warming, which has led to 
changes in the composition of terrestrial and coastal ecosystems, one 
of the main causes being the increase in temperature and the 
consequent spread of new vector species to previously vector-free 
areas (2–4). In the case of Europe, moreover, the increase in the 
intensity of human activity, as well as new agricultural methods and 
the expansion of irrigated cultivation, has led to a substantial increase 
in countries close to traditional endemic countries such as Portugal, 
Spain, France, Italy, Greece, and Turkey (5–7).

Dirofilariosis is a worldwide vector-borne zoonotic disease and 
one of the most important animal diseases in Europe. Dirofilaria 
immitis and D. repens are the most important causative agents of the 
disease in its definitive hosts, which are domestic and wild canids and 
felids. The domestic dog is the main reservoir or the one for which 
most data are known, and its vectors belong to the genera Culex spp. 
and Aedes spp. and are widely represented throughout the European 
continent (7–12). Humans act as accidental hosts, coming into contact 
with the parasite more frequently in places where microfilaremic 
reservoirs exist, which can lead to human dirofilariosis (10).

In Europe, changes in its distribution pattern have been 
documented, with most countries being endemic with a broad change 
in the last 20 years (7, 10, 13). The distribution of the disease is favored 
by the presence of vectors, as well as with the presence of fresh water, 
high humidity, and average temperatures. When the environmental 
temperature increases, the period in which the larvae mutate inside 
the vector is shortened (14, 15).

In Serbia there are several studies that report the presence of 
cardiopulmonary dirofilariosis in dogs, being 3.17–16.1% in the 
north, in the capital (Belgrade) 22.01%, even with coinfections with 
D. repens in 3.97% of the dogs, and in Kosovo 9% (16–21). In recent 
years, prevalences in dogs have increased in the north of the country, 
with ranges between 12.7 and 33.3%, together with the presence of 
some microfilaremic dogs and in the south (Kosovo) with prevalences 
due to D. immitis of 14.8% (20, 22–25). In addition, studies of the 
presence of D. immitis in wild animals such as gray wolf and red fox, 
golden jackals, and wolves have been reported with prevalences 
between 1.55–7.32 and 7.79% in wild cats (26–28) and for the first 
time, the presence of Dirofilaria spp. in three species of culicid 
mosquitoes: Cq. richiardii, Cx. pipens, and Och. caspius (29).

Ecological niche modeling (ENM) has proven to be a very good 
tool in predicting the occurrence of parasitosis in very diverse area, 
with distant orographies and climatologies at local, continental and 
global levels (30–38). These models are based on the processing of 
robust environmental and bioclimatic variables, as well as others 
directly related to vector, and thus assess the probability of 
transmission of vector diseases (5, 39–43). One of the most important 
models for this situation and one of the most widely used is the 
maximum entropy algorithm (Max-Ent), which uses presence data 
and produces robust and very accurate statistical models (42, 44–46).

In Serbia there are no specific investigations that have allowed 
predicting the risk of Dirofilaria spp. infection, but there are studies 
(5, 47) for the European continent that incorporate cartographic 
information in their spatial analysis with GIS temperature records. 
However, there are no studies for Serbia that take into account 

orography, climate, environment, human activities or population 
centers, among others. Considering that with ENMs it is possible to 
relate the presence of a zoonosis to biotic variables, extrapolate it to 
other areas without vector presence data and know its dynamics over 
time at high resolution, as well as take preventive control measures to 
avoid the expansion or eradication of a zoonosis, the arm of this study 
was to develop an environmental model for Serbia that reflects the 
suitability of the ecological niche for the risk of infection by Dirofilaria 
spp., taking into account, in addition to the average annual 
temperature, other bioclimatic and environmental variables, and the 
number of generations of Dirofilaria spp. that can be developed in the 
vector, as a novel contribution that improves the predictive models 
carried out at the European level, improving their resolution 
and significance.

