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Bacteria- or virus-infected chicken is conventionally detected by manual 
observation and confirmed by a laboratory test, which may lead to late 
detection, significant economic loss, and threaten human health. This paper 
reports on the development of an innovative technique to detect bacteria- or 
virus-infected chickens based on the optical chromaticity of the chicken comb. 
The chromaticity of the infected and healthy chicken comb was extracted and 
analyzed with International Commission on Illumination (CIE) XYZ color space. 
Logistic Regression, Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), 
and Decision Trees have been developed to detect infected chickens using the 
chromaticity data. Based on the X and Z chromaticity data from the chromaticity 
analysis, the color of the infected chicken’s comb converged from red to green 
and yellow to blue. The development of the algorithms shows that Logistic 
Regression, SVM with Linear and Polynomial kernels performed the best with 95% 
accuracy, followed by SVM-RBF kernel, and KNN with 93% accuracy, Decision 
Tree with 90% accuracy, and lastly, SVM-Sigmoidal kernel with 83% accuracy. The 
iteration of the probability threshold parameter for Logistic Regression models 
has shown that the model can detect all infected chickens with 100% sensitivity 
and 95% accuracy at the probability threshold of 0.54. These works have shown 
that, despite using only the optical chromaticity of the chicken comb as the 
input data, the developed models (95% accuracy) have performed exceptionally 
well, compared to other reported results (99.469% accuracy) which utilize more 
sophisticated input data such as morphological and mobility features. This work 
has demonstrated a new feature for bacteria- or virus-infected chicken detection 
and contributes to the development of modern technology in agriculture 
applications.
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1. Introduction

The increase in human population has forced poultry meat 
production to increase (1). However, mass production in the poultry 
industry may be  more vulnerable to disease outbreaks in farmed 
animals due to the increased number of animals per area and 
prolonged usage of antibiotics (2). The World Bank reported a direct 
cost of $20 billion for disease outbreak events between 1988 to 2006 
(3), including public and animal health costs, compensation, 
production, and revenue costs. Plus, indirect losses, including animal 
product chain, trade, and tourism, were estimated to be more than 
$200 billion worldwide (3). For instance, the United States and China’s 
poultry industry recorded huge economic losses and threats to human 
health due to several poultry-related diseases such as the H7N9 avian 
influenza virus outbreak in 2013 (4), multistate foodborne outbreak 
of Salmonella Typhimurium (5), avian influenza outbreaks in 2022 (6, 
7), foodborne pathogens such as Campylobacter, Escherichia coli, 
Salmonella, and Norovirus (8), severe respiratory illness among 
poultry slaughter plant workers due to Chlamydia psittaci (9), and 
human infection with the influenza A (H5N6) virus of avian origin 
(10). Although the viruses are preventable, curable, and controllable, 
there is still a continuous threat that they could start a pandemic if the 
viruses develop the ability to spread among humans effectively. 
Therefore, early detection of diseases in poultry production is a 
primary concern to prevent a major outbreak that would affect the 
economy and human health.

Numerous disease detection methods have been proposed, 
developed, and widely applied to give early detection to prevent this 
catastrophe. The conventional method of detecting infected chicken 
was using physical examination and laboratory tests. The physical 
examination is a way of seeing infected chicken through observation 
of clinical signs or changes in behavior and physical appearance of the 
chicken individually. The suspected chicken will be evicted from the 
flocks and undergo laboratory tests such as culture (11–13), 
polymerase chain reaction (PCR) (14, 15), enzyme-linked 
immunosorbent assay (ELISA) (16, 17) and lateral flow assay (LFA) 
(18, 19). Biological samples such as blood, cloacal swabs, organs, and 
feces were collected from the suspected chicken for the test. Apart 
from the requirement of trained personnel to conduct the tests, these 
methods are considered costly due to the equipment needed, such as 
a thermocycler, ELISA reader, PCR buffer, syringe, swab kit, and petri 
dish for sampling and detecting the pathogen (20). Overall, these 
methods can detect infected chickens with high precision and 
specificity. However, many other factors, such as cost and time taken 
for detection, were compromised, which makes it almost impossible 
to be implemented, especially for large-scale poultry producers.

The rapid development of modern technology has introduced the 
development of biosensors to detect infections with consideration of 
other factors such as sensitivity, cost, efficiency, and time taken for 
detection (21–23). Although biosensors can detect infected chickens 
faster than laboratory tests with good sensitivity and accuracy, each 
method was considered intrusive due to the biological sample needed 
for the test. Non-intrusive and non-invasive techniques in giving an 
early warning for detecting infected chickens based on their 
vocalization, video, and image have been introduced with the aid of 
advanced information technologies, especially machine learning. 
Several researchers have successfully detected infected chickens based 
on their abnormal sounds like rales, sneezing, and coughing (24–26). 
However, it was challenging to detect infected chickens individually 

based on vocalization because more than one chicken may sneeze or 
cough simultaneously. Computer vision, like digital images and video, 
can detect and classify infected chickens in real-time, and many 
different methods have been proposed (27–31). However, these works 
carried out the classification based on locomotor and mobility of the 
chicken (27), differences in morphological features (28), differences 
in posture and feather images (29), using an abnormal swelling image 
(30), and the correlation of the optical flow parameters with the 
occurrence of hockburn in chicken (31).

