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Cathepsin S (CTSS) is a member of the cysteine protease family closely related to 
reproductive regulation in goats. However, its effect on litter size in goats remains 
unclear. In this study, the relationship between CTSS gene polymorphisms and 
litter size was revealed by analyzing the DNA sequence and mRNA expression of 
CTSS in the gonadal axis of Qianbei Ma goats. In addition, bioinformatics methods 
were used to evaluate the effect of non-synonymous mutations on CTSS protein 
structure and function. CTSS was expressed in all parts of the gonadal axis of 
Qianbei Ma goats, with the highest expression in the uterus in the multi-lamb 
group and in the fallopian tube in the single-lamb group. The sequencing results 
showed that four SNPs in CTSS, including g.7413C  →  T, g.8816A  →  T, g.9191  T  →  G 
and g.10193G  →  A, were significantly correlated with litter size (p  <  0.05). All four 
analyzed mutation sites were in strong linkage disequilibrium (r2  >  0.33, D′  >  0.70). 
Additionally, the haplotype Hap1/2 had a significantly higher frequency than the 
other haplotypes (p  <  0.05). g.7413C  →  T and g.8816A  →  T were non-synonymous 
mutations. The g.7413C  →  T mutation resulted in the substitution of serine 161 
of the CTSS protein with phenylalanine (p.S161F), and the g.8816A  →  T mutation 
resulted in the substitution of aspartate 219 with tyrosine (p.N219Y). p.S161F was 
highly conserved across 13 species and that p.N219Y was relatively conserved in 
cloven-hoofed species. Mutations at two sites changed the local conformation 
of the CTSS protein, reduced its stability, and affected its function and goat breed 
evolution. These findings confirm that CTSS affects the lambing traits of goats 
and provide a theoretical basis for the regulatory mechanism of CTSS in affecting 
litter size.
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1 Introduction

The cathepsin (CTS) family of enzymes is widely expressed in various cells and tissues (1), 
playing important roles in catalyzing protein hydrolysis and regulating various normal 
biological processes such as cell death, proliferation, migration, cancer development and 
processing of antigens and antibodies (2, 3). The CTS family contains a variety of subtypes. 
Cathepsins mainly include cysteine cathepsins, serine cathepsins (cathepsins A, G) and aspartic 
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cathepsins (cathepsins D, Sand E) (4). Activation of pregnancy-
specific lysosomal function by CTS in blood leukocytes is highly 
correlated with interferon-τ (IFNT) expression during maternal–fetal 
recognition of pregnancy in pregnant cows (5). Cathepsin S (CTSS) 
is a lysosomal cysteine protease (6). Previous studies on this gene 
have focused on its role in the immune response, inflammatory 
response, cardiovascular disease progression and tumor progression 
(7–9). The activity of this gene is also closely associated with 
fibronectin degradation and obesity (10). CTSS regulates the 
secretion of progesterone and estradiol and the proliferation and 
apoptosis of ovarian granulosa cells in rabbits and is closely related 
to the regulation of early gestation in goats (11, 12). However, the 
mechanism underlying the effect of CTSS on litter size in goats 
is unclear.

Qianbei Ma goats are a unique goat breed raised in the Guizhou 
Plateau Mountain area of China. This breed is characterized by early 
sexual maturity, good adaptability, strong disease resistance and 
stable genetic performance (13) However, its low reproduction rate 
is a constraint to the development and utilization of this species. 
Litter size is an important index for quantifying the reproductive 
performance of female livestock (14). The average lambing rate of 
Qianbei Ma goats is approximately 207%. However, the breed 
comprises three groups: high reproductive rate, low reproductive 
rate and sterile (15). The low heritability of lambing traits in goats 
limits the traditional methods of selection for high reproductive 
performance groups. Therefore, it is important to study the 
expression of CTSS-encoding genes in the Qianbei Ma goat 
population in order to understand the relationship between CTSS 
gene polymorphisms and lambing traits and to screen for molecular 
markers associated with lambing traits to guide the breeding of 
Qianbei Ma goats.

