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The modulation of inflammation is pivotal for uterine homeostasis. Here 
we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory 
and anti-inflammatory markers in a cellular model of induced fibrosis. Mare 
endometrial stromal cells isolated from follicular or mid-luteal phase were primed 
with 10  ng/mL of TGFβ alone or in combination with either IL1β, IL6, or TNFα 
(10  ng/mL each) or all together for 24  h. Control cells were not primed. Messenger 
and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). 
Cells in the follicular phase primed with pro-inflammatory cytokines showed 
higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) 
and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p  <  0.05. Cells 
primed during the mid-luteal overexpressed genes associated with extracellular 
matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, 
and PTGES; p  <  0.05). There was a notable upregulation of pro-fibrotic miRNAs 
(miR17, miR21, and miR433) in the follicular phase when the cells were exposed 
to TGFβ + IL1β, TGFβ + IL6 or TGFβ + IL1β  +  IL6  +  TNFα. Conversely, in cells from 
the mid-luteal phase, the treatments either did not or diminished the expression 
of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, 
miR29c, miR145, miR378, and mir488) were not upregulated with treatments in 
the follicular phase. Rather, they were overexpressed in cells from the mid-luteal 
phase, with the highest regulation observed in TGFβ + IL1β  +  IL6  +  TNFα treatment 
groups. These miRNAs were also analyzed in the extracellular vesicles secreted 
by the cells. A similar trend as seen with cellular miRNAs was noted, where 
anti-fibrotic miRNAs were downregulated in the follicular phase, while notably 
elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating 
from the follicular phase. Pro-inflammatory cytokines may amplify the TGFβ 
signal in the follicular phase resulting in significant upregulation of extracellular 
matrix-related genes, an imbalance in the metalloproteinases, downregulation of 
estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the 
luteal phase, there is a protective role mediated primarily through an increase 
in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced 
expression of fibrosis-related genes.
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1. Introduction

Transient breeding-induced endometritis (TBIE) is a physiological 
event in mares characterized by local inflammation of the superficial 
layer of the uterus involving the infiltration of neutrophils and an 
increase in the expression of genes associated with the innate immune 
response (1). Typically, TBIE tends to resolve within 48 h following 
mating or insemination, leading to a full resolution of the 
inflammatory process (2). TBIE starts with the recognition of damage-
associated molecular patterns (DAMPS) related to seminal plasma 
components or pathogen-associated molecular patterns (PAMPS) that 
trigger an acute inflammatory response driven by the activity of the 
NF-kb pathway with IL1β, IL6, and TNFα as principal cytokines and 
by the rapid response of the innate immune effector cells. Neutrophils 
release extracellular traps that favor the control of pathogens as well 
as the posterior production of prostaglandin F2 alpha (PGF2α) by 
macrophages to stimulate myometrial contraction to clear the cellular 
debris. Soon afterward, anti-inflammatory cytokines such as IL10, 
IL22, and IL1RN increase and allow for the correct repair of the tissue 
(3). However, 15% of all mares are unable to suppress this 
inflammation; therefore, they develop persistent breeding-induced 
endometritis (PBIE), which leads to the prolonged presence of 
polymorphonuclear cells, uterine fluid accumulation, and persistence 
of inflammatory cytokines that modify endometrial receptivity (4, 5).

While PBIE may present traditional clinical indicators, it can also 
manifest in a subclinical manner (6), and the degree of the 
inflammatory response influences the expression of pro-inflammatory 
cytokines. For instance, IL1β is significantly upregulated in PBIE in 
susceptible mares (7), while IL6 or TNFα are predominant in chronic 
subclinical endometritis and overexpression of IL1β, IL6, and TNFα 
is observed in subacute suppurative endometritis (8).

Following the inflammatory stimulus, a remodelling phase starts 
with an increase in TGFβ released by macrophages. TGFβ is a cytokine 
with a dual role: suppression of the innate immune system and 
activation of fibroblast conversion to myofibroblast. The latter are the 
principal effectors in healing, as the myofibroblasts synthesize 
extracellular matrix components (ECM) (9). If inflammation persists, 
the continuous expression of TGFβ helps to maintain the activity of 
myofibroblasts, which leads to excessive deposition of ECM and 
alteration in the architecture of the organ (increased stiffness, reducing 
the functionality of the glands), leading to an unfavorable uterine 
environment (10). This, in turn, compromises the fertility of the mare, 
and Kenney and Doig (11) coined this pathology as endometriosis, 
classifying it depending on the level of damage. Hoffman et al. (12) 
defined endometriosis as destructive or non-destructive periglandular 
and stromal fibrosis with varying degrees of metabolic activity.

In mares, endometrial fibroblasts are regulated by ovarian steroids 
and their receptors throughout the oestrus cycle (13, 14). Notably, the 
kinetic changes that occur in the uterus include proliferation during 
the follicular phase under high concentrations of estradiol (E2) and 
increased production of specific matrix metalloproteinases, MMP2 

and MMP9, indicating the active remodeling processes occurring 
during this phase (15). In contrast, under a high concentration of 
progesterone (P4) in the mid-luteal phase, the expression of MMPs is 
downregulated with a simultaneous increase in tissue inhibitor of 
metalloproteinases (TIMPs) expression and that of prostaglandin E2 
(PGE2) synthesis, leading to an anti-inflammatory environment that 
reflects the preparedness of the endometrium for embryo receptivity 
(16, 17). With chronic inflammation as in TBIE or subclinical 
endometritis, the paracrine orchestration is disturbed: TGFβ activity 
exacerbates α-SMA (alpha-smooth muscle actin) expression in 
endometrial fibroblasts while reducing the expression of ovarian 
receptors and provoking a malfunction in the prostanoid system, an 
imbalance in MMPs and TIMPs and uncontrolled ECM deposition 
(18, 19). This downstream action is mediated by the binding of TGFβ 
to its heterodimer transmembrane receptors which induce 
phosphorylation of the transcription factors SMAD2 and SMAD3 and 
their subsequent translocation to the nucleus resulting in the 
activation of most fibrosis-related genes (20).

The establishment of a fibrotic environment is a very complex 
process, which in addition to the factors mentioned above, involves 
the action of micro RNAs (miRNAs), both cellular and also 
contributed by extracellular vesicles (EVs) of different origins (21, 22). 
Several miRNAs such as mir192, mir29, mir199, mir21, and mir17 
have been shown to be involved in fibrotic processes in the liver, lungs 
and kidneys (23). The miRNAs act as mRNA repressors of multiple 
genes including TGFβ effectors like SMAD2/3, SMAD7, WNT 
signaling pathway, or specific related key proteins to limit the 
deposition of ECM proteins (24).

