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Oral and maxillofacial (OMF) defects are not limited to humans and are often

encountered in other species. Reconstructing significant tissue defects requires

an excellent strategy for e�cient and cost-e�ective treatment. In this regard,

tissue engineering comprising stem cells, sca�olds, and signaling molecules

is emerging as an innovative approach to treating OMF defects in veterinary

patients. This review presents a comprehensive overview of OMF defects and

tissue engineering principles to establish proper treatment and achieve both hard

and soft tissue regeneration in veterinary practice. Moreover, bench-to-bedside

future opportunities and challenges of tissue engineering usage are also

addressed in this literature review.
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1 Introduction

As is the case with other clinical disciplines, oral and maxillofacial (OMF) surgery

is constantly evolving, always aiming to improve treatment capability. Veterinary OMF

surgeons often encounter technical challenges when reconstructing hard and soft tissue

defects, and alternative approaches that can help minimize some of the limitations are

necessary (1). In this context, tissue engineering was introduced as a novel approach to

tissue regeneration and repair (2), and extensive studies have been conducted aiming to

overcome the drawbacks of conventional solutions in OMF surgery. In addition, tissue

regeneration implies the involvement of tissue component substitution to the damaged

tissue returning to the normal state. While tissue repair involves a “patching” mechanism,

with connective tissue deposition such as a scar to provide enough integrity to the injured

tissue. However, excessive connective tissue deposition, known as fibrosis, in some tissues

may alter the tissue functions due to the inability of tissue remodeling (3–5). As noted by

Langer and Vacanti, tissue engineering comprises the use of stem cells, scaffolds, and/or
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signaling molecules (2). Interestingly, trend of using differentiated

or somatic cells can be employed for tissue engineering as well (6).

Recently, the trend of scaffold-free approaches have been raised and

elaborated in the tissue engineering field. The approaches focus

on the overcoming the issues of cell survival and localization,

immune reaction, and ECM protection and growth factor storage

(7, 8). Among the different types of cells, stem cells have been

highlighted because primary cells have limitations in cell resource

and risk for disease transmission (9). Stem cells to be used for

tissue engineering may be embryonic stem cells (ESCs), adult stem

cells such as mesenchymal stem cells (MSCs) and hematopoietic

stem cells (HSCs), or induced pluripotent stem cells (iPSCs) (9).

However, MSCs have receivedmuch attention due to their potential

for clinical use in both humans and animals (10). Mesenchymal

stem cells can be divided based on the collection site into oral and

non-oral tissue origins (11). Scaffolds can be utilized as a carrier for

cells and signaling molecules (9). In this review, we elaborate on

some of the fundamental concepts underlying tissue engineering

and describe current trends directed toward future applications

in veterinary OMF surgery. The tissue engineering concept to be

translated for OMF regeneration in veterinary practice is illustrated

in Figure 1.

The OMF region is composed of hard and soft tissues.

Hard tissues include the teeth and multiple bones, such as the

maxillary, incisive, mandibular, nasal, frontal, temporal, zygomatic,

and palatine bones, among many others. The mandible articulates

with maxillary structures via the temporomandibular joint (TMJ).

Associated soft tissues include the TMJ disc and attachment,

cartilage and attachment, tongue, oral mucosal surfaces, lymphoid

tissue, salivary glands, muscles, nerves, vascular system, and

skin (12). Understanding the complex anatomy and functionality

of the OMF region is essential when diagnosing associated

disorders and implementing proper treatments that can achieve an

optimal outcome.

Anatomical defects that affect the functionality of the OMF

region are common in both humans and animals. Generally, OMF

defects can be classified as congenital or acquired (13). Orofacial

clefts represent a relatively prevalent example of a congenital

OMF defect of high clinical relevance that requires surgical

reconstruction. Conversely, acquired defects are a frequent sequela

of oncological surgery and traumatic injuries of the OMF region.

Several classifications or grading schemes have been reported in

humans based on the specific anatomical location of the OMF

defect. Although there is no standardized classification system for

animals, OMF traumatic injuries (e.g., vehicular accident, animal

bites, blunt force, and others) and congenital defects (clefts of the

lip, palate, or both) have been comprehensively documented in

dogs (14–17).

2 Tissue engineering for OMF
reconstruction

Depending on the nature, extent, location, and stage of

the OMF disorder, conventional surgical techniques may be

contraindicated due to the inability to reconstruct existing or

resultant defects (18). Moreover, allogenic organ transplantation

and prosthetic rejection due to an adverse immune response

may pose an important obstacle (19). Tissue engineering is an

interdisciplinary field that combines biology and engineering

principles to establish functional substitutes for damaged tissue

(2) with the aim of addressing the aforementioned limitations,

especially for the application in OMF reconstruction.

Using the current state of the art tissue engineering solutions,

current conventional surgical techniques, such as autologous bone

graft surgery could be complemented or replaced to address the

general surgical concerns of donor site morbidity, poor anatomical

match, insufficient graft volume, graft resorption, and rejection

(20, 21). To reconstruct orofacial clefts in dogs, soft tissue flaps

are typically harvested from the region adjacent to the defect.

In severe cases where the cleft is too wide for local tissue flaps,

tooth extraction and a staged approach has been described (22).

Surgical site morbidity associated with soft tissue harvest sites,

tooth extraction, as well as dehiscence rate (23), are the primary

complications of this concern. Regarding acquired bone defects

that result in functional disturbances, treatments have been variable

and span the spectrum of surgical and non-surgical options (24,

25). None of the techniques described are without complication.

Alternatively, tissue regeneration is an option that aims to restore

and replace damaged tissue that overcomes conventional correction

techniques by applying tissue engineering field (26).

3 Potential cell sources

As previously mentioned, stem cells represent the main cell

source used for tissue regeneration because of their self-renewal,

multilineage differentiation and high proliferative potential (19,

26, 27). Mesenchymal stem cells (MSCs) are the primary focus

of this review given that they can differentiate into hard and

soft tissue cells and be tissue-engineered for repair of different

OMF defects. With this in mind, we further divide cell sources

according to origin as either oral or non-oral MSCs. To be noted,

craniomaxillofacial tissues have not only oral MSCs, but also others

including suture-derived MSCs and periosteum-derived stem cells

(28, 29). However, this literature review focuses on the oral/mouth-

derived MSCs because suture- and periosteum-derived MSCs are

still sparsely reported.

