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Background: Prion diseases have been extensively reported in various mammalian 
species and are caused by a pathogenic prion protein (PrPSc), which is a misfolded 
version of cellular prion protein (PrPC). Notably, no cases of prion disease have 
been reported in birds. Single nucleotide polymorphisms (SNPs) of the prion 
protein gene (PRNP) that encodes PrP have been associated with susceptibility to 
prion diseases in several species. However, no studies on PRNP polymorphisms in 
domestic ducks have been reported thus far.

Method: To investigate PRNP polymorphisms in domestic ducks, we  isolated 
genomic DNA from 214 Pekin duck samples and sequenced the coding region 
of the Pekin duck PRNP gene. We  analyzed genotype, allele, and haplotype 
distributions and linkage disequilibrium (LD) among the SNPs of the Pekin duck 
PRNP gene. In addition, we evaluated the effects of the one non-synonymous 
SNP on the function and structure of PrP using the PROVEAN, PANTHER, SNPs & 
GO, SODA, and AMYCO in silico prediction programs.

Results: We found five novel SNPs, c.441  T  >  C, c.495  T  >  C, c.582A  >  G, 
c.710C  >  T(P237L), and c.729C  >  T, in the ORF region of the PRNP gene in 214 Pekin 
duck samples. We observed strong LD between c.441  T  >  C and c.582A  >  G (0.479), 
and interestingly, the link between c.495  T  >  C and c.729C  >  T was in perfect LD, with 
an r2 value of 1.0. In addition, we identified the five major haplotype frequencies: 
TTACC, CTGCC, CTACC, CCGCT, and CTATC. Furthermore, we  found that the 
non-synonymous SNP, c.710C  >  T (P237L), had no detrimental effects on the 
function or structure of Pekin duck PrP. However, the non-synonymous SNP had 
deleterious effects on the aggregation propensity and solubility of Pekin duck PrP 
compared with wildtype Pekin duck PrP.

Conclusion: To the best of our knowledge, this study is the first report on the 
genetic characteristics of PRNP SNPs in Pekin ducks.
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Introduction

Prion diseases are caused by an accumulation of pathogenic prion 
protein (PrPSc) in the brain and are fatal neurodegenerative diseases 
that are also called transmissible spongiform encephalopathies (TSEs) 
(1, 2). PrPSc is derived from the conversion of normal cellular prion 
protein (PrPC) via protein misfolding and is characterized by a rich-
β-sheet structure and insolubility in detergent (2). Prion diseases 
occur in a broad range of host species, including Creutzfeldt–Jakob 
disease (CJD) in humans, scrapie in sheep and goats, bovine 
spongiform encephalopathy (BSE) in cattle, feline spongiform 
encephalopathy (FSE) in cats, and camel prion disease (CPD) (3–5). 
Interestingly, no cases of prion disease infection have been reported 
in birds up to date.

The prion protein gene (PRNP), which encode the prion protein 
(PrP), is a key molecule in prion diseases (1–3). Notably, single 
nucleotide polymorphisms (SNPs) of the PRNP gene have been 
reported to be associated with susceptibility to prion diseases across 
several species. In humans, the Met homozygote at codon 129 of the 
PRNP gene contributes to susceptibility to sporadic and variant CJD 
(1, 6–10). In addition, haplotypes formed by codons 136, 154, and 171 
within the ovine PRNP gene have been classified into five risk groups 
based on the degree of susceptibility to scrapie in sheep (3, 11, 12). 
Similarly, caprine PRNP SNPs at codons 102, 127, 142, 143, 146, 154, 
211, and 222 have been used to assess the vulnerability of goats to 
scrapie (11, 13–27). It’s worth noting that no polymorphisms related 
to this disease have been detected in the PRNP gene in 
dromedaries (28).

Among several animals described as the prion disease-resistant 
species, chickens showed strong resistance to prion diseases. During 
the BSE outbreak in the United Kingdom, which resulted from the 
consumption of prion-contaminated animal products containing 
meat- and bonemeal, widespread instances of prion disease 
transmission from humans to domestic cats were reported (29), but 
no cases of prion disease infection in chickens have been reported thus 
far. In addition, exposing chickens to parenteral or oral doses of BSE 
agent to did not result in prion disease transmission (30). Remarkably, 
although many SNPs associated with susceptibility to prion disease 
have been reported in prion disease–sensitive species, no SNPs were 
detected in four breeds of the large-scale chicken population: Korean 
native chicken, Ogolgye, Ross, or Dekalb White (31, 32).

