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Introduction: Secreted mucins are highly O-glycosylated glycoproteins 
produced by goblet cells in mucosal epithelia. They constitute the protective 
viscous gel layer overlying the epithelia and are involved in pathogen recognition, 
adhesion and expulsion. The gill polyopisthocotylidan ectoparasite Sparicotyle 
chrysophrii, feeds on gilthead seabream (Sparus aurata) blood eliciting severe 
anemia.

Methods: Control unexposed and recipient (R) gill samples of gilthead seabream 
experimentally infected with S. chrysophrii were obtained at six consecutive 
times (0, 11, 20, 32, 41, and 61 days post-exposure (dpe)). In histological 
samples, goblet cell numbers and their intensity of lectin labelling was 
registered. Expression of nine mucin genes (muc2, muc2a, muc2b, muc5a/c, 
muc4, muc13, muc18, muc19, imuc) and three regulatory factors involved in 
goblet cell differentiation (hes1, elf3, agr2) was studied by qPCR. In addition, 
differential expression of glycosyltransferases and glycosidases was analyzed 
in silico from previously obtained RNAseq datasets of S. chrysophrii-infected 
gilthead seabream gills with two different infection intensities.

Results and Discussion: Increased goblet cell differentiation (up-regulated elf3 
and agr2) leading to neutral goblet cell hyperplasia on gill lamellae of R fish gills 
was found from 32 dpe on, when adult parasite stages were first detected. At this 
time point, acute increased expression of both secreted (muc2a, muc2b, muc5a/c) 
and membrane-bound mucins (imuc, muc4, muc18) occurred in R gills. Mucins 
did not acidify during the course of infection, but their glycosylation pattern varied 
towards more complex glycoconjugates with sialylated, fucosylated and branched 
structures, according to lectin labelling and the shift of glycosyltransferase 
expression patterns. Gilthead seabream gill mucosal response against S. chrysophrii 
involved neutral mucus hypersecretion, which could contribute to worm expulsion 
and facilitate gas exchange to counterbalance parasite-induced hypoxia. Stress 
induced by the sparicotylosis condition seems to lead to changes in glycosylation 
characteristic of more structurally complex mucins.
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1 Introduction

The barrier function of mucosal epithelia is structurally 
supported by the epithelial cell lining and in a more dynamic 
manner by the overlying mucus secretion, which is constantly 
flowing through renewal and off-sloughing. In fish, all exposed 
body surfaces, including skin, gills, nostrils, and digestive tract, are 
covered by mucosal epithelia, which constitute first line of defense 
against external offenders, friction, and dehydration and also 
participate in disease resistance, respiration, and ionic and osmotic 
regulation (1, 2). Thus, the role of mucosal health and mucous 
modulation should not be  underestimated in the context of 
intensive aquaculture rearing systems in a global warming scenario, 
in which finfish health is under constant threat of imbalance.

The regulation of the mucus-secreting cells and mucus composition 
upon disease and infection (3–6), including parasitosis (7, 8), is an 
appealing study topic in human medicine for its diagnostic and 
therapeutic value (9). Mucus responses in fish skin, gills, and gut have 
also gathered research interest (10–16). More specifically, gill parasites 
often provoked mucus over-secretion, as a host mucosal response 
intended to expel the parasite invader (17–21), but the fish host may have 
to deal with several drawbacks such as ion and gas exchange imbalance 
or microbiota dysbiosis.

The flatworm gill ectoparasite Sparicotyle chrysophrii, formerly 
classified in the Monogenea class and recently reclassified into the 
Polyopisthocotyla class (22), is currently considered the most 
distressing pathogen for gilthead seabream (Sparus aurata) 
Mediterranean aquaculture (23). The high stocking densities, the lack 
of fallowing strategies, and the enzootic locations of the off-shore 
cage farms are favoring parasite outbreaks and transmission. The 
growing concern in regard to the production losses has directed 
recent research efforts toward studies on the parasites’ biology 

(24–28), the host response (29–32), and the search for treatments 
(33–38). However, a closer look at the modulation of the mucous 
secretion and the goblet cells in the gills of gilthead seabream during 
the course of this parasitosis has not been thoroughly taken.

Mucus is mainly produced by goblet cells, secretory cells present in 
the epithelial cell lining, which synthesize and expel secreted mucins, the 
main component of the adherent mucus gel. Mucins are high-molecular 
weight hydrophilic glycoproteins forming a complex matrix, in which 
water and a cocktail of bioactive molecules are retained, avoiding direct 
contact between the environment and tissue. By modulating the mucus 
layer physically (viscosity), biologically (immunoglobulin, lysozyme, 
antimicrobial peptide contents), and chemically (pH, mucin 
glycosylation), organisms are able to cope dynamically with the changing 
external stressors, including their own mucosal microbiota.

The mechanisms that orchestrate goblet cell proliferation, 
differentiation and distribution patterns, and mucin expression and 
glycosylation in fish upon parasite challenge are still obscure. This 
study intends to integrate the study of goblet cell distribution patterns 
with their transcriptional regulation, together with mucin expression 
and glycosylation in the gills of gilthead seabream during the course 
of sparicotylosis using histochemical, lectin-binding, transcriptional, 
and transcriptomic approaches.

2 Materials and methods

2.1 Experimental setup and sample 
collection

Parasite-free, clinically healthy, gilthead seabream juveniles were 
purchased from a local fish farm and adapted to the indoor 
experimental facilities of IATS, CSIC under natural photoperiod and 
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temperature conditions (40°5′N; 0°10′E). Along the whole experiment, 
sea water was 5 μm-filtered and UV-irradiated, salinity was 37.5‰, 
oxygen saturation was kept above 85%, and unionized ammonia 
below 0.02 mg·L−1. Sparicotyle chrysophrii experimental infection was 
carried out as previously described by Riera-Ferrer et al. (39). In brief, 
randomly selected recipient fish (R; n = 25; initial mean weight 
138.40 g ± 22,84 SD) were allocated in a 200 L tank in a recirculating 
aquaculture system (RAS) connected to a tank with S. chrysophrii-
infected donor fish. Control unexposed gilthead seabream (C; n = 20; 
initial mean weight 132.30 g ± 11.67 SD) were kept in a separate tank 
with open water flow, which was disconnected from RAS. The trial 
lasted for 61 days, and fish were lethally sampled six successive times: 
0 days post exposure (dpe) (n = 5 C fish); 11 dpe, 20 dpe, 32 dpe, 41 
dpe, and 61 dpe (n = 3 C fish and n = 5 R fish, in each sampling). Fish 
were culled by tricaine methanesulfonate (MS-222) overexposure 
(0.1 g·L−1) and bled from the caudal vessels and tissue samples 
obtained for different purposes. The right gill arches of R fish were 
immediately examined under a stereomicroscope, and intensity and 
prevalence of S. chrysophrii infection were registered. A piece of the 
left gill arches was fixed in Bouin solution for histological processing, 
and parallel samples were taken in RNA later for gene 
expression analysis.