Emerging mechanisms of communication of the uterine stromal 
component with adjacent tissues, including immune cells, have been 
observed (20, 24). This intercellular communication is carried out by 
extracellular vesicles, which are small particles from 80 to 220 μm of 
heterogeneous origin composed of lipid bilayers engulfing cargoes of 
a plethora of molecules (mainly miRNA, mRNA, and proteins) 
capable of regulating target cells over long distances (25). Evidence 
suggests an active participation of EVs in the establishment of different 
pathologies, including fibrosis. The cargo of EVs can stimulate 
inflammatory and fibrotic processes or antagonize them (25). This 
communication system offers the possibility to discover potential 
biomarkers for several pathological conditions including fibrotic 
processes such as endometriosis.

In this work, we addressed the following hypothesis: there is a 
hormonal influence on the fibrotic response induced by the 
inflammatory environment in stromal cells. To confirm this 
hypothesis, we simulated the follicular phase and the mid-luteal phase 
in endometrial fibroblasts based on the respective serum hormone 
concentration and challenged them with pro-inflammatory cytokines 
(IL1β, IL6, and TNFα) and TGFβ and evaluated (i) the expression of 
genes related to fibrosis response, (ii) the miRNA profile of primed 
cells in the follicular or mid-luteal phase, (iii) the miRNA cargo of 
EVs, and (iv) the expression of the SMAD2/TGFβ pathway.
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2. Materials and methods

The animal study was approved by the Ethics Committee of the 
Faculty of Veterinary Sciences, University of Concepcion, Chile 
(CB-10-2019). The study was conducted in accordance with the local 
legislation and institutional requirements.

2.1. Samples collection and classification

All animals were healthy as determined by official veterinary 
inspection. The samples were obtained from mares for meat 
production and collected immediately post-mortem at a local abattoir 
(Frigosur, Chillan) during the reproductive season (September–
January). For a further measure of the basal levels of E2 and P4, 1 mL 
of blood was withdrawn from the jugular vein into an ethylene-
diaminetetraacetic acid (EDTA) tube, before death. The complete 
uteri, including the ovaries, were transported at 4°C to the laboratory. 
E2 concentration were determined using horse estradiol ELISA kit 
(CSBEQ027953HO, CUSABIO, TX, United  States), and P4 
concentrations were measured using the horse P4 ELISA kit 
(CSBE13183Hs, CUSABIO). The measure of follicular diameter and 
the presence of a corpus luteum (CL) was used to discriminate the 
oestrous cycle phases. Ovaries with follicles over 35 mm in diameter, 
plasma levels of P4 less than 1 ng/mL, and E2 above 4 pg./mL were 
from mares considered to be in the follicular phase, while ovaries with 
follicles smaller than 20 mm and the presence of CL, plasma levels 
over 2 ng/mL of P4 and E2 less than 2 pg./mL indicated the mare was 
in the luteal phase. A biopsy of the endometrium at the interhorn 
region was carefully taken and immersed in 4% buffered formaldehyde 
for histological analysis based on Kenney and Doig’s criteria 
classification. Only the samples without any sign of endometriosis 
were selected for the present study.

2.2. Endometrial stromal cell isolation and 
culture

The surface of the uteri was cleaned with 70% alcohol and sprayed 
with povidone-iodine. Using a scalpel and surgery scissors, we made 
a long narrow cut at the interhorn region to expose the endometrial 
cavity. Using tweezers and scissors a strip was excised from the 
myometrium and washed three times in PBS containing antibiotic 2X 
Antibiotic-Antimycotic solution (MT30004 CL, Corning™, NY, 
United States). The strip was cut into small pieces of around 1 mm 
with the scalpel and digested with digestion buffer (1 mg/mL 
collagenase type I, Sigma-Aldrich™, MO, United States), 4 mg/mL 
dispase-I (D4818, Sigma-Aldrich™ in PBS) for 1 h at 38.5°C with 
continuous agitation. The cell suspension was filtered using 40 μm cell 
strainers to remove the remaining undigested tissue and the resulting 
filtrate was washed with Dulbecco’s Modified Eagle Medium (DMEM) 
high glucose supplemented with Glutamax (10,569,010, Gibco™, NY, 
United  States) and 1x Antibiotic-Antimycotic solution, and 
centrifuged for 10 min at 500 g. The obtained pellet was resuspended 
in the culture media (DMEM high glucose supplemented with 
Glutamax, 1x Antibiotic-Antimycotic solution, and 10% Foetal bovine 
Serum (FBS) 12,484,028, Gibco™) and seeded in a T75-flask bottle at 

38.5°C with a humidified atmosphere of 5% CO2. Further, the 
monolayer reached the 90% confluence and was cryopreserved 
for experimentation.

2.3. The effect of different combinations of 
pro-inflammatory cytokines in the 
presence of TGFβ

Depending on the oestrous phase classification, the endometrium 
stromal cells were pooled and seeded at 38.5°C with a humidified 
atmosphere of 5% CO2 in six-well plates in triplicate for each oestrous 
cycle phase condition at 8×106 cells per well in a follicular medium (a 
culture medium supplemented with 0.5 ng/mL P4 and 30 pg./mL E2) 
or a mid-luteal medium (a culture medium supplemented with 15 ng/
mL P4 and 2 pg./mL de E2) for 24 h. As soon the cells attached to the 
plate, the medium was changed to the follicular or mid-luteal media 
with 1% of FBS and the treatments were added:

(1) Control (naive), (2) TGFβ (10 ng/mL), (3) TGFβ + IL1β 
(10 ng/mL each), (4) TGFβ + IL6 (10 ng/mL each), (5) TGFβ + TNFa 
(10 ng/mL each), (6) TGFβ + IL1β + IL6 + TNFa (10 ng/mL each) 
for 24 h.

The monolayers were detached using 0.25% Trypsin–EDTA and 
the single-cell solutions were split in two: one portion for protein 
expression of TGFβ /SMAD pathway and the second portion for 
transcript expression of fibrosis-related mRNA and miRNA. Schematic 
experimental design is visually represented in Figure 1.