3.1 Oral tissue origins

Oral derived human stem cells have been previously reported

(11, 28, 29). In 2000, dental pulp stem cells (DPSCs) were first

isolated from permanent third molar teeth and their stemness

properties were demonstrated (30). Successful isolation of DPSCs

was followed by stem cells from exfoliated deciduous teeth in 2003

(31), periodontal ligament stem cells (PDLSCs) in 2004 (32), dental

follicle stem cells (DFSCs) in 2005 (33), stem cells from apical

papilla (SCAP) in 2006 (34), and gingival MSCs (GMSCs) in 2010

(35). It has been reported that oral stem cells are advantageous

in terms of collection due to its easiness with least invasive way,

convenience, and affordable, cryopreservable, and transportable.

Additionally, the cells are able to have interaction with scaffold

and signaling molecule (36–38). These previous studies showed

that the cells exhibited the expected behavior and potentiality
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FIGURE 1

Translational concept of oral and maxillofacial tissue engineering in veterinary medicine.

such as high proliferation rate and multilineage differentiation

ability. According to the International Society for Cellular Therapy

(ISCT), multilineage differentiation ability is that MSCs can be

differentiated into osteoblasts, adipocytes, and chondroblasts in

vitro (39). Many studies also reported confirmational expression of

pluripotency regulators and proliferative marker either as in genes

or proteins, e.g., SRY-box transcription factor (TF) 2 (SOX2), REX1

TF (REX1), octamer-binding TF 4 (OCT4), and homeobox TF

Nanog (NANOG), and proliferation marker Ki67 antigen (Ki67),

respectively (40–42). In addition, this literature review presented

the results of MSC surface markers both from flow cytometry

and polymerase chain reaction (PCR) results, including CD146

(MSC multipotency), CD44 (cell-matrix interaction), CD29 (cell

adhesion), CD73 (cell migration and anti-inflammatory property)

CD90 (cell adhesion, migration, homing, proliferation, apoptosis,

and differentiation), CD105 (cell migration, proliferation, and

differentiation), and CD45 (hematopoietic stem cell (HSC)

marker) (43–49).

Stem cells have also been isolated from the oral tissues of

non-humanmammalian species including canines, felines, equines,

chimpanzees, swines, murines, and minipigs (34, 43, 50–53).

Among these, canine-derived oral-origin MSCs have been widely

studied (41, 43, 54–64). In contrast, feline-derived oral-origin

MSCs have only been sparsely reported. Therefore, we have drawn

parallels between canine and human oral-origin MSCs. Indeed,

one study showed that canine DPSCs exhibited similar stemness

properties to human DPSCs including adherence to a plastic

surface and fibroblast-like morphology (43). The same study also

found that canine DPSCs have a higher proliferation rate than

human bonemarrow-derivedmesenchymal stem cells (BM-MSCs),

yet lower than human DPSCs. In addition, human DPSCs have

a higher number in colony formation than canine DPSCs (63).

Moreover, canine DPSCs showed higher mRNA expression of

CD146 and Nanog (43). In addition, previous studies reported

that canine DPSCs recapitulate the pluripotency of human DPSCs

with the ability to differentiate into osteogenic, adipogenic, and

chondrogenic lineages, but not neurogenic lineage (43, 57, 65–

67). Apart from that, the osteogenic and adipogenic differentiation

potential of canine DPSCs was weaker compared to human DPSCs

(43, 63). The RUNX2 expression of human and canine DPSCs

on day 7 after osteogenic induction showed ∼2.5 and 0.6 times

comparing to control group (non-induced group), respectively.

For adipogenic differentiation, canine DPSCs showed that fewer

formation of intracellular lipid droplets compared to human

DPSCs (43, 63). Interestingly, previous studies have shown that

human DPSCs can differentiate into insulin-producing cells (IPCs)

(68–70). Feline DPSCs have also exhibited MSC properties, with

spindle-shaped cells that have the ability to form colonies (71).

Like other MSCs, feline DPSCs were also able to differentiate

into osteogenic, adipogenic, and chondrogenic. However, the

MSC surface marker expression profile of feline DPSCs has not

been established.

Similarly, stem cells from human exfoliated deciduous teeth

(SHED) have been isolated. One study showed that SHEDs are

fibroblast-like shaped multipotent stem cells with proliferative and

clonogenic capacity (31). It was noted that the highest number

of population doublings was from SHED, followed by human

DPSCs and BM-MSCs. Just like other subgroups of MSCs, SHEDs
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TABLE 1 Potential cell source of oral and non-oral origin of human, canine, feline, and equine.

Source Species Characteristics Potential di�erentiation References

Fibro Prolif CD44 CD73 CD90 CD105 CD146 STRO-
1

Nanog Rex1 Oct4 Ki67 Osteo Chondro Adipo Neuro IPCs

DPSCs Hu + + + + + + +
G

+ + + + + + + + + + (43, 57, 66–70)

Ca + + N/A + + + +
G

+ + + + + + + + + N/A (43, 65)

Fe + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + + + N/A N/A (71)

Eq + + + N/A + + N/A N/A N/A N/A N/A N/A + + + N/A N/A (93)

SED Hu + + N/A N/A N/A N/A + + N/A N/A N/A N/A + + + N/A N/A (31)

Ca N/A N/A N/A N/A + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A (59)

Fe N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Eq (fo) + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (72)

PDLSCs Hu + + + + + + N/A + + + + + + + + + N/A (32, 60, 63, 75,

76, 94)

Ca + + N/A + + + + + N/A N/A N/A N/A + + + + N/A (63, 64)

Fe N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Eq + + N/A N/A N/A N/A N/A N/A N/A N/A N/A + + + + N/A N/A (53, 95–97)

DFSCs Hu + + + N/A + + N/A N/A N/A N/A N/A N/A + N/A + + N/A (33, 77)

Ca N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Fe N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Eq N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