2.2 Mucin histochemistry and lectin 
labeling

Bouin-fixed gills were routinely dehydrated and paraffin-
embedded. Sections of 4 μm diameter were stained with periodic acid 
Schiff (PAS)-alcian blue (pH 2.5), to identify neutral mucins 
(glycoproteins with oxidizable vicinal diols stained magenta) and 
acidic mucins (glycoproteins with carboxyl groups and O-sulfate 
esters stained blue) in all fish samples. Terminal glycoconjugates were 
analyzed in selected gill sections of 4 C and 4 R fish with medium-high 
infection intensity (50-115 worms per fish) on 32 dpe. To do so, 
paraffin sections collected on Superfrost™ Plus slides (Menzel-Gläser, 
Braunschweig, Germany) were deparaffinized and hydrated; 
endogenous peroxidase activity quenched in 0.3% hydrogen peroxide 
for 30 min and incubated for 1 h with six different biotinylated lectins. 
Following incubation with the avidin–biotin–peroxidase complex 
(Vector Laboratories, CA, United States) for 30 min, bound peroxidase 
was finally developed upon a 5-min incubation with 
3,3′-diaminobenzidine tetrahydrochloride chromogen (Sigma–
Aldrich, MO, United States). The reaction was stopped with deionized 

water, and the sections were counterstained with Gill’s hematoxylin, 
dehydrated, and mounted in di-N-butyl-phthalate in xylene. Washing 
steps between incubations consisted of immersions of 5 min in Tris-
buffered saline (TBS, 20 mM Tris–HCl, 0.5 M NaCl, pH 7.2) with and 
without 0.05% Tween20. Binding specificity of the controls was 
evaluated by incubating each lectin with its corresponding blocking 
sugar (0.2 M) for 1 h before the application to the gill sections. Major 
lectin specificities, lectin sources, blocking sugars and used 
concentrations are shown in Table 1.

2.3 Microscopic evaluation

Histological staining was performed and analyzed in gill sections 
of all C and R fish samples. The presence of goblet cell was estimated 
for the different types of staining with a semiquantitative scoring scale 
ranging from 0 (absence) to 3 (very abundant, meaning 25–30 cells/
microscope field at 500x magnification) at four different gill locations: 
filament tip, interlamellar pockets, lamellar epithelium, and cartilage-
covering epithelium. The intensity of each lectin labeling in these 
goblet cells was registered according to a semiquantitative scale 
ranging from 0 (no label) to 3 (very intense label). In addition, the 
presence and staining of discharged extracellular mucus were 
registered. Slides were observed under a Leitz Dialux22 (Leica, Hesse, 
Germany) light microscope, and representative images were taken 
with an Olympus DP70 Camera (Olympus, Tokyo, Japan).

2.4 Mucin gene analyses

The available gilthead seabream genomes [(40) and fSpaAur1.1]1 
and gilthead seabream sequences in the NCBI database were screened 
for mucin genes. The obtained sequences that were not previously 
described in this species (15) were checked by BLAST for verification. 
The previously available sequences were compared with other 
sequences in NCBI to further complete partial sequences. The 
obtained sequences (protein coding regions) were then searched by 
BLAST against the Ensembl gilthead seabream genome, and the 
genome location and intron/exon structure were retrieved and 

1 www.ensembl.org

TABLE 1 Lectin sources, specificities, blocking sugars, and concentrations used for labeling.

Acronym Lectin source Specificities Lectin 
concentration 

(μg·mL−1)

Blocking sugar

Con A Concanavalina 

ensiformis

Manα-1 > Glcα-1 > GlcAcα-1 2 Methyl-α-D-Man + 

methyl-α-D-Glc

UEA Ulex europaeus L-Fucα1,2Galβ1,4 20 L-Fucα

WGA Triticum vulgaris GlcNAc(β1,4GlcNAc)1–2 > β1,4GlcNAc > NeuNAc 10 GlcNAcα

SBA Glycine max terminal αβGalNac > αβGal 5 GalNAcα

BSL I Griffonia simplicifolia D-Gal > D-GalNAc 5 Gal+GalNAcα

SNA Sambucus nigra NeuAc-α2,6Gal > NeuAcα2,6GalNAc 20 NeuNAc
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represented using online tools.2 Protein sequences were analyzed in 
InterPro3 and SMART,4 to define protein domains and locations. 
Primers for new sequences were designed using Primer3 (41). Primer 
specificity was checked by BLAST against the gilthead seabream 
genomes, and their efficiency was calculated by serial dilutions (only 
efficiencies of >90 were considered acceptable).

The sequences of transcription factors relevant to epithelial cell 
differentiation (goblet cell regulatory factors) were obtained from the 
NCBI nucleotide database. Primers were designed as described above. 
Transcript accession numbers and primer sequences used in this study 
are shown in Table 2.

2.5 RNA isolation, cDNA synthesis, and 
gene expression analyses

RNA from RNAlater® (Thermo Scientific, MA, United States)-fixed 
gills on 11, 32, and 61 dpe sampling points (3 C and 5 R per sampling) 
was extracted using MagMAX™-96 total RNA isolation kit 
(Invitrogen™, CA, United States). RNA concentration and quality were 
determined using a NanoDrop  2000c (Thermo Scientific, MA, 
United  States), and 500 ng of which was treated with DNase 
I  amplification grade (Invitrogen™, CA, United  States). Reverse 
transcription was performed for 500 ng of input RNA using the 

2 wormweb.org/exonintron

3 www.ebi.ac.uk/interpro/

4 smart.embl-heidelberg.de/

High-Capacity cDNA Archive Kit (Applied Biosystems®, MA, 
United  States). All procedures were performed following the 
manufacturer’s instructions.