2.4. The effect of different combinations of 
pro-inflammatory cytokines in the 
presence of TGFβ on miRNA cargo in 
extracellular vesicles

Depending on the oestrous cycle phase classification, the 
endometrium stromal cells were pooled and seeded at 38.5°C with a 
humidified atmosphere of 5% CO2 in a 100-mm dish in triplicate for 
each oestrous condition at 2×106 cells per well in the follicular 
medium (a culture medium supplemented with 0.5 ng/mL P4 and 
30 pg./mL E2) or the luteal medium (a culture medium supplemented 
with 15 ng/mL P4 and 2 pg./mL of E2) for 24 h. As soon as the cells 
were attached to the plate, the medium was changed to the follicular 
or the luteal media with 1% of FBS, and as described in 2.3, the cells 
were subjected to the same treatments for 24 h. Then the monolayers 
were washed twice with PBS and incubated with culture media with 
1% of FBS previously depleted from the EVs using the protocol from 
Shelke et  al. (26) and incubated for 48 h. The medium was then 
collected and vesicles were isolated, as follows: the medium was briefly 
centrifugated for 10 min at 500 g and the supernatant was collected 
and subsequently centrifugated for 30 min at 5,000 g. Then the pellet 
was discarded and the remaining medium was centrifugated for 1 h at 
10,000 g. The resulting supernatant was clarified using an AMICON 
filter 100 kDa cut-off (UFC9100, Merck™, Germany) and the 
concentrated fraction was centrifugated at 120,000 g for 18 h. The 
pellet was resuspended in 50 μL of PBS and one portion was used to 
quantify the expression of fibrosis-related miRNA and the other 
portion to validate the EVs.
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2.5. Protein expression analysis of SMAD2/
TGFβ pathway

For protein cell expression, the pellets were lysed using RIPA 
buffer (NaCl 150 mM, Tris–HCl 10 mM, EDTA 1 mM, Triton X-100 
1%, SDS 10%, Sodium deoxycholate 0.1%) supplemented with 1% 
Protease Inhibitor Cocktail (5,871, Cell Signaling Technology™, 
MA, United  States). The homogenized cells were vortexed and 
centrifuged for 30 min at 10,000 g, and the resulting supernatants 
were collected and kept at −80°C until use. The protein 
concentration was measured using Pierce BCA Protein Assay Kit 
(23,225, Thermo Scientific™, IL, United  States). Approximately 
30 μg of protein were dissolved in NuPAGE LDS Sample Buffer 4x 
(NP0007, Invitrogen™, CA, United  States) with 2% of 
β-mercaptoethanol and heated to 95°C for 10 min and separated in 
10% SDS-PAGE. The separated proteins were electroblotted using 
a semi-dry method onto 0.45 μm PVDF membranes using a Trans-
Blot Turbo kit, according to the manufacturer (1,704,270, Biorad™, 
CA, United  States). Furthermore, the membranes were blocked 
using SuperBlock Blocking Buffer (37,515, Thermo Scientific™) for 
1 h at room temperature. They were incubated in primary antibody 
overnight at 4°C against anti-rabbit phospho-Smad2 (18,338, Cell 
Signaling Technology™), anti-rabbit Smad2/3 (5,678, Cell Signaling 
Technology™), and anti-mouse β-actin (sc-47778, Santa Cruz 
Biotechnology™, TX, United  States). After incubating the 
membranes for 1 h at room temperature with polyclonal anti-rabbit 
IGG HRP conjugated (7,074, Cell Signaling Technology™) or 
polyclonal anti-mouse IGG HRP conjugated (7,076, Cell Signaling 
Technology™), proteins were detected. The membranes were then 
washed three times with TBS-T buffer (Tris–HCl, Tween 1%) and 
the signal was detected using Westar Antares ECL substrate 
(XLS0142, Cyanagen™, Bologna, Italy) in GeneGnome XRQ 
system (Syngene™, Cambridge, United Kingdom). Band intensities 
were quantified using ImageJ software and the relative protein 
expression was calculated according to Heidebretch et al. (27) using 
β-actin protein expression as normalizer.

2.6. Gene expression analysis

The total RNA was isolated using E.Z.N.A. Total RNA kit 
I  (R6834-01, OMEGA™, GA, United  States) according to the 
manufacturer’s instruction and resuspended in 50 μL of molecular-
grade water. The RNA purity was checked using the ratio of 
260/280 nm in an Epoch microplate spectrophotometer (Agilent 
Technologies™, CA, United States). The cDNA was transcribed from 
500 ng of RNA using a high-capacity cDNA Reverse Transcription kit 
(4,368,814, ThermoFisher Scientific™, Vilnius, Lithuania) according 
to the manufacturer’s instructions. For cell miRNA expression, cDNA 
was synthesized according to the protocol by Balcells et  al. (26). 
Briefly, 500 ng of RNA were incubated with 1 μL of 10x poly (A) 
polymerase buffer (B0276S, New England Biolabs™, MA, 
United States), 0.1 mM of ATP, 1 μg of RT primer, 0.1 mM of dNTP 
mix, 100 units of SuperScript IV reverse transcriptase (18,090,010, 
ThermoFisher Scientific™) and 1 unit of poly (A) polymerase 
(M0276S, New England Biolabs™) at 37°C for 30 min and then 52°C 
for 10 min and an inactivation period of 5 min at 95°C. For EVs 
miRNA cargo, 20 μL of cell lysis buffer from Cells-to-cDNA kit 
(AM8723, ThermoFisher Scientific™) and 25 fmol of synthetic spike 
(cel-mir39, Norgen™, ONT, Canada) was added to 20 μL EVs 
suspension and heated at 75°C and the cDNA was synthesised as 
described above.

For the qPCR, 10 μL of total volume reaction was performed in 
MX3000P (Agilent Technologies™) with 5 μL of KiCqStart 
SYBRGreen qPCR Ready Mix with Low ROX (KCQS01, Sigma-
Aldrich™), 2.5 μL molecular grade water, 0.5 mix of forward and 
reverse primers at 10 μg and 2 μL of cDNA. Each reaction was 
performed in triplicate, and the relative gene expression was evaluated 
using the delta–delta CT method (28) with the set of primers 
described in Supplementary Table S1. For mRNA expression, GAPDH 
and B2M were used as housekeeping genes, while for miRNA 
expression, Snord43 was used. The resulting geometric mean of CT 
was used to normalize the gene expression and the control group of 
the follicular phase was used as a calibrator. For EVs miRNA cargo, 

FIGURE 1

Schematic experimental design. The uteri of 10 mares were collected and classified by oestrus cycle phase based on hormone levels (E2 and P4) and 
ovarian structures (follicles and/or CL presence). Endometrial stromal cells were isolated and treated with (1) Control (naive), (2) TGFβ, (3) TGFβ + IL1β, 
(4) TGFβ + IL6, (5) TGFβ + TNFα, (6) TGFβ + IL1β  +  IL6  +  TNFα for 24  h. The monolayers were subjected to total RNA extraction for mRNA and miRNA 
analysis. The supernatants were used to analyze the fibrosis-related miRNA in EVs cargo.
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cel-mir39 expression was used as normaliser. The mRNA primers 
were designed in-house using AmplifX™ software and the miRNA 
primers set was designed with miRprimer™ software.

