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Toxicity with heavymetals has proven to be a significant hazard with several health
problems linked to it. Heavy metals bioaccumulate in living organisms, pollute
the food chain, and possibly threaten the health of animals. Many industries,
fertilizers, tra�c, automobile, paint, groundwater, and animal feed are sources
of contamination of heavy metals. Few metals, such as aluminum (Al), may be
eliminated by the elimination processes, but other metals like lead (Pb), arsenic
(As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic
toxicity in animals. Even if these metals have no biological purpose, their toxic
e�ects are still present in some form that is damaging to the animal body and
its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a
number of physiological and biochemical processes when exposed to sub-lethal
doses. The nephrotoxic e�ects of Pb, As, and Cd are well known, and high
amounts of naturally occurring environmental metals as well as occupational
populations with high exposures have an adverse relationship between kidney
damage and toxic metal exposure. Metal toxicity is determined by the absorbed
dosage, the route of exposure, and the duration of exposure, whether acute or
chronic. This can lead to numerous disorders and can also result in excessive
damage due to oxidative stress generated by free radical production. Heavy
metals concentration can be decreased through various procedures including
bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal
process. This review discusses few heavy metals, their toxicity mechanisms, and
their health impacts on cattle with special emphasis on the kidneys.
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Introduction

The existence of heavy metals in animal feed and water is injurious to animal health
because of their bioaccumulation (1, 2). Few heavy metals including As, Cd, and Pb are
well known for their toxicity, while others such as zinc (Zn), copper (Cu), cobalt (Co),
manganese (Mn), iron (Fe), magnesium (Mg), and selenium (Se) are necessary for key
physiological functions in trace amounts (3–6). Among all metals, Pb, As, and Cd have
more negative effects on both animal and human health (7, 8). Mercury (Hg), Cd, and
Pb are examples of toxic heavy metals that are dangerous even at very low doses and
have no known biological benefits (9). Pb and Cd negatively impact several biochemical
and physiological processes when exposed to sub-lethal doses (10, 11). Ruminants are
often exposed to environmental poisons that are toxic at certain dosages in a number
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of areas (12, 13). However, they are particularly vulnerable to
Cd, Pb, As, and Flouride (F−) environmental poisoning (14, 15).
Domestic animals live in the same environment as people and
are susceptible to heavy metals mostly through the plants, feed,
soil, and water in their environment (16, 17). To a lesser extent,
they are exposed through the air they breathe because of industrial
and traffic pollution (18). The secondary cause of heavy metal
contamination in animals is the use of pesticides, insecticides,
and fertilizers in agricultural fields (19–21). Due to their many
industrial, technological, domestic, medicinal, and agricultural
applications, the risk of heavy metals exposure has significantly
increased in the modern era as shown in Figure 1 (22–24). Animal
feeds which might be one of the main sources of these heavy
metal contaminations in animals have been found to contain higher
amounts of heavy metals like Pb and As (25–27).

Contaminants of heavy metals enter the food chain through
agriculture and industry (28, 29). These substances have a
significant potential for acute toxicity. Because they are hazardous
metals, land toxic metals can enter plants and accumulate within
them (30, 31). The susceptibility of animals and livestock to toxic
metals is affected by many factors (32, 33), of which the mixture
of necessary and harmful components is possibly one of the most
significant (34–36). Toxicity varies according to the animal’s trace
element metabolic state, and toxic metals also have an impact on
the metabolism of trace elements.

Heavy metals are toxicants for edible offal and meat (37,
38). They pose a risk to animal health since they can result in
conditions that affect kidney function as well as the cardiovascular
and nervous systems and damage different organs such as the
reproductive system, nervous system, the respiratory system, the
liver, the gastrointestinal tract, and the endocrine system (39, 40).
The toxicants Pb, As, and Cd are common and have been linked to
kidney damage at high exposure levels (41, 42). The nephrotoxic
effects of Pb, As, and Cd are well established and have high

FIGURE 1

Source of heavy metals toxicity in animals (derived from bio render).