Real-time quantitative PCR was performed in a CFX96 Connect™ 
Real-Time PCR Detection System (Bio-Rad). Overall, 20 µl reactions 
contained 3.3 ng of input cDNA, 5X PyroTaq EvaGreen qPCR Mix Plus 
(Cultek, Madrid, Spain), and specific primers at a final concentration 
of 0.45 μM. PCR conditions consisted of an initial denaturation step at 
95°C for 3 min, followed by 40 cycles of denaturation for 15 s at 95°C 
and annealing/extension for 60 s at 60°C. The specificity of the 
reactions was verified by analysis of melting curves for each reaction. 
Fluorescence data acquired during the PCR extension phase were 
normalized by the delta–delta Ct method (42) using β-actin as 
housekeeping gene for normalization, the most stable reference gene 
in this tissue when compared with other housekeeping genes 
(elongation factor 1α, α-tubulin, and 18S rRNA).

2.6 In silico analysis of glycosylation 
enzyme expression

Enzymes regulating glycosylation were screened in silico. The gilthead 
seabream genome (40) was mined for sequences annotated as sialilidases, 
mannosidases, fucosyltransferases, acetylglucosaminyltransferases, 
sialyltransferases, mannosyltransferases glucosyltransferases, and 
phosphomannomutases. Identified sequences were used to mine RNA 
sequencing results from two previous studies of gilthead seabream 
infected with S. chrysophrii: a study on fish with a mild natural infection 
[(31); SRA accession PRJNA507368; n = 4 control and n = 4 infected fish, 

TABLE 2 Primer sequences used in this study.

Gene name Symbol Accession number Sequence (5′–3′)

Mucin 2a muc2a XM_030425503 F ACGCTTCAGCAATCGCACCAT

R CCACAACCACACTCCTCCACAT

Mucin 2b muc2b XM_030414678 F CCTGTTCAGTGCCCATCCAT

R TAAAGCCCAGACTGCAGGTG

Mucin 5 a/c muc5ac XM_030414679 F TGGCAATAACACCTGGGGAC

R TGTTGTTTGCATGCCACTCG

Mucin 4 muc4 XM_030442219 F GGTGAAGAAGCTGAGGGGTC

R TCATTGTACCCAGCCAGCAG

Intestinal mucin imuc XM_030418634 F GTGTGACCTCTTCCGTTA

R GCAATGACAGCAATGACA

Mucin 18 muc18 XM_030399104 F ATGGAGGACAGAGTGGAGG

R CGACACCTTCAGCCGATG

Anterior gradient protein 2 agr2 XM_030410519 F CGACGTTGAGATCCAGAGGG

R TCCGGGGAACATACTGTCCA

Transcription factor HES-1-B hes1b KF857344 F GAAGCATCTCCGGAACCTCC

R GCGGGTGACTTCATTCATGC

ETS-related transcription 

factor Elf-3

elf3 XM_030424933 F CGAGAAACTAAGTCGGGCGA

R TAAACCAGTCTGCGTCCGTC

β actin βact X89920 F TCCTGCGGAATCCATGAGA

R GACGTCGCACTTCATGATGCT
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mean intensity of infection 2.73 parasites/fish] and other on fish with high 
intensity of infection during an experimental challenge [(43); SRA 
accession PRJNA992062; n = 5 control and n = 5 infected fish, mean 
intensity of infection 121.2 parasites/fish]. Gill-normalized expression 
values (FPKM) for each identified enzyme were retrieved from the count 
tables, and differential expression was checked for the DESeq results 
obtained from each of the studies.

2.7 Statistics

Semiquantitative histological scoring on goblet cells and lectin 
labeling was analyzed among the different infection timings by one-way 
ANOVA followed by Student–Newman–Keuls using SigmaPlot v14.5 
software (Systat Software Inc., CA, United States). When normality or 
equal-variance failed, the non-parametric Kruskal–Wallis test, followed 
by Dunn’s post-hoc test for the multiple comparisons, was applied. For 
all data sets, differences between C and R fish were analyzed by Student’s 
t-test, and when normality failed, the Mann–Whitney U sum test was 
used. Gene expression data were log-transformed (LN) for statistical 
analyses. For normally distributed data, differences were evaluated using 
Student’s t-test and one-way ANOVA followed by Tukey’s post-hoc test 
for multiple comparisons. When conditions were not met, 
non-parametric tests (Mann–Whitney–Wilcoxon or Kruskal–Wallis 
followed by Dunn’s test) were used. The significance level was set at 
p < 0.05 unless otherwise stated.

3 Results

3.1 Infection outcome

The prevalence of infection by S. chrysophrii was 100%, and 
detailed data on infection outcome are shown in Table 3. In addition, 
epitheliocystis, a disease (often secondary) caused by pathogenic 
intracellular bacteria, was observed in the gills of R fish from 61 dpe 
on. This bacterial infection provoked the characteristic nodular 
intracellular inclusions in the gill epithelia.

3.2 Mucin histochemistry and lectin 
labeling

A significant increase in neutral goblet cells was found at the 
interlamellar pockets, the tips of the gill filaments, and the epithelia 
of the lamellae, of R fish from 31 dpe on (Figure 1). Neutral goblet 
cells increased significantly at the epithelium covering the proximal 
cartilage later, at 41 and 61 dpe, and scoring for acidic and mixed 
neutral-acidic goblet cells at this gill site was slightly higher in R fish 

than in C fish along the whole experiment though not significant 
(Supplementary Figure S1). Goblet cells bearing neutral mucins 
were ubiquitous in all gill locations, whereas acidic and mixed 
neutral-acidic goblet cells were only observed at the epithelium 
covering the proximal cartilage and adipose tissue (Figure  2). 
Additionally, secreted mucus was often observed in the interlamellar 
spaces of R fish.