2.7. Extracellular vesicles quantification

The resuspended extracellular vesicles were subjected to 
nanoparticle tracking analysis using a NanoSight NS300 (Malvern 
Instruments™, Malvern, United Kingdom) equipped with a 488 nm 
and sCMOS camera. A depleted medium was used as negative 
control and EV characteristics were determined at 20 to 100 
particles per frame. The samples were diluted 1:100  in depleted 
medium in 1 mL total volume and loaded in a tuberculin syringe 
and injected in a continuous flow of up to 5 μL/min into the sample 
chamber at room temperature (RT) using an automatic syringe 
pump (Harvard Apparatus™, MA, United States) and the built-in 
software NTA 3.2 (Malvern Instruments™) were set according to 
Gerritzen et  al. (29) for capture, recording and analysis of the 
nanoparticles, each sample was performed per triplicate. Graphical 
analysis showed the size distribution of the nanoparticles per 
experimental group, and the concentration was reported as particles 
per millilitre.

2.8. Extracellular vesicles validation

The typical protein surface markers of EVs (CD63, CD9) were 
evaluated using Western blot. Briefly 20 μL of resuspended EVs 
were lysed using NuPAGE LDS Sample Buffer 4x (NP0007, 
Invitrogen™) with 2% of β-mercaptoethanol and heated to 95°C 
for 10 min and separated in 10% SDS-PAGE. The separated proteins 
were electroblotted onto 0.45 μm PVDF membranes using Trans-
Blot Turbo kit (1,704,270, Biorad™). The resulting membranes 
were blocked using SuperBlock Blocking Buffer (37,515, Thermo 
Scientific™), for 1 h at room temperature. Membranes were 
incubated overnight at 4°C with the primary antibody anti-rabbit 
CD9 (13,174, Cell Signaling Technology™) or anti-mouse CD63 
(sc-365604, Santa Cruz Biotechnology™). Secondary antibodies 
polyclonal anti-rabbit IGG HRP conjugated (7,074, Cell Signaling 
Technology™) or polyclonal anti-mouse IGG HRP conjugated 
(7,076, Cell Signaling Technology™) were incubated with the 
membrane for 1 h at room temperature. The membranes were 
washed three times with TBS-T buffer (Tris–HCl, Tween 1%) and 
the signal was detected using Westar Antares ECL substrate 
(XLS0142, Cyanagen™) using Gene-Gnome XRQ system 
(Syngene™). For transmission electron microscopy (TEM) 
visualization, 5 μL of resuspended EVs were mixed with 4% 
paraformaldehyde in a 1:1 ratio. The mixture was placed on carbon–
formvar-coated copper electron microscopy grids for 20 min and 
washed with PBS. Next, a drop of 1.5% glutaraldehyde was gently 
applied to the grid; after 5 min, the grid was washed 3 times with 
molecular grade water, and then a drop of 0.5% uranyl oxalate 
(Electron Microscopy Sciences, PA, United States) (pH 7.0) was 
applied for 5 min to facilitate contrast. The grid was dried at room 
temperature and placed on the TEM stand, where EV images were 
taken at 40,000× to 80,000× magnification on the Talos™ F200C 
transmission electron microscope (ThermoScientific™).

2.9. Statistical analysis

Data analyses were performed using Rstudio software and plotted 
with the ggplot2 package. Data are expressed as mean ± standard 
deviation and Two-way ANOVA (treatment x oestrus phase) was 
conducted followed by Tukey’s HSD test as a pairwise comparison test. 
p < 0.05 was considered statistically significant.

3. Results

3.1. Expression of genes related to fibrosis 
response

The expression of mesenchymal markers in endometrial stromal 
cells during the follicular phase is represented in Figure 2. Combined 
use of TGFβ + IL1β and TGFβ + IL6 produced the highest expression 
of SLUG, Vimentin (VIM), and Cadherin genes (CDH2 and CDH11) 
compared to mid-luteal phase and also to naive (unprimed cells from 
the follicular phase). In the mid-luteal phase, there were no differences 
regarding the expression of mesenchymal markers in naive cells for all 
the analyzed genes, except SLUG and CDH2, which were upregulated 
in primed cells (Figure 2).

The analysis of the expression of fibrotic gene markers during the 
follicular and mid-luteal phases is depicted in Figure 3. There was a 
significant increase in the expression of α-SMA (p < 0.05) in all the 
treatments compared to that of naive cells. The highest expression 
levels corresponded to treatments with TGFβ, TGFβ + IL1β, and 
TGFβ + IL6  in both the follicular and mid-luteal phases. For the 
CTGF gene, there was a notable reduction in the expression in 
mid-luteal naive cells compared to that in the follicular naive samples. 
In the follicular phase samples, higher expression compared to that in 
the mid-luteal phase was found for all the treatments. However, in the 
equine endometrial stromal cells from the mid-luteal phase, TGFβ 
alone yielded the highest expression of the CTGF gene.

The expression of COL1A1 and COL3A1 genes was upregulated 
in the follicular phase in all treatments compared to that of the naive 
cells, and the highest expression was detected in the TGFβ + IL6 
group. In the mid-luteal phase, only in the TGFβ group was there a 
significant (though discrete) increase in both collagen genes analyzed. 
The ratio of COL1A1/COL3A1 expression was higher in the follicular 
phase, with the highest expression in the TGFβ + IL6 treatment group. 
No increase in this ratio was detected for the mid-luteal phase (data 
not shown).

The expression of MMP2 was downregulated in the follicular 
phase compared to that of the naive cells, while in the mid-luteal 
phase, there were no changes in its expression. Conversely, MMP9 
expression was dramatically overexpressed in the follicular phase, 
whereas again no changes were observed in the mid-luteal phase 
(Figure 4). There was a steady increase in TIMP2 expression in the 
follicular phase, while in the luteal phase, it remained unchanged 
compared to the naive cells. TIMP1 was upregulated in both 
phases, with the most noticeable increase in the cells treated with 
TGFβ + IL1β (Figure  4). The calculated ratio of equimolar 
expression of MMP2/TIMP2 confirmed the findings of individual 
gene analysis and showed an increased activity of TIMP2 in the 
follicular phase, while the opposite was found for MMP9/TIMP1 
ratio (Figure 5).
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In the follicular phase, all the treatments induced the 
downregulation of ESR1 and ESR2, with the lowest values observed in 
the TGFβ + TNFα and TGFβ + IL1β + IL6 + TNFα treatment groups 
(Figure 6). In the mid-luteal phase, a dramatic downregulation of 
ESR1 was observed, with no differences between treatments. The same 
pattern was observed for ESR2 expression. In the mid-luteal phase, 
PGR expression was higher in the mid-luteal phase, and the treatments 
decreased it but did not abolish its expression compared to that in the 
follicular phase where PGR expression was markedly high (Figure 6). 
The prostaglandin E2 synthase precursor (PTGES) gene expression 
decreased alongside cytokine treatments in the follicular phase, except 
for the TGFβ + IL1β. Conversely, in the mid-luteal phase, there was 
an increase in the expression of this gene, particularly in the TGFβ + 
TNFα group (Figure 6).

