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Advances in organoid technology 
for veterinary disease modeling
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Organoids are in vitro organ-like structures that faithfully recapitulate many 
characteristics of a specific organ. During the past decades, major progress has 
been accomplished in establishing three-dimensional (3D) culture systems toward 
stem cell-derived organoids. As a significant technological breakthrough, these 
amazing 3D organoid constructs bridge the conventional 2D in vitro models and 
in vivo animal models and provide an unprecedented opportunity to investigate 
the complexities of veterinary diseases ranging from their pathogenesis to the 
prevention, therapy, or even future organ replacement strategies. In this review, 
we  briefly discuss several definitions used in organoid research and highlight 
the currently known achievements in modeling veterinary diseases, including 
infectious and inflammatory diseases, cancers, and metabolic diseases. The 
applications of organoid technology in veterinary disease modeling are still in 
their infancy stage but the future is promising.
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1. Introduction

The transition of in vitro models from the traditional monolayer cell culture to a three-
dimensional (3D) system certainly represents the most critical innovation of the last decade for 
in vitro studies. One of the most significant advancements in the 3D models is the generation of 
organoids or ‘mini organs on a dish’ as a frontier technology (1). In recent years, there is an 
increasing number of research publications where the organoid model is applied to study 
diseases of veterinary importance, but in comparison to medical research, its potential is not yet 
fully explored for veterinary medicine.

The first usage of the term “organoid,” which means “resembling an organ,” was in 1946 
when the authors described a cystic teratoma (2). Teratomas develop from pluripotent stem cells 
(PSCs) of the germ line and organize a variety of specific organotypic structures such as skin, 
nerve, intestine, bone, and tooth, owing to the processes of recapitulation of cell segregation and 
fate specification. Now the term “organoid” is generally accepted to mean a 3D aggregation of 
organ-specific cell types. Like teratomas, organoids develop from stem cells or organ progenitors 
(e.g., intestinal crypts) and self-organize through two processes of recapitulation of cell 
segregation and fate specification like in vivo development and growth (1). Self-organization is 
essential in organoids as a distinction from two-dimensional cultures.

The significant steps to generate an organoid are the initial proliferation of stem and 
precursor cells in a proper environment. Derivation from stem cells is a critical feature in the 
definition of an organoid and differentiates organoids from tissue explants, which are derived 
from an organotypic culture of cells or small segments of tissue (3). The stem cells included 
embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) or organ-specific adult stem 
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cells (ASCs) (4). ESCs are derived from early-stage embryos. Induced 
pluripotent stem cells (iPSCs) are a type of stem cells that are 
genetically reprogrammed from adult somatic cells and exhibit many 
similarities to ESCs in many properties (4). ASCs in principle are 
obtained from ‘mature’ or adult tissue, but they are not necessarily 
from adult animals but can be from juveniles or even from advanced 
embryos (1, 5). Cancer stem cells (CSCs) can also be considered one 
kind of ASCs and are able to produce 3D tumoroids in appropriate 
environments (6). ASC-derived organoids are intrinsically 
programmed with their location-specific functions (7), making them 
more “adult-like” than organoids derived from ESC, which retain 
tissue-associated mesenchymal cells (Figure 1).

Three-dimensional (3D) cell culture methods represent any 
culture of cells that recapitulates their 3D organization and/or cell–cell 
and cell-matrix interactions in vitro (8). 3D cell cultures of more cell 
types are often referred to as co-culture (9). When stem cells are 
supplied with proper culture conditions and scaffolding to promote 
their growth and survival, they can generate miniature organ models 
known as organoids or spheroids that mimics cell types, structure, and 
functions (10, 11). The use of the terms ‘organoid’ and ‘spheroid’ can 
vary or overlap in different published works. Some works, especially 
in the early stage of organoid research, prefer to use the term 
‘organoids’ to indicate both, or consider ‘spheroid’ as one simple, 
primitive, or intermediate type of ‘organoid’ (11). Other opinions have 
a more rigid definition that spheroids are often referred to as scaffold-
free, simple-cell aggregates with a single-cell origin (12, 13). Herein, a 
more explicit definition of ‘organoid’ was proposed based on three 
essential requirements that need to be fulfilled: first, an organoid must 
contain more than one cell type of the organ it models; second, it must 
recapitulate some of the specific functions of that organ; and third, the 
cells should have a similar spatial organization as the organ (1). Since 
organoids represent a higher order of complexity and recapitulate 
their parent organ more closely than spheroids, researchers are more 
inclined toward organoid technology for disease modeling and 
optimizing drug discovery and personalized medicine (14). 

Alternatively in cancer research, spheroids that can be generated from 
cancer cell lines or tumor fragments are preferred, because they still 
closely mimic the main features of solid tumors’ structures and 
functions as simple clusters of freely floating cancer stem cell 
aggregates (15).

Ambiguities also have arisen in gastrointestinal organoid 
nomenclature, when mentioning “enteroids,” “colonoids” and 
“intestinal organoids.” Generally, “enteroids” are a type of organoid 
obtained from isolated intestinal crypts or stem cells of the intestine 
(16). Colonic counterparts are termed “colonoids.” Intestinal 
organoids should include enteroids and colonoids literally and some 
authors also use the term “intestinal organoids” and “enteroids” as 
synonyms without the subdivision of “colonoids.” In some research 
groups, “organoids” refer to the cultures that contain both epithelial 
and mesenchymal components, whereas the term “enteroids” has been 
suggested for 3D structures that contain only epithelial cells (17). 
Additionally, sometimes ‘intestinal organoids’ are specially referred to 
as 3D structures originating from inducible pluripotent stem cells 
(16). In this review, the term ‘organoids’ means any of these complex, 
multicellular 3D systems, the stem cell- or tumor cell-initiated clusters 
or aggregates. There are several other terms exclusively used in 
organoid research, some of which are also used in this review. 
“Assembloids” are organoids generated from the spatial fusion and 
functional integration of multiple cell types (18). “Tumoroids” means 
“tumor-like organoids” (19). “Mammospheres” refer to mammary 
epithelial stem cell aggregates but are also acceptable to indicate the 
aggregates derived from breast cancer cell niches or breast cancer cell 
lines (20). Therefore, we suggest that definitions for ambiguous terms 
used in organoid works should be  defined in context to 
avoid misunderstanding.