Differences in lectin label intensity among goblet cells of C and 
R fish were not significant. Nevertheless, some interesting 
observations were made (Table 4; Figure 2). Lectin label intensity 
of goblet cells located at the tips of the gill filaments showed an 
overall decrease, except for BSL I  specifically binding to Gal 
(Figures 2C,D). This terminal sugar was the only one whose staining 
intensity increased in the goblet cells at all gill locations of R fish. 
Terminal GalNac residues labeled by SBA also presented an increase 
in R fish, especially in goblet cells of the lamellae epithelia 
(Figures 2K,L), but also in the extracellular mucus secretion. Label 
intensity of terminal GlcNac/sialic acids (WGA) was only higher in 
goblet cells at the interlamellar pockets of R fish (Figures 2G,H). 
Fucose sugars evidenced by UEA increased in the goblet cells at all 
the gill locations of R fish (Figures 2R,S), except at the filament tips. 
In general, ConA and SNA labels for Man/Glc and NeuNac/sialic 
acids, respectively, presented the least changes upon parasite 
infection and mostly decreased in all goblet cells of R fish. However, 
Man/Glc label was more intense in the interlamellar mucus 
secretion of R fish.

3.3 Identification of gilthead seabream 
mucins

Nine mucin sequences were identified in the gilthead seabream 
genome, among them five sequences were secreted and four sequences 
were membrane-bound. The intron–exon structure of the sequences 
and genomic locations are shown in Supplementary Table S1. Five of 
these sequences appear complete, beginning with a signal peptide and 
ending in a stop codon. The structure of the three soluble mucins that 
do not present a signal peptide seems to indicate that not a large 
stretch of the sequence is missing. However, the sequence of the 
membrane-bound imuc is clearly incomplete, and although long 
stretches of repeated mucin domains can be found encoded upstream 
in the chromosome, the complete structure could not be  fully 
elucidated and will require further sequencing.

Regarding soluble mucins, in chromosome 4, a sequence 
annotated as mucin 2 (muc2) and another one annotated as mucin 
5 ac (muc5ac) were identified in tandem, whereas in chromosome 8, 
two sequences annotated as mucin 2 appeared also in tandem (muc2a 
and muc2b). All these sequences showed a similar structure, with 
three VWD domains and three C8 domains, with a variable number 

TABLE 3 Infection outcome in recipient (R) gilthead seabream experimentally exposed to Sparicotyle chrysophrii.

11 dpe 20 dpe 32 dpe 41 dpe 61 dpe

Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult

R (n = 5) 44.4 ± 5.34 0 157.6 ± 14.84 0 0 112.8 ± 43.62 30.40 ± 7.39 46.80 ± 18.08 9.20 ± 5.54 24.80 ± 6.25

T (°C) 17.96 ± 0.13 17.78 ± 0.34 16.03 ± 0.22 14.75 ± 0.07 13.59 ± 0.29

Mean parasite load of juvenile and adult stages per fish ± SEM and mean temperature (T) ± SEM per each period are given. dpe, days post exposure.
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of intercalated TIL domains in the N terminus. The middle of the 
sequences was characterized by the presence of repeat regions and 
low complexity or disorder domains that correspond to PTS domains 
with variable numbers of WxxW domains intercalated. In the C 
terminus, one VWD and one C8 domain were found in all sequences 
followed by two VWC domains. All four sequences presented a C 
terminus cysteine knot domain. A sequence annotated as mucin 19 
(muc19) was found in chromosome 14, with a very similar structure 
as the other secreted mucins (Figure 3).

As expected, the structure of the membrane-bound mucins was 
more variable. The sequence annotated as intestinal mucin (imuc), 
found in chromosome 6, presented a series of repeat domains, 
followed by an EGF and a transmembrane domain. Mucin 4 (muc4), 
encoded in chromosome 15, showed the characteristic NIDO, 
AMOP, and VWD domains, followed by several EGF domains before 
the transmembrane region (44). Mucin 18 (muc18), encoded in 
chromosome 2, showed the typical structure with five 
immunoglobulin-like domains, a transmembrane region, and a short 
cytoplasmic tail (45). Finally, a sequence annotated as mucin 13 
(muc13) was found in chromosome 20, which was characterized by 
a repeat region followed by a SEA domain surrounded by EGF 
domains (46) (Figure 3).

3.4 Gene expression of mucins and goblet 
cell regulatory factors

After testing several sets of primers, only six of the nine mucins 
were found to be expressed in gilthead seabream gills. The two soluble 
mucins encoded in chromosome 4 (muc2 and muc5ac), muc2a from 
chromosome 8, and the membrane-bound muc4, imuc, and muc18.

Transcription of mucin genes was robustly upregulated for all 
detected mucin genes at 32 dpe (Figure 4A). Interestingly, expression 
of muc5a/c was upregulated at all the analyzed timings, and fold 
changes of the secreted muc2 and muc2a were the highest. The 
regulatory factors responsible for epithelial cell differentiation elf and 
agr2 were also significantly upregulated at 32 dpe (Figure 4B).

3.5 Genome search for glycosylation 
enzymes and their differential expression

Enzymes involved in glycosylation were studied in silico. A  
total of 273 sequences annotated as silialidases, mannosidases, 
fucosyltransferases, acetylglucosaminyltransferases, sialyltransferases, 
mannosyltransferases glucosyltransferases, and phosphomannomutases 

FIGURE 1

Goblet cell scoring with neutral mucins at different locations in gilthead seabream gills upon Sparicotyle chrysophrii infection: interlamellar pocket (A), 
filament tip (B), lamellar epithelium (C), and epithelium covering the proximal cartilage and adipose tissue (D). Inserts represent pooled data of C or R 
fish, regardless of the infection timing (*p  <  0.05 and **p  <  0.001). Different letters stand for statistically significant differences within the R group, 
p  <  0.05. Asterisks represent statistically significant differences within the same sampling point (p  <  0.05). C, control, unexposed fish (n  =  18); R, recipient, 
parasitized fish (n  =  25); dpe, days post exposure.
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were found in the gilthead seabream genome (Supplementary Table S2A). 
Examination of the differential expression results from the RNA 
sequencing experiments by Piazzon et al. (31) and Toxqui-Rodríguez 

et al. (43) revealed that 29 of these sequences were differentially expressed 
in at least one of the experiments when comparing control and 
S. chrysophrii-infected fish (Supplementary Table S2B). Marked 