amounts of naturally occurring environmental metals; in addition,
occupational populations with a high level of exposure have an
adverse relationship between kidney damage and toxic metal
exposure (43, 44). Heavy metals have mutagenicity, teratogenicity,
and carcinogenicity; they induce poor body conditions, reduced
reproduction rate, and lead to immunosuppression in domestic
animals even at lower dosages (45, 46) because heavy metals
easily cross food chains and are not recognized to perform any
vital biological functions (47, 48). Toxic elements like Cd, Pb,
Hg, and As can contaminate milk (49, 50). Livestock production
may be negatively impacted by exposure to either excessive levels
of harmful metals like Pb and Cd or inadequate amounts of
vital trace elements like molybdenum and selenium (51–54).
Livestock is valued highly in different regions of the world (55, 56).
Approximately 1.3 billion habitats worldwide live in developing
countries where their source of income indirectly or directly
depends on livestock (57–60).

Metals in their ionic form can interact with biological systems
and toxicological targets in a wide range of ways, which chemically
speaking can make them very reactive (24, 61–63). The main
livestock species affected by metals poisoning in this context is
cattle, which are mostly fed locally grown fodder (64, 65). To assess
the potential impacts of pollutants on livestock themselves and to
quantify contaminant consumption in people, it is crucial to be
aware of the levels of hazardous metals in cattle (66–69). After the
energy sector, agricultural production (mostly themanufacturing of
ruminant milk and meat) is responsible for the greatest greenhouse
gas emissions, which have a negative influence on the environment
(70, 71). Because of the changing environment, there is a constant
requirement for the supply of nutritious feed for animals, especially
cattle (72–74). This review aimed to comprehensively present heavy
metals toxicity mechanism and effects, with a special emphasis on
the disorders of the kidney system and the prevention of heavy
metal contamination in cattle exposed to heavy metals.
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Heavy metals: Their toxicity
mechanism and e�ects

Metals are entering the environment at an increasing rate
due to industrialization. These metals are permanent because the
environment cannot decay them. They eventually make their way
into cattle tissue through the meal, where they first enter (51, 75).

Lead (Pb)

Lead is a chemical belonging to the carbon group of the periodic
table with the symbol Pb and the Latin name Plumbum, which
means “the liquid silver.” Pb has an atomic number of 82, and it was
the first chemical with a specific type of toxicity. As one of the most
dangerous and ubiquitous environmental contaminants, Pb affects
all biological systems when it comes into contact with food, drink,
and air (76). Exposure to Pb causes clinical pathological changes by
raising toxicity in the endocrine system and the kidney (77).

Pb is considered one of the major environmental toxins in
industrial areas of the world and animals are frequently exposed
to it (78, 79). Numerous environmental factors including industrial
pollution, agricultural practices (80), cosmetics, automobiles,
paints, and contaminated feed and soil (Figure 2) can cause
Pb poisoning, which is especially common in animals (81, 82).
Accumulated Pb is toxic in its chemical composition whether it is
ingested or consumed in feed or water (83).

Orally administered Pb is only minimally absorbed by the host.
However, continuous exposure to Pb, even at low levels, and due to
its slower rate of removal, dangerous levels of Pb can accumulate
in tissues (84), which is due to an increase in reactive oxygen
species (ROS) such as superoxide radicals, hydroxyl radicals, lipid
peroxides, and hydrogen peroxide (85). In mammals, ROS is
produced either by nicotinamide adenine dinucleotide phosphate
oxidase or the mitochondrial electron transport chain which
plays a role in controlling genomic stability, cell proliferation,
and differentiation (82, 86). Increased ROS production occurs in
many pathologic situations, including premature senescence and
hematopoietic stem cell and oxidative stress due to Pb exposure,
though induced hematopoietic stem cell function remains unclear
(87, 88). There are approximately forty heavy metals that can be
combined with a broad variety of organic molecules and powerful
enzyme inhibitors due to their interaction with the ligand present
in the protein and inactivate the system cell of enzymes (83, 89).