2 Methods

2.1 Description of the study area

Serbia (44°0′59.5″ N 21°0.352′ E) is a country in southeastern 
Europe located on the landlocked Balkan Peninsula, bordered by 
Hungary to the north, Romania and Bulgaria to the east, North 
Macedonia and Albania to the south, and Bosnia and Herzegovina, 
Croatia, and Montenegro to the west. The province of Vojvodina, in 
the northern third of the country, is part of the Central European 
Pannonian Plain. The rest of the country is mountainous, with the 
Dinaric Alps in the center, west, and southeast. The easternmost part 
of the country is the Wallachian Plain, while the western border is 
determined by the Carpathian Mountains. The Southern Carpathians 
meet the Balkan Mountains in the southeast of the country, following 
the course of the Great Morava River. Most of Serbia’s territory (92%) 
belongs to the Danube River basin, which dominates the north of the 
country. Besides the Danube, the main rivers are its tributaries the 
Sava (coming from the west), the Tisza (coming from the north), the 
Drina (coming from the south) and the Morava, the latter flowing 
almost entirely through Serbia in the mountainous southern regions. 
Due to the geography of the terrain, natural lakes are few and far 
between, but there are numerous bodies of water of artificial origin. 
The country’s climate is continental, alternating between a 
Mediterranean climate influenced by the Adriatic Sea in the south 
with warm, dry summers and autumns, and relatively cold winters 
with heavy snowfall in the interior; and in the north there is a 
continental climate with cold winters and warm, humid summers (48) 
(Figure 1).

2.2 Culex pipiens habitat suitability 
modeling and Dirofilaria spp. generations

Culex pipiens georeferenced points from Serbia were used from 
data previously obtained by Kurucz et al. (29), Kemenesi et al. (49) and 
Južnič-Zonta et  al. (50). This mosquito species was selected for 
modeling as it is one of the most abundant species in Europe and has 
been reported as a vector of dirofilariosis in Serbia (7) and processed 
at a spatial resolution of 1 km2.

Environmental and bioclimatic variables were obtained in the 
same way as Rodríguez-Escolar et  al. (42). In fact, 19 bioclimatic 
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variables were downloaded from the World Clim website (51, 52) at a 
spatial resolution of 1 km2 for the years between 1970 and 2000 
(current data), plus projected data for 2040, 2060, and 2080 (53). All 
variables were related to temperature and precipitation. Of the 19 
bioclimatic variables, seven were selected taking into account a 
multicollinearity test performed in R based on Pearson’s correlation 
coefficient, in the same way as. In this study, variables with a cross-
correlation coefficient r > ±0.75 were discarded and, according to 
vector biology, the following variables were selected: mean annual 
temperature (°C) (BIO1), isothermality (BIO3), seasonality of 
temperature (DE × 100) (BIO4), mean temperature of the wettest 
quarter (°C) (BIO8), mean temperature of the driest quarter (°C) 
(BIO9), annual precipitation (mm) (BIO12), y and seasonality of 
precipitation (coefficient of variation) (BIO15). In addition, five 
environmental variables (human footprint: built environment, 
population density, electric power infrastructure, cropland, grazing 
land, roads, railways and waterways (53), the presence of irrigated 
crop areas, the location of rivers and water bodies (54), and the density 
of shrubs and herbaceous plants (55) due to their effect on vector 
distribution) were selected.

To model the habitat suitability and geographic distribution of Cx. 
pipiens in the study area, the methodology of Morchón et al. (43) were 
used. In fact, we used the Maxent program (56) to calculate the habitat 
suitability of a species across environmental constraints (57). With the 
Kuenm package in R (58), the 119 best models generated in Maxent 
were chosen by combining a set of variables, 17 values of the 
regularization multiplier (0.1–1.0 at intervals of 0.1, 2–6 at intervals of 
1, and 8 and 10), and the seven possible combinations of three feature 
classes (linear, quadratic, and product). The model performance was 
assessed in terms of statistical significance (Partial_ROC < 0.05), 
omission rates (OR = 5%), and model complexity using the Akaike 
information criterion corrected for small sample sizes (AICc). 
Significant models with an omission rate ≤ 5% were selected. Then, 
from this set of models, those with an AICc delta value of ≤2 were 
selected as the final candidate models. The candidate models were 
built using the “kuenm_cal” function, and the evaluation and selection 
of the best model were carried out using the “kuenm_ceval” function. 
Finally, the final ENM (best-fit model) was generated using the 
variables and the same parameters as previously selected. Ten 
bootstrap replications with logistic outputs were performed. The 

