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Udder health remains a priority for the global dairy industry to reduce pain, 
economic losses, and antibiotic usage. The dry period is a critical time for the 
prevention of new intra-mammary infections and it provides a point for curing 
existing intra-mammary infections. Given the wealth of udder health data 
commonly generated through routine milk recording and the importance of 
udder health to the productivity and longevity of individual cows, an opportunity 
exists to extract greater value from cow-level data to undertake risk-based 
decision-making. The aim of this research was to construct a machine learning 
model, using routinely collected farm data, to make probabilistic predictions 
at drying off for an individual cow’s risk of a raised somatic cell count (hence 
intra-mammary infection) post-calving. Anonymized data were obtained as a 
large convenience sample from 108 UK dairy herds that undertook regular milk 
recording. The outcome measure evaluated was the presence of a raised somatic 
cell count in the 30  days post-calving in this observational study. Using a 56-
farm training dataset, machine learning analysis was performed using the extreme 
gradient boosting decision tree algorithm, XGBoost. External validation was 
undertaken on a separate 28-farm test dataset. Statistical assessment to evaluate 
model performance using the external dataset returned calibration plots, a Scaled 
Brier Score of 0.095, and a Mean Absolute Calibration Error of 0.009. Test dataset 
model calibration performance indicated that the probability of a raised somatic 
cell count post-calving was well differentiated across probabilities to allow an 
end user to apply group-level risk decisions. Herd-level new intra-mammary 
infection rate during the dry period was a key driver of the probability that a 
cow had a raised SCC post-calving, highlighting the importance of optimizing 
environmental hygiene conditions. In conclusion, this research has determined 
that probabilistic classification of the risk of a raised SCC in the 30  days post-
calving is achievable with a high degree of certainty, using routinely collected 
data. These predicted probabilities provide the opportunity for farmers to 
undertake risk decision-making by grouping cows based on their probabilities 
and optimizing management strategies for individual cows immediately after 
calving, according to their likelihood of intra-mammary infection.
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Introduction

The prevention of mastitis remains a priority for the global dairy 
industry since it has serious welfare and economic ramifications (1–3). 
In addition, despite a reduction in overall use of clinical mastitis and 
antibiotic use across the dairy sector, dry cow therapy treatments 
remain the largest contributors to the industry’s antibiotic usage (2, 4, 
5). Preventive strategies for mastitis are often formulated from herd 
epidemiological patterns of udder health, defined using assessment of 
clinical mastitis events and routine somatic cell count data (6). The dry 
period is a critical time for udder health (7–10) because it represents 
a high-risk time for new intra-mammary infections (IMI) (11, 12) and 
a time to cure existing IMIs (13). As day-to-day electronic on-farm 
recording intensifies, so have the opportunities to conduct real-time 
predictive analyses for individual cows increased. Predicting on-farm 
outcomes using complex methods such as machine learning includes 
sub-clinical and clinical mastitis at the individual level (14–22), 
evaluating udder infection status at dry-off to inform selective dry cow 
therapy decisions (SDCT) (23, 24), and informing mastitis pattern 
diagnosis at a herd level (17, 25). Supervised machine learning 
methods provide new ways to process data and provide supportive 
information to farmers.

Given the wealth of udder health data commonly generated 
through routine milk recording and the importance of udder health to 
the productivity and longevity of individual cows (1, 7, 26), an 
opportunity exists to extract greater value from cow-level data to 
inform cow- and group-based decision-making based on the risk of 
intramammary infection. Machine learning methods have been 
explored to predict IMI status at subsequent milk recording in both 
dairy cows (21) and buffaloes alongside climate data (22). These 
analyses were undertaken on small datasets and not externally validated 
to assess generalizability for external farms. Attempts have been made 
to utilize regularly recorded farm data to infer risk factors associated 
with failure to cure and prediction of new IMI over the dry period using 
mixed effects models, but the performance of these models was not 
externally validated to understand generalizability (27). There have 
been a number of meta-analyses/reviews in the area of predicting cure 
and new IMI outcomes dependent on dry cow therapy; however, this 
research does not include variables based on cow udder health histories 
to obtain predictions (24, 28, 29). This research primarily focused on 
using such data to inform selective dry cow therapy treatment decisions 
rather than assess the probability risk of having an intra-mammary 
infection post-calving irrespective of treatment protocols. Furthermore, 
the imbalance of the outcomes in these datasets has led to the reporting 
of exaggerated accuracies without assessment of sensitivity or specificity, 
with at least one of these metrics being poor. In addition, an assessment 
of the calibration fit of the probabilities across individual cows was not 
undertaken. This is important as it provides greater context into the 
ability of a model to categorize individuals into groups of risk. If a 
model calibrates well, then higher-risk groups of animals can 
be identified and managed appropriately with the aim of reducing this 
risk in a targeted method. This means that an accurate prediction model 
of individual cow infection risk post-calving has not yet been 
established. The use of large-scale external datasets to validate model 
performance in terms of calibration fit is critical to understanding how 
these models will perform when provided with data from new farms 
(30, 31). This helps to ensure the generalizability of predictive models 
and was a focus of this research.

