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Impact of cell-free supernatant  
of lactic acid bacteria on 
Staphylococcus aureus biofilm 
and its metabolites
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Introduction: A safe bio-preservative agent, lactic acid bacteria (LAB) can 
inhibit the growth of pathogenic bacteria and spoilage organisms. Its cell-free 
supernatant (LAB-CFS), which is rich in bioactive compounds, is what makes LAB 
antibacterial work.

Methods: This study focused on the changes in biofilm activity and related 
metabolic pathways of S. aureus treated with lactic acid bacteria planktonic CFS 
(LAB-pk-CFS) and biofilm state (LAB-bf-CFS).

Results: The findings demonstrated that the LAB-CFS treatment considerably 
slowed Staphylococcus aureus (S. aureus) growth and prevented it from forming 
biofilms. Additionally, it inhibits the physiological traits of the S. aureus biofilm, 
including hydrophobicity, motility, eDNA, and PIA associated to the biofilm. The 
metabolites of S. aureus biofilm treated with LAB-CFS were greater in the LAB-
bf-CFS than they were in the LAB-pk-CFS, according to metabolomics studies. 
Important metabolic pathways such amino acids and carbohydrates metabolism 
were among the most noticeably altered metabolic pathways.

Discussion: These findings show that LAB-CFS has a strong potential to combat 
S. aureus infections.
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1. Introduction

One of the most prevalent foodborne infections, Staphylococcus aureus (S. aureus), is highly 
dangerous and endangers both human and animal health (1). Additionally, it is the primary 
pathogen responsible for mastitis in ruminants (2), which has a significant negative impact on 
milk supply and quality and results in significant financial losses for the dairy industry. It has a 
significant impact on society and is very relevant to both human and animal health and 
wellbeing (3). The capacity of S. aureus to build biofilms is correlated with the severity of 
infections (4). S. aureus produces large biofilm formations that support its pathogenicity and 
confer protection and subsequently drug resistance (5). Therefore, there is an urgent need for 
better prediction, preventive, and intervention measures.
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Bacteria are typically found as communities made up of several 
different species rather than as isolated, solitary organisms in nature 
(6). Different microorganisms can interact mechanistically by 
actively participating in these habitats, through direct and indirect 
exchanges of both a physical and chemical character. The microbial 
community is also a natural source of metabolites and has the 
potential to be used to create antimicrobial and anti-biofilm agents. 
According to Martin et al. (7), “live microorganisms that, when 
administered in adequate amounts, confer a health benefit on the 
host” are probiotics. Probiotics have been studied extensively as a 
means of infection prevention, particularly Bifidobacterium and 
Lactobacillus strains, which are beneficial to the host in terms of 
lowering the risk of infection (8), the need for antibiotics (9), the 
severity of the disease (10), and the length of the illness (11). A 
significant part of the breast microbiota includes lactic acid bacteria, 
whose cell-free supernatant (LAB-CFS) may prevent bacteria from 
secreting virulence factors and lessen their pathogenicity (12, 13). 
However, there have not been many investigations on how 
pathogenic bacteria are affected by the metabolic properties of 
planktonic and biofilm probiotics. As a result, it makes the best 
candidate for producing probiotic solutions that are species-specific 
and prevent mastitis.

The differentially expressed genes and proteins linked to S. aureus 
biofilms have been identified using transcriptomic and proteomic 
investigations (14–17). Metabolites, on the other hand, are chemicals 
that participate in life processes later and can more directly reflect 
dynamic changes in the body (18). Because of this, it is crucial to 
understand how LAB-CFS affects the makeup and function of 
metabolites in S. aureus biofilms. This information is crucial for the 
clinical diagnosis, care, and prevention of S. aureus.

Here, we  used untargeted metabolomics to investigate the 
potential impacts of planktonic bacteria (LAB-pk-CFS) and biofilm 
colonies (LAB-bf-CFS) on the metabolism of S. aureus biofilms. 
Combined with the effect on the physiological characteristics of 
S. aureus biofilm. This study offers fresh perspectives on LAB how to 
prevent and treat S aureus infections, and it has major implications for 
creating antibiotic alternatives, lowering bacterial resistance, and 
maintaining the safety of food for animals.