Similar to chickens, ducks are widely bred and consumed around 
the world. In a previous study, the characteristics of the PRNP 
sequence in domestic ducks were analyzed in various perspectives 
(33). Notably, domestic duck PrP showed a higher proportion of 
β-sheet structure and propensity for aggregation compared with 
chicken PrP (33). In addition, when a substitution to incorporate a 
specific amino acid from chicken PrP occurred in the PrP sequence of 
domestic ducks, the amyloid propensity was observed to decrease, 
compared with that of wildtype duck (33). Furthermore, 
polymorphisms of the PRNP gene have been identified in many 
animals (10, 31, 32, 34–44). However, no studies on PRNP 
polymorphisms in domestic ducks have yet been reported.

Therefore, in this study, we investigated the genotype and allele 
frequencies of PRNP polymorphisms in a group of 214 Pekin ducks 
and analyzed the haplotype distribution and linkage disequilibrium 
(LD) of the polymorphisms we found. In addition, we compared the 
distribution of polymorphisms in the open reading frame (ORF) of 

the PRNP gene between chickens and Pekin ducks. Furthermore, 
we evaluated the effects of the lone non-synonymous SNP on the 
molecular characteristics of PrP using PROVEAN, PANTHER, SNPs 
& GO, SODA, and AMYCO in silico prediction programs.

Materials and methods

Sample preparation

All 214 samples from Pekin ducks were obtained from a 
slaughterhouse located in the Republic of Korea. The Labopass Tissue 
Genomic DNA Isolation Kit (Cosmo Genetech Co., Ltd., Korea) was 
used to isolate genomic DNA from 20 mg of peripheral tissue by 
following the manufacturer’s manuals. The overall experimental 
protocols were approved by the Institutional Animal Care and Use 
Committee of Jeonbuk National University (CBNU 2017-0030). All 
experiments using Pekin ducks were performed in accordance with 
the Korean Experimental Animal Protection Act.

Genetic analysis of the Pekin duck PRNP

In previous studies (33), a pair of primers was designed based on 
the PRNP sequence of the mallard (Anas platyrhynchos), which is 
available in GenBank at the National Center for Biotechnology 
Information (Gene ID: AF283319.1). The gene-specific sense and anti-
sense primers are as follows: TGGTGCAGACAACAGCTGGG and 
TGGGCTCAGGGACACGAAGA, respectively. Using these primers, 
polymerase chain reaction (PCR) targeting the coding region of Pekin 
duck PRNP gene was performed on an S-1000 Thermal Cycler (Bio-
Rad, Hercules, CA, United States). The PCR conditions followed the 
manual for BioFACT™ Taq DNA Polymerase (BioFACT Co., Ltd., 
Daejeon, Korea) with an annealing temperature of 65°C. The amplified 
products were purified using a FavorPrep™ GEL/PCR Purification 
Kit (Favorgen Biotech Corp., Kaohsiung, Taiwan), and sequencing was 
carried out on an ABI PRISM 3730XL Analyzer (ABI, Foster City, CA, 
United States). The obtained sequencing results for each sample were 
analyzed using Finch TV software (Geospiza Inc., Seattle, WA, 
United States), and subsequent genotyping was performed.

In silico prediction of the effects of the 
non-synonymous SNPs

PROVEAN, PANTHER, and SNP&GO are in silico analysis tools 
used to assess the effect of non-synonymous SNPs on the structure 
or function of a protein. PROVEAN evaluates the effect of 
non-synonymous SNPs by building and comparing clusters of related 
sequences and predicting the score. The results classify SNPs as 
“deleterious” or “neutral,” according to a predefined threshold (e.g., 
−2.5). PANTHER estimates the effect of non-synonymous SNPs 
using PANTHER-PSEP (position-specific evolutionary preservation) 
and denotes the results as “probably damaging,” “possibly damaging” 
and “probably benign” (45). SNP&GO predicts the effects of 
non-synonymous SNPs by categorizing the functional and 
evolutional information about a protein sequence with a support 
vector machine and labels the results as “disease” or “neutral.” 

https://doi.org/10.3389/fvets.2023.1273050
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Jeong et al. 10.3389/fvets.2023.1273050

Frontiers in Veterinary Science 03 frontiersin.org

Missense3D predicts structural changes caused by deleterious 
damage to protein stability resulting from missense variants. It 
identifies structural damage through a detailed analysis that includes 
the examination of various factors such as the disruption of buried 
salt bridges and alterations in secondary structure. AMYCO is an in 
silico analysis application that predicts the propensity to aggregation 
into an amyloid and presents the results as visualized scores from 0 
to 1. SODA is a webserver for in silico analyses that predicts the 
effects of amino acid variations on protein solubility. The SODA 
result is deduced by comparing the profiles, which include the 
propensity of a protein sequence to aggregation and intrinsic 
disorder, hydrophobicity, and secondary structure preferences, of 
reference (wildtype) and mutated sequences.