In order to have an integrated view of the results discussed above, 
a heat map was created, which hierarchically clustered the genes 
expressed in similar amounts (Figure 7). Endometrial stromal cells 
were primed or not with proinflammatory cytokines, either 
individually or mixed, during both the follicular or the mid-luteal 
phase of the oestrous cycle. The resulting fold of expression in the 
qPCR assays for candidate genes was plotted in a heat map and three 
clusters were identified: (A) follicular primed, mid-luteal primed (B), 
and (C) naive (not primed). The cluster A—from cells in the follicular 
phase primed with proinflammatory cytokines—showed higher 
expression of collagen-related genes (CTGF, COL1A1, COL3A1, and 

TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) 
genes. In cluster B—composed of primed cells in the mid-luteal 
phase—the overexpressed genes were associated with extracellular 
matrix processing and prostaglandin E synthase (MMP2, MMP9, 
PGR, TIMP2, and PTGES), while genes expressed in cells not exposed 
to pro-inflammatory cytokines (cluster C), independently of their 
oestrous cycle phase, clustered together for higher expression of 
hormonal receptor markers such as ESR1 and ESR2 (in the follicular 
phase) or PGR in the mid-luteal phase. In addition, the profile of 
expression of pro-fibrotic gene markers was the lowest in the 
naive cells.

3.2. MicroRNA profile of primed cells in the 
follicular or mid-luteal phase

The sets of miRNA were selected based on reported interaction 
with genes related to fibrosis and confirmed using RNA hybrid 
software (30). The net free energy is indicated in the 
Supplementary Table S2. In all cases, the free energy had negative 
values as expected.

Similar to the mRNA analysis, qPCR was first used to assess the 
expression of individual miRNA genes, and their expression was 
compared to that of the untreated (naive cells) cells in the follicular or 
mid-luteal phase, and primed with the combination of cytokines as above. 

FIGURE 2

Relative expression of mesenchymal genes markers SLUG, VIM (Vimentin), CDH2 (N-Cadherin), and CDH11 (Cadherin 11) of the endometrial stromal 
cells in the naive cells and treatments using RT-qPCR. The expression in the follicular phase is represented by red columns and the mid-luteal phase 
gene expression is represented by blue columns. Y-axes indicate fold change of relative expression using the geometric mean of GAPDH and B2M as 
housekeeping values. Three replicates per treatment. Different letters indicate statistically significant differences (p  <  0.05) between means. The error 
bar is SD.
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Furthermore, there was a notable upregulation of pro-fibrotic miRNAs 
(miR17, miR21, and miR433) in the follicular phase (Figure 8) when the 
cells were exposed to TGFβ + IL1β, TGFβ + IL6, or TGFβ + 
IL1β + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the 
treatments either did not or diminished the expression of the same 
miRNAs (Figure 8). On the contrary, the anti-fibrotic miRNAs (mir26a, 
mir29b, mir29c, mir145, mir378, and mir488) were not upregulated with 
treatments in the follicular phase. Rather, they were overexpressed in cells 
from the mid-luteal phase, with the highest regulation observed in the 
TGFβ + IL1β + IL6 + TNFα treatment group (Figure 9).

The collective analysis of miRNA expression was assessed using 
the heat map tool. The expression of pro- fibrotic miRNAs was 
grouped based on the follicular phase, with TGFβ + IL-1β and TGFβ 
+ IL-6 combinations exhibiting significant upregulation compared to 
cells in their follicular naive state (Figure 10). Anti-fibrotic miRNAs 
in this phase were notably inhibited in comparison to those in the 
mid-luteal phase, and these results are in agreement with the clustering 
of mRNA profile (Figure 7).

3.3. miRNA cargo of extracellular vesicles

We further studied the EVs secreted by cells following the 
treatment described above, as potential tools for treating endometrial 
fibrosis. The concentration and size of the isolated vesicles were 

measured by Nano tracking analysis. Typical exosome surface markers 
were identified using Western blot for CD9 and CD63 (Figure 11A) 
and the shape was assessed using transmission electron microscopy 
(TEM; Figure  11B). Furthermore, the size and concentration of 
nanoparticles were measured, and the highest values were registered 
in the presence of proinflammatory cytokines in the follicular phase. 
The same trend was observed with the concentration values 
(Figure 11C).

We assayed the miRNA cargo of the isolated EVs via RT-qPCR, 
and for this purpose, the most expressed anti-fibrotic (mir29b and 
mir29c) and pro-fibrotic (mir17 and mir21) miRNAs in the previous 
experiment were selected. The expression of the assayed anti-fibrotic 
miRNAs was generally lower in the follicular phase compared to that 
in the mid-luteal phase, with the exception of mir29c in the presence 
of TGFβ alone, which was higher than that in the mid-luteal phase 
(Figure  12). Conversely, the pro-fibrotic miRNAs were notably 
upregulated in the EVs from the follicular phase compared to those in 
the mid-luteal (Figure 12).

3.4. Expression of the SMAD2/TGFβ 
pathway

To assess the activity of the TGFβ pathway, we  studied the 
phosphorylation of SMAD2. TGFβ and the follicular phase enhanced 

FIGURE 3

Relative expression of transcripts of fibrotic gene markers SMA (smooth muscle actin), CTGF (connective tissue growth factor), COL1A1 (collagen type 
I), and COL3A1 (collagen type III) of the endometrial stromal cells in the naive cells and treatments using RT-qPCR. The expression in the follicular 
phase is represented by red columns and the mid-luteal phase gene expression is represented by blue columns. Y-axes indicate fold change of relative 
expression using the geometric mean of GAPDH and B2M as housekeeping values. Three replicated per treatment. Different letters indicate statistically 
significant differences (p  <  0.05) between means. The error bar is SD.
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FIGURE 5

Relative expression of transcripts of MMP2/TIMP2 ratio and MMP9/TIMP1. The absolute values of expression for each particular pair of genes were 
divided (MMP/TIMP) and plotted as a ratio of fold change expression. Expression in the follicular phase is represented by red columns; blue columns 
indicate mid-luteal phase gene expression. Y-axes indicate the resulting ratio of fold change. Three replicated per treatment. Different letters indicate 
statistically significant differences (p  <  0.05) between means, and the error bar is SD.