SCAP Hu + N/A N/A + + + + + N/A N/A N/A N/A + N/A + N/A N/A (34)

Ca N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Fe N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Eq N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMSCs Hu + + + + + + N/A N/A N/A N/A N/A N/A + + + N/A N/A (56, 78, 79)

Ca N/A N/A N/A N/A + N/A N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (56)

Fe N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Eq + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + + + N/A N/A (53)

BM-

MSCs

Hu + N/A N/A + + + + N/A + N/A + N/A + + + + N/A (41, 55, 62, 81)

Ca + + N/A + + N/A + N/A + + + + + + + + + (61, 65, 81, 86,

87)

Fe + + + N/A N/A N/A N/A N/A N/A N/A N/A N/A + + + + N/A (81, 85, 88)

Eq + + N/A N/A N/A N/A N/A N/A + N/A + N/A + + + N/A N/A (98–100)

(Continued)

F
ro
n
tie

rs
in

V
e
te
rin

a
ry

S
c
ie
n
c
e

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fvets.2024.1325559
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Purbantoro et al. 10.3389/fvets.2024.1325559

T
A
B
L
E
1

(C
o
n
ti
n
u
e
d
)

S
o
u
rc
e
S
p
e
c
ie
s

C
h
a
ra
c
te
ri
st
ic
s

P
o
te
n
ti
a
l
d
i�
e
re
n
ti
a
ti
o
n

R
e
fe
re
n
c
e
s

F
ib
ro

P
ro
li
f

C
D
4
4

C
D
7
3

C
D
9
0

C
D
1
0
5

C
D
1
4
6

S
T
R
O
-

1
N
a
n
o
g

R
e
x
1

O
c
t4

K
i6
7

O
st
e
o

C
h
o
n
d
ro

A
d
ip
o

N
e
u
ro

IP
C
s

A
D
-

M
SC

s

H
u

+
N
/A

+
+

+
+

N
/A

N
/A

+
N
/A

N
/A

N
/A

+
+

+
N
/A

N
/A

(8
9)

C
a

+
+

+
+

+
N
/A

N
/A

N
/A

+
+

+
+

+
+

+
N
/A

+
(5
4,
58
,6
1)

F
e

+
+

+
N
/A

+
+

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

+
+

+
N
/A

N
/A

(9
0,
91
)

E
q

+
+

+
N
/A

+
+

N
/A

N
/A

N
/A

+
N
/A

N
/A

+
+

+
N
/A

N
/A

(1
01
–
10
3)

D
P
SC

s,
d
en
ta
lp
u
lp
st
em

ce
ll
s;
SE

D
,s
te
m

ce
ll
s
fr
o
m

ex
fo
li
at
ed

d
ec
id
u
o
u
s
te
et
h
;P
D
L
SC

s,
p
er
io
d
o
n
ta
ll
ig
am

en
t
st
em

ce
ll
s;
D
F
SC

s,
d
en
ta
lf
o
ll
ic
le
st
em

ce
ll
s;
SC

A
P,
st
em

ce
ll
s
fr
o
m

ap
ic
al
p
ap
il
la
;G

M
SC

s,
gi
n
gi
va
lm

es
en
ch
ym

al
st
em

ce
ll
s;
B
M
-M

SC
s,
b
o
n
e
m
ar
ro
w
-d
er
iv
ed

m
es
en
ch
ym

al
st
em

ce
ll
s;
A
D
-M

SC
s,
ad
ip
o
se
-d
er
iv
ed

m
es
en
ch
ym

al
st
em

ce
ll
s;
H
u
,h
u
m
an
;C

a,
ca
n
in
e;
F
e,
fe
li
n
e;
E
q
,e
q
u
in
e;
fo
,f
o
al
;F
ib
ro
,fi
b
ro
b
la
st
-l
ik
e
sh
ap
ed
;P
ro
li
f,
P
ro
li
fe
ra
ti
ve
;O

st
eo
,O

st
eo
ge
n
ic
;C

h
o
n
d
ro
,C

h
o
n
d
ro
ge
n
ic
;A

d
ip
o
,A

d
ip
o
ge
n
ic
;N

eu
ro
,n
eu
ro
ge
n
ic
;

IP
C
s,
in
su
li
n
-p
ro
d
u
ci
n
g
ce
ll
s;
+
,p
o
si
ti
ve
ly
ex
p
re
ss
ed

b
y
p
ro
te
in
s;
+

G
,p
o
si
ti
ve
ly
ex
p
re
ss
ed

b
y
ge
n
e;
N
/A

,n
o
t
av
ai
la
b
le
.

were shown to express CD146 and STRO-1. Additionally, SHEDs

can differentiate into odontogenic, osteogenic, adipogenic, and

neurogenic lineages in a specific medium. Moreover, odontoblasts

were found after SHED transplantation for 8 weeks into

immunocompromized mice, being unable to completely regenerate

dentin-pulp-like complex, like human DPSCs. Similarly, stem cells

derived from canine exfoliated deciduous teeth are termed SCED.

One study reported that SCED express CD105 and CD90 but not

CD45 (59). Also, SCED were able to differentiate into neurogenic

lineage (59). Unfortunately, a literature search did not yield any

studies further characterizing SCED. In addition, stem cells from

equine and ovine exfoliated deciduous teeth have been reported

and showed fibroblastic-likemorphology and proliferative property

(72, 73). However, stem cells from exfoliated deciduous tooth from

feline, porcine, bovine, caprine, non-human primate (NHP), rabbit,

rat, and murine have not been reported.

In 1985, progenitor cells that reside in the periodontal

ligament of mice were reported (74). The multipotency of

PDLSCs was subsequently investigated. In humans, PDLSCs

have typical fibroblast-like morphology, can form colonies, and

can differentiate into osteoblasts, adipocytes, chondrocytes, and

neurogenic (32, 75, 76). Consistent with MSCs, PDLSCs highly

expressed CD73, CD90, CD105, and STRO-1 but negatively

expressed CD45 (63). Furthermore, an in vivo study of human

PDLSCs in combination with hydroxyapatite (HA)/tricalcium

phosphate (TCP) showed their ability to differentiate into

cementum-like, PDL-like structures and to generate collagen fibers

in immunocompromized mice (32). In the canine model, canine

PDLSCs exhibited similarmorphology andMSCsmarker to human

PDLSCs. The ability to differentiate into osteogenic, adipogenic,

chondrogenic, and neurogenic lineages was also observed in canine

PDLSCs (63, 64). However, canine DPSCs have a weaker potential

to differentiate into osteoblasts and adipocytes compared to human

PDLSCs (64). In addition, canine PDLSCs were reported to have

∼2 times lower colony formation than human PDLSCs (63).