Cows with a high probability of an IMI post-calving can 
be  managed with additional care to minimize the likelihood of 
transmission of infection of herd-mates, for example, by implementing 
additional hygienic procedures at milking for these cows. The use of 
machine learning algorithms to interpret the “big data” collected on 
the farm has the potential to identify these higher-risk cows using 
probability estimates for individual cows using real-time data. The 
assessment of calibration performance can ensure generalizability to 
cows and herds outside of train-test datasets. Optimized calibration 
performance places emphasis on managing the risk of groups when 
the accuracy performance of predicting individual outcomes is 
difficult. This provides an opportunity to create value from the data 
collected on farm that can be  used for day-to-day management 
purposes when identifying cows that are at a lower risk of calving into 
a subsequent lactation as uninfected.

The aim of this research was to construct a machine learning 
model, using routinely collected farm data, to make probabilistic 
predictions at drying off of a cow’s risk of an intra-mammary infection 
post-calving.

Materials and methods

Ethical approval for this observational study was received through 
the University of Nottingham ethical review process, number: 3114 
200,218, and Innovate UK project number: 107111.

Data source

Anonymized data were obtained as a convenience sample from 
108 herds that undertook regular milk recording analysis using a 
single milk recording laboratory (QMMS Ltd.) from 1990 to 2022. The 
data available included anonymized farm and cow identifiers, parity, 
dry-off and calving dates, milk recording dates, somatic cell counts, 
milk parameters (yield / fat %/ protein %), and clinical mastitis 
event records.

Data cleaning, processing, and descriptive 
analysis

All data processing and analysis were undertaken in R-statistical 
software version 4.1.3 (32), with the addition of the following packages 
Tidyverse (33), Caret (34), PresenceAbsence (35, 36), XGBoost (37), and 
SHAPforxgboost (38, 39).

Data were explored through visualization to examine the 
distributions and correlation of variables, and to identify missing or 
erroneous data. Data was cleaned and split into train and test datasets 
as shown by the flowchart in Figure 1. Firstly, cow-lactations were 
removed where milk recording data were not available in a previous 
lactation or within 30 days post-calving event; this excluded maiden 
heifers (no previous lactation) and multiparous cows with missing 
data. Duplicate data, milk recordings with missing SCC and protein 
% and fat % data, and records where a cow’s calving interval was 
calculated to be greater than 2.5 standard deviations from the mean 
were removed from the dataset. For the main dataset, cow records 
were also removed if the lactation prior to a dry period contained 
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fewer than seven somatic cell count recordings, and herds were 
removed if they provided fewer than 500 cow-lactations. Of the 108 
herds available, 84 contained data that met the pre-determined 
inclusion criteria and were therefore included in the main dataset and 
used to construct and test machine learning models. The remaining 
24 herds with inferior data were used in an additional external model 
validation procedure, as described below.

Although no perfect threshold of SCC exists to define an IMI, 
to account for increased SCC levels in uninfected cows in the first 
days after calving (40), a raised SCC was defined as being ≥400,000 
cells/mL for samples collected 1–4 days post-calving and ≥ 200,000 
cells/mL for samples collected 5–30 days post-calving. In addition, 
any cow with clinical mastitis recorded within 30 days of calving 
was deemed to have an IMI attributable to the dry period (12) and 
was therefore classified as infected, which is the equivalent of a 
raised SCC. These definitions have been used to align with the 
main UK milk recording analytical software (41) and used as part 
of the national UK Dairy Mastitis Control Plan (DMCP) scheme 
(42, 43).