Once the 3D structures assemble in vitro with highly ordered 
architecture, they can work as powerful models for disease 
investigations. The widespread applications of murine and human 
organoid models have accelerated the development of various areas in 
human medicine, such as developmental and stem cell biology, disease 

FIGURE 1

Schematic representation of organoid culture, maintenance and application (Created with BioRender.com).
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modeling and mechanism exploration, toxicology and drug screening, 
and personalized medicine (21–23) (Figure 1). In recent years, an 
increased number of organoid models were specifically designed to 
be investigated for veterinary medicine. Following the establishment 
of organoids, veterinary researchers benefited greatly from existing 
and emerging applications of organoid systems because organoid 
systems had greater experimental value and their 3D features 
contributed to a more in-depth understanding of organogenesis and 
morphogenesis than conventional 2D cultures. Compared with in vivo 
models, it is cheaper and easier to maintain and manipulate, and a 
more ethical alternative (24). In contrast to the predominant emphasis 
on disease models of cancer and chronic illnesses in human medicine, 
veterinary research places greater emphasis on infectious diseases and 
nutritional disorders. Thus, organoids demonstrate their unique 
efficacy because they can be tailored from specific species and tissues 
to investigate diseases of veterinary importance, given the extensive 
diversity of animal species. Certain critical information is necessary 
before starting any organoid culture. Essential considerations are to 
choose the appropriate organ or cells (tissue pieces, iPSCs, or ESCs) 
and the suitable culture protocol, extracellular matrix, growth factors, 
and morphogens [signaling molecules that act in the patterning of 
cells during embryonic development (25)]. Acquisition of in-depth 
knowledge pertaining to these considerations, together with an 
advancement in the protocols for culturing organoids, should create 
greater applicability of these 3D models in diverse fields. But in this 
review, owing to space constraints, the context mainly emphasizes 
applications for veterinary diseases and provides a framework for the 
emerging applications of organoid models particularly for veterinary 
diseases (Table 1). In this review, we highlight the currently known 
achievements and projects of disease modeling carried out in the 
pursuit of the welfare of livestock and companion animals.

2. Organoid models for veterinary 
infectious diseases

Veterinary infectious disease is an intricate world where the 
pathogens of domestic animals may lead to suffering or death, massive 
economical losses, overuse or abuse of antibiotics in disease control, 
or cause zoonotic diseases in humans (53). Infectious disease is a 
result of a two-way interaction that happens between the hosts and 
microorganisms. The invasion of microbes is accomplished by a series 
of chronological steps, typically including access to a portal of entry 
into their hosts, recognition of target cells in the barrier system, 
colonization or breaching the barrier system, colonization of new 
populations of target cells (such as leukocytes and endothelial cells), 
invasion, systemic spread or invasion of a specific organ system, and 
eventually leading to systemic dysfunction manifest as disease (54). 
The capability of microbes to cause disease (their pathogenicity) is 
dominated by their ‘virulence factors’ carried by their genes, which are 
the consequences of the evolutionary adaptations to resistance factors 
expressed by hosts and creates a spectacular diversity of potential 
interactions. Typically, infectious disease outbreaks in herds occur 
only when several elements are present together. According to the 
model of ‘chain of infection’, every infection originates from the 
interaction between the host, pathogen, and environment, relies on 
the reservoir, portal of entry and exit, means of transmission, and ends 
with the infection of a new host (55). The complexity of each infectious 

disease poses a plethora of pathogen- and species-specific challenges 
to understand the pathogenesis and to develop prevention and 
control strategies.

In the past, in vivo animal models or in vitro monolayer cell 
culture were widely applied for the studies of pathogen biology and 
drug development (24). Unsurprisingly, both methods have obvious 
limitations. In vivo animal models have the structural diversity that 
maintains the physiological activities of the animals, but they are 
expensive and may pose ethical dilemmas. Conversely, in vitro 
monolayer cell culture is simple to manipulate, but lacks the spatial 
structure or microenvironment of tissue. Compared with conventional 
2D cell culture and animal models, organoid technology is a more 
flexible and durable tool for modeling infections to study interactions 
between microbes and hosts, which is explained by features of 
providing better cellular differentiation and diversity with the presence 
of intercellular microenvironments. For example, enteroids from 
different intestinal segments still retain specific characteristics and 
show different degrees of adaptation to infections (28), even though 
all the cells are exposed to the same extracellular environment. 
Advancements in organoid technique have boosted progress in 
understanding the infectious disease or host-microbiome interactions 
and presents new opportunities for the discovery or development 
novel drugs for preventing and controlling infectious diseases.

To date and to the best of our knowledge, organoid technology has 
modeled 12 veterinary infectious diseases, including infections caused 
by viruses [caprine arthritis encephalitis virus (26), swine pulmonary 
and enteric coronavirus (27–30), feline coronavirus (56) and rabbit 
calicivirus (36)], bovine rotavirus (Group A rotaviruses) (32), bacteria 
(Lawsonia intracellularis (33), Salmonella typhimurium (34) and 
Enterotoxigenic E. coli (35)), and a parasite [Toxoplasma gondii (34)]. 
Detailed information on organoid models for specific infectious 
diseases is listed in Table 1.

The first organoid model for infectious disease is reported as early 
as 2005 (26). Goat mammary organoids were established from single 
mammary gland cells and treated with viral suspension into cultural 
supernatant as an approach to model caprine arthritis encephalitis 
virus (CAEV) infection. CAEV is a lentivirus of the family Retroviridae 
and causes arthritis, encephalitis, and/or pneumonia in adult goats 
(57). The 3D model of the goat mammary gland was a lobulated 
mammosphere-like or acinus-like structure consisting of luminal 
epithelial cells and peripheral myoepithelial cells limited by an outer 
layer of basal membrane, with responses to hormones and growth 
factors, which thus mimicked the structure and function of the 
mammary gland. The author complicated the model by importing 
peripheral blood leucocytes because the monocyte–macrophage 
system plays a critical role in the systemic spread of CAEV. However, 
the location and amount of the antigen were not specifically identified 
since there might be different levels of infection between epithelium 
and leukocytes. It is a clever design for veterinary infectious disease 
studies by enriching the complexity of livestock organoids through 
co-culturing epithelial organoids and immune cells (26).

The coronavirus disease 2019 (COVID-19) pandemic has 
exhibited widespread and disastrous social impacts on humankind. 
Similarly, coronaviruses in veterinary medicine also cause severe 
economic loss in farm animals and morbidity in companion animals. 
Porcine respiratory coronavirus (PRCoV), a naturally occurring spike 
deletion mutant of highly enteropathogenic transmissible 
gastroenteritis virus (TGEV), could be  a surrogate to study the 
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pathogenesis of human respiratory coronaviruses. Long-term 3D 
porcine airway organoids (AOs) derived from basal epithelial cells and 
AO-derived monolayer cultures were generated and provided insights 
into the pathogenesis and innate immunity of PRCoV (27). In these 
models, 3D AOs consists of four major types of airway epithelial cells 
identified by immunostaining, including ciliated cells, goblet cells, 
basal cells, and club cells. Especially, the ciliated cells, goblet cells, and 
club cells were mainly distributed on the surface of “tracheae spheres.” 