Statistical analysis

The Hardy–Weinberg equilibrium (HWE) test was conducted 
using the Michael H. Court calculator. If the resulting p-value is 
greater than 0.05, the genotype frequencies are in the HWE. The 
haplotype distribution and LD were estimated using Haploview 

version 4.2 (Broad Institute, Cambridge, MA, United  States). LD 
values were measured using the coefficient r2 range from 0 to 1, with 
r2 > 0.3 representing strong LD.

Results

Investigation of PRNP polymorphisms in 
Pekin ducks

To investigate polymorphisms in the PRNP of the Pekin duck 
(Anas platyrhynchos domesticus), we performed PCR and automatic 
amplicon sequencing on 214 Pekin duck samples. We found five novel 
SNPs, c.441 T > C, c.495 T > C, c.582A > G, c.710C > T, and c.729C > T, 
in the ORF region of the Pekin duck PRNP (Figures 1A,B). Among 
them, only c.710C > T (P237L) was a non-synonymous SNP. Detailed 
information about the genotype and allele frequencies of these SNPs 
is provided in Table 1; Supplementary Figure S1. All SNPs were in the 
HWE (p > 0.05).

The extent of LD among the five PRNP SNPs was investigated 
using r2 values (Table  2). Strong LD (r2 > 0.3) was observed 

FIGURE 1

Identification of single-nucleotide polymorphisms (SNPs) in the Pekin duck prion protein gene (PRNP). (A) The schematic diagram illustrates the 
genomic structure of the Pekin duck PRNP. The open reading frame (ORF) within exon 3 is represented by the black box, and the white boxes depict 
the 5′ and 3′ untranslated regions (UTRs). The edged horizontal bar indicates the regions sequenced. The locations of the identified polymorphisms in 
this study are shown in bold, with an asterisk denoting the non-synonymous SNP. (B) Five novel SNPs were discovered within the ORF of the duck 
PRNP. Electropherograms display two or three genotypes at c.441  T  >  C, c.495  T  >  C, c.582A  >  G, c.710C  >  T (P237L), and c.729C  >  T. The homozygote of 
the minor allele at c.710C  >  T was not found. The colors of the peaks represent each base of the DNA sequence as follows: green for adenine; red for 
thymine; blue for cytosine; black for guanine. Arrows indicate the locations of the polymorphisms identified in this study. Upper panel, homozygote of 
the major allele; middle panel, heterozygote; lower panel, homozygote of the minor allele.
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TABLE 1 Genotype and allele frequencies of prion protein gene (PRNP) polymorphisms in 214 Pekin ducks.

Polymorphisms Genotype frequency, n (%) Total, n 
(%)

Allele frequency, n 
(%)

Total, n 
(%)

HWE

c.441 T > C TT TC CC T C

(N147N) 61 102 51 214 224 204 428 0.51

(28.5) (47.7) (23.8) (100) (52.3) (47.7) (100)

c.495 T > C TT TC CC T C

(T165T) 175 36 3 214 386 42 428 0.47

(81.8) (16.8) (1.4) (100) (90.2) (9.8) (100)

c.582A > G AA AG GG A G

(S194S) 105 88 21 214 298 130 428 0.68

(49.1) (41.1) (9.8) (100) (69.6) (30.4) (100)

c.710C > T CC CT TT C T

(P237L) 196 18 0 214 410 18 428 0.52

(91.6) (8.4) (0.0) (100) (95.8) (4.2) (100)

c.729C > T CC CT TT C T

(A243A) 175 36 3 214 386 42 428 0.47

(81.8) (16.8) (1.4) (100) (90.2) (9.8) (100)

TABLE 2 Linkage disequilibrium (LD) of prion protein gene (PRNP) polymorphisms in Pekin ducks.