The outcome variable of interest was the individual cow somatic 
cell count status (as a proxy for intra-mammary infection) in the first 
30 days after calving; each cow was either defined as having a raised 
SCC or not in this post-calving period. This was based on the 
definition of a raised SCC as defined earlier.

Data distributions to assess farm-level descriptive statistics were 
calculated to compare variability between train and test datasets. 
These included:

 • Unique cow-lactation contributions to the train-test datasets: The 
total number of eligible cow-lactations available for input into the 
model per farm. This could include multiple lactations per cow 
if the data was available.

 • Predicted 305-day yield per farm: the sum of the average 
predicted 305-day milk yield curve (44) was calculated per farm 
from all milk recordings available.

 • New dry period intra-mammary infection rate: Calculated as the 
number of cows that calved in with a raised SCC (as defined 
above) divided by the number of animals defined as uninfected 
prior to dry-off (based on an SCC within 60 days of a dry-off 
event being less than 200,000 cells/mL).

 • Cow level mean SCC per lactation per farm: The mean of the 
somatic cell counts for an individual cow lactation was calculated, 
then the mean of these was calculated per farm, and this 
distribution was assessed.

Models to predict the probability of a 
raised somatic cell count post-calving: 
model selection, parameter tuning, and 
evaluation of performance

The final cleaned dataset was randomly split into train (56 farms) 
and test (28 farms) datasets. The training dataset was used to develop 
and tune machine learning models and the separate test dataset was 

FIGURE 1

Flowchart to show the data-cleaning process. The process starts with raw data (blue/curved triangle), then steps one and two permanently remove 
data (red/hexagon). Data are removed in steps three and four but retained separately to be used as a poor-quality test dataset (yellow/ pentagon). This 
provided the final good-quality dataset (green/ rectangle) which was then split at herd level (2:1) to create a 56-herd train dataset and a 28-herd 
internal test dataset.
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used to assess external model validity (31). A second test dataset was 
created using the data removed prior to obtaining the final cleaned 
dataset, hereto named “omitted dataset,” which was used to assess 
model performance on poor-quality datasets.

Based on biological plausibility, predictor variables were 
engineered that were deemed to be of potential importance for the 
prediction of SCC status post-calving. Definitions of the new variables 
are provided in Table 1. During the training phase, all variables were 
used (variables used in the final model are annotated by † in Table 1).

Following initial exploration with a variety of algorithms, a 
gradient-boosting machine learning decision tree algorithm was 

chosen using XGBoost (37). This algorithm is a supervised decision 
tree algorithm that combines ensemble learning and gradient-
boosting techniques. The method iteratively trains an ensemble of 
shallow decision trees to additively improve the model’s performance 
with the goal of minimizing the error. Due to these characteristics, it 
was deemed to be  the most appropriate model to handle the 
multicollinearity in the dataset. Ten-fold cross-validation was used to 
tune the model learning rate parameter(eta). Due to the imbalance of 
the observed outcome measure in the dataset, tuning based on raw 
accuracy was considered inappropriate (45, 46). Model tuning 
parameters were analyzed based on the cross-validation results of the 

TABLE 1 Predictor variables, with definitions, tested in the models of dry period infection status.

Variable Definition
†Parity Parity of the lactation prior to dry-off period

Dry-off IMI status Binomial parameter stating whether the udder was classed as infected or uninfected at dry-off. An infected status pre-dry-off was based on a 

cow’s last SCC of the lactation (within 60 days of a dry-off event) being greater than 200,000 cells/mL, or if the cow was missing from a recording 

then based on a recording of clinical mastitis within 7 days of the milk recording.

†Calving interval Time in days between a calving event recorded in the new lactation and previous lactation

Lactation length The time between the recording of a calving event and a dry-off event

Month of dry-off The month of the recorded dry-off date

Month of calving The month of the calving date for the subsequent lactation

†First SCC* The first recorded SCC in the lactation prior to dry-off event

Consecutive SCC >200* The categorical variable which states whether there had been three consecutive SCCs >200 in the lactation prior to dry-off event (TRUE/FALSE)

†Median SCC* The median SCC of the recorded SCC in the lactation prior to dry-off event