2. Materials and methods

2.1. Strains and growth conditions

The S. aureus and lactic acid bacteria (LAB) used in this work were 
isolated from the milk sample of bovine mastitis. S. aureus wld10 was 
cultured in Trypticase Soy Broth (TSB) (Bio-Tech, Qingdao, China) 
overnight at 37°C with shaking at 220 rpm, and LAB were grown in 
static, unaerated MRS broth (Bio-Tech, Qingdao, China) overnight 
at 37°C.

2.2. Preparation of cell-free supernatants 
from LAB planktonic and biofilm cultures

LAB strains were grown in planktonic and biofilm forms, 
resuspended in phosphate-buffered saline (PBS) adjusted to 106 CFU/

mL and centrifuged (10,000 × g, 10 min), culture supernatants 
collected filtered through a 0.22 μm membrane filter to obtain cell-free 
supernatants (CFS). CFS obtained from planktonic (LAB-pk-CFS) 
and biofilm (LAB-bf-CFS) cultures were stored at −20°C until 
their use.

2.3. Determination of the effect of LAB-CFS 
on minimum inhibitory concentrations

The minimum inhibitory concentrations (MICs) of LAB-CFS were 
determined using the twofold serial dilution method (19). The cultured 
planktonic and biofilm LAB were first collected separately and added to 
MRS medium at an initial concentration of 1 × 109 CFU/mL, and then 
diluted sequentially to 5 × 108, 1 × 108, 5 × 107, 1 × 107, 5 × 106, 1 × 106, 
5 × 105 and 1 × 105 CFU/mL concentrations, and centrifuged (10,000 × g, 
10 min), culture supernatants collected filtered through a 0.22-μm 
membrane filter to obtain CFS corresponding to different concentrations 
of LAB. A equal volume (100 μL) S. aureus bacterial suspension 
(106 CFU/mL) was transferred to each well. The treatment and control 
tubes which contained only bacterial suspensions were incubated at 37°C 
for 16 h. The lowest concentration of CFS, which did not show any visible 
growth of tested organisms after macroscopic evaluation, was determined 
as MIC. Each assay in this experiment was replicated three times.

2.4. Effect of the LAB-CFS on biofilm 
formation

The effect of LAB-CFS on biofilm formation was assessed in the 
same way as previously described (20), with minor modifications. In 
brief, the LAB-bf-CFS and LAB-pk-CFS were made in the manner 
previously mentioned. A 100 mL of the LAB-CFS was added to 100 mL 
of TSB-g (TSB medium that had been added with 0.5% NaCl and 0.5% 
glucose) that contained 106 CFU of S. aureus, and 100 mL of TSB medium 
was used to prepare the control sample in place of the LAB-CFS. After 
being incubated at 37°C for 24 h. Each microplate washed twice in 
200 mL of PBS before the growth liquid was discarded to determine the 
degree of biofilm formation in each microplate. The bacterial solution 
was diluted to 50 mL with 103 CFU/mL, then spread out on an MH agar 
plate medium and incubated for 16 h at 37°C. Bacterial counts were 
calculated by counting the colonies developing on the plates and then 
expressed as a logarithmic number. For each sample, three replicates 
were created. The metabolic activity of the biofilms was assessed using 
the XTT reduction test (21). Following the last wash, each well received 
200 mL of 200 g/mL XTT supplemented, which was then added and 
incubated for 50 min at 37°C in the dark. A 100 mL of this suspension 
was transferred to a brand-new plate, and a microplate reader (Bio-Rad, 
Microplate Reader 550) was used to measure the absorbance at 480 nm.

2.5. Fluorescence microscopy imaging of 
Staphylococcus aureus biofilms treated 
with LAB-CFS

Staphylococcus  aureus wld10 was seeded on glass cover slips in 
6-well tissue-culture plates and grown in TSB-g medium at 
37°C. After 40 h, wells were washed with PBS and LAB-bf-CFS or 
LAB-pk-CFS were added at equal volume. After 24 h of treatment, 
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wells were washed with PBS and stained with SYTO 9 and PI (LIVE/
DEAD Bacterial Viability and Counting Kit, meilunbio, Dalian, 
China) for 45 min at 37°C. After incubation, the coverslips were 
washed three times with PBS and mounted on glass slides. Stained 
biofilms were observed using fluorescence microscope (Axio Scope 
A1, Carl Zeiss, München, Germany) was used to examine each 
sample (22).