FIGURE 1

(A) Climates according to the Köppen Climate Classification System (BSh: hot semi-arid climate; BSk: cold semi-arid climate; Csa: hot-summer 
Mediterranean climate; Csb: warm-summer Mediterranean climate; Cfa: humid subtropical climate; Cfb: temperate oceanic climate; Dsb: humid 
continental climate; Dsc: subarctic climate; Dfa: hot-summer humid continental climate; Dfb: humid continental climate; Dfc: subarctic climate; and 
ET: Tundra), (B) human populations, (C) irrigated crops, and (D) water bodies in Serbia.
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evaluation of these final models was based on the ROC_partial, OR, 
and AICc calculations using an independent dataset. The creation of 
the final models was carried out by using the “Kuenm_mod” function.

The number of annual Dirofilaria spp. generations was 
calculated using the model described by Genchi et al. (5, 39, 47), 
Rodríguez-Escolar et al. (42), and Morchón et al. (43) and in the 
R-software (v.4.3.0) with daily average temperature data between 
1990 and 2016 in Serbia (59, 60). With this model, it is possible to 
quantify the complete development of microfilariae of Dirofilaria 
spp. up to larvae 3 within the culicid vectors (extrinsic incubation) 
where it is necessary to accumulate 130 growth degree days (GDD), 
in 30 days, at most, this number being the life expectancy of the 
culicid mosquito.

2.3 Dirofilaria spp. risk map and its 
validation

To obtain a risk map of Dirofilaria spp. in Serbia, we multiplied 
(weighting approach) the final ENM of Cx. pipiens and Dirofilaria spp. 
generations from the raster calculator in ArcMap 10.8. To validate the 
resulting Dirofilaria spp. risk map, points of presence of D. immitis and 
D. repens infected dogs were obtained from all over the country (17, 
19–22, 24–26, 61–69) and overlaid on the risk map to see in which 
area they were living.

2.4 Forward projection and rank change 
analysis

To assess the potential effects of climate change on heartworm 
transmission risk dynamics, we  employ the best performing Cx. 
pipiens model to extrapolate the bioclimatic variables analyzed for 
three different time periods: the 2040s (2021–2040), the 2060s (2041–
2060), and the 2080s (2061–2080). Additionally, three different RCPs 
8.5 scenarios were used with the HadGEM3-GC21-LL model (70). 
This model is one of the most widely used today to simulate the 
climate response to increasing greenhouse gas concentrations in 
Europe (71).

Once the estimates were made, it was necessary to determine the 
percentage of increase or decrease in suitable habitat for Cx. pipiens 
for Serbia. In fact, we convert the NEM and future projections into a 
binary map of presence and absence using the 10th percentile of the 
current model as a threshold. With the biomod2 script of the R 
program, a range shift analysis was performed to determine in which 
territories the greatest changes in Cx. pipiens distribution occur, as 
result of climate change, for the 2040, 2060, and 2080 scenarios 
compared to today (72).

3 Results

3.1 Habitat suitability model for Culex 
pipiens

The curve value (AUC) of the Cx. pipiens ecological niche 
model for Serbia was 0.975, indicating very good predictive power. 
Habitat suitability for Cx. pipiens ranged from 0 to 0.93 (Figure 2), 

with the variables contributing most to the ENM Human footprint 
and BIO15 (Table 1). Of the 13 variables used, those with the highest 
contribution were the human footprint and BIO15 (Precipitation 
Seasonality) with a percentage contribution of 53 and 32.8%, 
respectively. The rest of the variables had lower values of 6.6%. 
Considering the map obtained, the area of highest habitat suitability 
for Cx. pipiens in Serbia is in the northern part of the country, an 
area that is part of the Pannonian plain with a larger human 
footprint and less mountainous than the south, where there is 
generally low suitability.