Ciliated cells also had two orientations either toward or reversed from 
the lumen. AO-derived monolayer cultures from 3D AOs offset 
limitations of 3D AOs to access the apical surface for pathogens. 
AO-derived monolayer cultures also expressed markers of ciliated 
cells, goblet cells, and basal cells even with more differentiation. Both 
AOs systems recapitulated the in vivo airway complex epithelial 
cellularity. 3D AOs and AO-derived monolayer cultures are susceptible 
to both PRCoV and TGEV despite the variable extent of 

TABLE 1 Use of organoid technology to investigate veterinary diseases.

Disease type No. Modeled disease Species Organ origin Ref.

Infectious diseases

1 Caprine arthritis encephalitis Goat Mammary gland (26)

2
Porcine respiratory coronavirus 

infection
Pig Airway (27)

3
Porcine epidemic diarrhea 

(PEDV)
Pig

Intestine (duodenum, 

jejunum, ileum and colon)
(28)

4
Porcine deltacoronavirus 

infection
Pig

Intestine (anterior 

duodenum, jejunum, and 

ileum)

(29)

5
Transmissible gastroenteritis 

(TGEV)
Pig Intestine (jejunum) (30)

6
Feline infectious peritonitis 

(FIP)
Cat Intestine (ileum and colon) (31)

7
Bovine Rotavirus (Group A 

Rotaviruses) infection
Ox Intestine (ileum) (32)

8 Proliferative enteropathy Pig Intestine (ileum) (33)

9 Toxoplasmosis Pig, Ox
Intestine (proximal 

jejunum)
(34)

10 Salmonellosis Pig, Ox
Intestine (proximal 

jejunum)
(34)

11
Enterotoxigenic E. coli 

infection
Pig

Intestine (duodenum, 

jejunum without PP, ileum)
(35)

12 Rabbit haemorrhagic disease Rabbit

Intestine (duodenum, 

jejunum, and ileum), 

hepatobiliary tissue

(36, 37)

Inflammatory disease 13 Inflammatory bowel disease Dog
Intestine (small intestine 

and colon)
(38, 39)

Cancer

14 Prostate cancer Dog Cancer (40)

15 Bladder cancer Dog Cancer (41–43)

16

Bladder cancer, mammary and 

skin tumors, lung cancer, and 

melanoma

Dog, Cat Cancer (44)

17
Follicular cell thyroid 

carcinoma
Dog Cancer (45)

18 Medullary thyroid carcinoma Dog Cancer (46)

19 Lung adenocarcinoma Dog Cancer (47)

20 Mammary tumor Dog

Mammary tumor and 

non-neoplastic mammary 

tissue

(48)

Metabolic Diseases
21 Copper storage disease Dog Liver (49, 50)

22 Hepatic steatosis Cat Liver (51, 52)

No., number; Ref., reference(s); PP, Payer’s Patch.
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permissiveness and can produce a pronounced IFN and inflammatory 
response to viral infection, which reflected well the events associated 
with PRCoV infection in vivo.

Recent publications regarding organoid applications in veterinary 
infectious diseases have shown a focus on gastrointestinal disease 
since 2019. Since the first generation of intestinal organoids of mice in 
2009, intestinal organoids from intestinal crypts of humans and 
almost all categories of farm and companion animals (including the 
pig, ox, sheep, horse, chicken, dog, cat, and rabbit) have been 
developed by growing research groups (10, 58). The cellular diversity 
of intestinal surfaces offers the primary targets of many 
enteropathogenic pathogens, and the intestine can be a targeted site 
of attachment, invasion, and replication of many veterinary pathogens 
that mediate significant enteric pathological changes and clinical signs 
(59). Intestinal organoids containing these differentiated lineages of 
cell types including enterocytes, goblet cells, Paneth cells, 
enteroendocrine cells, and/or stem/progenitor cells, and recapitulating 
the extreme cellular heterogeneity and intercellular 
microenvironments, enables an improved understanding of several 
aspects of infectious processes such as adhesion, colonization, 
toxigenesis, invasiveness and local defense mechanisms.

In addition to species specificity due to the different pathogen’s 
tropism, the samples to generate the organoid model were mostly also 
obtained from animals of the most susceptible ages and from the most 
susceptible intestinal segments to capture classic features of the 
disease. For example, the infectious models of Porcine epidemic 
diarrhea (PED) or bovine rotavirus disease are mostly reported in 
newborn animals, so the scientists used 2- to 10-day-old specific 
pathogen free (SPF) piglets and colostrum-deprived neonatal calves, 
respectively. Ileum was used to generate organoids in the modeling of 
Lawsonia intracellularis infection because L. intracellularis are mainly 
distributed in that anatomic location (33). All enteroids are derived 
from intestinal crypts which include a pool of adult multipotent stem 
cells called crypt base columnar cells. One of the interesting 
distinctions is the initial step for the crypt treatments. Most study 
methods would isolate the tissue of the crypt or fractions with the 
highest ratio of crypts to villi to start three-dimensional enteroid 
cultures rather than single stem cell suspension. Tissue derived 
enteroids could also contain intermingled Paneth cells and supporting 
structures such as an extracellular matrix. One limitation in most of 
these studies is that the number of animals used to derive organoids 
was not stated and hence individual donor’s variation in developing 
the model is not accounted for. Additionally, in the modeling of 
L. intracellularis infection, only one segment of ileum from one 90 kg 
pig was used for organoid culture. Single animal derivations show the 
advantage of organoids in reducing animal use, but citing the sample 
size, or derivation of tissues from multiple animals to know more 
about how individual variations affect organoid generations and the 
repeatability of each protocol is relevant.

The intestinal epithelial cell is highly organized with the polarity 
of distinct apical and basolateral plasma membrane domains, which 
is critical for barrier formation and nutrient transport (60). Generally, 
intestinal organoids are buried in an extracellular matrix-containing 
scaffold which usually results in a polarized epithelium with an apical 
side facing the inside of the organoids (basal-out model). Unlike some 
pathogens, most enteric pathogens adhere and invade through the 
apical side of mucosal cells, although there are exceptions, for example 
Listeria monocytogenes, which exclusively invades the host via 