2 Materials and methods

2.1 Experimental animals

The animals used in this study strictly comply with the 
guidelines of the Animal Welfare Committee of Guizhou University 
(EAE-GZU-2022-E030, 25th October, 2022). The Qianbei Ma goats 
used in the study were obtained from Fuxing Herding Co Ltd., 
Xishui County, Guizhou Province, China. Hundred and sixty 
healthy Qianbei Ma ewes with similar body weights were selected 
and the total number of births and live births of the first, second 
and third fetuses of the group were recorded. Four milliliters of 
blood were drawn through the jugular vein into EDTA 
anticoagulation tubes and stored in a refrigerator at −20°C. Three 
singleton pregnancy and three multiple pregnancy ewes were 
selected from 160 Qianbei Ma goats for which reproductive data 
were recorded, and were euthanized by carotid artery bloodletting 
after electrocution. Goat gonadal axis tissue samples (including 
hypothalamus, pituitary, ovaries, uterus and fallopian tubes) were 
collected within 20 min of euthanasia and washed with phosphate 
buffered saline solution (PBS). All samples were then rapidly frozen 
in liquid nitrogen and subsequently transferred to a − 80°C freezer 
for storage.

2.2 RNA and DNA extraction and cDNA 
synthesis

Total RNA was extracted from the gonadal axis tissues of the 
singleton pregnancy and multiple pregnancy groups using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA) and a RNeasy RNA 
purification kit containing DNase treatment (Qiagen, Valencia, CA, 
USA) according to the manufacturer’s instructions. DNA extraction 
from the collected blood was performed strictly according to the 
instructions of the Blood DNA Extraction Kit (Beijing Tiangen 
Biochemical Technology Co., Ltd., Beijing, China). The 
concentration and purity of the RNA and DNA were measured 
using an ultramicro ultraviolet spectrophotometer (NanoDrop2000; 
Thermo Scientific, Waltham, MA, USA). The samples were tested 
for integrity on 1% agarose gels, and all samples were stored in a 
−20°C refrigerator.

2.3 Primer design and synthesis

According to the RNA (accession number: XM_005677657) and 
DNA (accession number: NC_030810.1) sequences of goat CTSS as 
published in NCBI, Primer Premier 5.0 (PREMIER Biosoft 
International, Palo Alto, CA, USA) was used to design primers for 
amplification. Using β-actin as a fluorescent quantitative internal 
reference gene, primer sequences were sent to Beijing Tsingke 
Biotechnology Co., Ltd. for synthesis (Chongqing, China). The primer 
sequence information is shown in Table 1.

2.4 PCR amplification and real-time 
fluorescence quantitative PCR analysis

Total PCR amplification system (20 μL): 10 μL 2× Taq PCR Master 
Mix (Beijing Tsingke Biological Co., Ltd., Beijing, China), 1 μL DNA 
template, 1 μL each forward and reverse primers (10 μmol/L), 7 μL 
deionized water (ddH2O). The PCR procedure was as follows: 
predenaturation at 98°C for 3 min, denaturation at 98°C for 10 s, 
annealing at 60°C for 10 s, and extension at 72°C for 15 s. After 
35 cycles, the samples were stored at 4°C. After the PCR amplification 
products were tested by 1% agarose gel electrophoresis to check the 
expected fragment size, the PCR amplification products were sent to 
a biological company for sequencing.

The reaction system for fluorescence quantitative PCR (10 μL) 
contained 5 μL of 2 × UltraSYBR Mixture (Beijing Tsingke 
Biotechnology Co., Ltd., Beijing, China), 0.5 μL of cDNA, 0.5 μL 
each of the forward and reverse primers, and ddH2O to 10 μL. The 
reaction conditions were as follows (see Table 1 for details): 1 cycle 
at 95°C for 2 min, followed by 40 cycles at 95°C for 15 s, at the 
appropriate annealing temperature for 30 s, and at 72°C for 30 s. The 
melting curve was generated automatically by the machine (base 
temperature 65°C, increasing by 0.5°C every 5 s to 95°C). The 
annealing temperature of β-actin was the same as the annealing 
temperature for each experimental gene. The specificity of the PCR 
primers was confirmed by the presence of a single peak in the 
melting curve. Three biological replicates were established for 
each sample.
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2.5 Bioinformatics analysis