c.441 T > C c.495 T > C c.582A > G c.710C > T c.729C > T

c.441 T > C – 0.119 0.479* 0.048 0.119

c.495 T > C – – 0.249 0.005 1.0**

c.582A > G – – – 0.019 0.249

c.710C > T – – – – 0.005

c.729C > T – – – – –

*r2 > 0.3 indicates strong LD.
**r2 = 1 indicates perfect LD.

between c.441 T > C and c.582A > G (0.479), and the link 
between c.495 T > C and c.729C > T was in perfect LD, with 
an r2 value of 1.0. The remaining SNPs exhibited weak links, with 
r2 scores of less than 0.3. As shown in Table  3; 
Supplementary Figure S2, we  also analyzed the haplotype 
frequency. The five major haplotypes were TTACC, CTGCC, 
CTACC, CCGCT, and CTATC, with frequencies of 52.4, 20.6, 13.1, 
9.8, and 4.2%, respectively.

Comparison of polymorphism distributions 
among avian species

In previous studies, only 2 insertion/deletion polymorphisms 
of the chicken PRNP gene, c.163_180delAACCCAGGGTACCCCCAT 
and c.268_269insC, were found in 4 chicken breeds. Of them, 
c.163_180delAACCCAGGGTACCCCCAT is a hexapeptide 
deletion polymorphism in unit (U) 2 of the tandem repeat 
spanning U1 to U7 (32). Interestingly, a substantial number of 
polymorphisms, consisting of 33 SNPs in quails and 28 SNPs 
along with six insertion/deletion polymorphisms in 
pheasants, were identified within their PRNP gene (41, 42). 

Moreover, when compared to chickens, the structure of the 
hexapeptide repeat region in both quails and pheasants 
remains highly conserved. However, unlike in chicken, we found 
no insertion/deletion polymorphisms in the Pekin duck 
PRNP. In fact, we  found no variations within the hexapeptide 
repeat region. Instead, the Pekin duck PRNP exhibited a 
non-synonymous SNP and 4 synonymous SNPs. The different 
distributions of PRNP polymorphisms among avian species are 
summarized in Table 4.

TABLE 3 Haplotype frequencies of prion protein gene (PRNP) 
polymorphisms in Pekin ducks.

Haplotype Frequency, n (%)

TTACC 224 (52.4%)

CTGCC 88 (20.6%)

CTACC 56 (13.1%)

CCGCT 42 (9.8%)

CTATC 18 (4.2%)

Total, n (%) 428
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Predicting the effects of the 
non-synonymous SNP on the function and 
properties of PrP

We evaluated the influence of the non-synonymous SNP, 
c.710C > T (P237L), on the Pekin duck PrP using in silico analysis 
tools. To estimate the extent to which the non-synonymous SNP had 
a damaging effect on the Pekin duck PRNP, we used PROVEAN, 
PANTHER, and SNPs & GO (Table 5). All three programs predicted 
that the c.710C > T (P237L) variant would not have a harmful effect 
according to their respective thresholds. We also utilized Missense3D 
to analyze the impact of amino acid substitutions on the PrP structure, 
and no structural damage was detected as a result of the 
non-synonymous SNP. In addition, we used AMYCO to assess the 
aggregation propensity of the Pekin duck PrP sequence according to 
the allele of the non-synonymous SNP. The PrP variant with P237L 
was predicted to have an increased propensity for aggregation, with a 
score of 0.44 (Table  5). We  used the SODA program to estimate 
protein solubility according to the amino acid substitutions that result 
from the c.710C > T (P237L) SNP. SODA predicted that the P237L 
variant would exhibit reduced solubility compared with the reference 
sequence (wildtype), with a SODA score of −26.439 (Table 5). The 
extent of solubility in wildtype PrP and PrP with the P237L allele is 
described in Figure 2A. As predicted, PrP with the P237L allele was 
less soluble than wildtype PrP (Figure 2B).

Discussion

Previous studies have reported that the PrP and PRNP of prion-
resistant animals, including dogs, horses, and chickens, have unique 
genetic characteristics compared with prion-susceptible animals. An 
aspartic acid (Asp) at codon 163 on canine PrP has been reported to 
contribute to its resistance properties by stabilizing the protein 
structure compared with the amino acid found there in susceptible 
animals (46, 47). An Asp at codon 167 in horses has been reported to 
be involved in the β2–α2 loop, which maintains the well-defined PrP 
structure and contributes to its disease resistance (48–51).