Otherwise, canine cells combined with HA could still generate

cementum-like, PDL-like structures and collagen fibers, similar to

human cells (64).

A report of human DFSCs revealed a fibroblast-like

morphology. Cells were proliferative and formed colonies. Like

with other MSCs, human DFSCs could be induced into osteogenic,

adipogenic, and neurogenic lineages (33, 77). Moreover, cells

expressed CD29, CD44, CD90, CD105, and CD166, but no

hematopoietic markers. In the same study, the authors isolated

canine DFSCs and cultured them into cell sheets. However, there

are no records regarding the characteristics of canine DFSCs.

Stem cells from apical papilla (SCAP) also exhibited MSC

characteristics including fibroblast-likemorphology and expression

of STRO-1 as well as the other MSCs surface markers, and

can differentiate into osteogenic and adipogenic lineages (34). A

literature search did not yield any reports of SCAP isolation from

canine teeth, however.

Given that GMSCs can be collected relatively easily, human

and canine GMSCs were compared for their surface marker

expression and osteogenic potential (56). Human GMSCs were

found to express CD73, CD90, and CD105 and were able to

differentiate into the osteogenic lineage. Conversely, canine GMSCs

did not express CD73 or CD105, but did express CD90, and were
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able to differentiate into the osteogenic lineage. Unlike canine,

human GMSCs have been characterized in several studies. One

study revealed that human GMSCs are fibroblast-like shaped, and

expressing several MSCs surface markers, such as CD44 and CD13,

and have the capability to generate osteoblasts, adipocytes, and

chondrocytes in vitro (78). Another study reported that human

GMSCs proliferation was faster than BM-MSCs without additional

growth factors, and cells were found to be clonogenic (79).

3.2 Non-oral tissue origins MSCs

Mesenchymal stem cells can be isolated from non-oral tissues,

such as bone marrow (BM-MSCs) (61, 65), adipose (AD-MSCs)

(61), umbilical cord (UC-MSCs), Wharton’s jelly (WJ-MSCs),

muscle, and liver. In this review, we focus on BM-MSCs and AD-

MSCs.

Collection sites to aspirate BM-MSCs are either the iliac crest,

the femoral shaft, or the proximal humerus, both in humans

and canines (55, 80–82). As its harvesting protocol is invasive

(81, 83), post-operative pain and risk of infection should be

well-managed before the procedure is performed (84). Fibroblast-

shapedmorphology has been observed in human, canine, and feline

BM-MSCs (61, 62, 65, 85). Canine BM-MSCs have been shown

to express CD73, CD90, and CD146, but not CD45 (61, 62, 65).

Humenik et al. demonstrated that canine BM-MSCs also express

CD29 (86). Like canine BM-MSCs, human BM-MSCs were shown

to express CD73, CD90, CD105, and CD146, but not CD45 (62).

In the same study, human and canine BM-MSCs were also found

to be clonogenic. Unlike canine and human BM-MSCs, feline BM-

MSCs were only expressed CD9, CD44, and MHC1 as MSC surface

markers (85). The mRNA expression of SOX2, NANOG, and OCT4

as pluripotency genes was detected in both human and canine BM-

MSCs (41, 87). Moreover, we have found that canine, feline, and

human BM-MSCs are able to differentiate into many lineages, such

as osteogenic, adipogenic, and chondrogenic (41, 55, 61, 65, 85,

88). In addition, both human and feline BM-MSCs are able to

differentiate into neurogenic lineage (41, 85). A collective analysis

mentioned that BM-MSCs across species have differences and

uniqueness of stemness characteristics. To implement this result,

dissemination of stemness characteristics is required for further

clinical application. This collective analysis of BM-MSCs has been

reported in the previous publication (81).

Previous studies have noted that human and canine AD-

MSCs exhibit the same fibroblast-like morphology as BM-MSCs

(61, 89). Human AD-MSCs can be isolated from neck or abdominal

adipose tissues (89). In canines, adipose tissue can be obtained

from subcutaneous, omental, and inguinal deposits and even

biopsied fat (58, 61). Like BM-MSCs, canine AD-MSCs are able

to express MSCs surface markers, such as CD90 and CD73, but

not hematopoietic stem cells (HSCs) marker CD45 (61). Moreover,

canine AD-MSCs are considered pluripotent based on protein

expression of Oct4, Nanog, and Sox2 expressions (58). Like canine

AD-MSCs, human AD-MSCs have been shown to express CD90,

CD105, CD44, and CD73, but not CD45 (89). The same study

found that human AD-MSCs expressed proteins such as Nanog,

Sox2, and SSEA4, like canine AD-MSCs. In addition, human and

canine AD-MSCs can differentiate into osteogenic, adipogenic, and

chondrogenic lineages (58, 61, 89). Other studies have also reported

that canine AD-MSCs have the ability to differentiate into IPCs

(54, 61). It has been shown that AD-MSCs can also be isolated

from felines (90, 91). These studies have noted that cell morphology

was similar to other species and were proliferative, and that cells

expressed CD9, CD44, CD90, and CD105 and could differentiate

into osteogenic, adipogenic, and chondrogenic lineages (90, 91). To

date, there is no data to provide collective analysis of AD-MSCs.

Of note, some studies include BM-MSCs and AD-MSCs as

MSCs of oral-origin. Indeed, mandibles represent a potential

collection site (29). Similarly, MSCs have been collected from

neck fat in equines and the corresponding MSC characteristics

and wound healing potential have been documented (92). A

comprehensive summary of oral and non-oral potential cell sources

from human, canine, feline, and equines is presented in Table 1

and livestock and laboratory animals are presented in Tables 2,

3, respectively.