2.6. Effect of LAB-CFS on the surface 
hydrophobicity of Staphylococcus aureus 
cells control

It was decided to use the microbial adhesion to hydrocarbons 
(MATH) method (23). A specific volume of S. aureus culture in the 
logarithmic growth phase was obtained, centrifuged, and then 
resuspended to have an OD600 nm of 0.5–0.6 after being washed three 
times with PBS. The aforementioned S. aureus suspension was divided 
into three centrifuge tubes and given a total volume of 4 mL. Next, 
LAB-bf-CFS and LAB-pk-CFS were introduced to two suspensions of 
S. aureus, with the last solution of S. aureus without LAB-CFS serving 
as the control group. The three S. aureus suspensions were 
subsequently given an equal volume of hexadecane. The three 
S. aureus suspensions were thoroughly mixed before being incubated 
at room temperature for 10 to 15 min to guarantee complete separation 
between the two solvents. Following the absorption of the aqueous 
phase, the OD at 600 nm was determined. The following formula was 
used to get the adsorption rate:

 OD OD OD OD% / %( ) = −( ) ×0 1 0 100

where OD0 and OD1 represented the absorbance prior to and 
following hexadecane extraction, respectively.

2.7. Effects of LAB-CFS on Staphylococcus 
aureus motility

Soft LB-agar plates with 2.4 g/L agar were used for the swimming 
motility assay (24). Before usage, the plates were allowed to dry for a 
whole night at 4°C. S. aureus wld10 overnight culture was diluted and 
given a 2 h treatment with LAB-bf-CFS and LAB-pk-CFS. A 10 mL 
bacterial culture was seeded beneath the agar surface of swimming 
plates. The widths of the swimming zones were measured after the 
plates had been incubated at 30°C for 24 h.

2.8. Effects of LAB-CFS on Staphylococcus 
aureus polysaccharide intercellular adhesin 
production

The Congo red (CR) binding assay was used to estimate the effect 
of LAB-CFS on the formation of polysaccharide intercellular adhesins 
(PIA) in biofilms (25). In order to evaluate the colony morphology, a 
10 μL overnight cultures of S. aureus wld10 with aliquots of 
LAB-bf-CFS and LAB-pk-CFS were spotted onto CR plates [37 g/L 
BHI medium and 2% (w/v) Difco agar with 80 μg/mL CR and 5% 
(w/v) sucrose] and were incubated at room temperature for 48 h.

2.9. Effects of LAB-CFS on Staphylococcus 
aureus extracellular DNA

eDNA extraction was carried out as previously described (26), 
With a few minor adjustments. Briefly, LAB-bf-CFS and LAB-pk-CFS 
were used to treat the S. aureus biofilm. Cultured for 24 h as previously 
described were suspended in 1 mL of 500 mM sodium chloride, 10 mM 
EDTA, and 50 mM Tris-HCl, pH 7.5, and put into cooled tubes. The 
bacteria and eDNA were then separated by centrifuging at 4000 × g for 
15 min. The supernatant was collected, DNA was extracted twice with 
an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1), and 
the precipitate was made using a mixture of ice-cold isopropanol and 
1/10 (3 M sodium acetate) of the volume of 3 M sodium acetate. After 
centrifugation (15 min, 4°C, 8500 × g), the pellet was washed with 100% 
ethanol and air dried. A 20 μL solution of TE buffer (10 mM Tris-HCl, 
1 mM EDTA, pH 7.5) was used to dissolve the dried DNA pellet and a 
microplate reader was used to measure fluorescence.