Evaluation of sequencing results and analysis of polymorphic loci 
in CTSS were performed using SeqMan and MegAlign in DNAStar 
(16, 17). Effect of non-synonymous single-nucleotide polymorphisms 
(nsSNPs) on CTSS protein function were predicted using PhD-SNP 
and SNAP2 (18, 19). I-Mutant 2.0 and MuPro were used to predict the 
effect of nsSNPs on protein stability (20, 21). Generation of multiple 
sequence comparisons based on CTSS amino acid sequences was 
performed using Cluster Omega for assessing CTSS sequence 
conservation (22). Sopma was used to analyze the secondary structure 
of CTSS proteins and AlphaFold2 was used to assess the tertiary 
structure of wild-type and mutant CTSS proteins (23–25).

2.6 Statistical analysis

The sequencing results were analyzed, the peaks were plotted 
against one other using SeqMan software, and the identified SNP loci 
were analyzed statistically. The 2-ΔΔCt method was used to calculate the 
differential expression levels of the CTSS gene in the ovary, uterus, 
fallopian tube, pituitary and hypothalamus, and then the expression 
level of CTSS mRNA in tissues was analyzed by GraphPad Prism 6. 
Allele frequencies and genotype frequencies were calculated using 
Haploview 4.2. Population genetic indicators such as polymorphism 
information content (PIC), gene purity (Ho), effective allele number 
(Ne), and gene heterozygosity (He) were analyzed according to 

Chakraborty and Nei (26). Linkage disequilibrium (LD) analysis and 
haplotype analysis of SNP loci in CTSS were performed using the 
SHEsis platform.

The experimental data of different genotypes were analyzed using 
one-way ANOVA in PASW Statistics 18 software to identify 
associations between different genotypes and reproductive 
performance, and the analyzed data are expressed as the 
means ± standard deviations.

3 Results

3.1 Expression profile of CTSS in the 
gonadal axis

As shown in Figure 1, CTSS mRNA expression in the gonadal axis 
of the multi-lamb ewe population was significantly higher in the uterus 
than in other gonadal tissues (p < 0.01) and was significantly lower in 
the pituitary gland than in the ovary, hypothalamus and oviduct 
(p < 0.05). Analysis between the singleton pregnancy and multiple 
pregnancy groups showed that CTSS gene expression was significantly 
higher in the uterus of multiple pregnancy ewes than in the uterus of 
singleton pregnancy ewes (p < 0.01), and it was significantly higher in 
the pituitary gland of the single-lambing ewes group than in the 
pituitary gland of the multilambing ewes (p < 0.05); the expression of 
CTSS was similar among the remaining tissues, indicating that CTSS 
plays an important role in the regulation of lambing traits.

TABLE 1 Primer information.

Genes Primer sequence (5′  →  3′) Product
size/bp

Annealing
temperature∕°C

CTSS-Exon1,2
F:5’ AGGAAATCACGGAGGAAACCAG 3′

R:5’ CCTCAGGATTGAAATATTCAAGCC 3’
639 63

CTSS-Exon3
F:5’ GTAAAGTCCCTGCTTCCCTCAT 3′

R:5’ CCAGGCTCCTATACTATCCATGAA 3’
555 63

CTSS-Exon4
F:5’ AGAGGAAGAGTTAAGATTGGTGTGC 3′

R:5’ GGAAAGTGGTCACAGTGTAGATCAA 3’
483 63

CTSS-Exon5
F:5’ TCTTCTCCTTCCCGATGTCTGA 3′

R:5’ CCTAAGGGACTATGAGATTCACTGC 3’
457 59

CTSS-Exon6
F:5’ ATTAAAGTTAGACCTTGTTCCGGAG 3′

R:5’ CGGCTTGGTGATAAGTTTAGTACAG 3’
495 61

CTSS-Exon7
F:5’ TCCTCCGTTACTGGTGAAACATAG 3′

R:5’ ACACAACTGAACAACAAGCACACA 3’
642 63

CTSS-Exon8
F:5’ ATAGCATTGAGGGCAAAGAACC 3′

R:5’ CTTATTGCTTGATTAGTTCTGGAGG 3’
478 63

CTSS-Exon9
F:5’ CTCATTCTATGCAGAAGCAGGAGG 3′

R:5’ TAATCTGGAGCAGGTGTGAGGAATA 3’
1,160 63

q-CTSS
F:5’ AAGTAGCACGGCGTCTCAT 3′

R:5’ TGTCTCCCAGGTGGTTCAT 3’
114 58

β-actin
F:5’ TGATATTGCTGCGCTCGTGGT 3′

R:5’ GTCAGGATGCCTCTCTTGCTC 3’
189 58
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3.2 PCR amplification