In conventional understanding, the infected chicken can 
be detected based on the biological change in the appearance of the 
chicken itself, especially its comb. For example, the Newcastle disease 
infection would show clinical signs such as swollen comb (32), 
nodular lesions on its comb characterized by fowl pox disease 
infection (33), and fatty liver hemorrhagic syndrome would show 
clinical signs of a pale comb (34). Previous studies have reported on 
the relationship between comb color and size with the immunity 
system of birds using spectrophotometry (35, 36). However, these 
results were based upon data from red grouse (bird) combs and it is 
still unclear on the correlation between the comb’s chromaticity and 
bacteria- or virus-infection, since these works were investigating only 
the immunity system of the birds. To the best of our knowledge, there 
is no specific research work that correlates the optical chromaticity of 
the chicken comb with infectious diseases using image processing. 
Therefore, this work investigates on the effectiveness of utilizing image 
processing techniques incorporated with machine learning algorithms 
to correlate the color of the chicken comb with bacteria- or virus-
infected chicken. The difference between infected and healthy chicken 
comb is analyzed based on chromaticity data. Since computer is a 
low-cost, non-invasive and non-intrusive method for detecting 
infected chicken, digital image colorimetry was adopted in this work. 
Using the chromaticity data, machine learning algorithms such as 
Logistic Regression, Support Vector Machine (SVM), K-Nearest 
Neighbors, and Decision Tree, were developed to classify the infected 
and healthy chickens. Each model’s performance, advantages, and 
disadvantages for this current application were analyzed in this study.

2. Image processing and machine 
learning algorithms

A digital image is a combination of color space data, and many 
researchers had performed colorimetry studies based on digital image 
color space data for a few applications and areas (37–41). Since digital 
image colorimetry is a well-known method for describing perceived 
color, this technique was used to extract the color component of the 
chicken comb at pixel level and the average pixel color component 
bounded on the comb area. The Red Green Blue triplets, RGB values 
were extracted, normalized, and linearly transformed into CIE XYZ 
color space using the developed Python program and ImageJ software. 
Normalized CIE XYZ, named the CIE xyz component, was studied 
and analyzed incorporated with the machine learning model, Logistic 
Regression. The supervised machine learning classification algorithms, 
Logistic Regression, SVM with different types of kernels, KNN, and 
Decision Tree model were used to classify the chicken health based on 
the color component. The models were trained and validated to 
analyze the performance parameter in this current application. 
Figure 1 shows the workflow of this study, from the RGB color data 
extraction methods to the chromaticity data analysis and the 
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development of machine learning models to classify chicken health. 
The details for the major stage of the method, which are image 
acquisition, data organization, image processing and data labeling, 
CIE XYZ color space, supervised machine learning algorithms, and 
performance parameter, are discussed in the following subsections.

2.1. Image acquisition

Digital image data were manually collected from various sources 
such as journals, short communications, articles, veterinary websites, 
and blogs through the open-source Google Search engine because no 
specified image dataset related to this work could be obtained. A total 
of 122 images were downloaded and classified into two groups, 
healthy and infected chickens, with 61 images in each group without 
considering any specific quality such as resolution, lighting condition, 
the pixel value of the image, the distance between the camera and the 
chicken, and the angle view of the chicken. The images were labeled 
as healthy and infected based on the source’s justification. All the 
image data including masked chicken comb images and sources have 

been uploaded to a GitHub repository.1 All chickens were assumed to 
be alive based on general observation. Images were selected based on 
the feather color to indicate a type of chicken, and the current work 
considered chickens with white feathers only. However, the chicken 
husbandry care such as the diet, age, temperature, humidity of 
surroundings, and severity of the diseases were not considered in this 
work. As presented in Figure 2, most of the chickens in the infected 
class dataset were infected with Newcastle disease (25%), followed by 
infectious bronchitis (10%) and avian influenza (8%).