2.10. Effect of LAB-CFS on the expression 
of Staphylococcus aureus biofilm 
formation-related genes

LAB-CFS-induced changes in the transcript levels of genes 
involved in biofilm formation were quantified by qRT-PCR. Analysis 
was done on the expression of the biofilm-associated genes icaA, icaA, 
fnbA, icaD, and clfB. In 6-well plates, S. aureus biofilm was developed 
for 24 h at 37°C in either the absence or presence of LAB-bf-CFS and 
LAB-pk-CFS. Following a PBS wash, adherent cells were manually 
scraped from the bottom of the wells. TRIzol reagent was used to 
extract total RNA according to protocol. To remove contaminating 
DNA from RNA and reverse-transcribe it into cDNA, ABScript III RT 
Master Mix with gDNA remover (ABclonal, China) was applied to the 
sample. In order to execute relative quantitative PCR (qPCR), 2 
University SYBR green Fast qPCR Mix (ABclonal, China) was used. 
Using the 2−ΔΔCt method. ΔΔCT = (target gene CT of experimental 
group − reference gene CT of experimental group) − (target gene CT 
of control group − reference gene CT of control group), the expression 
of gyrB was used as a reference to calculate fold changes for the target 
genes (primers are listed in Supplementary Table S1).

2.11. Sample preparation for nontargeted 
metabolomics

To analyze the effects of LAB-bf-CFS and LAB-pk-CFS treatments 
on the extracellular metabolites of S. aureus biofilms, The cultured 
with LAB-bf-CFS and LAB-pk-CFS treatments were collected and 
transferred to a 1.5 mL centrifuge tube. After washing with PBS three 
times, cells were flash frozen in liquid nitrogen and stored at −80°C 
till processed. Untreated biofilm as a control, six biological replicates 
were set up for each treatment.

2.12. Non-targeted metabolite profiling 
was carried out by LC-MS

Thermo Scientific’s QE Plus mass spectrometer and Shimadzu’s 
Nexera X2 LC-30AD ultra-high-performance liquid chromatography 
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equipment were used to conduct untargeted metabolomics analysis. 
Fitted with a Water, Milford, Massachusetts, United States Acquity 
UPLCHSS T3 column (2.1 × 100 mm, 1.8 mm). With acetonitrile as 
the solvent A and 0.1% (v/v) formic acid as the solvent B, gradient 
elution was carried out. Electrospray ionization (ESI) was used to 
examine each sample utilizing both positive and negative ion modes. 
To evaluate the stability of the analysis, quality control (QC) samples 
were prepared by mixing equal volumes of each sample and evenly 
injected at regular intervals throughout the analytical run.

2.13. Statistical analysis

All data are expressed as the mean ± standard deviation 
determined using SPSS software (SPSS, Inc., Chicago, IL, 
United  States). A p-value > 0.05 was considered to indicate a 
statistically significant difference, p > 0.01 indicated a very significant 
difference according to the t test for analysis of variance. The obtained 
LC-MS raw data were converted into a common format by Analysis 
Base File Converter software and subsequently pre-processed by 
MSDIAL software. Then, the extracted peak information was 
compared with databases including the HMDB, MassBank, and 
Bioprofile’s local self-built metabolite standards library for a full 
library search. Multivariate analyses were also performed, including 
principal component analysis (PCA), partial least squares discriminant 
analysis (PLS-DA), cluster analysis, and differential metabolite 
screening [primers are listed in Supplementary Table 1 (27)].

3. Results

3.1. Effect of LAB-CFS on Staphylococcus 
aureus growth

The MIC measurements showed that the MICs of LAB-bf-CFS 
and LAB-pk-CFS against S. aureus were 1 × 106 and 5 × 106 CFU/mL, 
respectively (Table 1).

3.2. Effect of the LAB-CFS on biofilm 
formation

The results of of the untreated biofilms were compared with those 
of the those of LAB-CFS-treated biofilms. The CFU count with the 
control group increased compared to the CFU count with the 
LAB-CFS treatment (Figure  1A). And the number of cells in the 
experimental groups was reduced by 22.59% (LAB-pk-CFS) and 
64.11% (LAB-bf-CFS), respectively. The antibiofilm activity of 
LAB-CFS, against S. aureus, was evaluated using the XTT reduction 
assay in order to measure the metabolic activity of S. aureus 

post-treatment. The metabolic activity of S. aureus was reduced with 
the treatment of LAB-CFS (Figure 1B).

The effect of LAB-CFS on reducing S. aureus biofilm density was 
further evaluated using fluorescence microscopy. LAB-CFS Inhibit a 
considerable portion of S. aureus cells in comparison to the control 
group (Figure 2).