receptors on the basal side of intestinal epithelial cells even when the 
bacteria are on the surface of the intestinal mucosa (61). The basal-out 
organoid system limits the access that initiates the recognition and 
attack by pathogens. For example, it is recorded that basal-out 
organoids were not susceptible to TGEV infection (30). To solve this 
problem, there are several approaches. Firstly, pathogens can 
be  imported to the lumen of the basal-out enteroid model by 
microinjection (55). However, microinjection poses technical and 
equipment thresholds, is also laborious and has the potential to 
damage the enteroid structure. Probably that’s why this method was 
seldom adopted in modeling veterinary infectious diseases. To expose 
the apical surface, organoids can be  disrupted (enzymatically or 
mechanically) into smaller pieces and co-incubated with pathogens as 
with the organoid modeling of feline coronavirus, bovine rotavirus, 
Toxoplasma gondii and Salmonella typhimurium infection (32, 34, 56). 
This approach does cause the loss of polarity of the epithelium and 
devalue in vitro organoid models. Even so, disrupted enteroids will 
subsequently re-assemble into 3D basal-out structures again. Another 
popular approach is to dissociate organoids and generate a organoid-
derived monolayer culture system with the apical side upwards (62). 
This approach was adopted in the organoid models of porcine 
coronaviruses, rabbit calicivirus, and L. intracellularis infections (28–
30, 33, 36). Among them, enteroids were plated on transwell 
membranes after being mechanically disrupted and exposed apically 
to L. intracellularis (33). In this situation, the cells form a barrier that 
mimics the mucosal surface of the intestines. The polarity of intestinal 
organoids can also be inverted in suspension culture so that the apical 
membrane is kept outwards. This model permits easier access to the 
apical surface for pathogens and increases the available exposed 
surface without impeding proliferative states of the enteroids. A 
pioneering model of an apical-out organoid model which better 
resembles normal physiological features, characterized by an apical 
membrane on the surface, for TGEV infection was successfully 
developed. This approach to infection facilitates the study of swine 
enteric virus infection and the organoid is considered a next-
generation porcine enteroid (30).

Organoid models can elucidate the cellular response to infection, 
previously limited by the absence of robust in vitro intestinal models. 
Porcine enteropathogenic CoVs (28–30), feline infectious peritonitis 
virus (FIPV) (31), rabbit hemorrhagic disease virus (RHDV) (36, 37), 
and L. intracellularis (33) all have similar issues of poor viral 
propagation or bacterial infections in conventional 2D models. Before 
organoids, available species-specific transformed and non-transformed 
epithelial cells had obvious drawbacks, such as poor viral propagation, 
lack of cellular heterogeneity, or the presence of genomic abnormalities 
(28, 63). Intestinal explants or primary cell cultures of intestinal 
epithelial cells recapitulate critical features of the in vivo organ, but 
they are not suitable for long-term culture due to limited viability 
(24–48 h) (63, 64). Fortunately, infectious models based on the 
species-specific organoids have improved these situations. Porcine 
enteroids been generated for porcine enteropathogenic CoVs 
including porcine epidemic diarrhea virus (PEDV) (28), porcine 
deltacoronavirus (PDCoV) (29) and transmissible gastroenteritis 
virus (TGEV) (30), and proved better in vitro models for further 
in-depth studies. Feline infectious peritonitis (FIP) is caused by 
mutated FeCoV, feline infectious peritonitis virus (FIPV) (31), with 
two serotypes of FCoV (based on antigenicity), types I and II. While 
both types may cause feline infectious peritonitis (FIP), type I is more 
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common in domestic feline populations. The serotypes differ primarily 
in growth characteristics in cell culture and receptor usage, and most 
of the experimental work so far has worked on the Type II strains 
because Type I strains are difficult to grow well in cell culture. In 2020, 
a communication was published that was based on the feline intestinal 
organoid model, GFP-expressing recombinant serotype I FECV, which 
does not grow in available monolayer cell culture, can adapt to feline 
colon organoids, and persistently propagated. Although this pathogen 
cannot adapt to the enteroids from feline ileum, this result represents 
a new path in vitro that has the potential to study the mechanism of 
serotype I FECV infection, FIPV transition, and disease development 
in vitro (56). Rabbit hemorrhagic disease virus (RHDV) is a 
hepatotropic calicivirus and it has been hypothesized that it evolved 
from a benign, enterotropic calicivirus (65). Rabbit calicivirus 
Australia-1, an enterotropic lagovirus that does not grow in 
conventional cell culture, but can adapt to leporid hepatobiliary 
organoid-derived monolayer culture (37). However, this lagovirus also 
does not grow in rabbit intestinal organoid-derived cell monolayers 
(36). The reasons are putatively due to the lack of suitable conditions 
or any cofactors that are required for host-calicivirus crosstalk. For 
example, bile plays an important role in generating the human 
enteroid model of caliciviruses (noroviruses) (66), and it might be also 
critical for the rabbit counterpart.

In other studies, enteroids are used as novel in vitro models to 
identify the similar intestinal epithelial response with in vivo processes 
after infection, including infectious tropisms of specific intestinal 
segments and cell types, cytokine, and inflammatory responses in the 
gene transcriptions. Toxoplasma gondii is one of the most ubiquitous 
parasites and can infect almost all homoeothermic species including 
humans and livestock, being present in all countries (67). Infectious 
foci of T. gondii were detected in the generated porcine and bovine 
ileal organoids (34). In the same article, porcine and bovine ileal 
organoids were infected with Salmonella typhimurium, which is an 
important foodborne pathogen (68). The infection of S. typhimurium 
4/74 in bovine enteroids resulted in the presence of luminal bacteria 
while bacteria was present at the periphery of porcine enteroids. 
Enterotoxigenic E. coli (ETEC) is one of the important causes of 
postweaning diarrhea in piglets which results in increased mortality, 
reduced growth rates, and severe economic losses in swine husbandry 
(35). Both porcine jejunal and ileal enteroid monolayers supported the 
F4-mediated adhesion of ETEC bacteria (35). They are all successful 
pilot studies for generating enteroid models for veterinary protozoal 
and bacterial research.

In a study of group A rotaviruses, important zoonotic pathogens 
that causes severe diarrhea in children and young animals including 
cattle (32), the authors revealed two ligands were required for 
rotavirus to enter small intestine epithelial cells in cattle. However, 
viral ingress into cells was also detected based on human enteroids 
without the two identified ligands, albeit less efficiently than bovine 
enteroids. In this study, enteroid models exposed the potentially 
undetected ligand-receptor molecular crosstalk that was not identified 
from other experimental methods and assays. The study demonstrates 
the critical role organoids can play in basic research.

So far, no fungal disease has been included in the list of published 
research articles using organoids for animal diseases. Applications of 
generating human epidermal organoids provides an in vitro model of 
dermatophyte infections, which has potentials to study pathogenesis 
of fungal infections and to test efficiency of antifungal drugs (69). 

Dermatophyte infections in humans and animals are similar, thereby 
facilitating the application of the model’s design principles to 
investigate fungal infections in an animal population. Failures in 
generating proper organoid models for studying veterinary diseases 
did and do occur. Even so, all the results demonstrated that the 
establishment of this new 3D cultivation system will facilitate 
applications in many different realms of veterinary infectious diseases. 
Successful developments of organoid fabrication techniques that can 
be more flexible and reliable to adapt to various veterinary infections 
and overcome current challenges are anticipated as knowledge 
continues to accumulate.