E�ect of lead on cattle
Numerous clinical signs of Pb exposure in cattle have been

noted in toxicological studies (90). Young calves of beef cattle find
automotive and other mineral oils extremely appealing; hence, they
are more likely to be harmed (91). However, the risk of acute
exposure in cattle owing to grease and Pb-contaminated engine
oil has decreased as Pb use is limited in many countries (92).
Acute Pb toxicity in buffaloes and cattle affecting essential trace
mineral profiles was caused by contamination of vegetation and
pastures near battery manufacturing smelters (battery recycling
units) and lead zinc smelters (61, 93, 94). Due to their innate

eating habits, cattle are more likely to get poisoned. Hungry cattle
eat everything and their chances of ingesting objects containing
lead are very high (95). It acts similar to calcium in the body
and builds up in the kidney, the liver, and other tissues (96,
97). Clinically, poisoned cattle typically exhibit indications of
malnutrition, emaciation, muscle loss, aberrant fetal development,
opaque hair, and moderate anemia and thickening of phalange
epiphyses (78, 98, 99). Additionally, according to other studies,
Pb-poisoned cattle exhibit ataxia, paresis of the hypoglossal nerve,
severe depression, muscle twitching, convulsions, coma, death, and
respiratory failure (83, 100). Pb is a tissue toxin that accumulates
over time and is stored throughout the body but especially in the
bones, the liver, the kidney, and the brain (101, 102). A primary
component of ingested blood Pb burden that raises blood Pb levels
is stored Pb in the body (61). An additional significant source of Pb
exposure in cattle is grease from machinery and empty paint cans
(83, 103, 104).

Chelation therapy for mercury and lead poisoning can
occasionally be fatal because the Pb deposit can cause an abrupt
influx of lead into the blood, severely damaging the kidney and
the brain (83, 96). Most cases of Pb poisoning are either acute or
chronic (105, 106). The death rate from Pb poisoning might reach
100% in cases of acute Pb poisoning (107, 108). The indicators of
acute Pb poisoning in cattle appear suddenly, and the animal may
pass away in the pasture within 24 h (109, 110).

Mechanism of action of lead on kidney
Renal dysfunction may result from Pb exposure at high levels

(>60 g/dL) (111, 112). Even a trace amount of Pb (<10 g/dL) can
cause the same issue (113, 114). Chronic and acute nephropathy
are two different forms of renal dysfunction. Nuclear enclosing
bodies, which comprise Pb protein complexes and degenerative
alterations in the tubular epithelium, can be used to classify
acute nephropathy both visually and functionally as a mechanism
of decreased tubular transport (8, 11). Acute nephropathy may
produce an abnormal secretion of glucose amino acids and
phosphates, a combination known as Fanconi’s syndrome (115),
although it is not the cause of protein appearing in the urine.
Chronic nephropathy, on the other hand, is easier to treat but can
result in permanent morphological and functional abnormalities.
It causes hyperuricemia, hypertension, and renal breakdown but is
classified by glomerular and tubulointerstitial variants (116, 117).

The oxidative stress that Pb exposure induces appears to
have a detrimental effect on the kidneys of cattle, leading to the
development of renal toxicity (118, 119). Cattle exposed to Pb have
higher levels of lipid peroxidation in their kidneys (23, 120). Long-
term Pb exposure causes the kidney to produce lipid peroxidation
and free radicals, which lead to a loss of membrane permeability
and the inactivation of components of tubular cells (121, 122).
Pb affects the amount of Glutathione (GSH) and the function
of antioxidant enzymes like catalase (CAT), glucose-6-phosphate
dehydrogenase (G6PD), glutathione peroxidase (GPx), superoxide
dismutase (SOD), and glutathione S-transferase (GST) in cattle
(123). This indicates that a considerable decrease in the antioxidant
enzyme activity in renal tissues is caused by continuous oral Pb
exposure (64, 124, 125). The mechanism of the effects of Pb
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FIGURE 2

Source and e�ects of lead (derived from bio render).