3.3. Effects of LAB-CFS on the 
physiological properties of Staphylococcus 
aureus biofilm

Table 2 shows the changes in cell surface properties of S. aureus 
strains treated with LAB-CFS. The results shows that treatment of 
S. aureus suspensions with LAB-CFS, and decrease in the surface 
hydrophobicity of S. aureus cells. It has attenuating effect on the diffusion 
of S. aureus also displayed significantly reduced adhesion. At the same 
time, Figure 3 shows that PIA and eDNA after LAB-CFS treatment were 
significantly lower than those in the control group (p < 0.05).

3.4. Effect of LAB-CFS on Staphylococcus 
aureus biofilm-related genes

Co-aggregation and bacterial surface adherence are crucial for the 
growth of biofilm populations. The impact of LAB-CFS on the 
expression of various significant adhesion-related genes in S. aureus is 
therefore examined in this research. Figure 4 displays the RT-qPCR 
results. The expression levels of clfA, fnbA, icaD, icaA and clfB genes 
of S. aureus decreased after LAB-CFS treatment when compared with 
the control group.

3.5. Metabolomics

3.5.1. Liquid chromatography-mass spectrometry 
for metabolites materials

The PCA approach was used to assess the LAB-bf-CFS and 
LAB-pk-CFS groups to grasp the general situation of the metabolites 
based on LC-MS detection of LAB-CFS treated metabolites of 
S. aureus biofilm (Figure 5). The difference in distribution between 
these groups is explained by the PCA score plot based on the first two 
principal components, positive mode (PC1 57.7% and PC2 28.5%) 
and negative mode (PC1 64.6% and PC2 29.4%). These findings 
demonstrated the stability and dependability of the PCA model, as 
well as the high biological repeatability of the samples and confidence 
intervals between samples that were all within 95%. The samples in 
these groups had statistically different main components, which could 
be employed in further analysis.

The PLS-DA-based pairwise comparison method should 
be employed to demonstrate metabolomics differences in order to 
further uncover the pertinent metabolites accountable for group 
segregation. Strong goodness of fit (R2X) and high predictability (Q2) 
were both displayed by the PLS-DA model (Figures  6A,B). Two 
hundred iterations of the response permutation test (RPT) was used 
to validate all PLS-DA models and revealed no overfitting or false 
positives in the data. Additionally, according to Figures 6C,D, the 
permutation test was successful and the model was not overfitted. The 

TABLE 1 Antibacterial activity assays against Staphylococcus aureus.

MIC

LAB-bf-CFS 1 × 106 CFU/mL

LAB-pk-CFS 5 × 106 CFU/mL
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LAB-bf-CFS and LAB-pk-CFS groups’ differing metabolite profiles 
were highlighted by the distinct clusters.

3.5.2. Results of the quantitative and class 
identification of different metabolites

Supplementary Table S2 summarized the named differential 
metabolites in the LAB-bf-CFS, LAB-pk-CFS and S. aureus groups. 

T-test (p < 0.05) was utilized to distinguish between the metabolites 
among them based on the fold change value (FC > 1 and FC <1). 
Analysis was performed on 282 identified differential metabolites, 
including 189 cations and 93 anions. One hundred and fifty-two 
differential metabolites were up-regulated and 220 were down-
regulated in the LAB-bf-CFS group as compared to LAB-pk-CFS 
groups (Supplementary Table S2).

Figure  7 and Supplementary Table S3 illustrate the relative 
abundance of metabolites in the LAB-bf-CFS, LAB-pk-CFS and 
S. aureus groups, demonstrating the content and intensity distribution 
of the different metabolites. The differences in metabolites are mainly 
composed of 40 organic acids and derivatives (25.16% of which are 
amino acids, peptides, and analogs; beta hydroxy acids and derivatives; 
carboximidic acids, etc.); 30 lipids and lipid-like molecules (18.87% of 
which are lineolic acids and derivatives; diterpenoids; fatty acids and 
conjugates; etc.); 19 phenylpropanoids and polyketides (11.95%, 
O-methylated flavonoids, hydroxycinnamic acids and their derivatives, 
and flavans); 8 benzenoids (5.03%, anisoles; benzoyl derivatives); 29 
nucleosides, nucleotides, and analogs (18.24%, pyrimidine 
ribonucleotides); 13 organoheterocyclic compounds (8.18%, 
naphthyridines; purines and purine derivatives); 5 organic nitrogen 

FIGURE 1

LAB-CFS inhibits biofilm formation by Staphylococcus aureus. (A) CFU counting of S. aureus biofilm cells’ (B) XTT test for S. aureus biofilm cell 
detection *p < 0.05, *p < 0.01, ***p < 0.001, ***p < 0.0001.