3. Organoid model for chronic 
inflammatory disease

Inflammatory bowel disease (IBD) identifies a spontaneously 
occurring group of chronic idiopathic enteropathies leading to serious 
debilitating inflammation of the gastrointestinal tract (70). Like IBD 
in humans, canine IBD (cIBD) is a multifactorial disease resulting 
from a combination of genetic predispositions, alterations of intestinal 
microbiota, and immunological aberrations in intestinal mucosa (70).

Among the large animal models used in studying multiple 
chronic human disorders including IBD, the canine model is 
particularly relevant based upon environmental and genetic 
similarities, analogs of gut anatomy, physiology and pathology, and 
resemblance of composition of gut microbiota (71–73). Canine 
intestinal organoids are a well-developed and characterized model 
for veterinary and translational research (38, 39, 70, 74–77). In 
addition to its capacity for epithelial differentiation, the canine 
intestinal organoid-derived monolayer offers an accessible tissue 
interface, exhibiting characteristics such as polarization, lineage-
dependent differentiation, the formation of tight junction barriers, 
permeability, and the expression of crucial efflux pumps (74). 
Utilizing intestinal tissues/biopsies bearing cIBD to generate 
organoids offers an opportunity to study pathogenesis, features and 
possible therapeutic without sacrifice of living animals. Two studies 
generated canine intestinal organoids from dogs with IBD (38, 39). 
However, the histology and transmission electron microscopy 
revealed similarity between intestinal organoids derived from IBD 
and healthy dogs (38). Also, the expression of the EP4 prostaglandin-
receptor (EP4R), a receptor that is involved in the pathogenesis of 
IBD and works a target of treatment, showed no significant 
differences by using the RNA in situ hybridization (ISH) probe (38). 
That might be due to the single epithelial lineage of constructed 
intestinal organoids. It is believed that organoids recapitulated 
genetic features of the tissue well, even after passages, which 
facilitates the study of transcriptomic profiles of intestinal organoids 
from dogs with inflammatory bowel disease after lipopolysaccharide 
(LPS) stimulation (39). LPS treatment revealed decreased expression 
of several cancer-associated genes and opposite expression patterns 
of anion transport, transcription and translation, apoptotic 
processes, and regulation of adaptive immune responses between 
IBD enteroids and colonoids. The organoid cIBD model provides 
new data describing the profiles of gene expression. Along with a 
diversified co-culture system involving other cell lineages (e.g., 
immune cells) and intestinal microbiota, the organoid model for 
cIBD could be  well-developed and have a significant impact on 
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screening drug options and discovering effective therapeutic 
methods for the disease with multifactorial nature both for humans 
and animals.

4. Organoids in veterinary cancer 
modeling

In cancer research, organoids have represented promising, near-
physiological models of human cancers. Up to now, numerous robust 
and efficient establishment of human organoids can be achieved from 
various types of neoplasms arising from lung, breast, stomach, liver, 
pancreas, kidneys, urinary bladder, and prostate (19). In contrast, a 
limited but increased number of investigations of cancer organoids are 
emerging in veterinary oncology.

Organoid models of animal cancer, which might be derived from 
a small number of stem cells, enabled a better understanding of the 
molecular characteristics and neoplastic behavior of the disease in 
animals and acted as preliminary models for drug screening (78–81). 
For example, canine medullary thyroid carcinoma, studies on its 
biological behavior are scarce but treatment outcomes are always 
disappointing, so the development of a canine organoid model should 
help elucidate the best therapeutic approaches (46). Organoids could 
be formed from limited numbers of cells such as urine-derived stem 
cells, which are successfully used in the study of organoids of canine 
prostatic and urinary tract cancer (40–43). Availability of primary 
samples could hardly be  an issue after adopting organoid culture 
systems for cancer research.

Due to better preservation of tumor microenvironment than 
conventional 2D cell line models, organoids of canine prostate cancer 
(40), canine bladder cancer (41–43), canine follicular cell and 
medullary thyroid carcinoma (45, 46), canine lung adenocarcinoma 
(48), and canine mammary tumor (47), accurately retain original 
morphological characteristics, genomic structures, and/or mutational 
profiles and recapitulate the genetic and phenotypic heterogeneity of 
the tumor cells. Organoids of canine prostate cancer (40) expressed 
epithelial markers (E-cadherin, CK5 and CK8), a myofibroblast 
marker (a-SMA) and a cancer stem cell marker (CD44). Established 
canine bladder cancer organoids (41–43) had a spheroidal structure 
and similar histology to naturally occurring bladder cancer in dogs. 
They were characterized by the expression of urothelial cell markers 
and resembled the cellular architecture of an invasive type of canine 
bladder cancer. Organoids derived from canine follicular cell thyroid 
carcinoma highly expressed thyrotropin receptor, sodium iodide 
symporter, pendrin, and thyroid peroxidase, the expressions of which 
are similar or higher compared to the primary tumors (45). Organoids 
derived from canine medullary thyroid carcinoma (46) showed 
similar histological features with the primary tumor after a long-term 
culture. Canine lung cancer organoids recapitulated the tissue 
architecture of canine lung adenocarcinoma, and expressed TTF1, a 
lung adenocarcinoma marker (48). Canine mammary tumor 
organoids recapitulated primary tissue structures and tumor 
characteristics such as cellular atypia, pleomorphism, and 
vacuolization, and sometimes squamous differentiation (47). 
Immunohistological features of the primary tissue from which they 
were derived were also retained including the molecular classification 
of their primary tumors with high fidelity in 82% of the cases (47). 
Moreover, tumors were also formed after the injection of the organoids 

into immune-deficient mice for canine prostate cancer, indicative of a 
similar neoplastic behavior (40). Genetic and genomic characteristics 
such as driver gene mutations, DNA copy number variations, and 
single-nucleotide variants were also conserved, even after extended 
passaging in canine mammary tumors (47).

Organoids are a proper model for in vitro drug assays with 
reproducible dose–response and expected dose-dependent tolerance. 
For example, after initial molecular characterization of established 
organoids, several genes could be found to be specifically upregulated, 
which could also be potential targets for novel therapies, as conducted 
in studying canine bladder cancer and canine lung cancer (41, 43, 48). 
Several genes including epidermal growth factor receptor (EGFR)/
ERK signaling were upregulated in bladder cancer (41, 43). 
Trametinib, an inhibitor of ERK activation, showed extreme inhibition 
in cell viability of canine bladder cancer organoids along with the YAP 
inhibitor (43). Trametinib also decreased the xenografted growth of 
canine bladder cancer organoids in mice and enhanced sensitivity of 
the xenograft-derived organoids to carboplatin (43). Similarly, MEK 
pathway-related molecule expressions were also upregulated in canine 
lung cancer organoids (48). However, the sensitivity of canine lung 
cancer organoids or its xenografts to Trametinib was different among 
organoid strains, which indicated each organoid from different patient 
animals might show different individual-specific responses to 
treatment with a range of anticancer drugs, and which could be used 
to select individually-tailored treatment protocols. In the living 
biobank of canine mammary tumor organoids (47), PIK3CA-mutated 
organoid lines were more sensitive to an inhibitor of the PI3K/AKT 
pathway, alpelisib and tolerant to an inhibitor of the MDM2-TP53 
interaction, nutlin-3a which has effects on other organoid lines, 
suggestive of a practical tool to investigate whether specific mutations 
predict therapy outcomes. In addition, canine mammary tumor 
organoids could also be genetically modified with a lentiviral vector 
or a customized canine CRISPR/Cas9 sublibrary and then were used 
to perform pooled CRISPR/Cas9 screening, where library 
representation was accurately maintained. The similarities in the drug 
responsiveness among the 3D in vitro models and the in vivo models 
(e.g., patient-derived xenografts) might largely be  due to their 
similarities in enhanced cellular interactions via adhesion and 
secretion of soluble factors of tumors (30, 32).