on enzymes can be complicated given that Pb can competitively
hinder bio-element absorption or bind with the SH group of
proteins (64). Oxidative stress as a mechanism of Pb toxicity in
the kidney shows that Pb exposure causes an increase in apoptosis
in the kidney (126). The frequency of apoptotic bodies inside
proximal tubular cells increased after 12 weeks of continuous
lead acetate therapy (23, 127). Therefore, it is conceivable that
Pb poisoning affects the gene expression of proteins involved in
apoptosis. Following absorption, Pb is transferred to a variety of
bodily tissues. Pb exposure causes histopathological alterations in
the renal proximal tubular epithelium, which result in interstitial
nephritis typically associated with hypertension (128, 129). Pb
gets collected in the renal cortex’s proximal involuted tubules,
which exhibit morphological and biochemical signs of Pb toxicity
(130). Occult Pb nephropathy may not be detected as such
because acute Pb-induced kidney damage can happen without
acute overdose (131). Renal function impairment occurs as a
result of persistent lead buildup in the body. It was concluded
that the formation of renal toxicity due to environmental lead
exposure results in major pathological lesions on the kidney of
cattle that appears to be influenced by oxidative stress (23, 132,
133).

Arsenic (As)

Arsenic is an environmental chemical substance of great
significance to animal health (11, 134). Sodium arsenate, sodium

and arsenic pentoxide, and disodium or monosodium acid are
all deadly forms of As (107, 135), and their environmental
contamination poses a serious health risk. Arsenic is a harmful
element that is found everywhere and has become more
concentrated in water and soil as shown in Figure 3 (136, 137).
It can be found in inorganic, organic, pentavalent, and trivalent
forms, and it can combine with a wide range of elements, including
Pb, O, H, Cu, and S (31, 138). Similar to human exposure, cattle in
As-affected areas are also exposed to hazardous quantities of the
metal (6, 107). In places where As contamination is a problem,
sources of As for animals other than drinking water include feed
ingredients. Arsenic is frequently found in liquids used to dip
and spray animals to control ectoparasites and cause toxicity
(123). Arsenic-contaminated drinking water, feeds, vegetables, and
grasses being fed to the large number of animals kept by the
people severely affects the health of the animals (96). High levels of
ingested As may remain in the feces, urine, blood, hair, and tissues
of animals that are directly or indirectly consumed by humans. For
instance, As levels of animal products are greater in polluted areas
than in clean ones (17, 96). Similarly, when cattle are already As-
affected, the use of their manure in agriculture and home settings
causes As poisoning of the environment (139).

In terms of human health, atmospheric emissions are typically
the most concerning due to the amounts involved as well as the
vast dispersion and exposure risk that frequently results (140). The
intake of meat and other animal products from infected cattle could
expose people to the hazardous effects of As (141). However, arsenic
exposure is not only due to the presence of hazardous substances
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FIGURE 3

Source and mechanism of arsenic exposure (derived from bio render).

but also environmental contact, which is an important element in
the exposure of As (31, 142). Depending on the kinds of food that
animals eat, the level of accumulation of As in varying amounts is
determined. Cattle exposed to As pass on this metal in their milk
and meat. For instance, in contaminated locations, As has also been
found in cow meat and milk (141, 143). The WHO puts a tolerable
intake of As at 3.0 g/kg body weight (144).

E�ects of arsenic on cattle
Compared to other species, cattle are more susceptible to

As poisoning (145). Cattle arsenic toxicity symptoms range from
gastrointestinal to nervous system symptoms (31), severe digestive
tract inflammation, weight loss, severe gastrointestinal disease,
unpredictable appetite, conjunctivitis, mucosal erythematous
lesions, and decreased milk production (146, 147). Kidney
hyperemia and severe parasite infestation in the abomasum walls
were both discovered by microscopic inspection (148, 149). The
affected cattle showed decreased superoxide dismutase and catalase
activities, decreased plasma nitrite and erythrocyte levels, and an
increased rate of lipid peroxidation, protein carbonyl, and blood As
levels in comparison to those raised in As-free areas (150, 151).

Mechanism of action of arsenic on kidney
Cattle exposed to As evolve tubular necrosis, glomerular

sclerosis, and increased N-acetyl beta-D-glucosaminidase (NAG)
concentration in urine (152–154). They also experienced DNA
oxidative damage and increased oxidative stress in the kidneys

(155, 156). Arsenic is believed to cause endothelial dysfunction and
promote inflammation and oxidative stress (157), which may cause
kidney damage; however, these are rather general mechanisms
(158, 159).