2.2. Data organization

The image data was split into training and validation sets to reduce 
bias in training the model. Eighty images were randomly picked as a 
training dataset for fitting the models, and the remaining images were 

1 https://github.com/anifakhmal/Infected-vs-Healthy-chick.git
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FIGURE 1

Workflow of the RGB color data extraction methods, data analysis and development of machine learning models.
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used as the validation set. The models were validated by 42 healthy 
and infected chickens, which were randomly distributed but properly 
structured to represent all diseases. For infected chicken with a total 
of only 2 or 3 images, such as chronic respiratory diseases, fowl 
cholera, infectious coryza, swollen head syndrome, aflatoxicosis, 
E. coli, avian infectious laryngotracheitis, and pullorosis typhoid, one 
image was randomly picked from each group for validation. Two 
photos were selected for validation from each disease group containing 
4 to 8 images representing Marek, avian influenza, infectious 
bronchitis, and unspecified diseases. The most considerable portion 
of the validation dataset belongs to Newcastle disease, with 23.81% (5 
images out of 21 total) due to overall image acquisition. However, 
infectious bursal disease, Mycoplasma gallisepticum, heart failure, 
fowlpox, corneal ulcers, and green muscle disease were not included 
in the validation dataset, due to a lack of image data. Overall, the 
training dataset consists of 40 healthy and 40 infected chicken images, 
while the validation set consists of 21 healthy and 21 infected 
chicken images.

2.3. Image processing and data labeling

The raw image data were not uniform in size and resolution. The 
image of the chicken head was cropped manually to analyze its comb 
color within the comb area excluding the region that has overlayed 
text. This work used two methods to extract the RGB value of the 
chicken comb. The first method was by extracting 3 RGB sample 
points within the area of the chicken comb, as shown in 
Figure 3A. The second method was by extracting the average RGB 
value of all pixels within the chicken comb, as shown in 

Figure 3B. Throughout this paper, the first method will be named the 
pixel-level method, and the second method will be named the pixel-
averaging method.

Figure 3A shows that three sample points were taken from the 
image at coordinates (70.36), (127.34), and (167.56). The image 
coordinate was specified based on the chicken comb using the 
convention of width and height. Figure 3B shows that the chicken 
comb was manually selected to calculate the average value of all the 
extracted RGB values within the selected region. The RGB data was 
normalized and transformed into CIE XYZ color space which was 
discussed theoretically in the next subsection. The collected RGB and 
CIE XYZ color space data were saved in Macintosh (.csv) format for 
further analysis. The infected chicken was labeled as 0 for the true 
positive event, and the healthy chicken was labeled as 1 for the true 
negative event as described in the literature (42).

2.4. CIE XYZ color space

In this work, the CIE XYZ color space (43) was utilized to analyze 
the chromaticity of the infected and healthy chicken combs. The 
extracted RGB data were normalized and converted to CIE XYZ color 
space using the linear matrix transformation as shown in Equation 1. 
The formula was directly adopted from (43) the Rec. 709 RGB 
standards with its reference D65 white point for all images.
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FIGURE 2

Percentage distribution of different diseases for the infected chicken image dataset.

https://doi.org/10.3389/fvets.2023.1174700
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Bakar et al. 10.3389/fvets.2023.1174700

Frontiers in Veterinary Science 05 frontiersin.org

The XYZ values were normalized to restrict the range from 0 to 1 
and denoted as x, y, and z values. The formulas used in normalizing 
the value were expressed in Equations (2)–(4).

 
x X

X Y Z
=

+ +  
(2)

 
y Y

X Y Z
=

+ +  
(3)

 
z Z

X Y Z
=

+ +  
(4)

The scatter plots of xy, yz, and xz values were analyzed to 
determine the differences between the healthy and infected chickens.

2.5. Supervised machine learning 
algorithms

This research work utilized four different classifier algorithms, 
namely Logistic Regression, SVM, KNN, and Decision Tree. Scikit 
Learn library was used for pre-processing the data and training 
the models as specified in the package (44). The x and y 
chromaticity data were utilized as the features for the classifier. 
The chromaticity data features were standardized using the 
StandardScaler module from the Scikit library for faster 
convergence and better results. Further fundamental, theoretical, 
and mathematical theories of these models were well discussed in 
the library documentation. Hyperparameters of each model were 
adjusted and the best model was selected and discussed based on 
the confusion matrix, which was discussed in the performance 
parameter subsection. The advantages and disadvantages of 
deploying each model were also addressed for this current 
application in section 3.2.

2.5.1. Logistic regression
The logistic regression model is a supervised machine learning 

model to predict the class probability, which ranges from 0 to 1 in 

our application. The model predicts 0 for probability ranging from 
0 to 0.5, and the class belongs to the positive event or infected 
chicken. The theory of the logistic regression model was explained 
in literature (45). The logistic function was used to restrict the 
linear regression model’s output to a range from 0 to 1. The general 
logistic equation is given in Equation 5. Note that, p y( )  is the 
function for the probability value, and variable y in the equation 
corresponds to the input function for the logistic equation.

 
p y

e y( ) =
+ −

1
1  

(5)

Since the logistic regression was restricting the linear regression 
model, the final equation for the model is stated in Equation 6.

 
p f x x

e B B x B x1 2

1

1
0 1 1 2 2

,( )( ) =
+ − + +( )

 
(6)

where f x x1 2,( )  is the sigmoid input function for the logistic 
equation, x1 and x2 correspond to the predictor or chromaticity data 
for the classifier, and B0, B1, and B2 correspond to the coefficient of the 
predictors. Current work will utilize the sigmoid input function 
f x x1 2,( ) , to analyze and correlate the chromaticity data and the 
health status of the chickens. The general function is stated in 
Equation 7.

 
f x x B B x B x1 2 0 1 1 2 2,( ) = + +

 (7)

The iteration of the cost function, C parameter, was carried out 
and the highest accuracy performance was analyzed.