4 Sca�olds and signaling molecules
for OMF reconstruction

Scaffolds and signaling molecules have been comprehended

as other essential components of tissue engineering to regenerate

damaged tissues or organs (2). Scaffold is defined as a three-

dimensional (3D) biomaterial for supporting the cells to proliferate

and differentiate during the process of tissue regeneration (9).

Furthermore, signaling molecules are crucial in the involvement

of cellular responses (154). Thus, besides stem cells, scaffolds and

signaling molecules are suggested to have the potential to be used

for OMF reconstruction (155).

4.1 Sca�olds for OMF tissue regeneration

Selecting an appropriate scaffold for each specific tissue is

an essential factor in tissue engineering. The biomaterial and

scaffold are a transport device for cells and signaling molecules

to promote tissue regeneration (9, 156, 157). Moreover, the

scaffold structure functions as a reservoir for water, nutrients,

cytokines, and growth/differentiation factors (27). Therefore,

scaffold fabrication should be considered for its functionality,

biocompatibility, biodegradability, mechanical properties,

and structure characteristics such as pore size, porosity, and

interconnectivity (158, 159). Addition, the 3D structural scaffold

can be printed to resemble donor tissue architecture (9). Also,

the designated material is expected to support cell attachment,

migration, proliferation, differentiation, maturation, and ECM

production (19, 160).

Scaffold materials can be broadly categorized into natural, and

synthetic (157). Biomaterials can be classified into metal, ceramic,

polymer, and composite (161). The advantages and disadvantages

of each material should be taken into consideration before utilizing

them for OMF hard or soft tissue regeneration and based on the

desired functionality of the material on a specific tissue.
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TABLE 2 Potential cell source of oral and non-oral origin of livestock animals.

Source Species Characteristics Potential di�erentiation References

Fibro Prolif CD44 CD73 CD90 CD105 CD146 STRO-
1

Nanog Rex1 Oct4 Ki67 Osteo Chondro Adipo Neuro IPCs

DPSCs Po + + N/A N/A + + + N/A N/A N/A N/A N/A N/A + + + N/A (104)

Bo + + N/A N/A + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (104)

Ov + + N/A N/A N/A N/A N/A + N/A N/A N/A N/A + N/A N/A N/A N/A (73)

SED Po N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Bo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ov + + N/A N/A N/A N/A N/A + N/A N/A N/A N/A N/A N/A N/A N/A N/A (73)

PDLSCs Po + + N/A N/A N/A N/A N/A + N/A N/A N/A N/A + N/A N/A N/A N/A (105–108)

Bo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ov + + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (109)

DFSCs Po + + + N/A + + N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (110, 111)

Bo + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (112)

Ov N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

SCAP Po N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Bo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ov N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMSCs Po N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Bo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ov N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

BM-

MSCs

Po + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (110)

Bo + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A + N/A N/A (113)

Ov + + + + N/A + N/A N/A N/A N/A N/A N/A + + + N/A N/A (114, 115)

AD-

MSCs

Po + + + N/A + + N/A N/A N/A N/A N/A N/A + + + + + (116–124)

Bo + + + + N/A N/A N/A N/A N/A N/A N/A N/A + N/A + N/A N/A (125)

Ov + + + + N/A + N/A N/A N/A N/A N/A N/A + + + N/A N/A (126, 127)

DPSCs, dental pulp stem cells; SED, stem cells from exfoliated deciduous teeth; PDLSCs, periodontal ligament stem cells; DFSCs, dental follicle stem cells; SCAP, stem cells from apical papilla; GMSCs, gingival mesenchymal stem cells; BM-MSCs, bone marrow-

derived mesenchymal stem cells; AD-MSCs, adipose-derived mesenchymal stem cells; Po, porcine; Bo, bovine; Ov, ovine; Fibro, fibroblast-like shaped; Prolif, Proliferative; Osteo, Osteogenic; Chondro, Chondrogenic; Adipo, Adipogenic; Neuro, neurogenic; IPCs,

insulin-producing cells;+, positively expressed by proteins;+G , positively expressed by gene; N/A, not available.
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TABLE 3 Potential cell source of oral and non-oral origin of laboratory animals.

Source Species Characteristics Potential di�erentiation References

Fibro Prolif CD44 CD73 CD90 CD105 CD146 STRO-
1

Nanog Rex1 Oct4 Ki67 Osteo Chondro Adipo Neuro IPCs

DPSCs NHP (c) + + + + + + N/A N/A + + + N/A + + + N/A N/A (51)

Rab + + N/A N/A N/A N/A N/A + N/A N/A N/A N/A + N/A + N/A N/A (128–130)

Rat + + N/A N/A N/A + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (131)

Mu + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A (132)

SED NHP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rab N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rat N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Mu N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

PDLSCs NHP (b) + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (133)

Rab + + N/A N/A N/A N/A N/A N/A + N/A + N/A + + + N/A N/A (134)

Rat + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A (135)

Mu + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (74)

DFSCs NHP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rab + + N/A N/A N/A N/A N/A N/A + N/A + N/A + N/A + + N/A (134)

Rat + + + N/A + N/A N/A N/A N/A N/A N/A N/A + N/A + N/A N/A (136, 137)

Mu + + + N/A N/A + N/A N/A N/A N/A N/A N/A + N/A N/A N/A N/A (138)

SCAP NHP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rab N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rat N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Mu N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMSCs NHP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Rab + + + + + + N/A N/A N/A N/A N/A N/A + + + N/A N/A (139)

Rat + + + + + + N/A N/A N/A N/A N/A N/A + + + + N/A (140–142)

Mu + + N/A N/A + + N/A N/A N/A N/A N/A N/A + + + N/A N/A (141)

BM-

MSCs

NHP (m) + + N/A N/A + + N/A N/A + + + N/A + + + N/A N/A (143)

Rab + + + N/A N/A + N/A N/A N/A N/A N/A N/A + + N/A N/A N/A (144, 145)

Rat + + + + + + N/A N/A N/A N/A N/A N/A + + + + N/A (51, 81)

Mu + + + N/A + N/A N/A N/A N/A N/A N/A N/A + + + + N/A (81, 146, 147)

AD-

MSCs

NHP (m) + + N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A + + N/A N/A N/A (148)

(Continued)
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As for scaffold-free approaches, techniques include self-

organization (cell sheet and aggregate engineering) and self-

assembly processes. Interestingly, scaffold-free approaches can be

applied for OMF regeneration, especially for the indication of

skin, TMJ disc, cartilage, bone, and periodontal ligament tissues

(7, 8, 162).