FIGURE 4

Relative expression of extracellular matrix processing genes MMP2 (matrix metalloproteinase 2), MMP9 (matrix metalloproteinase 9), TIMP1 (tissue 
inhibitor of metalloproteinase 1) and TIMP2 (tissue inhibitor of metalloproteinase 2) of the endometrial stromal cells in the naive cells and treatments 
using RT-qPCR. The expression in the follicular phase is represented by red columns and the mid-luteal phase gene expression is represented by blue 
columns. Y-axes indicate fold change of relative expression using the geometric mean of GAPDH and B2M as housekeeping values. Three replicated 
per treatment. Different letters indicate statistically significant differences (p  <  0.05) between means. The error bar is SD.
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phosphorylation, and this was particularly marked when TGFβ +IL6 
was used (Figure 13).

4. Discussion

In this work, we determined that pro-inflammatory cytokines 
might amplify the signal of TGFβ in the follicular phase, leading to a 
pro-fibrotic landscape, meanwhile during the mid-luteal phase, there 
is a protective role mediated essentially by prostaglandin E2, which 
favors the upregulation of anti-fibrotic miRNAs. These findings might 
be of help for understanding the connection between the inflammatory 
mechanism in susceptible mares and the establishment 
of endometriosis.

There is no clear understanding of the link between endometritis 
and endometriosis, which seems to be multifactorial. However, the 
inability of the endometrium to clear out cellular debris or bacteria 
that accumulate post-breeding has been indicated as an initiator of 
endometrial inflammation in endometritis, which ultimately leads to 
chronic inflammation in endometriosis (31, 32).

In this scenario, there is continuous signaling of pro-inflammatory 
cytokines in the NF-kb pathway, malfunction of the innate immune 
system (33, 34) deeply influenced by the stage of the oestrous cycle, 

and the impaired expression of hormone receptors in peripheral 
fibrotic glands (35, 36). TGFβ is the key molecule in the fibrotic 
process of the uterus that leads to endometrosis by stimulating the 
differentiation of gland fibroblasts to myofibroblasts (37). This process 
is characterized by the expression of pro-fibrotic genes.

Endometrial stromal cells play a key role in regulating the 
homeostasis of the extracellular matrix locally. They also play an active 
role in immune surveillance, acting as sentinels, producing 
inflammatory mediators in response to biological challenges, and the 
intensity of this response is greatly affected by hormonal cyclicity (38, 
39). In order to explore the fibrotic response in different oestrous cycle 
phases, we simulated the follicular and mid-luteal phases by adding 
E2 and P4 at levels similar to physiological conditions (40, 41). After 
challenging the cell model with pro-inflammatory cytokines, 
we  evaluated the expression of genes and miRNAs related to 
myofibroblast phenotype and ECM regulation, as well as the miRNAs 
contained in the EVs released by these cells. Finally, the 
phosphorylation status of protein SMAD2 was studied to better 
understand their interaction in this environment.

In the follicular phase, there was an increase in SLUG expression 
independent of the inflammatory cytokine(s) used. SLUG is key for 
the establishment of fibroblast senescence and secretion of 
proinflammatory cytokines (IL1β, IL6, and TNFα) (7, 42). It also 

FIGURE 6

Relative expression of hormonal-related genes ESR1 (estrogen receptor 1), ESR2 (estrogen receptor 2), PGR (progesterone receptor), and PTGES 
(prostaglandin E synthase) of the endometrial stromal cells in the naive cells and treatments using RT-qPCR. The expression in the follicular phase is 
represented by red columns and the mid-luteal phase gene expression is represented by blue columns. Y-axes indicate fold change of relative 
expression using the geometric mean of GAPDH and B2M as housekeeping values. Three replicated per treatment. Different letters indicate statistically 
significant differences (p  <  0.05) between means. The error bar is SD.
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FIGURE 7

Heat map of the fold of expression of candidate genes related to fibrosis. Hierarchical clustering analysis based on the similarity of expression of genes 
across the samples generated two horizontal groups (red and blue clusters in left axis). Genes in the blue cluster are related to fibrosis, while those 
grouped in the red cluster are related to mesenchymal and hormonal receptor gene markers. In the vertical orientation, three clusters were formed: A, 
B, and C, standing for primed follicular or mid-luteal and not primed cells independently of their origin, respectively. The genes analyzed are listed on 
the right axis. In the color scale bar, red indicates overexpression, while green indicates the lowest expression.

FIGURE 8

qPCR relative expression of transcripts of pro-fibrotic miRNAs mir17, mir21, and mir433 of the endometrial stromal cells in the naive cells and 
treatments using RT-qPCR. The expression in the follicular phase is represented by red columns and the mid-luteal phase gene expression is 
represented by blue columns. Y-axes indicate fold change of relative expression using the mean of Snord43 as housekeeping value. Three replicated 
per treatment. Different letters indicate statistically significant differences (p  <  0.05) between means, and the error bar is SD.
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regulates epithelial–myofibroblast transition and suppresses the 
pro-apoptotic protein, PUMA (43, 44). In addition, SLUG binds to 
the E-box of collagen type I  receptor, thus enhancing ECM 
synthesis (45).

In the follicular phase, there were no differences in the expression 
of myofibroblasts marker genes (SMA, VIM, CDH2, and CDH11) nor 
of COL3A1 when a cocktail of cytokines was used in comparison with 
TGFβ alone. Conversely, SLUG, CTGF, and COL1A1 expression was 
potentiated by the combination TGFβ + IL6 and TGFβ + 
IL1β + IL6 + TNFα. This suggests that the presence of IL6  in the 
induction cocktail favors ECM deposition. Jazinski et al. (46) and Li 
et al. (47) found a significant association between the NF-kb pathway 
and a destructive type of endometriosis in mares, characterized by 
high expression of IL6 in the follicular phase. In this research, the 
presence of IL6 also induced the upregulation of MMP9 and a higher 
MMP9:TIMP1 ratio, which in turn promotes exacerbated ECM 
deposition. Similar results had been reported in an in vitro model of 
mare endometrial fibrosis (48) as well as in macrophages among 
patients with malignant non-Hodgkin’s lymphoma (49, 50). MMP9 
also has activity against type III collagen, the typical collagen found in 
healthy endometrium; however, it cannot degrade collagen type 
I which is present in destructive endometriosis (51). MMP9 has a wide 
proteolytic activity and has an affinity for type IV collagen, the most 

abundant constituent of basal membrane, and its degradation is key 
in the progression of lung and liver fibrosis (52).