Mean SCC* The mean SCC of all records in the lactation prior to dry-off event

†Min SCC The lowest recorded SCC in the lactation prior to dry-off event

Max SCC The highest recorded SCC in the lactation prior to dry-off event

†Mean first 3 SCC The mean SCC of the first three recordings in the lactation prior to dry-off event

Mean last 3 SCC The mean SCC of the last three recordings in the lactation prior to dry-off event

Ratio of mean first 3 to 

last 3 recordings

The mean SCC of the last three recordings in the lactation prior to dry-off event divided by the mean SCC of the first three recordings in the 

lactation prior to dry-off event

†Last SCC The last recorded SCC in the lactation prior to a dry-off event

†%SCC < 50 The percentage of SCCs, in the lactation prior to dry-off event, less than 50 k cells divided by the total number of recordings

†%SCC > 100 The percentage of SCCs, in the lactation prior to dry-off event, greater than 100 k cells divided by the total number of recordings

%SCC > 200 The percentage of SCCs, in the lactation prior to dry-off event, greater than 200 k cells divided by the total number of recordings

%SCC > 400 The percentage of SCCs, in the lactation greater prior to dry-off event, than 400 k cells divided by the total number of recordings

%SCC > 1,000 The percentage of SCCs, in the lactation prior to dry-off event, greater than 1 million cells divided by the total number of recordings

Peak yield The highest daily yield recorded in the lactation prior to dry-off event

Yield at last recording The final yield recorded prior to a dry-off event

Max fat The highest milk fat percentage recorded in the lactation prior to dry-off event

Max protein The highest protein percentage recorded in the lactation prior to dry-off event

Min fat The lowest milk fat percentage recorded in the lactation prior to dry-off event

Min protein The lowest protein percentage recorded in the lactation prior to dry-off event

Mean fat The mean milk fat percentage recorded in the lactation prior to dry-off event

Mean protein The mean protein percentage recorded in the lactation prior to dry-off event

†New IMI 12-month rate The herd level new dry period IMI rate, as calculated by the total number of new DPIMIs in the previous 12 months’ data prior to the cow’s 

calving month divided by the total number of individuals in the eligible population of non-infected at the time of dry-off

†New IMI 6-month rate As above, but for the previous 6 months’ data prior to the cow’s calving date

†Indicates used in the final model.
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training dataset. Other model tuning parameters were set as follows: 
subsample = 1, max depth = 4, columns sampled by tree = 1, and 
number of parallel trees = 1 (37, 47).

The final model included the top 11 that were variables judged by 
relative importance and Shapley Additive exPlanations (SHAP) values. 
The SHAP feature value provides a proxy effect measurement for each 
variable based on the data dispersion for each variable and 
contribution toward the prediction output. To assess performance 
based on the number of variables included, the methods above were 
repeated using combinations of the variables classed as the highest on 
variable importance from 1 to 15. Model complexity was limited 
through variable selection assessment using SHAP values (39) and 
variable relative importance values. The model with the top  11 
variables only was deemed closest in performance to the all-variable 
model, while reducing the complexity with a number of variables 
present. These variables were selected based on having a variable 
importance greater than 0.7 and biologically important SHAP values 
which contributed to the prediction outputs. Therefore, the model 
containing 11 variables was taken forward (48, 49).

The final model performance was evaluated from predictive 
outcomes using the external test dataset. Such external validation was 
considered the gold standard for assessing the performance of machine 
learning models (31). A confusion matrix was created to assess observed 
versus predicted outcomes. Discrimination statistics were produced 
against a threshold of 0.5 and assessed against accuracy, balanced 
accuracy [calculated by (Sensitivity + Specificity)/2], positive predictive 
value (PPV), and negative predicted value (NPV). A calibration plot 
where model-predicted probabilities were binned into groups of 10 and 
compared to observed outcomes was used to assess external model 
validity. Calibration plot fit was assessed using visual assessment, Scaler 
Brier Score, and Mean Absolute Calibration Error (MACE) (50). MACE 
assesses the level of predictive error by averaging the absolute values of 
deviance; the lower this value the lower the error within the predictions 
of the model. This feature was also calculated on a per-farm basis for the 
test dataset to assess model calibration performance across the 
individual farms. Brier scores use the average squared difference 
between an outcome and predicted probability to determine the model 
fit for categorical variables (50, 51). A scaled Brier score fixes this 
outcome to between zero and one. The closer to zero the better the 
goodness-of-fit and these parameters can be assessed similarly to an R2 
for linear predictions.