FIGURE 2

Goblet cell distribution and terminal mucin glycosylation in gilthead seabream gills upon Sparicotyle chrysophrii experimental infection 
(B,D,F,H,I,J,L,P,Q,S,T) compared with control gills (A,C,E,G,K,M,N,O,R). Black arrows indicate goblet cells in control gills and white arrows in infected ones. 
Neutral goblet cell (magenta) hyperplasia was observed in the gills of infected fish at different locations: filament tips (A,B), with increased BSL-I label for 
Gal (C,D); interlamellar pockets (E,F), with increased WGA label for GlcNac/sialic acid (G,H); along the lamellar epithelium (I,J), with increased SBA label for 
GalNac (K,L). The epithelium covering the proximal cartilage and adipose tissue (M) was the only location with neutral and acidic goblet cells (N–Q), with 
increased UEA label for Fuc (R,S). Note the presence of interlamellar secreted mucus in infected gills (asterisks), with intense WGA label (T). PAS-alcian 
blue staining was used in (A,B,E,F,I,J,M–Q) and lectin labeling with hematoxylin counterstain in (C,D,G,H,K,L,R–T). All scale bars = 20 μm.
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downregulation was found in fish with low infection intensity (31), 

whereas fish with high infection intensities (43) presented both 
significant upregulation and downregulation (Figure 5). Half of these 
modulated genes responded with opposite trends depending on the 
infection intensity of the fish, except for the five sialyltransferase genes, 
which had the same regulation patterns regardless of the parasite load. 
Higher numbers of significantly regulated genes occurred in low 
infection-intensity fish than in high infection-intensity fish.

4 Discussion

Sparicotyle chrysophrii infections in gilthead seabream farms have 
become a major issue for aquaculture. In the current study, we unveil 
some aspects of the local mucosal response triggered by this gill 
ectoparasite, providing valuable data on mucin and goblet cell 
distribution and regulation. Studies focusing on mucosal immune 
responses in fish have traditionally focused on the mucosa-associated 
lymphoid tissues (MALT), their cell effectors, and their molecular 
signaling. Thereby, the importance of the strictly mucus-related 
compartment, i.e., the mucus secretion itself, its mucin components, 
and the responsible goblet cells and goblet cell glycosidases, have been 
mostly neglected. Nevertheless, in the current-omics era, recent 
advances in glycomics granted mucus secretion its position as key 
mediator between epithelial cells, MALT, and microbiota and their 
joint interactions with external factors such as pathogens (47–49).

The main clinical sign during sparicotylosis is anemia, which is 
caused by the hematophagous nature of a parasite (32, 39, 50). 
Furthermore, the parasite’s attaching mechanism to the gill filament 
through specialized clamps in its opisthaptor region (51) inflicts 
evident histopathological lesions such as lamellar synechiae and 
clubbing, resulting in disruption of the epithelium and marginal blood 
vessels (50). Gill hemorrhages and an increased mucoid exudate are 
among the recognized pathogenic effects and host response elicited by 
gill monogeneans, as reviewed by Ogawa (52). Regarding goblet cells, 
histological scoring of experimentally infected gilthead seabream 
showed an overall hyperplasia of neutral goblet cells in gill filaments. 

At the four gill locations where goblet cells were analyzed, a significant 

increase in neutral goblet cells was detected in R fish compared to C 
fish at some points during the parasite challenge (Figures 1, 2). This 
hyperplasia was especially notable and significant over the course of 
parasite exposure in the interlamellar pockets and the lamellar 
epithelium from 32 dpe on. A shift in the position of goblet cell 
distribution toward interlamellar cavities upon infection with the 
larval parasitic stage of the freshwater mussel Margaritifera 
margaritifera in Atlantic salmon was attributed to their role in gill 
clearance and remodeling (18). Similarly, the present rearrangement 
of goblet cell distribution is probably helping, by an increased mucus 
secretion between lamellae, to lubricate the surface of hyperplasic 
epithelia avoiding lamellar fusion. Thus, goblet cell hyperplasia was 
not evident at the other locations away from the lamellae, i.e., filament 
tips and the epithelium covering the proximal cartilage.

Meaningfully, goblet cell hyperplasia occurred after the first 
month of parasite challenge once infective oncomiracidia, post-larvae, 
and juveniles of S. chrysophrii turned into the more pathogenic adult 
worm stages, which was in agreement with the previous observations 
(39). At 32 dpe, the highest adult stage infection intensity reached 
112.8 ± 43.62, with each adult worm bearing 2 rows of up to 72 clamps 
(personal observation). These, pinch on the lamellae, eroding the 
mucosal surface and disrupting the gill tissue, probably triggering the 
increased mucus secretion to protect the nude or damaged gill 
epithelium. Mucosal and waterborne bacteria infecting such wounds 
also contribute to an inflammatory response in the parasitized gills 
(53). In fact, the current S. chrysophii-infected fish had developed 
epitheliocystis at the later sampling point. Sparicotyle chrysophrii and 
epitheliocystis co-infection in gilthead seabream are common under 
farm and experimental conditions (39, 50, 54), and its specific 
bacterial etiology was a matter of discussion until recently (43, 55, 56).

In the context of intestinal helminth infections, hyperplasia and 
hypertrophy of the mucous cells were described at the site of parasite 
attachment, especially for the ones with acid glycoconjugates (57). 
Hypertrophy of mucus cells with an increase in carboxylated 
glycoproteins containing sialic acid was observed in gills of gilthead 
seabream fed an essential oil-supplemented diet and exposed to 

TABLE 4 Lectin label intensity at the different gill sites in goblet cells (GCs) and in the mucus secretion (Muc sec).