Chickens are characterized by a different tandem repeat structure 
in PRNP compared with mammals, and the resulting hexapeptide 
structures appear to contribute to the structural stability of PrP in 

chickens (31, 52, 53). In addition, no SNPs have been reported in 
chickens (31, 32), which is a distinct difference from prion disease–
sensitive animals, for which many SNPs have been reported. 
Interestingly, an amino acid substitution resulting from a hexapeptide 
deletion polymorphism (c.163_180delAACCCAGGGTACCCCCAT), 
one of two insertion/deletion polymorphisms found in chickens, was 
found to have a detrimental effect on protein function (31).

A recent study reported that the sequence of PRNP in domestic 
ducks (Pekin duck) and wildtype ducks (mallard) shows low similarity 
to that in chickens (33). Pekin duck PrP has a higher proportion of 
β-sheet structure, which is a characteristic of PrPSc, and it is predicted 
to have a higher propensity for aggregation than chicken PrP (33). 
Interestingly, replacing amino acids residues in the Pekin duck PrP 
sequence (codons 165 and 167) with those found in chicken PrP has 
been found to reduce the propensity for PrP aggregation. Thus, 
nucleotide changes could result in disease-resistant alterations of an 
amino acid sequence that tends to be susceptible to prion diseases.

In this study, we first investigated polymorphism in the PRNP of 
domestic Pekin ducks. We found five novel SNPs within the ORF 
region of the PRNP gene in Pekin ducks. This is in contrast to chickens, 
in which no SNPs were detected (Table 4). However, it is unclear 
whether the rare non-synonymous SNP observed in Pekin ducks are 
unique to this breed or are common among domestic ducks. Thus, 
further research on the genetic polymorphisms of the PRNP gene in 
other duck breeds is highly desirable in the future.

Among the five SNPs found in Pekin ducks, the only 
non-synonymous SNP (c.710C > T, P237L) presents two interesting 

TABLE 4 Distribution of polymorphisms within the open reading frame (ORF) of the prion protein gene (PRNP) among avian species.

Species Polymorphisms Total, n References

Chicken c.163_180delAACCCAGGGTACCCCCAT (NPGYPH), c.268_269insC 2 Kim et al. (31, 32)

Quail c.12C > T, c.15C > T, c.56C > T (T19I), c.60C > T, c.61G > A (V21I), c.64G > T (A22S), c.111 T > C, c.126C > T, c.144C > T, 

c.162 T > C, c.168G > A, c.171G > A;C, c.174 T > C, c.186A > G, c.192C > T, c.222C > T, c.321G > A, c.357G > A, c.453C > T, 

c.459G > A, c.463C > A, c.474C > T, c.486G > A, c.540 T > C, c.546C > T, c.645C > T, c.678G > T, c.685C > T, c.702G > A, 

c.705 T > C, c.714C > T, c.806A > G, c.811G > A

33 Kim et al. (41)

Pheasant c.-6G > A, c.60C > T, c.61G > T (V21F);C (V21L), c.67C > T (L23F), c.97G > A (G33C), c.105 T > C, c.156C > T, 

c.163_180delAACCCGGGGTATCCCCAC, c.168G > A, c.171G > A, c.180_181insAACCCGGGGTATCCCCAC, c.180_

181insAACCCGGGGTATCCCCACAACCCGGGGTATCCCCAC, c.189A > G,C, c.192 T > C, 

c.198_199insAACCCAGGATATCCCCAC, c.207G > C, c.210C > T, c.216C > T, c.216_217insAACCCGGCTATCCCCA

CAACCCCGGCTATCCCCAC, c.219C > T, c.222C > T, c.378G > A, c.405G > T, c.411C > T, c.530G > A (R177Q), 

c.546C > T, c.564C > T, c.624_626delGAA, c.690G > A, c.750C > G (I250M), c.766G > A (D256N), c.781G > A (V261I)

34 Kim et al. (42)

Duck c.441 T > C, c.495 T > C, c.582A > G, c.710C > T (P237L), c.729C > T 5 This study

TABLE 5 Prediction of functional effects and aggregation propensity of 
the non-synonymous single nucleotide polymorphisms in the Pekin duck 
prion protein gene (PRNP) on PrP.