Incomplete data set testing

A final assessment of external model validity was undertaken on 
data that were previously omitted from the train-test datasets. This 
included cow-lactations with fewer than seven milk recordings and 
farms that had data with fewer than 500 complete cow-lactations. 
Assessment of model performance was undertaken as described above.

Results

Descriptive analysis

The dataset from the 108 herds that undertook regular milk 
recording analysis using a single milk recording laboratory (QMMS 

Ltd.) from 1990 to 2022 containing a total of 4,410,562 milk recording 
events were available from 378,254 individual cow-lactations prior to 
data-cleaning. The number of cow-lactations removed during 
cleaning were:

 • Cow lactation without a recording pre or within 30 days of a 
calving event: n = 233,003 lactation removed.

 • Had a calving interval of greater than 588 days (2.5sd from the 
mean): n = 3,343 lactations removed.

 • Contained fewer than seven milk recordings in the previous 
lactation: n = 24,104 lactations removed.

 • From a herd with fewer than 500 (first interquartile) 
cow-lactations worth of results: 24 farms removed; 
n = 3,546 lactations.

This resulted in a total of 114,248 cow-lactations from 84 farms 
being eligible for the train and test datasets. Data populations of train 
and test datasets were compared and they showed that farm-level 
parameters were similar, as shown in Table 2. For the training dataset, 
unique cow-lactation contributions ranged from 262 to 2,709 cows per 
farm with a mean of 908, 305-day yield ranged from 5,641–12,803 L 
with a mean of 9,180 L, and new dry period intra-mammary infection 
rate varied between 0.062 and 0.299 with a mean of 0.154. Cow level 
mean SCC per lactation per farm ranged from 87 to 361, with a 
median of 195. The test dataset showed similar variability in these 
farm-level parameters; unique cow contributions ranged from 267 to 
2,815 cows per farm with a mean of 1,084, 305-day yield ranged from 
5,093 to 12,015 L with a mean of 8,694 L, and new dry period intra-
mammary infection rate varied between 0.058 and 0.296 with a mean 
of 0.156. The cow level mean SCC per lactation per farm ranged from 
79 to 407, with a median of 208.

Model of the probability of intra-mammary 
infection after a dry period

The dataset
The final dataset of 84 farms was split into a 56-farm training and 

a 28-farm test dataset. The training dataset contained 73,703 
cow-lactation outcomes, with 12,695 (17.2%) classed as having a 
raised SCC post-calving and 61,008 (82.8%) classed as not having a 
raised SCC. Within this training dataset group, 52,933 (71.8%) of the 
cow-lactations were classed as uninfected (based on an SCC within 
60 days of a dry-off event being less than 200,000 cells/mL) at the point 
of dry-off with the remaining 20,770 classed as having an intra-
mammary infection (based on an SCC within 60 days of a dry-off 
event being greater than 200,000 cells/mL, or if the cow was missing 
from a recording then based on a recording of clinical mastitis within 
7 days of the milk recording). The test dataset of 28 farms contained 
40,545 cow lactation outcomes; of these, 33,529 (82.7%) dry periods 
resulted in being classed as uninfected and 7,016 as infected. Prior to 
dry-off, 29,435 (72.6%) of the lactations were classed as uninfected 
with the remaining 11,110 lactations classed as infected based on the 
parameters described earlier in the section.

Variable selection
The final model included the top 11 variables judged by relative 

importance (Table  3) and Shapley Additive exPlanations (SHAP) 

https://doi.org/10.3389/fvets.2023.1297750
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Thompson et al. 10.3389/fvets.2023.1297750

Frontiers in Veterinary Science 06 frontiersin.org

values (Figure  2). Using internal-fit cross-validation, this model 
performed with an accuracy of 83.1%, a balanced accuracy of 52.8%, 
a sensitivity of 99.0%, a specificity of 6.6%, a PPV of 83.6%, and an 
NPV of 58.3%. SHAP helps to obtain a measure for the impact of a 
variable when interpreting black-box models, while accounting for the 
interactions between all variables tested. In the final model, the three 
most influential variables were herd new dry period intra-mammary 
infection rate over the previous 6-months (SHAP = 0.393), parity 
(SHAP = 0.240), and median SCC of previous lactation (SHAP = 0.152). 
For example, herd new dry period IMI 6-month rate as a variable 

shown in Figure 2 has a distinct color change across the SHAP value 
showing data dispersion as well as contribution toward the prediction 
output (Figure 2). High rate values (purple) are linked to a decreased 
probability of being non-infected after the dry period and lower rate 
values (yellow) are linked with an increased probability of being 
non-infected after the dry period. When using parity, as an example, 
the SHAP plot shows a trend that higher parities (purple) are 
associated with larger negative SHAP values (toward the left-hand side 
of the plot). This indicates that increased parity is linked with a lower 
probability of being uninfected within the first 30 days post-
calving event.