The other metalloprotease involved in ECM turnover is MMP2, a 
gelatinase with a strong capacity to cleave elastin and collagen type 
I fibre, but having weak proteolytic activity against type III collagen 
(53). Here, we showed the downregulation of MMP2 in the follicular 
phase in the presence of pro-inflammatory cytokines, which may 
be responsible for the overexpression and accumulation of collagen 
type I. Our results suggest that downregulation of MMP2 is necessary 
to facilitate the progression of fibrosis, and other researchers like 
Onosuka et al. (54) and Radbill et al. (55) demonstrated similar results 
in the murine liver fibrosis model.

Szostek et al. (56) reported an increment in the expression of 
the inhibitors of MMPs in the presence of TGFβ in endometrium 
fibroblasts. Similarly, our model showed an upregulation of TIMP1 
and TIMP2 in the follicular phase, specifically in the presence of 
pro-inflammatory cytokines. In the mid-luteal phase, the tendency 
is only observable in TIMP1 but not in TIMP2, favoring the 
MMP2/TIMP2 equimolar ratio. This result suggests a hormonal 
dependency in the modulation of matrix stiffness as well as the ease 
of disturbance of the mechanical network in the follicular phase and 
the importance of the downregulation of MMP2 in favoring a 
fibrotic scenario. Dysregulation of hormone signaling is known to 

FIGURE 9

qPCR relative expression of transcripts of anti-fibrotic miRNAs miR26a, miR29b, miR29c, miR145, miR378, and miR488 of the endometrial stromal cells 
in the naive cells and treatments using RT-qPCR. The expression in the follicular phase is represented by red columns and the mid-luteal phase gene 
expression is represented by blue columns. Y-axes indicate fold change of relative expression using the mean of Snord43 as housekeeping value. Three 
replicated per treatment. Different letters indicate statistically significant differences (p  <  0.05) between means, and the error bar is SD.
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favor the progression of endometriosis (57, 58). Oestrogen 
receptors, ESR1, ESR2, and PGR, are normally expressed in the 
stroma of healthy mare endometrium, whereas a dramatic 
downregulation occurs in fibrotic areas (12, 59). We observed a 
similar effect in our results: in the follicular phase, there was a 
downregulation in both oestradiol receptors, ESR1 and ESR2, 
compared to those of the control. TGFβ causes a drop in the 
expression with no observable interaction with interleukins. The 
effect of oestrogen is exerted via intracellular receptors, and 
different reports have highlighted the anti-inflammatory role of 
oestrogen receptor activity in chronic inflammatory diseases (60, 
61). For instance, in non-reproductive tissues, the interactions of 
17b-estradiol with ESR1 can inhibit inflammation by blocking the 
trafficking of NF-kb into the nucleus through the activation of the 
PI3K/AKT pathway (62). In our model, the downregulation of ESR1 
and ESR2 occurred solely in the presence of TGFβ. This repressive 
activity of TGFβ with the oestrogen receptor type 1 has been 
observed in bronchial epithelial cells from idiopathic pulmonary 
fibrosis and breast cancer cell lines (63, 64). In the present study, 
prostaglandin receptor showed the same decreasing trend with all 
the treatments.

Overall, at the mRNA level, we  found an upregulation of 
pro-fibrotic genes in the follicular phase, compared to that in the 
mid-luteal phase. As such, it is tempting to speculate that this effect is 
mediated by the repression of oestrogen receptors under the influence 
of TGFβ, which allows for free action of the NF-kb pathway. The 
mid-luteal phase registers a peak of P4 and high levels of PGE2 that 

exert not only luteoprotective but also anti-fibrotic activity (65, 66). 
Here, we found a high expression of PTGES mRNA in the mid-luteal 
but not in the follicular phase. These findings are in agreement with 
others (61, 62) who provided evidence that a combination of P4 and 
low levels of E2 in stromal cells induced high mRNA levels of PTGES 
and also of PGE2. Conversely, pro-inflammatory cytokines favor the 
aberrant expression of hormonal receptors and PGE2 downregulation 
in the follicular phase.

In this research, an anti-fibrotic pattern of gene expression was 
found for endometrium stromal cells in the mid-luteal phase, with a 
lower expression of COL1A1, CTGF and MMP2 and a higher 
expression of TIMP1 and COL3A1 compared to those in the follicular 
phase. These results are in agreement with those of Szostek et al. (67), 
and are most likely related to the anti-fibrotic effect of PGE2. The 
immediate downstream target of TGFβ is SMAD2/3 proteins, which 
become phosphorylated upon interaction with the TGFβ. In our 
research, there was a significantly lower phosphorylation of 
SMAD2/3 in cells in the mid-luteal phase compared to those in the 
follicular phase. This effect is mediated by P4 addition in a 
concentration-dependent manner in A549 lung epithelial cells 
previously treated with TGFβ (68), in line with our own findings. In 
addition, P4 evokes an anti-inflammatory response under pathogenic 
stimuli by augmenting IL10 and decreasing IL1β, TNFα, and IL6 
secretion in placental explants exposed to lipopolysaccharides prior 
to P4 stimulation (69). This action is exerted via the P4 nuclear 
receptor and membrane-bound receptors (PR) that inhibit NF-kb 
pathway activation (70, 71).

FIGURE 10

Heat map of fold change in gene expression of fibrosis-related miRNAs (mir433, mir17, and mir21) and anti-fibrosis-related miRNA (mir29c, mir26a, 
mir29b, mir145, mir214, mir378, and mir488) in endometrial stromal cells, with red color indicating high expression, black color intermediate and the 
green color low expression. A hierarchical clustering analysis based on the similarity of expression of genes across the samples generated two 
horizontal groups (red and blue clusters in left axis). Genes in the blue cluster are miRNA-related to fibrosis, while those grouped in the red cluster are 
related to anti-fibrotic action. In the vertical orientation, two clusters were formed: A and B standing for primed follicular or luteal cells independently 
of their origin, respectively.
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FIGURE 11

Characterization of nanoparticles isolated from conditioned media of treatments. (A) Western Blot analysis of EVs markers (CD9 and CD63). 
(B) Representative images from transmission electron micrographs showing nanoparticles isolated from conditioned medium. (C) Size and 
concentration profile of nanoparticles isolated from conditioned media determined by nanoparticle tracking analysis (NTA). The follicular phase is 
represented by red columns; blue columns indicate the mid-luteal phase. Three replicates per treatment. Different letters indicate statistically 
significant differences (p  <  0.05) between means, and the error bar is SD.