In this study, the sizes of the PCR amplification products were 
consistent with the expected fragment sizes, and the bands appeared 
clear and bright, with no specific amplification and no obvious trailing 
phenomenon, confirming the good primer specificity and the ability 
to be used for direct sequencing (Figure 2).

3.3 CTSS gene polymorphism analysis

The sequencing data were aligned against the CTSS 
(NC_030810.1) reference sequence using DNAStar software. Two SNP 
loci, g.7413C → T (exon 6) and g.8816A → T (exon 7), were identified 
in the exon 6 and 7 regions of the CTSS gene; two SNP loci, 
g.9191 T → G (intron 7) and g.10193G → A (intron 8), were found in 
the intron 7 and 8 regions. All of the four SNP loci listed above were 
present with two alleles and resulted in three genotypes. The 
sequencing chromatograms are shown in Figure 3.

The identified sequences were aligned to GenBank reference 
sequences using MegAlign and compared using the Clustal W 
method. g.7413C → T is the non-synonymous nsSNP leading to the 
substitution of serine with phenylalanine, and g.8816A → T is the 
nsSNP leading to the substitution of aspartic acid with tyrosine; 
g.9191 T → G and g.10193G → A are synonymous mutations 
(Figure 4).

3.4 Population genetic analysis of CTSS

The four SNP loci were genetically characterized, and all four 
mutant loci had three genotypes. By chi-square test (χ2), the genotype 
distributions of g.7413C → T, g.8816A → T and g.10193G → A did not 
deviate from Hardy–Weinberg equilibrium (p > 0.05), while 
g.9191 T → G deviated from HWE (p < 0.05) (Table 2).

The effective number of alleles per SNP in the CTSS ranged from 
1.560 to 1.624, the heterozygosity ranged from 0.359 to 0.384, and the 
purity ranged from 0.616 to 0.641 (Table 3). The polymorphism level 
in Qianbei Ma goats was intermediate, ranging from 0.295 to 0.310, 
indicating that the polymorphic loci were rich in genetic information.

3.5 LD and haplotype analyses of CTSS 
gene SNPs

Analysis of LD was performed with the four SNPs of the CTSS 
gene. The results are shown in Figure 5. The SNP loci g.7413C → T, 
g.8816A → T, g.9191 T → G and g.10193G → A show strong LD 
(r2 > 0.33, D′ > 0.70).

Using the SHEsis platform, 2 CTSS haplotypes were identified: 
Hap1 (−TTGA-) and Hap2 (-CATG-); haplotypes with frequencies 
<3.% were not involved in the analysis. Hap2 had the highest 
frequency, accounting for 68.5% of all haplotypes, followed by Hap1 
with 17.0% (Table  4). Random combination of two haplotypes 
produced three diploids, Hap1/1, Hap1/2 and Hap2/2.

3.6 Relationship between CTSS 
polymorphisms and litter size

Association analysis of the CTSS gene SNP loci combined with 
the number of lambs produced in litters 1–3 of Qianbei Ma ewes 
was performed, and the results are shown in Table  5. The 
g.7413C → T, g.8816A → T, g.9191 T → G and g.10193G → A SNP 
loci were significantly correlated with the number of lambs born to 
Qianbei Ma goats. The frequency of the g.7413 TT genotype was 
significantly higher than that of CC and CT genotypes at the C → T 
locus in second births; the frequency of the g.8816 TT genotype was 
significantly higher than that of the AA genotype at the A → T locus 
in second births; the frequency of the g.9191 GG genotype was 
significantly higher than that of the TT genotype at the T → G locus 
in second births and the frequency of the TG genotype was 
significantly higher than that of the GG genotype in third births; 
the frequency of the g.10193 AA genotype was significantly higher 
than that of the GG genotype at the G → A locus in first births (all 
p < 0.05).