Gill site Experimental 
group

Intensity of lectin label

ConA SBA UEA WGA BSL I SNA

Tip GC C 3.0 ± 0 2.5 ± 0.5 2.3 ± 0.14 1.5 ± 0 0.0 ± 0 0.1 ± 0.13

R 2.13 ± 0.72 2.33 ± 0.38 1 ± 0.87 0.83 ± 0.14 1.5 ± 1.06 0 ± 0

ILP GC C 0.5 ± 0.29 0.5 ± 0.2 0.13 ± 0.13 0.63 ± 0.13 0 ± 0 0 ± 0

R 0.38 ± 0.38 0.5 ± 0.29 0.25 ± 0.25 0.75 ± 0.14 0.13 ± 0.13 0 ± 0

Epi GC C 0.38 ± 0.24 0.17 ± 0.14 0.13 ± 0.13 1.25 ± 0.14 0.38 ± 0.13 0.1 ± 0.13

R 0.25 ± 0.14 1.5 ± 0.2 0.38 ± 0.24 1 ± 0 0.63 ± 0.24 0 ± 0

Prox GC C 0 ± 0 2 ± 0.2 0.25 ± 0.14 1.63 ± 0.38 0.63 ± 0.13 0 ± 0

R 0 ± 0 2 ± 0.2 0.63 ± 0.47 1.5 ± 0.2 1 ± 0.2 0.4 ± 0.38

Muc sec C 0.25 ± 0.14 1.25 ± 0.66 0.63 ± 0.24 1.63 ± 0.8 0.63 ± 0.38 0 ± 0

R 1 ± 0.29 1.88 ± 0.24 0.5 ± 0.2 2.5 ± 0.35 1.33 ± 0.29 0 ± 0

For each site and lectin, the mean staining intensity ± SEM in control unexposed fish (C, n = 4) and recipient parasitized fish (R, n = 4) from fish with medium-high infection intensity (50–115 
worms in right gill arches) at 32 days post exposure are given. Tip, filament tips; ILP, interlamellar pockets; Epi, lamellar epithelium; Prox, epithelium covering proximal cartilage and adipose 
tissue. No significant differences were found when comparing C and R groups.
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S. chrysophrii, but no change occurred in cell numbers (34). In the 
present study, gilthead seabream responded to parasite infection with 
an increase in goblet cells with neutral glycoconjugates. In healthy 
gills, the abundant secretion of neutral mucus characterized by 
glycoproteins with oxidizable vicinal diols is associated with pH 
regulation for acidity buffering of acidic mucins, with the maintenance 

of homeostasis and lubrication (58–60). The shift toward mucin 
acidification upon infection, related to viscosity increase in the mucus 
secretion and trapping of offending microorganisms due to higher 
amount of O-sulfate esters (60, 61), was not detected by histochemistry 
in the gills of S. chrysophrii-infected gilthead seabream. Conversely, 
the predominantly neutral mucin production found from 32 dpe on 

FIGURE 3

Schematic representation of the deduced amino acid sequences from the mucin genes annotated in the gilthead seabream genome. VWD, Von 
Willebrand factor type D domain; VWC, Von Willebrand factor type C domain; C8, conserved cysteine-rich domain; Repeats, mucin-like tandem 
repeats domains; EGF, epidermal growth factor domain; AMOP, adhesion-associated domain in MUC4 and other proteins; NIDO, nidogen-like domain; 
TIL, trypsin inhibitor-like cysteine-rich domain; WxxW, WxxW domain; Low comp. Disorder, low complexity or disorder domains containing regions 
rich in the amino acids serine, threonine, and proline (PTS domains); Ig like, immunoglobulin like domains; SEA, sperm protein, enterokinase, and agrin 
domain; TMM, transmembrane domain. Scale bar: 100 amino acids.

FIGURE 4

Normalized expression of mucin genes (A) and regulatory factors of goblet cell differentiation (B) in gilthead seabream gills upon Sparicotyle 
chrysophrii experimental infection (*p  <  0.05). Mean fold changes were calculated versus control samples of non-exposed fish ± SEM of n  =  5. dpe, 
days post-exposure.
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involves a less viscous mucus layer which facilitates laminar water flow 
and gas exchange in the gill lamellae (61, 62). Lethargy, as a sign of 
respiratory distress, is common upon sparicotylosis (38), and even a 
mild S. chrysophrii infection elicited the downregulation of hypoxia-
related oxygen homeostasis genes not only locally but also in the 
spleen of gilthead seabream (31). Thus, the reduced oxygen availability 
induced by the direct parasitic damage on the gills and blood 
consumption resulting in anemia provokes severe hypometabolic 
effects at systemic level during mild infections. Our current results 
point to a local mucosal response by the fish aiming to counterbalance 
parasite-induced hypoxia by secreting less viscous mucus on the 
lamellar surface that facilitates gas exchange.

Goblet cells bearing acidic, carboxylated mucins were found only 
in the epithelium covering the proximal cartilage of the arches, away 
from the gill respiratory epithelium, both in C and R fish (Figure 2; 
Supplementary Figure S1). Rakers and gill arches lubricated with 
highly viscous and sticky mucus, predominantly containing 
glycoproteins with O-sulfate esters and sialic acids, were reported 
from diverse teleost species in order to protect the epithelium of the 
pharyngeal cavity against mechanical injuries during food ingestion 
and transport food particles (62). Moreover, glycoproteins in such 
secretions cross-link sulfate and sialic acid groups resulting in a more 
resistant barrier against bacterial enzymatic degradation and thus, 
more difficult to breach by bacteria and more efficient in containing 
microbial infections (61).

At the transcriptional level, goblet cell hyperplasia was supported 
by the overexpression of mucin genes and regulatory factors involved 
in goblet cell differentiation (Figure  4). Apomucin, the linear 
polypeptide backbone of the mucin, is encoded by specific Muc genes 
in goblet cells. Assembly, automatic annotation, and in silico 

identification of mucins in non-mammalian species are challenging 
mainly due to their very long repetitive sequences and the poorly 
conserved sequence of mucin domains (63). Only a few studies have 
been conducted on teleost mucin gene expression with mucin 
transcription data that are barely available for Atlantic salmon (64, 65), 
zebrafish (66–68), and common carp (69, 70), and one previous record 
exists for gilthead seabream (15). In the later study, partial sequences 
and structure of some mucins were described for gilthead seabream 
from transcriptomic data. In the current study, we  integrated this 
previously defined information with the newly available genome data 
from two different genome assemblies for this species [fSpaAur1.1 in 
ensembl.org, NCBI and (40)] and identified nine mucin sequences. 
Our analysis of the automatic annotation of the sequences showed a 
coherent complete mucin structure for the membrane-bound mucins 
(muc4, muc13, and muc18), except for imuc, whose C terminus part 
was the only part identified. However, upstream of the imuc sequence 
in chromosome 6, several large repetitive PST domains can 
be identified that probably encode a part of the N terminus sequence 
of this protein, or belong to a different mucin sequence encoded in 
tandem, as typically found in gel-forming mucin gene organization 
(71). Long-read sequence analyses should be conducted to unravel the 
complete sequence of this mucin. Similarly, although muc2 and muc5 
sequences appear almost complete from N to C terminus, the 
predicted coding sequences in the middle repeat part are not very 
consistent, with atypical intron–exon boundary sequences 
(Supplementary Table S1). In addition, the similarities between muc2 
and muc5 sequences, and the poor conservation of mucin domains, 
are challenging for mucin classification and nomenclature in teleosts 
and other non-mammalian species. In this line, zebrafish muc5 
sequences have been termed muc5.1–3 instead of using the 