FIGURE 2

Fluorescence micrograph of bacterial biofilms after LAB-CFS treatment. Without LAB-CFS in (A), LAB-pk-CFS in (B), and LAB-bf-CFS in (C).

TABLE 2 Physicochemical properties and mechanical behaviors of 
S. aureus biofilm treated with LAB-CFS.

S. aureus LAB-CFS

LAB-pk-
CFS

LAB-bf-CFS

Hydrophobicity 

(%)

(55.26 ± 0.58)a (38.57 ± 0.98)b (19.55 ± 0.86)c

Motility (cm) (2.82 ± 0.05)a (1.58 ± 0.03)b (0.76 ± 0.05)c

Different small letters (a, b, and c) indicate significant differences (p < 0.05), whereas the 
same alphabets mean no significant difference between the samples.
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FIGURE 5

The score scatter plot of principal component analysis (PCA). (A) Positive ion mode, (B): negative ion mode.

compounds (3.14%, amines, guanidines, and quaternary ammonium 
salts), 10 organic oxygen compounds (6.29%, alcohols and polyols, 
carbohydrates, and carbohydrate conjugates), and 3 alkaloids and 
derivatives (1.89%, lycorine-type amaryllidaceae alkaloids); etc.

To display changes in metabolite concentrations, heatmaps of 
the chemical compositions of LAB-bf-CFS vs. LAB-pk-CFS were 
created, as shown in Figure 8. In the LAB-bf-CFS groups compared 

to the LAB-pk-CFS groups, there was a considerably higher 
abundance of esculetin, 3-phosphonpropionic acid, 8-(3-methoxy-
2-methoxycarbony) pheny, ebselen, citrazinc acid, and betaine 
(VIP > 1, p < 0.05).

3.5.3. Analysis of metabolic pathways’ functional 
annotation and enrichment for various 
metabolites

The functional annotation statistics of the distinct metabolic 
pathways for the LAB-bf-CFS, LAB-pk-CFS and S. aureus groups are 
shown in Figure 9; the ordinate represents the second categorization 
of the KEGG metabolic pathway. Four first-category pathways, two 
pathways for processing environmental information, one for 
processing genetic information, one for processing human disorders, 
and ten pathways for metabolism were all annotated. With 69 distinct 
metabolites, the metabolic pathway was annotated with the majority 
of the metabolites.

FIGURE 3

LAB-CFS resulted in significant reductions in PIA and eDNA content 
relative in S. aureus biofilm. (A) The effect of LAB-CFS on PIA in  
S. aureus biofilms. (B) The detection of eDNA biosynthesis before 
and after LAB-CFS treatment. ***Means p < 0.001.

FIGURE 4

Transcription analysis of biofilm formation related genes. **Means 
difference p < 0.01, *** means p < 0.001.
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FIGURE 6

Validation of partial least squares discriminant analysis (PLS-DA) models. Pairwise comparation of among LAB-bf-CFS and LAB-pk-CFS in positive ion 
mode (A,C) and negative ion mode (B,D).

FIGURE 7

Volcano plot of differential metabolites (A) and classification of the Human Metabolome Database (HMDB) compounds (B). Red is up-regulation, blue 
is down-regulation (FC > 1 or < 1, p < 0.05).
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FIGURE 8

Comparison of the relative abundance of metabolites. Levels of significance are defined as ***p < 0.001.

Following investigation, the differential metabolites in the 
metabolic pathways for amino acids and carbohydrates that were most 
negatively impacted were retrieved. As depicted in Figure  10. 
Glutamate is processed differently from these amino acids and its 
concentration increased with biofilm formation during LAB-CFS 
treatment. The amino acid content was decreased with LAB-CFS 
treatment. Additionally, we discovered noticeably more carbs.