Organoid-derived monolayer cultures, without losing their 
differentiated characteristics, was also performed to study veterinary 
tumors (42, 44). In the study of canine bladder cancer (42), organoid-
derived monolayer cultures proliferated rapidly and had a similar 
sensitivity to anti-cancer drugs. Injecting monolayer organoid cells 
into immunodeficient mice also generated tumors with similar 
histopathological characteristics of urothelial carcinoma (42). More 
recently, direct monolayer cancer organoid models using animal 
tissues of dogs and cats were also generated by the same veterinary 
research group (44). The tissues including urine samples from bladder 
cancer diseased dogs, tissue samples from dog mammary tumors, 
melanoma, lung adenocarcinoma, cat skin tumor, and mammary 
tumors were directly used to generate monolayer organoid by special 
monolayer organoid media without formation of 3D organoid 
structure. The culture of direct monolayer organoids displayed 
constant passages and higher proliferation speed in the monolayer 
media. Direct monolayer organoids maintained the expression pattern 
of specific markers and demonstrated tumorigenesis in vivo. 
Furthermore, direct monolayer organoids showed 
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concentration-dependent and different sensitivity to anti-cancer drugs 
among the different strains. These findings suggest that direct 
monolayer organoid culture methods can be used as a cheaper, easier, 
and less-time consuming research models instead of 3D organoids to 
study cancer biology and to expedite precision veterinary medicine.

Organoid cell culture approaches hold great potential and offer 
complex systems for various purposes in the field of cancer research, 
such as species-specific tumorigenesis and progression, and 
investigation of promising anticancer drug candidates and therapy 
combinations. In inoids equipped with the capacity to model tumor 
microenvironments. Cancer drugs can be tested by more complex 
tissue-like systems in the future, rather than by using conventional 2D 
cultures that do not fully manifest features of in vivo tumors. Organoid 
models can be an intermediate platform between conventional 2D 
cultures and the in vivo models. However, the generation of tumoroids 
is still more expensive and time-consuming to establish, maintain, and 
passage over conventional 2D cultures, which limits the current 
organoid model developments for veterinary cancer research (30, 32).

5. Organoid models for metabolic 
diseases

The available publications regarding organoid models for 
metabolic diseases are limited to canine and feline models. More 
precisely, we here discuss the relevance and limitations of veterinary 
3D cultures to model and study metabolic dysfunctions associated 
with hepatic disorders in companion animals (canine congenital 
copper storage disease and feline hepatic steatosis) and discuss the 
feasibility of modeling the corresponding human diseases.

In dogs, mutations in the copper metabolism domain-containing 
1 (COMMD1) gene lead to an autosomal recessive copper toxicosis 
associated with defective biliary excretion of copper resulting in 
massive hepatic copper accumulation and displaying many hallmarks 
of Wilson’s disease. The potential of hepatic organoid technology to 
address copper storage disease in the liver has been investigated in the 
COMMD1-deficient canine model recently (49). 14-day differentiated 
hepatic organoids grown from COMMD1−/− dogs had a higher 
intracellular copper accumulation after being subjected to high copper 
levels for 3 h. This finding demonstrated liver organoids established 
from the dogs with an autosomal recessive COMMD1 deficiency 
maintain the defect of copper excretion, similar to the situation in the 
in vivo situation, and supported the feasibility of using diseased canine 
hepatic organoids to model the copper storage disease. Gene 
correction was performed on COMMD1-organoids by using lentiviral 
vectors bearing the COMMD1 gene. After transduction, COMMD1 
gene supplementation normalized cellular copper content in the 
organoids to wild-type levels within 24 h evidenced by the copper level 
comparison after 3- or 24-h copper treatment with differentiated 
COMMD1−/− and wild-type organoids. The authors indicated that 
these results confirm that organoids from canine liver diseases serve 
as a robust translational model for liver diseases such as Wilson’s 
disease and illustrated the amazing therapeutic potential for correcting 
genetic errors when combined with genome editing technology. In a 
follow-up study (50), the same group provided preclinical proof of 
concept for organoid-based cell transplantation in vivo with the hope 
that genetically corrected hepatic organoids could be a therapeutically 
relevant cell source for autologous transplantation for patients with 

metabolic liver diseases. They have documented the use of cells from 
autologous gene-corrected liver organoids for transplantation in the 
canine COMMD1-deficient models of copper storage disease. The 
results revealed that organoid-derived cells could be  safely and 
repeatedly infused in a non-invasive manner via the portal vein with 
up to two-year survival post-transplantation as single cells although 
the translated organoid-derived cells were not fully mature and 
maintained functional integration in vivo. This preclinical study 
confirms the survival of genetically corrected autologous organoid-
derived hepatocyte-like cells in vivo and warrants further optimization 
of organoid engraftment and functional recovery in a large animal 
model of human liver disease. Canine hepatic organoids provide 
platforms for pre-clinical modeling of liver diseases. The prospect of 
using hepatic organoids in cell therapy is encouraging but does require 
validation in the clinical setting. The development from liver stem cell 
cultures of the dog as an animal model is an important step to 
overcome the challenges of moving from basic translational research 
toward application in human patients.