FIGURE 5

RNAseq normalized gene expression of glycosyltransferases and glycosydases in gilthead seabream gills upon Sparicotyle chrysophrii high-intensity 
experimental infection (A) and low-intensity sea cage infection (B) (*p  <  0.05). Log2 mean fold changes were calculated relative to the control samples 
of non-infected fish ± SEM of n  =  5 in (A) and n  =  4 in (B).
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mammalian nomenclature MUC5AC/MUC5B (67). Therefore, the 
nomenclature used in the current study is somewhat arbitrary, and a 
more accurate annotation of fish mucins should be  performed 
integrating mammalian and non-mammalian sequences, since up to 
133 Muc2-type and 263 Muc5-type proteins have been identified from 
vertebrate genomes (68). Muc2, Muc19, and Muc5 are very large, 
secreted, gel-forming mucins, whereas I-Muc, Muc4, Muc13, and 
Muc18 are membrane-bound mucins (15, 72, 73). Pérez-Sánchez et al. 
(15) found that Muc18, the most abundant gill mucin, and I-Muc 
constitutively expressed in the gills of gilthead seabream. These 
authors annotated the imuc sequence, which had no clear orthologous 
genes in mammals and was found highly expressed in the posterior 
intestine, where it revealed itself as a biomarker of intestinal health 
changing its expression upon parasite infections. Additionally, 
expression of muc2, muc13, and muc19 was found restricted to the 
gastrointestinal tract, in agreement with our current results which 
found no detectable expression in gills. Our results further reveal that 
I-Muc has an additional role in gill protection and mucosal 
response (15).

Expression and a robust upregulation of muc2 genes, muc5, imuc, 
muc4, and muc18 were found in the parasitized gills of gilthead 
seabream at 32 dpe, recovering their initial levels at 61 dpe for all 
mucin genes except for muc5a/c, which remained upregulated along 
the course of the entire experiment. Apparently, the secreted muc2 
sequences and the membrane-bound imuc, muc4, and muc18 
responded acutely once the highly pathogenic adult worms were 
established, with fold changes up to >20. The highest fold changes 
among them corresponded to the secreted muc2a and muc2b, while 
upregulation of the membrane-bound mucins imuc, muc4, and muc18 
was not as high. Mucin upregulation in response to a gill parasite was 
described in Atlantic salmon, displaying clinical amoebic gill disease 
at 21 dpe, when a 30-fold muc5 upregulation was found (64). In 
addition, in gills, those authors found downregulation of the 
membrane-bound muc18 and very low and variable expression of a 
muc2 sequence, which they considered to have a major role in the 
intestine of salmon. Sveen et al. (65) found three different muc5a/c 
genes, two muc2 genes, and one muc5b gene expressed in the gills of 
Atlantic salmon, from which two muc5a/c and two muc2 genes were 
significantly upregulated only 3 h after handling stress. In common 
carp, different pathogenic viruses provoked severe mucosal distress in 
gills by downregulating muc2-like and muc18 gene expression at the 
time that clinical signs of the disease appeared and susceptibility to 
secondary infections increased (69). In contrast, the expression of 
three different muc5 genes was upregulated in the whole body of 
zebrafish larvae in response to bacterial challenges upon pectin 
administration, which was considered an innate antimicrobial 
immune response (66). Therefore, it seems evident that mucin 
expression is involved in protective responses upon exposure to 
different pathogens and stressors, but there are large differences in 
mucin expression patterns among different fish species.

Regulatory mediators are responsible for the tuning of the goblet 
cell differentiation, leading to their hyperplasia and consequent mucus 
hypersecretion (74, 75). Accordingly, elf3 and agr2, both involved in 
goblet cell differentiation, were synchronically upregulated with the 
observed mucin upregulation in R gills. In the intestines of Elf3-
deficient mice, poor differentiation of goblet cells occurred (76). In 
addition, gene homologs of agr2 in humans and mice are strongly 
expressed in mucus-secreting cells of the digestive and respiratory 
epithelia, and in zebrafish, agr2 gene expression was found in mucus 

cells from all mucosal tissues including gills (77). Such regulatory 
mediators are, however, also responsible for avoiding a chronic 
inflammatory/repair response, which would worsen respiratory 
distress and hypoxia (74), and consequently, their expression levels 
were restored after the second month of parasite exposure. The 
transcriptional response of hes1b was slightly different, presenting a 
minor downregulation in the gills of R fish along the entire parasite 
challenge. Nevertheless, in fish as in mammals, the Notch-Hes1 
pathway drives intestinal differentiation, and its inhibition results in 
goblet cell differentiation (78, 79), which is in line with our results. 
Accordingly, downregulation of hes1 was described before as an 
intestinal helminth defense in order to increase mucin secretion and 
prevent worm attachment or promote detachment (80).