4. Discussion

The growth and spread of pathogenic bacteria that are multidrug 
resistant (multidrug-resistant strains) have been on the rise recently, 
and biofilm formation is antibiotic resistant and challenging to cure. 
The urgent need for alternate therapeutic approaches to treat illnesses 
brought on by these bacterial pathogens is highlighted by this (17). 
Probiotics are currently used widely over the globe as their health 
benefits have come to light. According to Lin et al. (28), the CFS 
produced by probiotic bacteria is abundant in compounds that are 
most likely the source of antibacterial activity against already-existing 
biofilms. There are little publications on the antibacterial potential of 
LAB-bf-CFS, despite the fact that the antibacterial activity of 
LAB-pk-CFS has been documented (29). Both planktonic-and 
biofilm-derived LAB-CFS were examined in this manuscript against 
S. aureus clinical isolates. According to LAB-CFS antibacterial activity 
assay, both LAB-bf-CFS and LAB-pk-CFS significantly inhibited 

S. aureus growth at 106 CFU/mL. Additionally, LAB-bf-CFS were 
superior to LAB-pk-CFS in their ability to combat S. aureus.

Intriguingly, LAB-CFS not only interfered with S. aureus biofilm 
development, but it also broke an existing biofilm, demonstrating a 
positive effect on S. aureus biofilm inhibition. The biofilm colonization 
phase was the one that LAB-CFS was most effective in preventing, 
while its effectiveness against already-formed biofilms is only 
moderately strong. Consistent with the reported results of in vitro (30) 
and clinical studies (31) on biofilm inhibition by LAB.

The interaction between LAB-CFS and biofilm may be a physical 
one, and the secreted CFS components may prevent the formation of 
complex biofilms by altering the surface energy of microorganisms 
and preventing microbial co-aggregation (32). It is also possible that 
CFS contain molecules that prevent S. aureus from adhering to solid 
surfaces. Self-aggregation and cell surface hydrophobicity are two 
main physicochemical surface properties of pathogenic bacteria that 
contribute to biofilm adhesion development. According to Wu et al. 
(33) the bacterial cell surface’s hydrophobicity has a direct impact on 
the degree of adhesion. We discovered that the addition of LAB-CFS 
greatly reduced S. aureus’s cell surface hydrophobicity. Bacterial cell 
motility affects biofilm intensity and persistence as well. According 
to Zheng et al. (34) and Brunelle et al. (35), there are six different 
types of bacterial motion: swimming, swarming, gliding, twitching, 
sliding, and darting. S. aureus is a non-flagellated gram-positive 
bacterium that spreads on surfaces by a sliding mechanism. The 
sliding motility of S. aureus enhances its colonization, leading to the 
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formation of biofilms on surfaces. The findings of this study suggest 
that lactic acid bacteria CFS can reduce S. aureus’s capacity to adhere 
to biotic or abiotic surfaces by decreasing cell surface hydrophobicity, 
and motility.

Extracellular polymeric substances (EPS), which are mostly made 
up of protein, eDNA, and PIA, are the key substrates for adhesion  
and structural stability of biofilms (36). These alterations in 
macromolecules may be  a result of improved knowledge of the 
effectiveness of anti-biofilms. After receiving LAB-CFS, EPS 
significantly decreased as evidenced by the Congo red binding assay 
and the amount of eDNA released. The levels of gene expression 
associated with biofilm formation can also be used to further explain 
S. aureus’s capacity to adhere to surfaces. Our results suggest that 
LAB-CFS can negatively affect proteins involved in biofilm adhesion. 
Adhesins are some unique proteins expressed on the surface of 
S. aureus, which are the most important pathogenic factors and the 
best immunogens during S. aureus infection. Clf, which is separated 
into clfA and clfB, is necessary for bacterial aggregation and adherence 
to biotic or abiotic surfaces. S. aureus’s ability to adhere to protein-
conditioned biomaterials is controlled by the force-sensitive molecular 
switch known as clfA, and the only bacterial component known to 
encourage keratinocyte adherence is clfB. The Ica gene cluster is 
composed of four tightly combined genes icaA/D/B/C and its 
upstream blocking gene icaR. Studies have shown that the 
co-expression of icaD and icaA genes increases the activity of 
N-acetylglucosamine transferase and promotes the production of PIA 
(37). In the initial stages of colonization, bacteria can cling to host cells 
and the extracellular matrix owing to the adhesin fnbA (38).