FIGURE 1

Differential expression analysis of CTSS gene in the gonadal axis of 
single and multi-lamb Qianbei Ma goat. "****" indicated that there 
were very significant differences among the same tissues of single 
and multi-lamb ewe (P  <  0.0001). "A, B, C" means very significant 
difference between different tissues of multi-lamb ewes (P  <  0.01), "a, 
b" means significant difference between different tissues of 
singletons ewes (P  <  0.05), and the same letter means no significant 
differ.

FIGURE 2

CTSS gene amplification results. M: DL-2000Marker; P1: exon1 and 
exon2; P2-P8: exon 2 – exon 8.
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Association analysis of diploidy with the number of lambs born 
in litters 1–3 revealed that the frequency of the Hap1/2 genotype was 
significantly higher than that of the Hap2/2 genotype in the third litter 
(p < 0.05) and that the Hap1/1 genotype was not significantly 
correlated with litter size (p > 0.05).

3.7 CTSS bioinformatics analysis

The g.7413C → T mutation in the CTSS gene results in the 
substitution of serine by phenylalanine (p.S161F) and the g.8816A → T 
mutation results in the substitution of aspartic acid by tyrosine 
(p.N219Y). We analyzed the sequence conservation, function, stability, 
secondary structure and tertiary structure of CTSS proteins for 
mutant proteins.

3.7.1 Sequence conservation analysis of CTSS 
proteins

The conserved p.S161F and p.N219Y sites in the CTSS amino acid 
sequence were analyzed using Cluster Omega online software, and the 
results are shown in Figure  6. p.S161F is highly conserved in 13 
species, and p.N219Y is relatively conserved in even-toed ungulate 
species. The more highly conserved a site is, the more likely the 
mutation will have an effect on the structure and function of 
the protein.

3.7.2 Effect of non-synonymous mutations on 
CTSS protein function

The effect of two nsSNPs on protein function was predicted to 
be  neutral using PhD-SNP prediction software, with g.7413C > T 
scoring 3 on a scale of 0–9 and g.8816A > T scoring 2 on the same 
scale. According to SNAP2, is the SNPs are neutral, with scores of −38 
and − 63, respectively, on a scale of −100 to 100.

3.7.3 Effect of non-synonymous mutations on the 
stability of CTSS proteins

Analysis using I-Mutant 2.0 and MuPro showed that the p.S161F 
mutation increased the stability of the protein, the p.N219Y mutation 

FIGURE 3

Sequencing peaks of 4 snp of CTSS gene (n  =  160). (A) g.7413C  →  T, 
(B) g.8816 A  →  T, (C) g.9191  T  →  G, (D) g.10193  G  →  A.

FIGURE 4

Amino acid sequence comparison of wild-type and mutant CTSS. Red boxes indicate non-synonymous SNPs.
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decreased the stability of the protein, and the two mutations together 
reduced the stability of the CTSS protein (Tables 6–8).

3.7.4 Effect of non-synonymous mutations on the 
secondary structure of CTSS proteins

The effects of p.S161F and p.N219Y mutations on the secondary 
structure of CTSS in goats were analyzed using Sopma, and the results 
are shown in Table 9. The secondary structures of the wild-type and 
mutant CTSS proteins contained four structures, namely, theα-helix, 
extended chain, β-turn and irregular curl, which accounted for 33.23, 
17.52, 6.95, and 42.30% of the structures, respectively. The p.S161F 
and p.N219Y mutations resulted in a decreased proportion of 
extended chains and β-turns and an increased proportion of 
irregular curls.