4.1.1 Biomaterials and sca�old characteristics for
OMF complex tissue regeneration

Titanium alloy prostheses have been of interest for OMF hard

tissue repair applications (163). However, this material often leads

to local tissue damage and chronic inflammatory response due

to poor biomechanical properties and low biocompatibility (164)

and other materials that may exhibit superior qualities as well as

practical advantages and disadvantages are available. In this regard,

two important properties to consider are the osteoinductive and

osteoconductive potential of the chosen scaffold material especially

when applied for bone regeneration purpose (83).

Other materials that can be used for bone regeneration include

ceramics, synthetic polymers, and natural polymers. Natural

polymer-based scaffolds are known to be biologically active and

able to enhance cell adhesion and growth. Despite these properties,

limitations in fabrication and inferior mechanical characteristics

represent mechanical property constraints compared with other

scaffold types, resulting in major disadvantages of this type of

scaffold for bone regeneration (157, 165, 166). One study reported

starch as natural polymer could not be used directly due to

its poor stability and mechanical properties. Improvement of

mechanical properties was gained by reinforcement with HA as

composite (167). Examples of natural polymers employed for bone

tissue regeneration include collagen, gelatin, chitosan, alginate, silk

proteins, hyaluronic acid, fibrin, and keratin (168). In contrast,

synthetic polymers exhibit elastic properties, endless forms,

established structures, and comparable characteristics to biological

tissues that are predictable and reproducible (169). However,

the main disadvantages of synthetic biomaterials are lack of cell

adhesion sites, the need to chemically modify them to improve

cell adhesion, and some materials produce toxic by-products for

surrounding cells and tissues (157, 169). Biodegradable synthetic

materials that are popular for bone tissue engineering include

polylactic acid (170), polyglycolic acid (PGA), polycaprolactone

(PCL), poly(lactic-co-glycolic) acid (PLGA), and polyurethane

(PU) (169). Lastly, ceramics are biocompatible and suitable for

replacing hard tissues, but their brittleness represents a drawback.

Common ceramic scaffolds used for bone regeneration are HA and

TCP (171). Some of the disadvantages of ceramic scaffolds can be

minimized by fusing one specific type of material with another to

generate a hybrid with enhanced regenerative potential (172).

4.1.2 Biomaterials and sca�old characteristics for
OMF soft tissue regeneration

Oral and maxillofacial soft tissue engineering is meant

to reconstruct lip, skin, salivary gland, oral mucosa, muscle,

ligament, and TMJ-related tissues, or periodontal tissues. Soft tissue

engineering facilitates defect reconstruction for soft tissues (173).

Unlike hard tissue, scaffold materials for soft tissues vary in their
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flexibility (9). Since vascularization has been the central issue of

soft tissue engineering, a strong blood supply must be achieved

for successful soft tissue reconstruction (173). Thus, scaffolds are

required to be able to carry blood supply via vascular ingrowth.

Additionally, engineered scaffolds should be adjusted to shape and

size of the defect and accommodate the appropriate cells, thus

sensory and motoric functions of the damaged tissues would be

regained (173).

Several materials have been reported for use in OMF soft tissue

engineering. Hydrogels (HG) play a prominent role given that

they can be generated from various materials, such as chitosan,

chitin, hyaluronic acid, gelatin, peptide, PLGA, and PEG. One

study mentioned that HG is preferable for soft tissue but not

hard tissue reconstruction because its mechanical properties do

not support load bearing (174). Despite that, a recent review noted

that HG can regenerate periodontal soft and hard tissue as well as

dental pulp, dentine, and enamel (175). Another study showed that

commercial biodegradable scaffolds made of either a combination

of collagen fibers porous matrix and glycosaminoglycan, polyglycin

910, or collagen membrane and collagen I, can generate an

oral mucosa equivalent (OME) in vitro (176). Moreover, a silk

fibroin/hyaluronic acid-based scaffold has been suggested for soft

tissue regeneration (177). Silk fibroin has also been combined

with gelatin and chitosan into a mimicked scaffold in vitro

using human keratinocyte cells for OMF soft tissue engineering

applications (178). In addition, a previous study explored the

potential of polyglycolic acid polymer scaffolds for salivary gland

tissue engineering (179). To be used in the veterinary medicine

field, such materials should meet general consideration from

material selection, design and manufacturing, design control and

testing, to safety and efficacy before going to the clinical studies to

meet the product purpose (180).

In this review, we have included cartilage as a soft tissue

pertinent to the OMF region, specifically at the TMJ. Like scaffolds

in general, the fabrication of a scaffold for cartilage should take

into consideration its composition and biological properties, its

architecture, and its mechanical and degradation (181). Materials

that have been studied for TMJ regeneration, which are intended

to mimic both cartilage and bone tissues, include PLA disc (182),

PGA (183), chitosan/alginate (184), fibrin/chitosan (185), biphasic

scaffolds of HA/TCP and hyaluronic acid (170), and PGA and

PLGA/polyethylene glycol (PEG) (186).

4.2 Signaling molecules for OMF tissue
regeneration

Signaling molecules represent a crucial aspect when developing

strategies for OMF tissue engineering. These molecules refer to

growth factors, which are proteins produced by the cells (27).

Current technologies allow the production of growth factors using

recombinant methods. By binding to their receptors, signaling

molecules activate intracellular signaling events that can trigger or

inhibit cell adhesion, proliferation, migration, and differentiation.

Thus, this approach gives rise to regenerating damaged tissue.

Moreover, signaling molecules can be applied as a single treatment

and adsorbed on a scaffold, as previously mentioned above. This

combination enhances the integration between the material and

host tissues (27).