2.5.2. Support vector machine
SVMs are a popular supervised learning technique for outliers’ 

detection, regression, and classification. SVM algorithms take data as 
input and transform it into the desired form using a set of 
mathematical functions referred to as the kernel. Given that the 
ScikitLearn library offers four distinct kernel functions (44)—Linear, 
Polynomial, Radial Basis Function (RBF), and Sigmoid—the current 

FIGURE 3

Data extraction using (A) pixel-level method and (B) pixel-averaging method.
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work will develop the models across all four kernels. The Linear, 
Polynomial, RBF, and Sigmoid kernel functions are given in Equations 
(8)–(11), respectively.

 
K x x x x1 2 1 2,( ) = .

 
(8)

 
K x x x x r d1 2 1 2,( ) = +( )γ .

 (9)

 
K x x e x x

1 2
1 2

2

,( ) = − −γ
 

(10)

 
K x x x x r1 2 1 2,( ) = +( )tanh .γ

 (11)

where x1 and x2 are chromaticity data features in vectors form, d  
is the degree, γ  is gamma, and r  is the parameter of the kernel 
projection. Hyperparameters for tuning each model, were iterated, 
and the model that produced the best accuracy performance were 
selected and compared.

2.5.3. K-nearest neighbor
KNN algorithm is a non-parametric classifier that uses positional 

information to categorize or forecast how a single data point will 
be grouped. The general matric for calculating the distance between 
data points is Minkowski and for the current application, we used the 
Euclidean distance formula. The general equation is stated in 
Equation 12.

 
d i j x x x xi j i j,( ) = − + −1 1

2

2 2

2

 
(12)

where d i j,( ) is the function for calculating the distance between 
training point i and data point j . xi1 and xi2 are the chromaticity data 
of the training set, while x j1 and x j2 correspond to the chromaticity 
data of the predictor or validation data.

For model training purpose, the k-value represents the number of 
closest neighbors and is the primary hyperparameter value for 
KNN. Since the k-value needed to be established appropriately (46), 
the value was iterated from 1 to 20, and the k-value with the best 
performance was discussed.

2.5.4. Decision tree
Decision Tree is a non-parametric supervised learning method for 

classification and regression to create a model that predicts the value 
or class of a target variable by learning simple decision rules concluded 
from the data features. The library provided two criteria settings, 
“Gini” and “Entropy,” to measure the quality of the split in decision 
rules. The corresponding formulas are stated in Equations (13) 
and (14).

 
Gini D p

i

k
i( ) = −

=
∑1

1

2

 
(13)

 
Entrophy D p p

i

k
i i( ) = − ( )

=
∑
1

2
2log

 
(14)

D corresponds to the dataset, k  is the number of classes in the 
dataset, and pi  is the ratio of the class. Both “Gini” and “Entropy” as 
provided in the library were utilized for the criterion setting to 
measure the quality of the split, and the best model was chosen for 
further analysis and comparison.

2.6. Performance parameter

The model’s performance was analyzed using the confusion 
matrix method based on five parameters: sensitivity, specificity, 
precision, negative predictive value (NPV), and accuracy (42). The 
performance of the classification model was evaluated based on the 
convention stated in the literature. Seven models were trained and 
validated: Logistic Regression, SVM with Linear, Polynomial, RBF and 
Sigmoid kernels, KNN, and Decision Tree. The performance of each 
model was investigated, compared, and analyzed. The implementation 
of the models in practical applications was also discussed in the 
present study based on the current application.

3. Results and discussion

This section was organized according to three main subsections; 
chromaticity analysis, supervised machine learning results, and 
comparison with other related works. The first phase of analysis 
revealed the impact of infection on the chromaticity of the chicken 
comb, and the correlation between chromaticity and health status is 
discussed. Next, the performance of each developed model is 
discussed, analyzed, and compared accordingly. Lastly, the 
performances of all the models are comprehensively compared with 
reported machine-learning algorithms related to this current 
application for classifying infected chickens.

3.1. Chromaticity analysis

The difference between healthy and infected chicken comb was 
illustrated in Figures  4A,B, respectively, using masked images. 
According to Figure 4, the healthy and infected chicken can be clearly 
separated based on the chromaticity of the chicken comb, and the 
impact of infection on the chromaticity value will be further discussed.

The first set of analyses examines the impact of infection on the 
three-color space parameter and the correlation between each variable 
parameter. The 3D scatter plot of x, y, and z data for the pixel-level 
method and pixel-averaging method are shown in Figures 5A,B.