https://doi.org/10.3389/fvets.2023.1271240
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wong et al. 10.3389/fvets.2023.1271240

Frontiers in Veterinary Science 14 frontiersin.org

Recently, miRNAs were shown to be  an alternative way of 
regulating the delicate axis of inflammation/fibrosis, particularly those 
acting on the TGFβ and NF-kb pathways (72, 73). We evaluated the 
expression of a set of fibrosis-related miRNA in our cellular model and 
found that in the follicular phase, there was an increased expression of 
mir17, mir21, and mir433, all with known pro-fibrotic action (74, 75). 
Meanwhile, in the mid-luteal phase, the anti-fibrotic miRNAs 29a, b, 
and c as well as mir145 were overexpressed. In both cases, expression 
was intensified when TGFβ was combined with pro-inflammatory 
cytokines compared to that with TGFβ alone. This miRNA profile is 
congruent with the pro-fibrotic and anti-fibrotic profiles of mRNAs in 
the follicular and mid-luteal phases, respectively, as discussed earlier. 
Previously, others reported that mir17 and mir21 are directly involved 
in pro-fibrotic progression in different cell lines and murine models by 
inhibiting SMAD7 and indirectly activating the NF-kb pathway, which 
would suggest the importance of miRNA regulation in prolonging 
inflammation favoring a fibrotic process (76–78).

The anti-fibrotic role of miRNAs in the mid-luteal phase lies 
primarily in the production of PGE2 as well as in its direct effect in 
myofibroblasts and the NF-kb pathway in endometrial cells (79). 
However, in other cell types such as aortic smooth muscle cells (80) 
and hepatocytes (81), it has been solidly demonstrated that mir29 is a 
key modulator of tissue fibrosis targeting mainly COL1A1, TGFβ, 
SMA, and fibrillin transcripts that prevent excessive deposition of 
ECM and restore the sensitisation to apoptosis in myofibroblasts via 
the FAS ligand (82–84). Mir145 is directly mediated by P4/PGR 

signaling, which acts as an inhibitor of the epithelial endometrial cell 
proliferation process (85).

Another miRNA highly expressed in the mid-luteal phase is 
mir378. This miRNA is hosted in the first intron of the PPARGC1-β 
gene, a coactivator of PPARG. PPARG activation ameliorates TGFβ /
COL1A1 synthesis in fibrotic tissue (86, 87). In addition, mir378 has 
shown an anti-fibrotic activity that inhibits the MAPK/ERK pathway 
in myocardial fibrosis (88, 89). Moreover, mir348 is a repressor of PGR 
and ER (90, 91), which can be a possible explanation for the reduction 
in oestrogens receptors observed in our results. Finally, mir488 was 
also upregulated in the mid-luteal phase in the presence of IL1β, IL6, 
TNFα, and TGFβ. Liu et al. (92) demonstrated the anti-inflammatory 
action in bovine uteri by inhibiting ROS production as well as the 
AKT/NF-kb pathway. Qui et al. (93) observed that this miRNA has an 
anti-fibrotic effect in hepatic stellate cells via its inhibition of TET 3, 
resulting in the inhibition of the TGFβ /SMAD2 pathway. Extracellular 
vesicles have recently gained prominence as players in the process of 
fibrosis as carriers of miRNA that promote epithelial-mesenchymal 
transition in neighboring cells (94, 95). We studied the EVs secreted by 
the cells of this study as potential tools for treating endometrial fibrosis. 
In cells in the follicular phase that were treated with TGFβ + 
IL1β + IL6 + TNFα, there was an increased secretion of EVs compared 
to that of cells in the mid-luteal phase. Previous works established a 
relationship between the increase of EVs released by injured tissue and 
the pro-inflammatory stimulus (96). In this scenario, the EVs from 
altered cells act as signal amplifiers and modifiers of immune innate 

FIGURE 12

qPCR relative expression of transcripts of miR29b, miR29c, miR17, and miR21 derived from EVs. Expression in the follicular phase is represented by red 
columns; blue columns indicate mid-luteal phase gene expression. Y-axes indicate fold change of relative expression using the mean of snord43 and 
cel-mir39 as housekeeping values. Three replicated per treatment. Different letters indicate statistically significant differences (p  <  0.05) between 
means, and the error bar is SD.

https://doi.org/10.3389/fvets.2023.1271240
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wong et al. 10.3389/fvets.2023.1271240

Frontiers in Veterinary Science 15 frontiersin.org

response (97, 98). Among their actions, they increase neutrophil 
recruitment due to its chemokine content, possibly paving the way for 
the massive release of neutrophil extracellular traps, characteristic of 
most fibrotic diseases (99). Likewise secreted EVs from inflamed tissue 
contribute to M1 macrophage polarization establishing a interaction 
loop with injured tissue and prolonging the inflammation (100, 101). 
Inflammatory signals not only modify the load of EVs released but also 
their size and distribution, reflecting the release of subpopulations that 
are likely to be enriched with inflammatory cytokines as observed by 
Yang et al. (96) and Hosseinkhani et al. (101). Furthermore, the miRNA 
content of said EVs correlated with the miRNAs found in the cells. In 
EVs from cells in the follicular phase, there was an upregulation of 
pro-fibrotic miRNAs, mir21, and mir17, whereas in cells from the 
mid-luteal phase, the anti-fibrotic miRNAs, mir29b, and mir29c, were 
upregulated. Other researchers have reported intercellular congruency 
of EV cargoes with the cellular environment (102, 103).

5. Conclusion

To the best of our knowledge, this is the first report showing a 
different response of mare endometrial fibroblasts under 
inflammatory conditions, marked by the presence of 
pro-inflammatory cytokines and TGFβ during the oestrous phase. 
This study suggests that pro-inflammatory cytokines might act as 
amplifiers of the signal of TGFβ in the follicular phase, and this is 

accompanied by: (1) significant upregulation of ECM-related genes 
(CTGF and COL1A1), (2) an imbalance in the metalloproteinase 
system (MMP9/TIMP1), (3) downregulation of oestrogen 
receptors, (4) upregulation of pro-fibrotic miRNA, and (5) the 
activation of the TGFβ /SMAD2 pathway. Conversely, during the 
mid-luteal phase, there is a protective role mediated essentially by 
PGE2, which favors the upregulation of anti-fibrotic miRNAs, 
downregulation of SMAD2 phosphorylation, and as a result, a 
lower expression of fibrosis-related genes. These findings reassert 
the connection between the uncontrolled inflammatory mechanism 
in susceptible mares and the propensity for the establishment 
of endometrosis.
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