Feline hepatic steatosis (FHS), one of the most common 
hepatobiliary diseases in cats, is characterized by triglycerides (TGs) 
accumulation in most of the hepatocytes, leading to significant 
hepatomegaly, impairment of liver function, and intrahepatic 
cholestasis. The pathophysiology of FHS is complex. Several 
similarities between feline and human steatosis and the unique 
sensitivity of this disease in cats encouraged scientists to establish a 
long-term feline model that might mimic Non-Alcoholic Fatty Liver 
Disease (NAFLD) and assess the efficacy of potential drugs for the 
treatment of FHS (51, 52). A spherical structure of the feline liver 
organoid model was generated with occasional epithelial folding and 
intraluminal projections and exhibited highly comparable 
transcriptomic or expressive signatures with hepatic adult stem cells 
or progenitor/biliary characteristics and differentiated potential 
toward hepatocyte-like cells. Under the circumstances of excess free 
fatty acids (FFA, including TGs), lipid accumulation was observed in 
organoids, and interestingly, organoids derived from feline liver 
accumulated significantly more lipid droplets than organoids derived 
from humans, indicative of a species difference. Moreover, differences 
in transcriptional activation between human and feline FFA-treated 
organoids were found which also reveals species differences in cellular 
lipid-metabolizing processes. In a follow-up study (52), the same 
authors used feline liver organoid models to test drugs for their 
potential to reduce lipid accumulation and they identified T863 and 
AICAR (diacylglycerol O-acyltransferase 1 inhibitor and adenosine 
monophosphate-activated protein kinase activator, respectively) as 
two promising candidates for further clinical evaluation used in the 
treatment of FHS. All these studies highlight the potential of organoids 
to model liver metabolic diseases and offer new perspectives in drug 
discovery to treat metabolic diseases (82).

6. Discussion

Organoid models are being rapidly integrated into various aspects 
of veterinary research and are currently generated for diverse 
veterinary species and a diversity of organs due to improved derivation 
protocols and cultural conditions (58) (Figure  2). Such models, 
derived from primary tissues or immortalized cells, will pave the way 
for advanced in vitro applications in veterinary diseases. Compared 

https://doi.org/10.3389/fvets.2023.1234628
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2023.1234628

Frontiers in Veterinary Science 09 frontiersin.org

with the number of generated veterinary organoid models from 
normal tissues, the applications of these organoids to model diseases 
are currently relatively scarce. For example, generating organoids for 
reproductive organs (ovaries, testes, oviducts, endometrium and 
placental) and embryoids made a lot of progress in farm animal 
species (83). But pathological models of organoids for reproductive 
organs are still few (83). The development of reproductive organoids 
under pathological conditions has the potential to offer novel 
therapeutic approaches and enhance interventions for addressing 
infertility in farm animals.

The future of the organoid disease model in the veterinary field is 
promising not only because of different existing veterinary organoids 
that can be manipulated but also due to the availability of powerful 
bioengineering methods like genome editing approaches. Because 
organoids are derived from stem cells, genome editing strategies 
provide ideal approaches to produce transgenic cells that possess key 
genotypes, which can then clonally expand and differentiate. 
Veterinary organoids with genome modifications can fundamentally 
contribute to modeling diseases with genetic anomalies (like cystic 
fibrosis), studying intricate receptor-ligand interactions for the 
infectious disease and malignant transformation (84). As talked above, 
gene correction was performed on COMMD1-cells with lentivirus, 
which normalized organoid capacity of copper storage, and attempted 
to achieve symptomatic remission for the transplanted patient dogs 
(49). Organoids are also amenable to gene strategies by gene 
knockdown by siRNA, shRNA, and CRISPR interference. As a result, 
organoid structures can be applications of genotype-to-phenotype 
research, congenital defect treatment and precision medicine purposes 
after genome manipulations.

Organoids assume a pivotal role within the domain of precision 
medicine. Some diseases, like cancer and IBD, are heterogeneous and 
include complex interactions of diverse cellular or non-cellular 
components. Organoids are cultivated utilizing pathological tissues 
procured from afflicted patients with features of micro-environments. 
Patient-derived organoids (PDOs) work as a tool for informed 
personalized medical determinations, with the capacity to anticipate 
patients’ reactions to therapeutic protocols and, in turn, foster the 
prospect of ameliorated treatment efficacy. In addition to personalized 
therapies, the establishment of a well-defined “living organoid 
biobank” for multifactorial diseases is gaining increasing attention. 
The critical advantage is to provide more accurate information of 
inherent intricacies of these diseases after large-scale sequencing and 
drug screening and more faithfully mirror patients’ receptivity to 
pharmaceutical agents and their capacity to endure drug-induced 
toxicities (85). As the concept of “One Medicine” suggests, therapeutic 
and technical methods can be shared between humans and animals 
for their mutual benefit but precision medicine in veterinary disease 
is still immature, and its application may vary depending on the 
species (86). Several veterinary organoid models also demonstrated 
the powerful potential of regenerative medicine (86). For example, 
corneal epithelial organoids in dogs and cats have successfully 
be  cultured and maintained with expressions of cornea-specific 
epithelial and stem cell progenitor markers, which could be a new tool 
to model veterinary ophthalmology disease and test corneal drug and 
even further treat corneal diseases by corneal organoid transplantation 
or harnessing regenerative capabilities of limbal stem cells in the 
conception of regenerative medicine (87). The advantages of adopting 
a veterinary organoid system to model diseases and then applying it 

FIGURE 2

Applications of organoid technology in veterinary disease investigation (Created with BioRender.com).
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in precision and regenerative medicine are continually advancing, 
with potential benefits for both animal and human.

There is compelling evidence to suggest that pre-clinical studies 
or toxicity evaluation gain significant advantages from the adoption 
of organoid models (11, 88). Nonetheless, there is a limited amount of 
toxicity research conducted using veterinary organoid systems, like 
assessing the effect of chemicals in generated avian crypt-villus 
enteroids (89). The dog is the favored non-rodent mammalian animal 
model in pharmaceutical research, as endorsed by the FDA for 
gathering initial safety data on drugs intended for human use (90). A 
comprehensive protocol was provided for creating canine organoids 
in a dual-chamber system to form columnar epithelial monolayer with 
microvilli in the apical part of the cells in the permeable support 
enabling other researchers to determine the apparent permeability of 
therapeutic drug candidates (75). Preliminary findings pointed out 
promising potential in utilizing canine-derived organoid monolayers 
for conducting species-specific assessments of passive permeability 
concerning therapeutic drugs (77). Additionally, the utilization of 
porcine gastrointestinal organoid units has been proposed as a 
prospective in vitro tool with relevance to drug discovery and 
development (91). Animal gastrointestinal organoids can emerge to 
fill the gap between current other in vitro models and animal models 
to assess drug effectiveness and potential toxicity during preclinical 
investigations (38, 84). Moreover, once establishing disease modeling 
by using organoid systems have been achieved, integrating with 
ADME (adsorption, distribution, metabolism, and excretion) studies, 
can also be a crucial step in drug development, as integration will 
contribute to assessment of efficacy and safety of potential drug 
candidates in the context of the target human and veterinary diseases.