3.2 Number Dirofilaria spp. generations

The highest value (>2.8) of the number of generations of 
Dirofilaria spp. was found in the Pannonian plain area (north of the 
country), where the number of generations is high due to the lower 
altitude (Figure 3). In the south, due to a more rugged orography, 
generations decrease with altitude (down to 0.09) except for the areas 
close to the main river basins.

3.3 Potential risk of transmission of 
Dirofilaria spp.

The result of the Dirofilaria spp. transmission risk map in Serbia 
is shown in Figure 4. Generally speaking, the highest risk is found in 
the northern part of the country, decreasing as one moves toward the 
southern areas, with a more rugged relief and less human presence. In 
terms of territory, five ranges of values have been established (very 
high, high, medium, low, and very low), with 6.3 and 17.2% 
corresponding to very high and high risk areas respectively; 19.3% of 
the territory has a medium risk, 20.7% a low risk, and 36.5% a very 
low risk. The places where the risk of transmission is high or very high 
coincide with areas of low altitude, high human footprint and irrigated 
crops. In the south, the risk is generally low due to a more mountainous 
orography, with the exception of the basins of the main rivers as they 
are at a lower altitude.

To test our transmission risk map and validate it, geo-referenced 
points of D. immitis and D. repens infected dogs were superimposed. 
Of the Dirofilaria spp. positive dogs, 89.28% were found in very high-
risk areas, 9.57% in high-risk areas, and 1.16% in moderate risk areas. 
In both low and very low risk areas, the percentage of positive dogs 
was 0% (Figure 5).

3.4 Future projection for the years 2040, 
2060, and 2080 according to the climate 
change scenario RCP 8.5

The range change analysis shows a remarkable increase in the 
extent of suitable habitats for Cx. pipiens in 2040 and 2060, with the 
exception of 2080 where the change is very little appreciable (Figure 6). 
The percentage gain of territory for Cx. pipiens was 44.8% for 2040, 
104.1% for 2060, and 2.9% for 2080. Notably, in 2080, there is a 65.7% 
percentage loss of suitable territory for the vector. Increases in areas 
suitable for the mosquito vector occur toward higher altitude areas in 
the south.
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4 Discussion

Serbia in one of the countries in southeastern Europe where 
prevalences in infected dogs have continued to increase in recent years 
with ranges between 12.7 and 33.3%, mainly in the north of the 
country (20–25, 73) and where, for the first time, Cq. richiardii, Cx. 
pipens, and Och. caspius have been identified as vector species of the 
disease (29). This study is the first to map the risk of Dirofilaria spp. 
infection in Serbia using the distribution of the territory suitable for 

the survival of Cx. pipiens, one of the main and most abundant vectors 
of the disease in Europe (7), as well as including new predictor 
variables, and which has been validated using the presence of 
Dirofilaria spp. infected dogs as a reference. Within the biased 
spectrum of predictor variables that have been taken into account to 
date in most predictive models for Northeastern Europe (annual 
temperature records) (5, 39, 47, 74–77), in this study, we  have 
incorporated several variables directly linked to the vector’s life cycle 
(humidity, rainfall, areas of naturally and/or artificially stagnant 
freshwater, rivers, density of herbaceous plants, irrigated agricultural 
areas, location of human populations, communications, agricultural 
activities, exchange of goods, and travel), as well as weighting with the 
number of generations of Dirofilaria spp. in the vector, with a robust 
and highly predictive result.

With the utilization of ecological niche modeling tools, it is 
possible to create risk models for zoonotic diseases that take into 
account a variety of abiotic variables regarding the development of a 
species, these tools predict the most likely habitats for the mosquitoes 
that carry the disease and have a high degree of resolution, even in 
areas where surveillance data are lacking (78). In South of Europe, a 
previous study has been utilized to validate the risk map associated 
with Dirofilaria spp. with the addition of the geolocation of infected 
animals, obtaining a higher resolution projection (1 km2) with a high 
significant and consistent (42, 43).

Genchi et  al. (5) produced a map of the potential number of 
Dirofilaria spp. generations, where Serbia was located with average 
values, similar to those of the rest of central European countries, being 
higher in the north of the country. In our study, we have observed that 
the risk of infection by Dirofilaria spp. predominates in the north, 
which corroborates previous data, and centralizes the risk in places 

FIGURE 2

Ecological niche model for Cx. pipens in the geographical area of Serbia representing suitable habitat.