The scatter plot of the pixel-level method (Figure 5A) appeared to 
be more complex because of the total data; three sample points from 
61 images resulted in 183 points for each class plotted on the graph. 
However, Figures 5A,B show that both methods have resulted in the 
same pattern and no significant difference in the distribution of the 
scatter plot. It can be seen that the infected and healthy chickens were 
well separated based on the 3D plot. The results were further analyzed 
by plotting each component in a 2D plot; xy, xz, and yz. Figures 6A,B 
present the chromaticity plot of xy chromaticity data for pixel-level 
and pixel-averaging methods, respectively.

Figure 6 shows that the infected and healthy chickens was well 
separated by x chromaticity for both methods. According to 
Figures 6A,B, the most infected chicken was scattered below x = 0.375, 
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while the healthy chicken was scattered above. The y chromaticity 
value of infected and healthy chickens overlapped, and no specific 
threshold value can be  hypothetically assigned based on the y 
chromaticity variable. However, by combining the x and y variables, 
the infected and healthy chickens can be separated more distinctly. 
Since the scatter plots of healthy and infected chicken were linearly 
separated, a magenta line was drawn as an indicator line to differentiate 
between both groups.

Based on the indication line on the pixel-averaging method, it can 
be observed that only one infected chicken was scattered in the healthy 
chicken region. On the contrary, 14 infected chickens were spread in 
the healthy area for the pixel-level method. False classification may 
occur due to an error in the sampling process. For example, the color 
of the chicken comb only changes on the front side, and through 
conventional understanding, the chicken was infected based on that 
indication. False classification may occur if the sample was taken at 

FIGURE 4

(A) Masked images of healthy chicken comb and (B) masked images of infected chicken comb.

FIGURE 5

3D plots for chromaticity values x, y, and z using (A) pixel-level method and (B) pixel-averaging method.
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the back side of the chicken comb without significant color change. 
Apart from that, the pixel-averaging method considered all the color 
data bound in the selected region. Instead of better results in 
classification, the error and false detection can be reduced. This view 
was proven by Cao et al. (47), which proposed a new method for water 
quality detection by considering the average RGB value for the 
detection (47). Srinivasan et al. (48) also used the average RGB value 
of each pixel in the image to indicate hemoglobin in human blood for 
diagnosing anemia.

Since the pixel-averaging method was relevant and gave better 
results in classifying healthy and infected chickens as shown in 
Figure 6B, further results and discussion on the impact and correlation 
between the variables and health status will focus on the pixel-
averaging method only. Figures  7A,B show the pixel-averaging 
methods’ results of xz and yz plots, respectively. Table 1 presents the 
Logistic Regression’s sigmoid input function (referring to Equation 7) 
according to the pixel-averaging method dataset.

The scatter plot of xz (Figure 7A) shows that the infected and 
healthy chickens can be  separated based on the threshold value of 
below z = 0.25 for the z chromaticity value. When combining the x and 
z chromaticity values, the infected and healthy chicken can be separated 
based on the magenta line as the hypothetical threshold line. Similarly, 
by combining y and z (Figure 7B), the infected and healthy chickens 
can be classified based on the magenta line drawn. Both plots showed 
that one chicken could be falsely classified as healthy chicken.

The x chromaticity variable was the most dominant variable, 
followed by z and y variables based on the linear regression sigmoid 
input function results. It can be  observed that the x chromaticity 
variable results in a more significant positive classifier coefficient than 
the y variable with 1.5284 higher by referring to the xy model 
(Table 1). The results show the same trend as in the xz model when 
compared with the z chromaticity variable, with 2.2821 higher in the 
classifier coefficient. Therefore, we can conclude that any small change 
in the x chromaticity variable would significantly contribute to the 
classification of the chicken. Since the classifier coefficient of x 
chromaticity variable results in a positive sign, the increments of x 

value would increase the value of the sigmoid input function; thus, the 
results of the sigmoid function would converge to 1. Theoretically, the 
chroma or actual perceived color was indicated by the x and z values 
(43). The x chromaticity value can be approximately described as 
green to red part. So, based on our results in Figures  6B, 7A 
we conclude that the infected chickens were more converging to green 
because most of the infected chicken points were scattered below 
healthy chicken in terms of x chromaticity value.