3.7.5 Effect of non-synonymous mutations on the 
tertiary structure of CTSS proteins

The tertiary structure of a protein is closely related to its function. 
We used AlphaFold2 to compare the 3D models of wild-type and 
mutant CTSS proteins at the p.S161F and p.N219Y loci, The model 
has 100% of amino acid residues in the reasonable region, and the 
protein structure obtained by the construction has high reliability and 
can be  used as a template for subsequent studies (Figure  7). The 
constructed model is shown in Figure 8, the p.S161F site contains a 
non-polar positively charged serine substituted with a non-polar 
positively charged phenylalanine, and the p.N219Y site contains a 
polar uncharged aspartic acid substituted with a polar uncharged 
tyrosine. These two mutations resulted in altered amino acid 
interactions near the corresponding sites, leading to changes in the 

structure and function of the mutated protein but little effect on the 
3D structure of CTSS.

4 Discussion

The lambing trait is one of important reproductive traits, and 
litter size is low heritability that is influenced by many factors, such 
as genetics, environment, management, and nutrition (27–29). 
Although there is a large body of research on the molecular basis of 
litter size in goats, the practical application of these findings is 
limited by the complexity of this quantitative trait (30, 31). CTSS 
polymorphisms are associated with acute atherosclerotic cerebral 
infarction (32). Mutations in the 5′-untranslated region of the CTSS 
gene were found to be strongly associated with feed conversion and 
average daily weight gain in Italian Large White pigs (33). In 
addition, CTSS is involved in the immune function pathway of high- 
and low-lambing rate populations in lake sheep, with critical effects 
on reproduction (34). Therefore, studying the CTSS gene will 
be beneficial to understand the variation in litter size in Qianbei 
Ma goats.

Qianbei Ma goats are resistant to adversity and disease, and 
retain the desirable traits of meekness, low odor, tender meat, and 
early sexual maturity (35). It is a valuable local breed in Guizhou 
Province, and the average litter size of it is lower than other 
domestic goat breeds (36, 37). To determine whether CTSS is a 
candidate gene for molecular breeding analysis in the high-
reproductive performance Qianbei Ma goat population, 
we examined the expression of CTSS mRNA in the gonadal axis 

TABLE 2 Genotype frequencies and gene frequencies of CTSS in Qianbei Ma goat.

SNPs Genotype frequency Gene frequency χ2 P

g.7413\u00B0C → T
CC CT TT C T

0.847 0.357
0.081(13) 0.356(57) 0.563(90) 0.259 0.741

g.8816 A → T
AA AT TT A T

3.039 0.081
0.094(15) 0.331(53) 0.575(92) 0.259 0.741

g.9191 T → G
TT TG GG T G

4.444 0.035
0.094(15) 0.312(50) 0.594(95) 0.25 0.75

g.10193 G → A
GG GA AA G A

3.441 0.064
0.081(13) 0.306(49) 0.613(98) 0.234 0.766

χ2
0.05 < 5.99; χ2

0.01 < 9.21, P > 0.05 indicates that the population is in Hardy–Weinberg equilibrium, with sample size in parentheses.

TABLE 3 Genetic diversity of CTSS gene SNPs loci in Qianbei Ma goat.

SNPs Effective allele 
numbers (Ne)

Heterozygosity (He) Homozygosity (Ho) Polymorphism 
information content 

(PIC)

g.7413C → T 1.624 0.384 0.616 0.310

g.8816 A → T 1.624 0.384 0.616 0.310

g.9191 T → G 1.600 0.375 0.625 0.305

g.10193 G → A 1.560 0.359 0.641 0.295

PIC < 0.25 means low polymorphism, 0.25 < PIC < 0.50 means moderate polymorphism, PIC > 0.5 means high polymorphism.
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of single and multilamb ewes. In the single-lamb ewe population, 
CTSS expression was highest in the oviduct, whereas in the 
multilamb population, CTSS expression was highest in the uterus. 
CTSS is highly expressed in the sheep uterus; presumably, CTSS 
may be  involved in endometrial remodeling and placenta 
formation in sheep (38, 39). CTSS induces increases in 
progesterone and estrogen levels in female rabbits to promote 

ovarian granulosa cell proliferation; estrogen and ovarian 
granulosa cells subsequently promote follicle development and 
ovulation (12, 39). The ovulation rate is an important determinant 
of litter size, while the uterus is critical for embryo implantation 
(15, 40, 41). Furthermore, CTSS expression underlies hormonal 
regulation in maternal tissues, is supportive of embryo 
implantation and is highly expressed in embryonic trophectoderm 

FIGURE 5

Linkage disequilibrium analysis. The SPNsg.7413C  →  T, g.8816A  →  T, g.9191T  →  G and g.10193G  →  A show strong LD (r 2 > 0.33, D’ > 0.70).