TABLE 1 Analysis of the contribution of the 13 environmental and 
bioclimatic variables to the ecological niche model for Cx. pipiens.

Variable Percent contribution

Human footprint 53%

BIO15 (Precipitation seasonality) 32.8%

BIO12 (Annual precipitation) 6.6%

BIO3 (Isothermality) 4.7%

Rivers 1.4%

Herbaceous density 0.9%

Irrigated crops 0.3%

Water bodies 0.2%

BIO1 (Annual mean temperature) 0.1%

BIO4 (Temperature seasonality) 0%

Shrub density 0%

BIO8 (Mean temperature of wettest quarter) 0%

BIO9 (Mean temperature of driest quarter) 0%
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where human population, agricultural activity, and average rainfall are 
concentrated, these being the variables that contributed most to the 
model, suggesting the presence of Cx. pipiens is related to the presence 

of irrigated areas, a high density of human population and animals 
infected by D. immitis and/or D. repens and an increase in humidity. 
Moreover, if we take into account the wild carnivore population (7, 13, 

FIGURE 3

Prediction of the number of generations of Dirofilaria spp. in Serbia.

FIGURE 4

Ecological niche model of the risk of Dirofilaria spp. infection in Serbia.
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FIGURE 5

Ecological niche model of the risk of Dirofilaria spp. infection in Serbia with the locations of infected dogs according to Kurucz et al. (29), Kemenesi 
et al. (49), and Južnič-Zonta et al. (50).

FIGURE 6

Suitable habitats for Cx. pipens at present (A) and their projections into the future, 2040 (B), 2060 (C), and 2080 (D), in Serbia under the climate change 
scenario RCP 8.5.
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24, 25, 27, 79–82) and others (82), our model increases in reliability 
as studies of Dirofilaria spp. infected animal populations show 
concentrated positivity, as well as infected domestic dogs, in the north 
of the country. There are also data from neighboring countries with 
high rates of Dirofilaria spp. infection such as Hungary, Romania, 
Bulgaria, Croatia, Bosnia, and Herzegoniva (7, 12, 15, 77, 83–90), 
which may increase the risk of infection.

The results of the 2040, 2060, and 2080 projections under climate 
change scenario RCP  8.5 revealed a displacement of the current 
distribution area of Cx. pipiens toward new territories, mainly in the 
south of the country, in where there is a significant potential increase in 
Cx. pipiens habitat, and therefore risk of infection, throughout the 
country and mainly in the south, with a 104.1% gain of ideal habitat for 
culicid vectors in 2060, although in 2080, there is a 65.7% percentage loss 
of suitable vector territory, decreasing in the north but remaining similar 
in the south. This is in line with other studies where there is an increase 
in temperatures, which is consolidated in areas with previously colder 
and in the future temperate climates, due to climate change and the 
transmission dynamics of certain vector-borne diseases (34, 42, 74, 90), 
therefore, from the point of view of One Health, measures should 
be taken by the Serbian government administration to take appropriate 
control measures and to interrupt the expansion and establishment of the 
vectors transmitting the disease.

In conclusion, this model will allow both health and veterinary 
scientists to diagnose the disease in previously unsuspected/clean 
areas, take more effective control measures, and further investigate the 
epidemiology of dirofilariosis in animals and humans. Consequently, 
disease alerts will be increased, considering each population’s specific 
situation. Further studies should be  carried out to investigate the 
infection risk at a local level in order to take the necessary and optimal 
preventive measures to interrupt the spread of dirofilariosis in 
southern Europe in the coming years. Similar situations are already 
occurring in countries bordering Serbia, such as Croatia, Romania, 
Bulgaria, Hungary, and Greece. Thanks to this type of ecological niche 
model for Cx. pipiens and the prediction of the risk of infection for 
Dirofilaria spp., it will be  possible to help health and veterinary 
personnel to carry out control measures both in areas where the 
disease is already diagnosed and in others where the health alert is 
lower. All of this will facilitate the action of veterinarians and doctors 
and the monitoring of the disease in specific locations in the country.
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