Moving on to the z chromaticity variable, the classifier coefficient 
for the z variable was 2.2821 lower when referring to the xz model. 
So, any change in the z chromaticity value does not significantly 
contribute to the classifier predicting the chicken’s health. However, 
according to yz model, the z chromaticity variable was more 
dominant than the y variable, with 0.6226 higher in the classifier 
coefficient. Since the coefficient carries a negative sign (yz model), 
increasing the z chromaticity value would encourage the classifier 
model to predict the chicken to be infected. The z chromaticity value 
can be  approximately described as a yellow to blue part for any 
increment in value (43). Therefore, we conclude that the infected 
chickens converged more to the blue region according to 
Figures 7A,B. The weakest variable, y chromaticity, has a weaker 
negative coefficient of 0.8202 compared to the x chromaticity variable 
in the xy model. Similarly, in comparison with z chromaticity by 
referring to the yz model, the y variable resulted in a smaller negative 
coefficient of 1.5996, while that of the z variable was 2.2222. The 
negative sign indicates that the increased value of y would lower the 
value of the sigmoid input function; thus, the sigmoid function 
would converge to 0. The small coefficient of the y chromaticity 
variable was expected based on the xy and yz plots in Figures 6B, 
7B. The scattered point of infected and healthy chicken mostly 
overlapped in terms of y chromaticity value, making the classification 
nearly impossible. The image data chromaticity’s brightness, 
luminosity, or lightness were represented by the y value (43). 
According to the results, the y value was considered the weakest 
variable that correlated to chicken health due to no significant 
difference between healthy and infected chickens, and the 
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FIGURE 6

(A) xy scatter plot for pixel-level method and (B) xy scatter plot for pixel-averaging method.
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classification was nearly impossible. Therefore, a possible explanation 
for this might be that our data comes from different sources with 
different illuminants. This finding corroborated with previous 
research, which found that the redder comb had more excellent cell-
mediated immunity or better health condition (35). Moreover, 
Martínez-Padilla et al. (49) concluded that comb redness or plasma 
carotenoids were negatively correlated with Trichostrongylus tenuis 
abundance. Plasma carotenoids are pigments responsible for the 
vivid color red in the chicken comb, while T. tenuis is a nematode in 
birds that cause diseases.

These findings further support the idea of separating chroma and 
brightness for the detection method proposed in the literature (47), 
which uses chromaticity values to measure dissolved water content. 
However, combining the chromaticity value with the brightness makes 
the classification viable. The present findings were consistent with 
previous work (41), which considered intensity and chromaticity 
features in their algorithm to classify daytime and night images. 
Furthermore, a study on the correlation between comb color and the 
immunity system of the chicken was performed based on the red 
chroma, represented by 600–700 nm, relative to brightness (35).

3.2. Supervised machine learning results

This subsection discusses the performance parameter, advantages, 
disadvantages, and limitations of all the developed classifiers. Since the 
Logistic Regression model is the only model that can provide a 

probability value, the current work will iterate the probability 
threshold from 0.40 to 0.60, and the expected performance of the 
model is presented in Figure 8.

The model performance can be categorized into three categories; 
over-, optimum-, and under-predict the positive event or infected 
chicken. The first category is over-predicted, which can be seen for the 
probability threshold of more than 0.53. The model starts to over-
predict positive events, resulting in the highest possible sensitivity and 
NPV of 100% with zero false negative events detected. Secondly, the 
model can be  tuned to get optimum performances which can 
be indicated by a probability threshold ranging from 0.43 to 0.47. The 
model was expected to predict 95% for all five performance parameters 
due to the same amount of false positive and false negative events. 
Lastly, the proposed model was expected to be  under-predicted 
infected chicken when the probability threshold was below 0.43. The 
present findings seem consistent with other researchers’ views that 
precision and sensitivity are proportional to actual positive value but 
have an inverse mutual relationship (50).

Table 2 compares all the supervised machine learning models and 
notes that the performance of the Logistic Regression was based on an 
optimum probability threshold of 0.47 and C = 1 for comparison with 
other models. For SVM models, Linear kernel with C = 1, Polynomial 
kernel with C = 1 and d  = 1, RBF kernel with C = 1 and γ  = 0.1, and 
Sigmoid kernel with C = 1 and γ = 3 were presented. KNN showed the 
best performance when the K-value was set more than 5, while for the 
decision tree model, the Gini criterion was better compared to 
the Entropy.
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FIGURE 7

(A) xz and (B) yz scatter plot for the pixel-averaging method.

TABLE 1 Sigmoid input function of the Logistic Regression.

Trained variables/Model Sigmoid input function, f x x1 2,( )

xy f x y x y,( ) = + ( ) + −( )0 29337105 2 34857535 0 8202156. . .

xz f x z x z,( ) = + ( ) + ( )0 29103932 2 65420658 0 37211062. . .

yz f y z y z,( ) = + −( ) + −( )0 26176678 1 59957638 2 22224727. . .
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Logistic Regression, SVM-Linear and Polynomial kernel perform 
the best in terms of specificity, precision, NPV, and accuracy, followed 
by SVM-RBF kernel, KNN, Decision Tree, and lastly, SVM-Sigmoidal, 
in this present study. Logistic Regression, SVM-Linear, and 
Polynomial kernel perform the best compared to other models 
because our chromaticity feature data for healthy and infected chicken 
were linearly separated (Figure  6B). Supporting these statements, 
researchers in the literature (28) also reported better accuracy using 
SVM Linear and Polynomial kernel model compared to RBF for their 
linearly separated dataset.