The results of the global metabolome revealed remarkable 
metabolic differentiation between LAB-bf-CFSand LAB-pk-CFS.  
When bacterial cells switched to forming biofilms, they could secrete 
the extracellular polymeric substance (EPS), which can be used to 
protect biofilms to defense environment insults and difficult to 
dissolution. We first showed significant changes in S. aureus biofilms 
treated with LAB-bf-CFS and LAB-pk-CFS in terms of small molecule 
metabolism and morphological traits, but the underlying fundamental 
metabolic process is still mostly unknown. In order to discover the key 
metabolites and related metabolic pathways that LAB-bf-CFS has the 
capacity to drive the S. aureus biofilm when compared to LAB-pk-CFS, 
we  further merged the open-source datasets with local databases. 
Between LAB-bf-CFS and LAB-pk-CFS-treated S. aureus biofilms, 
we were able to successfully identify divergent metabolites, including 
amino acids andcarbohydrates. Amino acid metabolism is connected 
to microbial ecology and health. Amino acids are precursors for energy 

FIGURE 9

Differential metabolites involved in each metabolic pathway and the number of metabolites.

FIGURE 10

The mostly affected metabolic pathways (A), and their level changes 
of differential metabolites (B).
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production through gluconeogenesis. We  demonstrate that under 
LAB-CFS treatment, several significant amino acids were down-
regulated in the S. aureus biofilm. Under LAB-bf-CFS therapy, however, 
amino acids were less abundant, which suggests lower metabolic 
activity and less energy generation. Since energy is required for the 
synthesis of the biofilm matrix, the growth of biofilms is actually a 
metabolically expensive process (39). Glutamate, however, has a 
different metabolism than these amino acids, and its concentration 
rose as the biofilm was formed while being treated with 
LAB-bf-CFS. According to Yu et  al. (40), glutamate is a crucial 
precursor of poly-glutamic acid, a crucial component of biofilm matrix 
and a crucial factor in cell physiology. In addition to the de novo 
synthesis process, amino acid breakdown is another method for 
producing glutamate when nutrients are scarce. These are regarded as 
compounds for storage. In biofilms, bacteria typically contend with 
other species for resources and space. Bacteria may have a competitive 
advantage in biofilms if they can consume helpful nutrients more 
quickly than other bacteria and then create some storage compounds.

Our findings indicated that the production of glycerol-3-
phosphate (G-3-P) increased significantly. According to Willias 
et  al. (41), the G-3-P was an important precursor of 
glyceraldehyde-3-phosphate, a crucial link carbohydrate, and a 
potential source of energy for bacteria. Thus, our finding via 
synthesized more G-3-P to maintain the survival of bacterial cells 
during biofilm formation. The majority of the carbohydrates were 
reportedly to boost biofilm adherence or take part in the 
production of EPS (31). In order to create biofilm, bacteria 
produce extracellular polymeric substances (EPS). These 
substances give biofilm its mechanical stability and wrap bacteria 
in a viscous matrix that helps them survive in harsh environments 
(42). Bacteria use their amino acid, and carbohydrate metabolisms 
to synthesize secreted substances like amino acids, and sugars that 
are required for the production of EPS during biofilm formation 
(43). This is in addition to producing and storing usable energy. 
These metabolic pathways were selected in this study because, 
from a metabolic point of view, they are involved in EPS 
production and influence the formation of biofilms in S. aureus.

5. Conclusion

This study combines cytological and metabolomic methods to 
further understand how LAB-CFS affects S. aureus biofilm development. 
We discovered that S. aureus biofilms treated with LAB-bf-CFS and 
LAB-pk-CFS have various metabolic profiles. These unique metabolites 
and related metabolic pathways shed light on the molecular mechanisms 
behind the suppression of S. aureus biofilms by LAB-CFS. To identify the 
molecules in charge of the antibacterial capabilities, more investigation 
into the bioactive substances found in LAB-CFS is required. If successful, 
based on probiotics anti-biofilm techniques, it would be  extremely 
important for the treatment of mixed biofilm infections between bacteria 
and fungi or even bacteria-only biofilm infections.
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