External model validity
For the external test dataset, the model calibration was of high 

performance as shown in Figure 3. An accuracy of 82.9% was observed 
in the external farm test dataset with a balanced accuracy of 52.5%, 
sensitivity of 99.0%, specificity of 6.0%, PPV of 83.5%, and NPV of 
58.2%. Statistical assessment of calibration showed a scaled Brier score 
of 0.095 and a MACE of 0.0088. From the calibration plot (Figure 3), 
it can be seen that the majority of predicted probabilities for having a 
normal SCC status post-calving were between 60 and 90%.

For each test farm, a MACE was calculated; the median farm had 
a MACE of 0.030 with an interquartile range between 0.026 and 0.037 
(mean = 0.033/minimum = 0.012/maximum = 0.057). These data show 
that model performance based on MACE was similar for each farm in 
the test dataset.

Complete versus incomplete data comparisons
The model was further tested on data that were omitted from 

the train and test datasets. This resulted in the use of data from all 
108 farms, as the data from the 24 farms which were omitted due to 

TABLE 2 Summary of farm herd-level details for each dataset evaluated.

Farm-level parameters

Dataset Summary statistic (at 

farm level)

Unique cow-lactation 

contributions per farm

Predicted 305-day 

yield per farm

Cow level mean SCC 

per lactation per farm

Proportion of all lactations with new dry period intra-

mammary infection rate per farm

Train 

farms 

(n = 56)

Min 262 5,641 87 0.062

Median 725 9,156 195 0.147

Mean 908 9,180 207 0.154

IQR 576 2,354 99 0.069

Max 2,709 12,803 361 0.299

Test 

farms 

(n = 28)

Min 267 5,093 79 0.058

Median 911 8,874 208 0.151

Mean 1,084 8,694 215 0.156

IQR 845 2,336 77 0.045

Max 2,815 12,015 407 0.296

Omitted 

farms* 

(n = 24)

Min 53 5,533 3 0.000

Median 360 7,840 214 0.147

Mean 373 7,830 231.7 0.144

IQR 311 1,231 105 0.086

Max 1,110 11,966 574 0.316

Described are summary statistics for the number of cows present in each herd’s data, the predicted 305-day yield for the herd, the raw SCC data, and the herd’s new dry-period intra-mammary 
infection rate across the recording period. *Data that were previously omitted from the train-test datasets. This included cow-lactations with fewer than seven milk recordings and farms that 
had data with fewer than 500 complete cow-lactations.

TABLE 3 The 11 variables used in the final XGBoost model (with relative 
importance) to predict the probability of intra-mammary infection post-
calving.

Variable Relative 
importance

Herd new dry period IMI 6-month rate 38.15

Median SCC of previous lactation 28.06

Parity 13.82

Percentage of SCCs less than 50 in previous lactation 4.29

Mean of first three SCCs of previous lactation 4.09

Last SCC of previous lactation 4.08

Minimum SCC of previous lactation 2.70

Herd new dry period IMI year rate 1.94

Percentage of SCCs greater than 100 in previous 

lactation

1.42

Calving interval 0.73

First SCC of previous lactation 0.72
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the small sample size (n ≤ 500 cow-lactations) were combined with 
the poor data from the 84 train-test farms. This new dataset 
included cow-lactations from farms with fewer than 500 
cow-lactations (n = 3,546 cow-lactations) and from cow-lactations 
with fewer than seven SCC recordings (n = 24,104 cow-lactations). 
A total of 27,660 new cow-lactations were included from across all 
108 original farms, and 22,982 (83.1%) rows were from dry periods 
where cows were classed as uninfected with the remaining 4,678 
classed as having an intra-mammary infection. Of the cow-lactations 
in this dataset, 21,229 (76.7%) cow-lactations were identified as 
uninfected prior to dry-off, with the remaining 6,431 classed 
as infected.