Incremental learning to extend the model’s knowledge while 
implementing it in practical applications was possible for all models. 
However, each model has its advantages and disadvantages during 
implementation. According to the results, the Logistic Regression, 
SVM Linear and Polynomial kernels perform the best, with a 95% 
score for all parameters. Compared with other models, logistic 
regression can output the results in probability values from 0 to 1, and 
the classification threshold can be assigned. Thus, the performance of 
the model can be adjusted. However, instead of tunable performance, 
the stability of the performance itself was an issue during incremental 
learning (51). Moving on to SVMs models, the storage cost was a 
significant drawback for these algorithms due to continuous data 
learning (52, 53). In addition, kernel selection in developing SVM 
models is essential as it affects the performance of the model. For 
instance, the SVM-Sigmoid kernel performed at 76% sensitivity, 90% 
specificity, 88% precision, 79% NPV, and 83% accuracy, which can 
be considered the lowest among others.

Next, the KNN model has performed similarly to SVM-RBF. KNN 
model is much simpler than logistic regression and SVM models 
because it does not need any data training since its algorithms rely on 
the number of neighbors or K-value for classification. This model’s 
primary limitation is the calculation speed during incremental 
training (54). False detections may also occur when the data becomes 
more extensive and no change or update makes for the K-value (55). 
Another non-parametric model, the decision tree, performed with 
86% sensitivity, 95% specificity, 95% precision, and 87% NPV, and 
90% accuracy. The Decision Tree is easy to train due to no 
normalization and data scaling are needed. The algorithms for 
separating the infected and healthy are intuitive and easy to explain. 

However, the models may become complex due to the number of 
depths specified in the training process, and any small change may 
cause significant changes in the tree’s structure (56). Plus, 
implementing an incremental learning algorithm can variate the 
stability of the model due to continuous data updates.

In summary, all the models discussed in this subsection can 
be considered acceptable and successful in classifying health status. 
Even though current works do not use any specific experimental 
dataset, all the models have shown to be well developed by just using 
the randomly well-distributed training and validation image dataset. 
However, models with high sensitivity, such as Logistic Regression, 
KNN, SVM-Linear, and SVM-Polynomial, should be considered for 
current application in providing early warning to prevent major 
outbreaks. Hicks et  al. (50) stated that the consideration of the 
specificity and precision was based on applications; for medical 
applications, it is better to over-predict than underestimate the degree 
of severity. Therefore, current work would consider a model with high 
sensitivity even though it has a low precision value to over-predict the 
positive event to prevent significant outbreaks that can cause economic 
loss and threaten human health.

3.3. Comparison with other reported work

The results reported in this work are compared with other related 
works which predict the chicken health status. Table  3 shows the 
summary of the related works. Zhuang et  al. (28) utilized an 
SVM-Polynomial model with 99.469% accuracy to classify infected 
chicken (bird flu) based on all extracted morphological features: 
concavity, skeleton altitude angle, shape features, linear area rate, 
elongation, and circularity. Similarly, other works proposed SVM-RBF 
models with an accuracy of 97.8% based on extracted locomotor 
features such as circle variance, elongation, convexity, complexity, 
eccentricity, and mobility features of walk speed (27). These works 
(27) were compared with the results reported in this work because 
they used image processing techniques to extract features as predictors 
to predict infected chicken. Both works extracted all the 
morphological, locomotor, and mobility features from the chicken 
images, and the proposed supervised machine learning classifier 
model’s achieved accuracies >97%. In contrast to these reported 
works, the results of our work demonstrated that despite only one 
feature (chicken comb’s chromaticity) being used, prediction accuracy 
as high as 95% can be  achieved. This scenario indicates that the 
chicken comb chromaticity is a very distinctive feature that can 
be used to predict the bacteria- or virus-infected chickens, as well as 
confirming the effectiveness of the machine learning models used in 
this work. It can also be concluded that high prediction accuracy can 
be  achieved with simpler feature extraction and easier image 
processing technique, if the accurate and distinctive feature is selected.

This reported work is also compared with the deep learning-based 
algorithms for detecting infected chicken applications. Zhang and 
Chen (30) have developed a ResNet algorithm with 94% accuracy to 
detect infected chickens using abnormal swelling images for their 
training datasets. Other researchers used different textures of chicken-
dropping image datasets to classify healthy and infected chickens 
using XceptionNet with 94% (57) and 98.24% (58) accuracy after fine-
tuned. Compared to our works, both of the works (30, 57) have 
reported lower accuracy. Similar to our work, these works also utilized 
only one feature, but our reported work utilized a much simpler image 
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The performance parameter of the Logistic Regression model at 
varying probability threshold.
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TABLE 2 Comparative analysis of different types of machine learning algorithms.