TABLE 4 CTSS gene haplotypes and frequencies.

Haplotype g.7413C>T g.8816 A>T g.9191  T>G g.10193  G>A Frequency

Hap1 T T G A 0.170

Hap2 C A T G 0.685

TABLE 5 Association analysis between CTSS gene polymorphism and the number of lambs produced in 1  ~  3 litters of Qianbei sheep.

SNPs Genotype First-born Second-born Third-born

g.7413C → T

CC 1.846 ± 0.375 1.846 ± 0.533b 2.078 ± 0.494

CT 2.035 ± 0.597 2.070 ± 0.529b 2.230 ± 0.732

TT 2.089 ± 0.466 2.289 ± 0.503a 2.200 ± 0.690

g.8816 A → T

AA 1.867 ± 0.352 1.933 ± 0.458b 2.133 ± 0.516

AT 1.981 ± 0.604 2.094 ± 0.628ab 2.226 ± 0.669

TT 2.054 ± 0.427 2.315 ± 0.490a 2.174 ± 0.689

g.9191 T → G

TT 1.867 ± 0.352 2.000 ± 0.378b 2.133 ± 0.516ab

TG 1.980 ± 0.622 2.040 ± 0.605ab 2.320 ± 0.683a

GG 2.063 ± 0.480 2.290 ± 0.523a 2.116 ± 0.666b

g.10193 G → A

GG 1.769 ± 0.439b 2.000 ± 0.577 2.231 ± 0.599

GA 2.000 ± 0.646ab 2.163 ± 0.553 2.225 ± 0.715

AA 2.061 ± 0.450a 2.214 ± 0.561 2.153 ± 0.648

Data in the table are compared in the same column within the same locus, different letters indicate significant differences between genotypes (P < 0.05) and the same letters indicate non-
significant differences (P > 0.05).
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TABLE 8 Protein stability prediction.

SNP locus Amino acid 
mutation 

locus

I-Mutant 2.0 MuPro

Free energy 
change 
(DDG)/

(kJ▪mol−1)

Free energy 
change 
(DDG)/

(kJ▪mol−1)

g.7413C>T p. S161F 0.21 0.30

g.8816 A>T p. N219Y −0.43 −0.56

Delta delta G (DDG) < 0 means NSSNPS reduce protein stability, and delta delta G 
(DDG) > 0 indicates that NSSNPS protein stability.

apposition sites and non-apposition sites (42, 43). Therefore, the 
upregulation of CTSS expression in the uterus of multilamb ewes 
improves lambing numbers in goats by affecting late embryo 
attachment. Therefore, CTSS may play an important role in 
reproduction in single and multilamb goats.

To investigate the regulatory mechanism of the CTSS gene in 
goat reproduction, we evaluated whether CTSS polymorphisms 
affect lambing traits in Qianbei Ma goats. After extraction of goat 
DNA, direct sequencing revealed that the genotype distribution 
of the SNP loci g.7413C → T, g.8816A → T and g.10193G → A did 
not deviate from Hardy–Weinberg equilibrium (HWE), while that 
of g.9191 T → G deviated from HWE. Further analysis revealed 
that all loci were moderately polymorphic (0.295 < PIC <0.310), 
which may be due to long-term artificial and natural selection 
(44). In addition, we analyzed the LD of the four mutant loci, and 
the analysis revealed that all of them were in strong LD (r2 > 0.33, 

FIGURE 6

Protein sequence comparison of CTSS in 13 species.

TABLE 6 Association analysis between combined genotypes and the 
number of lambs produced in 1  ~  3 litters of Qianbei sheep.

Combined 
genotype

First-born Second-
born

Third-born

Hap1/1 2.095 ± 0.501 2.257 ± 0.498 2.162 ± 0.683ab

Hap1/2 2.031 ± 0.740 2.125 ± 0.544 2.438 ± 0.669a

Hap2/2 1.714 ± 0.488 2.286 ± 0.488 2.000 ± 0.578b

Data in the table are compared in the same column within the same locus, different letters 
indicate significant differences between genotypes (P < 0.05) and the same letters indicate 
non-significant differences (P > 0.05).