For this dataset, a balanced accuracy of 52.8%, accuracy of 82.9%, 
sensitivity of 98.2%, specificity of 7.3%, PPV of 83.9%, and NPV of 
45.6% were achieved. The calibration curve of model performance 
with these data was good (Figure 4). Assessment of calibration curve 
fit showed a scaled Brier score of 0.130 and a MACE of 0.016. Unlike 
the test dataset, the model appeared to perform less well for the lower 
observed probabilities (<50%) with the calibration curve of predicted 
probabilities being lower than observed probabilities (Figure 4).

Discussion

The aim of this research was to predict individual cow 
probabilities of a low SCC in the 30 days post-calving. Our results 
revealed that this was achievable with an acceptably low calibration 

FIGURE 2

SHAP summary beeswarm plot which details the variable names in order of importance based on mean SHAP value (y-axis) and SHAP values or change 
in log-odds of being uninfected (x-axis), and gradient color represents the raw data value of the variable (color) of each of the 11 predictor variables 
(y-axis) within the 56-farm training dataset of the final XGBoost model to predict the probability of intra-mammary infection post-calving. DPNIMI, dry 
period new intra-mammary infection; SCC, Somatic cell count (refer to lactation prior to outcome).

FIGURE 3

Calibration plot showing the proportion of observed uninfected 
outcomes (y-axis) against each 0.1 bin (between 0 and 1) of the 
model-predicted probabilities for intra-mammary infection status 
after a dry period (x-axis). This contains the predictions for each 
cow-lactation from the 28-farm external dataset based on an 
XGBoost model. 95% confidence intervals (black lines) are shown 
around the mean proportion (black dot) for each bin.
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error in an external dataset, suggesting that such a predictive model 
has the potential to be of practical value in a commercial setting. The 
majority of predictions ranged between 60 and 90% for cows to 
remain uninfected during the first 30 days in milk following a dry 
period; however, cows at relatively high risk could be differentiated 
effectively from those of lower risks.

The model’s ability to distinguish groups of animals according to 
risk is novel and has the potential to be an effective on-farm tool to aid 
farmers in identifying cows that require an adjusted management 
regime. The output probabilities mean that animals could be placed 
into probabilistic subsets of high, medium, or low-risk categories. For 
the higher-risk animals, targeted management practices could 
be  implemented to minimize the risk of subsequent pathogen 
transmission between cows. For example, after calving, high-risk cows 
could be managed in a separate group, milked last through the parlor, 
or could be selectively checked with a California Milk Test early in 
lactation to confirm a raised SCC. Alternatively, high-risk cows could 
be  managed within the main herd but with increased hygiene 
procedures (such as additional disinfection) put in place when they 
are milked. Dairy farming has become linked to big data outputs, and 
examples include sensor and robotic milking data (52). Farmers can 
now use such data for on-farm decision-making, for example, estrous 
detection, but not all outputs have been integrated on a routine basis 
(53). By providing probabilistic options for decision-making, it is 
likely farmers and advisors will be able to make more effective use of 
data. However, despite the availability of data, a “data divide” exists 
among dairy farmer with barriers remaining that limit the use of such 
outputs, which includes skillset, wanting to spend time outdoors 
rather than in office environments, and access to discussion groups or 
veterinarians to validate interpretation (54). The latter has been found 
to be  a key driver in decision-making for changing management 

practices given the importance of social referents, especially for 
interpretation of on-farm data (55).

The herd mean new dry period IMI rate over the previous 
6 months was the most influential variable in our final predictive 
model. This suggests that management during the dry period is the 
key area that determines udder health status after calving and this has 
been reported previously (7, 9, 10, 56). This information could 
be used to promote targeted management of cows during the dry 
period. The strategies to help reduce the risk to more susceptible 
individuals within a herd could be, for example, greater space 
allowance or increased frequency of bedding material application. It 
should also be noted that these changes may be more challenging for 
smaller herds.