Regarding terminal glycosylation of the mucins contained in gill 
goblet cells, we found moderate changes including an overall increase 
in Gal, GalNac, and Fuc in R fish (Table 4). In addition, GlcNac/sialic 
acid terminal residues also increased slightly in the goblet cells of the 
interlamellar pockets of R fish. Glycosylation of the apomucin is 
carried out post-transcriptionally by glycotransferases and 
glycosidases in the Golgi apparatus during the secretory pathway. The 
resulting glycan oligomerization and branching and defining of the 
terminal sugar moieties produce the structural diversity of the 
glycome. Terminal sugar residues determine the charge and antigens 
of the mucins and are the molecular basis for interspecies recognition 
being capable of activating immune responses. In fact, chemical 
modifications of glycans have been proposed as diagnostic and 
therapeutic strategies against diseases (81). Firmino et  al. (34) 
suggested that diet supplementation with essential oils during 
sparicotylosis enhanced the mucosal defense mechanism, in part by 
an increase in sialic acid-containing mucins, which helped parasite 
trapping and shedding and led to a significant reduction in parasite 
abundance and prevalence. Here, in the absence of any particular 
dietary treatment, WGA binding to almost all sialylated glycans and 
GlcNAc showed a moderate increase in the goblet cells of the 
interlamellar pockets and the interlamellar mucus secretion of R fish 
at 32 dpe. In contrast, SNA, binding only to sialic acid attached to 
terminal α2, 6Gal, gave the weakest of all lectin labels, being almost 
negligible. Thus, overall sialylated and Glc-N-acetylated glycans seem 
to be  increasingly secreted in the gills of gilthead seabream as a 
response to the establishment of adult S. chrysophrii stages. The 
increase in sialic acid and GlcNAc together with goblet cell hyperplasia 
is recognized as part of the expulsion response against helminth 
infections, since sialic acids serve for pathogen binding and dumping 
(8). In agreement, six N-acetylglucosaminyltransferases were 
upregulated in the RNAseq dataset of gilthead seabream gills with 
severe sparicotylosis (Figure  5). The addition of GlcNAc to the 
oligosaccharide chain can generate core 2 and 4 structures, allowing 
branching and providing the substrate for the further addition of 
sugar by other glycosyltransferases. This is a regulatory turning point 
of glycosylation, since many biologically important oligosaccharide 
structures involved in recognition and adhesion are constructed on 
this branch, and improper N-acetylglucosaminyltransferase 
expression in mammals is related to pathological conditions (82). In 
addition, the expression profile of sialyltransferases was clearly 
downregulated in the RNAseq dataset of fish with low infection 
intensity, whereas in highly infected fish, only one sialyltransferase of 
the five we identified was significantly downregulated, and sialidases 
presented opposite expression profiles, depending on the infection 
intensity of the fish.
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While sialic acids confer a negative charge to the glycoconjugate, 
terminal fucose residues confer hydrophobicity, but both are 
associated with mucosal protection and their alteration may result in 
disease (72, 75). Thus, human fucosyltransferases and their expression 
have been studied for their importance in inflammation, mucosal 
colonization, and host immune response modulation (83, 84), and 
more recently, their importance for the maintenance of healthy gut 
microbiota profiles has been stressed out (85, 86). In R gills, a 
moderate increase in Fuc terminal residues was observed in the 
lamellar goblet cells and those of the epithelium covering the proximal 
cartilage, and fucosyltransferase expression appeared upregulated in 
fish with high infection intensity (Figures 2, 5). Such results may also 
point to a protective host response through modulation of mucin 
glycosylation. Conversely, the only previous study including 
glycosylation of gilthead seabream gills mucus found scarce Fuc 
residues after feeding with an essential oil-supplemented diet and 
challenging fish with the polyopisthocotylidan (34). However, those 
fish had a mean infection intensity of 2.7 parasites/fish, much lower 
than the current one of 112.8 ± 43.62, and very similar to the 2.73 
parasites/fish of the low-intensity RNAseq dataset (31), in which 
fucosyltransferases were downregulated. Thus, some protective 
mechanisms of mucosal modulation in the gills of gilthead seabream 
may only be triggered upon severe polyopisthocotylidan infection. 
Through a glycomic approach, the presence of complex fucosylated 
mucin structures was found in Atlantic salmon gills, which would lead 
to increased structure diversity of glycan epitopes to diversify its 
repertoire as a possible defensive immune strategy (87). Similarly, the 
skin mucin structure of Atlantic salmon subjected to chronic stress 
carried increased Fuc, sialic acid, and core 1 glycans (47).

In addition, GalNAc, which is incorporated by 
N-acetylgalactosaminyltransferases to the apomucin initiating the 
oligosaccharide sidechains, seemed to increase in the goblet cells of 
the R fish lamellar epithelium and the mucus secretion. The detection 
of this sugar moiety at the terminal position in secreted mucins was 
considered a sign of immature mucin secretion in gilthead seabream 
upon intestinal parasite infection (88) and also in vertebrates, in 
general (89). Secretion of not fully mature mucins seems to contradict 
the previous observations of mucins with increased GlcNAc, sialic 
acid, and Fuc, indicators of complex glycans. Future glycomic work 
will be conducted to validate or reject if the mucosal gill secretion of 
gilthead seabream contains immature, not fully glycosylated mucins 
upon sparicotylosis.

Phosphomannomutase isozymes, as known from mammals, 
are required for the process of N-glycosylation. They provide 
Man-1-P, the substrate needed by mannosyltransferases, to 
incorporate Man into glycoconjugates (90). Identified 
mannosyltransferase sequences participate in this early N-linked 
glycosylation, from which derived glycan structures are key for 
functions such as cell recognition, host-defense, and protein 
secretion in many organisms (91). The downregulation of 
mannosyltransferase observed in the gills of fish with low infection 
intensity was not detected in fish with high intensity, as also 
happened for one phosphomannomutase and most mannosidases 
identified (Figure  5). Mannosidases and sialidases are both 
relevant glycosidases for the release of mucin glycans and would 
play their role in sloughing mucus with the retained parasites off, 
as previously suggested for an endopeptidase by Firmino et al. 
(34). Overall, enzyme gene expression from the RNAseq analyses 

performed herein pointed to a hyporegulative profile in the gills of 
the fish with low infection intensity, which was mostly reverted or 
even inverted for many glycosyltransferases and glycosidases in 
fish with high infection intensity. This would correspond to a 
defense response in gills involving higher mucin biosynthesis and 
release, which is in line with the observed goblet cell hyperplasia 
and mucus hypersecretion upon severe S. chrysophrii infection, 
once the adult parasite stages are established.

Many aspects beyond our current scope, such as 
glycosyltransferase competition and their intracellular location, 
epigenetics, health status, or microbiome/pathobiome signaling, can 
influence the final O-glycosylation profile, which compromises mucin 
secretion, conformation, involvement in adhesion and recognition 
events, and microbiome niches. Furthermore, each glycosyltransferase 
accounts for the proper arrangement of the individual 
monosaccharides in each unique oligosaccharide structure, and their 
gene expression serves as fine tuning of the glycosylation process. 
Future transcriptomic and glycomic approaches will help us 
understand the scope of the detected mucin modulation in this host–
microbiome–parasite interaction by integrating the transcriptional, 
glycosylation, and microbiome viewpoints. We  are still far from 
understanding the entire interplay occurring between host mediators 
and effectors, microbiota and microbiota-derived factors, and 
parasites and their excretory–secretory products. However, this study 
helps to understand how the gill mucosal microhabitat responds to the 
S. chrysophrii offender and consequent microbiota shift (43) by 
increased goblet cell differentiation leading to neutral goblet cell 
hyperplasia on gill lamellae, acutely increased mucin expression, and 
a probable increase in more complex glycoconjugates with sialylated, 
fucosylated, and branched structures.
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