Many signaling molecules have been investigated for their

therapeutical potential in context of OMF regeneration, and even,

some are clinically approved by the Food and Drug Administration

(187). Several well-known signaling molecules include bone

morphogenetic proteins (BMPs), transforming growth factor-β

(TGF-β), platelet-derived growth factor (PDGF), fibroblast growth

factor (FGF), vascular endothelial growth factor (VEGF), and

insulin-like growth factor (IGF) (188). Among these, BMPs are

the most widely studied for bone regeneration, and several

types of BMPs have been mentioned to have crucial roles in

bone morphogenesis and bone defect repair and regeneration

(189, 190). Interestingly, rhBMP-2 and rhBMP-7 have been

approved by the Food and Drug Administration (187) for

bone regeneration applications (189, 190). In general, BMPs

are considered very relevant for OMF regeneration (191), being

capable of osteoinductive on MSCs (190). On the other hand,

TGF-β has also been proposed as a potent modulator of bone

regeneration with the ability to enhancing osteogenesis at a low

concentration (192). Paradoxically, TGF-β at a high concentration

inhibits osteogenesis. Another molecule called teriparatide has also

been of interest to OMF surgeons. Teriparatide is a recombinant

parathyroid hormone used to treat osteoporosis (193). Moreover,

teriparatide is approved by the FDA for treatment of osteoporosis

and has been reported to regenerate jawbone defects (194). Finally,

the potential of leptin to enhance oral mucosa regeneration by

increasing vascularization has been reported (195).

5 Translation to clinical practice

Animal experiment models have been introduced to study

the translational treatment of OMF tissue engineering in clinical

practice by mimicking real clinical situations. In this review, we

provided most of the in vivo studies employing non-human MSCs

and successful treatment in veterinary patients with OMF defects.

The data are expected to be used for further translation to treat

OMF defects in veterinary patients.

5.1 Oral hard tissue engineering in an
animal model

Periodontal tissue regeneration in periodontitis-induced

beagles has been reported to using rhBMP-2 adsorbed on PLGA-

gelatin sponge carrier material treatment (196). Another report

demonstrated that autologous canine DPSCs combined with a

commercial xenograft scaffold in a periodontitis-induced canine

model had the ability to achieve periodontal tissue regeneration

after 8 weeks of transplantation (197).

Another published study performed mandibular osteotomy

in beagles to create a bone defect and treated it with a 3D-

printed HA scaffold co-cultured with canine BM-MSCs (164).

They found that the seeded cells played an essential role in

large bone defects by differentiating into osteoblasts, regulating

immune response, and providing a microenvironment for tissue

regeneration. Also, De kok et al. reported that canine BM-MSCs
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enhanced bone formation when combined with a HA/TCP scaffold

in an alveolar defect canine model (198). In addition, SHEDs

have been transplanted with a scaffold in a mandibular defect

canine model (199). However, this study showed no significant

difference in bone regeneration compared with the control group.

Nevertheless, the authors demonstrated no tumorigenesis or severe

inflammation after transplantation (182, 200).

Evaluation of maxillary sinus augmentation (MSA) has also

been performed in canine by reconstructing it with autologous

osteoblasts on a β-TCP scaffold (201). It was shown that

the addition of osteoblasts to the scaffold improved maxillary

regeneration by the remarkable differences of height and volume of

augmented maxillary sinus compared to groups with scaffold only

and autogenous bone graft (201).

Allogenic transplantation for pulp regeneration study has

been reported using the canine model. After pulpectomy,

canine DPSCs transplantation was conducted in dogs with

consideration given matched and mismatched dog leukocyte

antigen (DLA). The authors revealed that the both DLA matched

and mismatched allogenic transplantation are safe and effective

for pulp regeneration due to the lack of signs for toxicity and the

generation of pulp-like tissues 12 weeks post-transplantation (202).

The results are supported by another study revealing canine DPSCs

do not express HLA-DR (similar to DLA Class II in dogs) by flow

cytometry (49). In addition, one study explored the blood type- and

breed-associated immune reaction on allogenic transplantation in

equines. The authors revealed that universal blood donor-type of

Standardbred has been suggested to be less likely occurred in a

study of equine BM-MSCs with low expression of MHC Class II

(similar to DLA Class II in dogs) than non-blood donor type and

in Thoroughbred. This study implies that breed of donor should be

considered with the use of universal blood donor-type (203).

5.2 Oral soft tissue engineering in an
animal model

Regarding soft tissue, Qian et al. revealed that combining leptin,

silk fibrin, and polydopamine improves oral mucosa healing and

triggers blood vessel regeneration in New Zealand rabbits (195).

In addition, regeneration of oral mucosa has been previously

simulated in nude mice with skin defects implanted with a human

gingival endothelial cells (HGECs)-human gingival fibroblasts

(HGFs)-vascular endothelial cells (VECs)-acellular vascular matrix

(ACVM)-0.25% human-like collagen I (HLC-I) complex (204).

In such study, investigators found that the scaffold complex

had a regenerative effect based on the presence of epithelioid-

like, lamina propria-like, and vascular-like structures observed on

histopathological analysis.

As for the salivary gland, one study showed that 3D hyaluronic

acid-based hydrogel scaffold implantation in rats was able to

adhere around the parotid tissue (205). Interestingly, the implanted

scaffold seeded with human salivary cells was able to retain its

spheroid structure and express CD44 and receptor for hyaluronan-

mediated motility (RHAMM/CD168; a progenitor cell marker).

Another study has shown that human salivary cells seeded on

unwoven sheets of polyglycolic acid polymers are able to form

functional tissues in mice (179). These two studies indicate that

both scaffolds have potential for salivary gland regeneration.

In vivo TMJ studies have been reported. Replacement of TMJ

disc in New Zealand rabbits with PLA discs containing autologous

AD-MSCs was demonstrated (182). The authors presented that

the material has the potential for further use yet needs more

dissemination. In addition, a porcine urinary bladder matrix

(UBM) scaffold was implanted in the TMJ in a dog model (200).

They found that the material was inductive and suggested that an

extracellular matrix (ECM)-based scaffold can be a solution for

TMJ disc replacement. In addition, a study of scaffold-free TMJ

implant from costal chondrocytes has been reported in theminipigs

as TMJ disc regeneration model. The study found that the implants

are safe, able to prevent degeneration of disc thinning, and even,

regenerate the defects by refining the osteoarthritis score for the

efficacy (162).