The three historic individual cows’ SCC parameters that were 
useful in the prediction of post-calving SCC were from the previous 
lactation: median SCC, mean of the first three SCCs, and the 
percentage of SCCs less than 50,000 cells/mL. The probability of 
calving into a subsequent lactation with a low SCC decreased as the 
median SCC and mean of the first three SCCs of the previous 
lactation increased. There is biological plausibility regarding these 
SCC variables with increased risk of a high SCC post-calving as 
previous research suggests that cows with a high SCC in a previous 
lactation are either more susceptible to new infections or an existing 
infection fails to cure across the dry period (57). The percentage of 
SCCs less than 50,000 cells/mL parameter showed a bimodal trend 
with cows that showed either a high or low percentage in this 
variable having a decreased probability of calving into a subsequent 
lactation uninfected. This bimodal pattern of increased risk of intra-
mammary infection has been hypothesized before with high and low 
SCCs, with potential links described to an increased risk of clinical 
mastitis (58). Given SCC parameters have the potential to 
be correlated, the method of using XGBoost, a decision tree method, 
is appropriate as the performance of these models remains stable 
with datasets that contain multicollinearity. This is because it 
independently splits trees without prior knowledge of importance, 
thus making it a robust method when using datasets with potential 
for highly correlated variables (59). The aim of this research was for 
prediction rather than inference, meaning that the multicollinearity 
of variables is not of concern when assessing the performance of the 
model. However, it is worth noting that this also means that the 
variables selected for the final model are due to prediction 
performance and the variables selected or omitted should not 
be identified as having (or not) a definitive biological impact on a 
raised SCC in the first 30 days post-calving.

Variables incorporated in our final prediction model had 
similarities to those identified in previous inferential research using 
cow lifetime records that investigated IMI status across the dry 
period (30). That study identified similar but not identical covariates 
to our model such as parity, proportion of SCC recordings >199,000 
cells/mL, SCC on the last test day, and lactation length. However, 
model-predicted probabilities of infection status were not reported 
in that research and it is therefore difficult to compare 
model performance.

External validation is an essential though under-used technique 
to evaluate the possible generalizability of inferential and predictive 
models (31, 60). Our external validation provided strong evidence 
that the model is likely to be generalizable to herds similar to those 
used in this research (Table 2), and it was particularly notable that 

FIGURE 4

Calibration plot showing the proportion of observed uninfected 
outcomes (y-axis) against each 0.1 bin (between 0 and 1) of the 
model-predicted probabilities for intra-mammary infection status 
after a dry period (x-axis). This contains the predictions for each 
cow-lactation from the omitted cow-lactations dataset based on an 
XGBoost model. 95% confidence intervals (black lines) are shown 
around the mean proportion (black dot) for each bin.
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model performance remained good even when data quality used in 
external validation was reduced. However, for the reduced dataset 
with missing data, model performance was slightly poorer for the 
lower predicted probability values (<50% of remaining uninfected 
post-calving). This is likely to be  due to a reduced signal being 
provided by poorer-quality data features and emphasizes the 
importance of high-quality data when implementing such decision-
support tools on-farm. Nonetheless, our results indicate that patterns 
remained sufficiently identifiable in this poor-quality dataset for safe 
predictions to be made and suggest that the model could continue to 
perform well even as data availability decreases.

Data used in this study were collected over a long time period, 
1990–2022, during which time farm management and SCC analysis 
methods may have changed. It is unknown whether these factors 
could have an impact on model performance for particular time 
periods, but sample size, data quality, and model calibration 
performance measures suggest this was unlikely to have influenced 
the final model.

In this study, the dry period remains a time where data is not 
commonly recorded but is a key driver of udder health post-calving. 
One limitation of this lack of dry period-specific data was that dry cow 
antimicrobial therapy status was unknown for all animals in the 
analysis and the knowledge of treatment could have further improved 
the predictive performance of the final model. Similarly, the use of 
internal teat sealant was also unspecified, and this is also known to 
be effective in reducing herd dry period new infection rates (61–63). 
Future research could incorporate dry cow therapy treatments into a 
machine learning algorithm which may refine predictive probabilities 
of infection status post-calving. Despite this lack of knowledge of dry 
cow treatments, our model performed well; the model was still able to 
discriminate between cows at higher and lower risks of a raised SCC 
after calving. As well as information on dry cow treatments, prediction 
of SCC status post-calving may be improved with data on herd-level 
dry period management factors and further cow-level information 
outside general milk recording information. Other variables that 
could be  of value in prediction include udder conformation and 
cow genotype.
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