Variation Method Score Prediction

c.710C > T (P237L) PROVEAN −0.011a Neutral

PANTHER 2 Probably benign

SNPs & GO 0.068b Neutral

AMYCO 0.44 Aggregation-prone

SODA −26.439 Less soluble

aPROVEAN prediction cutoff = −2.5.
bDisease probability, >0.5 mutation is classified as “Disease”.
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FIGURE 2

Prediction of the functional properties of the non-synonymous SNP in the Pekin duck prion protein (PrP). (A) The solubility analysis of Pekin duck PrP 
by SODA. Upper panel shows the distribution of solubility extent in the wildtype PrP sequence, and the lower panel shows the distribution of solubility 
extent in the PrP sequence with the non-synonymous SNP substitution (P237L). The purple bar graphs above the horizontal line indicate high solubility, 
and the aqua bar graphs below the horizontal line indicate low solubility. The dotted box on the right side represents the region adjacent to the non-
synonymous SNP (P237L). (B) Enlarged view of the region inside the dotted box shown in (A). The left panel displays the wildtype PrP sequence, and 
the right panel displays the PrP sequence with the non-synonymous SNP substitution (P237L). The arrows indicate the location of codon 237.

amino acids when compared with the PRNP sequences of 10 
species. P237 is the wildtype amino acid in the PrP sequence of 
Pekin ducks and is identical to the amino acid located at the same 
position in chickens, mallards, and geese. L237, on the other hand, 
is a specific amino acid found only in the sequence of Pekin 
duck PrP.

Furthermore, we assessed the effect of the non-synonymous SNP 
(P237L) on Pekin duck PrP using in silico estimation tools (Table 5). 
PROVEAN, PANTHER, and SNPs & GO predicted that P237L would 
have no detrimental effect on the function or structure of the protein. 
AMYCO predicted that the Pekin duck PrP sequence with a Leu at 
codon 237 would be aggregation-prone (0.44); however, the wildtype 
sequence of Pekin duck PrP was also predicted to have the same score 
in a previous study (33). Thus, P237L seems to have no significant 
effect on the aggregation propensity of Pekin duck PrP. However, the 
amino acid substitution has a prominent effect on protein solubility. 
SODA predicted that the Pekin duck PrP sequence with a Leu at 
codon 237 would be  less soluble than wildtype Pekin duck PrP, 
returning a score of −26.439. We  confirmed that the solubility 

propensity of the surrounding amino acids was altered by an amino 
acid change at codon 237 (Figure 2).

Domestic ducks are popularly consumed around the world, and 
internal organs such as the brain, heart, kidney, and liver are also 
commonly eaten. A previous study reported the presence of 
amyloids in commercially available duck- and goose-derived foie 
gras, even after cooking (54). Furthermore, when mice were 
inoculated with amyloid-containing foie gras, amyloid deposition 
was observed in several organs Furthermore, when mice were 
inoculated with amyloid-containing foie gras, amyloid deposition 
was observed in several organs (54). Those findings raise concerns 
about the potential for diseases caused by amyloid accumulation, 
such as prion disease and Alzheimer’s disease, from consuming 
domestic duck organs. The transmission of diseases through the 
consumption of BSE-contaminated meat has already been 
confirmed as a cause of variant CJD. Therefore, further studies are 
needed to assess the susceptibility of domestic ducks to prion 
diseases and to consider the possibility that they could be susceptible 
species, unlike chickens.
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SUPPLEMENTARY FIGURE 1

Genotype and allele frequencies of prion protein gene (PRNP) 
polymorphisms in Pekin ducks. The bar graph illustrates the frequencies of 
genotype and allele of prion protein gene (PRNP) polymorphisms in Pekin 
ducks. The left graph represents genotype frequencies, and the right graph 
depicts allele frequencies. The numbers on the right side of the graph 
correspond to the values indicating the Hardy-Weinberg equilibrium (HWE).

SUPPLEMENTARY FIGURE 2

Haplotype frequencies of prion protein gene (PRNP) polymorphisms in Pekin 
ducks. The upper panel displays five distinct haplotypes derived from five 
prion protein gene (PRNP) polymorphisms in Pekin ducks, while the lower 
panel provides a graphical representation of the haplotype distribution. 
Asterisks (*) indicate nucleotide positions identical to ht1.

SUPPLEMENTARY FIGURE 3

Prediction of structural changes of non-synonymous single nucleotide 
polymorphisms (SNPs) in the Pekin duck prion protein gene (PRNP) on PrP. 
The tertiary structure illustrates the comparison of Pekin duck PrP with two 
different amino acids at residue 237, as analyzed by Missense3D. The tertiary 
structure modeling of Pekin duck PrP was constructed using Alphafold2. All 
chains are depicted in white, except for the proline of the wildtype amino acid 
(aqua) and the leucine of the variant amino acid (red) at residue 237.
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