Despite the positive outcomes of the cell-based treatment, there

has been reports that MSCs provide no clinical improvement

in clinical cases. Autologous bone marrow aspirate concentrate,

adipose stromal vascular fraction, and allogeneic human umbilical

cord tissue-derived MSCs (UC-MSCs) showed no significant

difference on beneficial outcomes for osteoarthritis in a phase 3

trial comparing with conventional therapy, corticosteroid injection

(CSI) (206). A meta-analysis report also showed that stem

cell infusion did not result in clinical improvement for acute

myocardial infarction (207). According to the reports, such

strategies could be made starting from identifying the possibilities

of non-beneficial outcomes, re-designing the experiment, and

evaluating the new strategy.

5.3 Oral and maxillofacial tissue
engineering in a clinical case

Some of the previously mentioned in vivo studies and

corresponding results offer the opportunity to leverage tissue

engineering solutions to repair OMF defects in veterinary

patients. Tissue engineering is a multidisciplinary field consisting

of medicine, material science, engineering, and biology. The

prospective tissue-engineered products could be either comprising

of cells, signaling molecules, scaffolds, or combination of scaffold

with cells, or signaling molecules (208). Thus, according to the

medical product classification by FDA, the products are either

biological, medical device, or combination of biological and

medical device. In addition, to prove the safety and efficacy in the

clinical case, such studies should be performed as well. Indeed,

several case studies have been reported in the veterinary literature

illustrating broad potential for clinical use (209, 210).

In one case reported by Spector and Boudrieau (210), a

partial mandibulectomy performed in a cocker spaniel to treat an

odontoma resulted in a large 5-cm defect impacted functionality

and quality of life. The defect was reconstructed using rhBMP-

2 delivered in an absorbable collagen sponge containing HA/TCP

granules (compression resistant matric [CRM]) and plate fixation.

The results demonstrated that the correctionwas successful without

any significant complications, either in functional or cosmetic

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2024.1325559
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Purbantoro et al. 10.3389/fvets.2024.1325559

FIGURE 2

Future challenges of oral and maxillofacial tissue engineering in veterinary medicine.

aspects, after 36 months. The authors also suggested that rhBMP-

2 can be an alternative to reconstructive techniques for dog use,

increasing cost efficiency by using a lower dose than in humans.

This initial methodology was further described and expanded on.

Case series of segmental mandibulectomies and bilateral rostral

mandibular reconstruction and chronic, defect union fracture

treatment have been reported to be resolved by the use of plate

and CRM infused with rhBMP-2 (211–213). Additionally, Tsugawa

et al. reported a retrospective study of the promising mentioned

methodology for canine acanthomatous ameloblastoma (CAA)

(214). The studies showed that margin between implant material

and native bone become indistinct at week 4 or later post-

operatively without relatively minimum complications. Similarly,

autologous and allogeneic mesenchymal stem cells derived from

adipose tissue were reported for clinical use in a sample of cats with

refractory feline chronic gingivostomatitis (215, 216). These studies

suggest that both cell sources are relatively safe and potentially

effective even though treatments were not compared to other types

of intervention.

An interesting clinical application of a 3D-printed PCL/β-TCP

scaffold has also been reported in a maxillary bone defect due to

an oral squamous cell carcinoma in a 12-year-old female mixed

breed dog (209). Reconstruction was successful based on computed

tomography images 2 months after surgery.

Several animal studies were presented with beneficial outcomes

of investigated technologies. However, some products are not

intended for veterinary patients (179, 195, 196, 199–201, 204,

205). Given the high success rates of OMF tissue engineering

reported in experimental animal models and selected clinical

cases, tissue engineering for OMF defect repair appears to be

a viable alternative in veterinary medicine. To a greater extent,

proposed and safety- and efficacy-proven OMF tissue engineering

products can be registered for an intellectual property (IP) for

veterinary patients.
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6 The future challenge for OMF tissue
engineering in veterinary medicine

Despite the immense potential of tissue engineering for

OMF defect repair in veterinary medicine, several milestones

and challenges lie ahead (Figure 2). Firstly, generating ideas

by gathering information on clinically relevant OMF diseases,

identifying proper funding mechanisms to conduct pertinent

bench and clinical research, and conducting market analysis

to explore translational feasibility. Similarly, the potential

of stem cells from one specific source and species origin

should be further investigated. Indeed, cells need to be more

exhaustively characterized. This can be following from the

proposed mechanisms of MSCs in differentiation to the targeted

tissue, immunomodulation property, and as endocrine secretors

(217, 218). Such characterization and in vivo experiments are

essential because they will determine cell potency. In vivo studies

related to OMF surgery can be performed following the treatment

interest since one type of cell may have different potential with

another cell in terms of kind of treatment. The topic has been

raised by a previous study (219) and also applies to scaffolds and

signaling molecules. In addition, tissue engineering as personalized

medicine should be considered as well with the 3D printing

technologies to adapt with the patients’ needs (220). Research

on the immune response after transplantation using adequate

animal models is also required. Rejection of a transplant may occur

due to several factors, such as the source of the transplant (i.e.,

auto-, allo-, or xenogeneic), dose, and route of administration.

Moreover, any pre-clinical experiments need to be performed

considering any human resources, facilities, and budget available.

Before implementing novel therapies, properly designed clinical

trials should be conducted. Since clinical studies require blinded

and randomized interventions, sample sizes must be met to

ensure robust and reproducible results, which is often a challenge

in veterinary medicine. Moreover, any eventual translation of

interventions into clinical practice would require building up

clients’ trust and very likely third-party involvement. Finally,

Ivanoska et al. have noted logistical challenges including product

transport and cell delivery (219).

7 Conclusion

Based on the experimental and clinical studies, regenerative

tissue engineering is a promising approach with immense

veterinary translational potential for the reconstruction of OMF

defects in animals. However, the types of tissue engineering

components should be chosen appropriately based on past, current,

and future research in order to achieve optimal outcomes based on

tissue regeneration.
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