TABLE 7 Prediction of the influence on CTSS protein function.

Prediction 
software

SNP 
locus

Amino 
acid 
mutation 
locus

Prediction 
results

Score

PhD-SNP
g.7413C>T p. S161F Neutral 3(0—9)

g.8816 A>T p. N219Y Neutral 2(0—9)

SNAP2

g.7413C>T p. S161F Neutral −38(−100 

to 100)

g.8816 A>T p. N219Y Neutral −63(− 

100 to 

100)

A higher score indicates a greater impact on protein function.

TABLE 9 Prediction of the secondary structure of the CTSS mutant.

Type Alpha 
helix

Extended 
strand

Beta 
turn

Random 
coil

CTSS-wild 33.23% 17.52% 6.95% 42.30%

CTSS-

mutant
33.23% 16.92% 6.34% 43.50%
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D′ > 0.70). Correlation analysis showed that g.7413C → T, 
g.8816A → T, g.9191 T → G and g.10193G → A were all associated 
with litter size. In addition, the third litter number of lambs with 
Hap1/2 diploid (CTATTGGA) was significantly higher than that 
with Hap2/2 diploid (CCAATTGG). Therefore, CTSS expression 
may be closely related to the number of litters produced by goats. 
In the SNP analysis, we identified the g.7413C → T mutation in 
the CTSS gene as leading to the substitution of serine by 
phenylalanine at site 161 (p.S161F) and the g.8816A → T mutation 
as leading to the substitution of aspartic acid by tyrosine at site 
219 (p.N219Y) of the CTSS protein. To elucidate the effect of this 
non-synonymous mutation on CTSS protein function, 
bioinformatics analysis revealed that compared with homologs in 
12 other species, the p.S161F mutation was highly conserved in all 
13 species, and p.N219Y was relatively conserved in even-toed 
ungulates and less conserved in other species (e.g., Homo sapiens, 
Canis lupus familiaris, Gallus gallus, and Mustela putorius furo). 
The mutation had a neutral effect on protein function; but, 
interestingly, the p.S161F mutation increased the stability of the 
protein, and the p.N219Y mutation decreased the stability of the 
protein. It has been shown that missense mutations that increase 
protein stability may also alter their function, that more stable 
proteins are more evolved and that mutations at the p.S161F and 
p.N219Y loci are consistent with speciation (45–47). Studies of the 
secondary and tertiary structures of the protein showed that 
mutations resulted in a decreased proportion of extended chains 
and β-turns and an increased proportion of irregular coiling. It 
has been found that a reduced β-turn angle and increased irregular 
coiling can improve a protein’s functional properties (48). 
Furthermore, our statistical analysis showed that the litter size was 

significantly greater in the g.7413C → T TT genotype group than 
in the corresponding CC and CT genotype group; At the g.8816 
A → T mutation locus, the TT genotype gave birth to significantly 
more litter size than the AA genotype. Whether non-synonymous 
mutations in exons of this gene affect protein function by altering 
protein stability, thereby further affecting reproductive traits, 
needs to be determined by more in-depth studies.

5 Conclusion

In conclusion, our study showed that uterine CTSS mRNA 
expression levels in the multilambing ewe population were 
significantly higher than those in the single-lambing ewe population. 
Four SNPs loci in the CTSS gene of Qianbei ma goat were significantly 
associated with litter size, and the g.7413C → T and g.8816A → T 
mutations were non-synonymous mutations resulting in the 
substitution of serine 161 with phenylalanine and aspartate 219 with 
tyrosine in the CTSS protein. Bioinformatic predictions indicated that 
the p.S161F mutation in CTSS is highly conserved across 13 species, 
and p.N219Y mutation is relatively conserved in even-toed species; 
these mutations may significantly reduce the stability of the CTSS 
protein. These results suggest that the CTSS gene may be  closely 
related to litter size in Qianbei Ma goats. These findings may provide 
new approaches for the breeding of high-fertility populations of 
Qianbei Ma goats.
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