Recent organoid models for veterinary diseases were still 
imperfect and one of reasons was a lack of multicellular components 
of all lineages. All generated organoid models for veterinary diseases 
now are derived from adult stem cells (ASCs). ASC-derived organoids 
have greater differentiation features, but they solely consist of cells of 
a single lineage and do not have dynamic attributes and advanced 
functionalities of authentic organs, despite this arrangement offering 
the advantage of directly manifesting the impact of experimental 
treatments on specific target cells. However, the complexity of 
multicellular and dynamic organs always conceals more intricate 
mechanisms of diseases, and tumor microenvironments also play a 
crucial role in mediating some of the effects of chemotherapy and 
radiotherapy (92), so reinstating complexity and encompassing 
various components, including immune, neuronal, stromal, and 
vascular cells, along with physical and chemical microenvironments, 
as well as the microbiota, all within the context of the dynamic 
characteristics of a living system, presents considerable challenges in 
the field of veterinary disease modeling. This drawback could 
be  partially overcome by establishing more complex co-culture 
organoid models or using iPSC/ESC-derived organoid culture 
systems, which also contain mesenchymal components. Other 
methods, like 3D-bioprinting and organ-on-a-chip models, might 
mimic more features of the whole living organs’ biological activities, 
dynamic mechanical properties, and biochemical functionalities as 
used in basic medicine, and their development is greatly encouraging. 
Organ-on-a-chip models or OrganoidChips are the innovative 
engineering approaches to create microfluidic cell culture devices for 
the production, precise control, and high-throughput analysis of 
organoids and their dynamic biomechanical microenvironment (84, 

93). Furthermore, different organ-chip models can be  fluidically 
linked to construct “body-on-a-chip” systems capable of simulating 
multiorgan interactions and functional responses at the systemic level 
(94). By adopting organ-on-a-chip organoid models, more 
advancements in veterinary fields, especially for disease modeling, will 
be achieved after better controlling microenvironment and mimicking 
tissue–tissue and multiorgan interactions (93). Once cellular 
heterogeneity in organoids is addressed in more sophisticated models, 
these models should help to better understand the pathophysiology of 
diseases and support the development of novel therapies, which also 
has the potential to greatly reduce the number of animal models used 
for equivalent purposes.

Admittedly, besides the reduction in complexity of current 
organoid models and its static nature, other significant limitations 
are also noticeable (95). First, organoids do not achieve the full 
maturity of in vivo organs. For example, the hepatic organoid 
exhibits the expression of markers associated with hepatic progenitor 
cells and biliary cells but without the mature hepatocyte marker 
HepPar-1 (51). Organoids usually model early developmental stages 
or specific cell type subsets, and achieving complete organ 
functionality remains a formidable challenge. As a result, the task of 
determining differentiation of organoids should be addressed in 
each research by assessing whether the cells within the organoids 
have developed into the desired specialized cell types or closely 
mimic the differentiation state of the organ of interest. To achieve 
this, the primary methods employed for examining organoid 
composition include assessing organoid morphology through 
techniques such as bright-field imaging, and light and electron 
microscopy. Additionally, immunofluorescence and 
immunohistochemical imaging, which can help provide insights into 
proportion of different cell types with the aid of specific cell marker 
antibody staining, is popularly used in veterinary medicine. For 
example, the cell types of intestinal organoids can be distinguished 
by specific markers for differentiation, including villin and villin1 for 
mature enterocytes, mucin 2 and mucin 5 ac for goblet cells, 
chromogranin A and synaptophysin for enteroendocrine cells, 
lysozyme for Paneth cells, Ki67 for proliferating cells, Lgr5, SOX9, 
and SMOC2 for intestinal stem cells, in addition to ZO-1 for apical 
proteins and β-catenin for basal proteins (28–30, 32–36, 56). Also, 
in veterinary organoid modeling research, it often begins with real-
time PCR for quick and quantitative assessment of marker genes 
indicating cell identity, including transcription factors and 
differentiation markers. To delve deeper, western blotting can also 
offer insights into protein abundance, degradation, interactions, and 
post-translational modifications, revealing specific signaling 
pathway activities in committed cell types (96). For a more 
comprehensive view, high-throughput scRNA-seq analysis profiles 
all organoid cell types, both undifferentiated and committed, at the 
whole-genome transcriptome level (96). These profiles are then 
compared to cells freshly isolated from corresponding tissues or 
organs to assess the similarity of each cell population. This approach 
is particularly useful for understanding the diversity of cell 
differentiation states within cultured organoids, which often contain 
various immature cell types. Secondly, there are no standardized 
criteria of protocols for organoid establishment and quality control. 
Owing to diversity between individuals and protocols, outcomes 
vary from group to group. Organoid units even in the same culture 
system are heterogeneous in terms of viability, size, and shape, 
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impeding phenotype screens. In some cases, the heterogeneity of 
organoids might mimic the real situation in vivo better than a highly 
stereotypic limited response. Standardization is an important step to 
ensure results obtained from organoid models are consistent, 
reproducible, and comparable. While there has been limited focus 
on standardization within veterinary domains, a publication has 
addressed this gap by establishing standardized protocols for 
maintaining 3D canine hepatic and intestinal organoid cultures (76). 
This effort aims to provide a reliable foundation for canine organoid 
culture procedures in biomedical research, promoting 
intradisciplinary sharing of knowledge. Third, organoids typically 
grow in a 3D structure with a substance called Matrigel as their 
microenvironment. The precise influence of Matrigel on the behavior 
of these organoids remains uncertain. It’s important to realize that 
Matrigel could impact how we  use organoids for personalized 
medicine or organ-based cell transplantation. Future research 
should focus on understanding and addressing this issue. Lastly, 
organoids are relatively costly compared to traditional cell cultures.

Although organoid models are relatively expensive and cannot 
model the whole organism as an animal model does, they still cheaper 
and easier to manage than animal models and enable scientists to 
collect data quickly, while avoiding the ethical issues involved in using 
animals for research (24). Modeling different diseases by using 
organoid systems helps to replace animal experimentation in 
accordance with the 3R principle, i.e., the replacement, reduction, and 
refinement, and also 4R principle with responsibility of animal 
experimentation (97, 98). The concept of ‘One Health’ represents an 
advancement or evolution from the previous paradigm of ‘One 
Medicine’ with the incorporation of the ecosystem health (99). The 
versatility of organoid models in accommodating various species 
makes them notably significant within the ‘One Health’ framework to 
manage emerging and re-emerging zoonoses and elucidate the 
interconnected pathophysiological dynamics among human, animal, 
and environmental health (97). On the other hand, most cultures are 
genetically stable, can be propagated indefinitely, and can be frozen 
for storage in much the same manner as immortalized cells, thus 
providing ease of use, storage, and transfer. In a long-term study, 
enteroids could live normally for 4 months to more than 1 year with 
no or very few anomalies in their growth, morphology, and genetic 
profiles (29). In contrast, other, non-transformed in vitro models, such 

as primary cells or tissue explants, have a finite replication capacity 
and rapid senesce (100).

To conclude, organoid culture offers more than conventional 2D 
cell culture systems do in basic and applied research. The current 
application of organoids in veterinary diseases is in its infancy but 
developing quickly. Organoid models have a huge potential to 
be durable in vitro models for studying disease pathogenesis and drug 
development. The future of organoid technology in veterinary disease 
modeling is promising.
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