Model
Confusion 

matrix
Performance (%)

Model 
parameters

Data 
linearity

Incremental 
learning

Data 
fitting

Probability 
output

Performance 
tuning

Limitation

Logistic 

Regression 20 1

1 20











Sensitivity 95 C = 1

Threshold =0.47

Linear Yes Yes Yes Before and after training Stability of performance during 

Incremental training (51)Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-Linear
20 1

1 20











Sensitivity 95 C = 1 Linear Yes Yes No During training Storage cost from continuous 

data learning for non-linear 

SVM (52, 53)
Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-

Polynomial 20 1

1 20











Sensitivity 95 C = 1

d  = 1

Linear/Non-

linear

Yes

Specificity 95

Precision 95

NPV 95

Accuracy 95

SVM-RBF
20 1

2 19











Sensitivity 95 C = 1

γ  = 0.1

Non-linear Yes

Specificity 90

Precision 91

NPV 95

Accuracy 93

SVM-Sigmoid
16 5

2 19











Sensitivity 76 C = 1

γ  = 3

Non-linear Yes

Specificity 90

Precision 89

NPV 79

Accuracy 83

KNN
20 1

2 19











Sensitivity 95 k-value = 5 Not applicable Yes No No Before training Speed of calculation

Data update may deviate (54, 

55)
Specificity 90

Precision 91

NPV 95

Accuracy 93

Decision tree
18 3

1 20











Sensitivity 86 Criterion = Gini Not applicable Yes No No Before training Can cause instability for any 

data change (56)Specificity 95

Precision 95

NPV 87

Accuracy 90
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processing technique and lower computational power for training the 
classifier models. Besides that, Zhuang and Zhang (29) successfully 
developed algorithms to detect infected chickens with a precision of 
up to 99.7% by combining image processing and deep learning. To 
develop these algorithms, authors have utilized the difference in the 
chicken posture and feather images to train their classifier model. The 
proposed algorithms were more computationally complex than our 
work. However, the result performance of the model or classifier was 
promising. Therefore, it can be  proposed that to achieve >99% 
accuracy, future work will explore on the deep learning algorithms to 
hybridize with our works to provide early detection algorithms for the 
prevention of disease outbreaks in poultry farms that can benefit the 
farmers and improve food safety.

This current work has proven the ability of utilizing the 
chromaticity of the chicken combs features can be used to detect 
bacterial- or virus-infected chickens with the help of machine learning 
models. However, for an implementation in a large-scale chicken 
farm, a more realistic approach such as capturing the images directly 
from the chicken cages may be carried out. Further illustration of the 
accuracy of the model to work in a large -scale poultry farm, by 
implementing real images dataset, and validation of the model is still 
needed. Furthermore, hybridization of the chicken comb feature with 
other established features such as morphological (28), locomotor (27), 
mobility (27), and optical flow (31), would be future works that need 
to be considered. The multi-features approach may lead to another 
breakthrough that would contribute to improved food safety and 
automation in poultry farm industries.

4. Conclusion

This study presents an early prediction algorithm for detecting 
bacteria- or virus-infected chickens based on the chromaticity of the 
chicken comb feature. The algorithm extracted the RGB color data at 
the area of the chicken comb and converted it into the CIE XYZ color 
space to analyze the effect of bacteria or virus infection on the 
chromaticity of the chicken combs. The chromaticity data features of 
healthy and infected chickens were plotted, and the impact of infection 
on the chromaticity of the chicken comb was analyzed. Machine 
learning methods were used to predict the chicken’s health status 
based on the chromaticity feature. The performance analysis of the 
developed machine learning models proved that the classification of 
healthy and infected chicken is viable based on the chromaticity of the 
chicken comb features. All the developed models have excellent 
generalization to recognize the infected chicken. The results suggest 

that the chicken comb chromaticity-based algorithm can provide 
prediction and detection of infected chicken. This algorithm can 
be applied as a disease monitoring system for the chicken on the farm. 
In addition, this algorithm can be integrated with other morphological, 
locomotor, and mobility-based algorithms for detecting infected 
chickens. Thus, the risk of significant diseases outbreak on the farm 
could be minimized.
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TABLE 3 Summary of related works.

References Features/Input data Technique Model/Algorithms Performance

Zhuang et al. (28)
Concavity, skeleton altitude angle, shape features, 

linear area rate, elongation, and circularity
Image processing SVM Polynomial kernel 99.469% accuracy

Okinda et al. (27)
Circle variance, elongation, convexity, complexity, 

eccentricity, and walk speed
Image processing SVM RBF kernel 97.800% accuracy

Zhang and Changxi (30) Abnormal swelling detection Deep learning ResNet
95% accuracy

90% sensitivity

Mbelwa et al. (57) Abnormal dropping Deep learning XceptionNet 94% accuracy

Mbelwa et al. (58) Abnormal dropping Deep learning XceptionNet 98.24% accuracy

Zhuang and Zhang (29) Chicken images, feather texture, posture Image processing and deep learning CNN 99.7% precision
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