The higher lipid peroxidation in the kidney after As treatment
may be caused by the formation of superoxide anion radical
according to the decreased SOD activity in the kidney as shown
in Figure 3 (160, 161). When molecular oxygen interacts with
the dimethyl arsine metabolite of dimethyl As acid, free radicals
are produced. These radicals are believed to be superoxide anion
radicals, which are created when dimethyl arsine reduces molecular
oxygen by one electron. Arsenic induced kidney lipid peroxidation
and unchanged SOD activity point to no superoxide anion buildup
(162, 163).

Inorganic arsenic is methylated by two distinct enzymatic
processes (164). It has been shown that trivalent inorganic As has an
inhibiting influence on the second methylation process that results
in the creation of dimethyl As acid (165). Although one of the
detoxication steps for As is methylation, the cellular methyl group
intake results in DNA hypomethylation, which alters the gene
expression and causes cellular change (166). Inorganic trivalent
arsenic (AS3+) and pentavalent arsenic (As5+) exhibit significantly
different acute toxicity and biological processes. The renal tubules
actively transport arsenate (As5+), and a minor portion of this
form is converted to AS3+, the molecule that is more acutely
poisonous (138, 167). It was concluded that the formation of
renal toxicity by As exposure causes major kidney problems in
cattle influenced by oxidative stress and lipid peroxidation (167–
169).
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Cadmium (Cd)

The chemical element Cd has the atomic number 48. This
silvery white and soft metal is chemically similar to the other two
stable metals (zinc and mercury) in group 12 (170, 171). It is a
heavy metal that is both naturally present and released as part of
industrial pollution (172). Typically, it is found in minerals along
with other elements like chlorine (cadmium chloride) (173–175),
oxygen (cadmium oxide), or sulfur (cadmium sulfide, cadmium
sulfate) (176). Although it is unknown how it operates biologically
in either animals or people, it resembles the effects of other divalent
metals that are crucial for a variety of biological processes (177,
178). In the aquatic environment, the presence of Cd is linked to
Cd and other toxic metals being released from mining, sewage, and
processing of toxic metals (179). The main sources of Cd include
refined foods, water, coffee, water pipes, tea, burning coal, and
chimneys (180, 181).

Commercial uses for Cd include TV screens, paint pigments,
lasers, batteries, cosmetics, galvanizing steel, acting as a barrier in
nuclear fission, and weld sealing in lead water pipes as shown in
Figure 4 (182, 183). Cd exposure occurs from taking contaminated
food (e.g., organ meat, crustaceans, rice from certain areas of China
and Japan, leafy vegetables) or water (Cd and Zn sealed water pipe
and industrial pollution) and can cause long-term health issues.
Contaminated dietary supplements and drugs are also a source of
contamination (176, 184, 185). Dietary consumption of Cd varies
between 40 and 50 g per day (175, 186).

E�ects of cadmium on cattle
Almost every system in the cattle body is affected by Cd

toxicity (176, 186). The toxic effects of Cd include lung damage,
hypertension, hepatic injury, and kidney dysfunction (187, 188).
High amounts of Cd have been discovered in the kidneys, muscles,
bones, and liver of cattle in Marrakech, Morocco (186, 189) where
the sewage treatment fields have disrupted the normal metabolism
of trace elements and reduced the levels of Zn and Cu (171, 190).
Cattle slow the cellular clearance of Cd and the ineffectiveness
of cellular export systems accounts for the element’s prolonged
retention in storage tissues such as the colon, the liver, and the
kidneys (37, 191, 192). For instance, in Nigeria, cattle grazing in
regions with high Cd contamination have been shown to have high
amounts of themetal in their muscles, liver, and kidneys, which also
reduced the quality of their meat (31, 193).

Mechanisms of toxicity of cadmium on kidney
Cadmium toxicity has been observed in many organs and

Cd induces tissue damage through oxidative stress (194, 195),
epigenetic alterations in DNA expression (196), and upregulation
and inhibition of the transport pathway (197), especially in
proximal S1 region in tubules of the kidney (198, 199). The
kidney is the main organ affected by Cd toxicity (171), and the S1
portion of the proximal tubule is a prime target for Cd deposition.
As a result of Cd-induced oxidative damage to carrier proteins
and mitochondria (181), Fanconi syndrome is characterized by
clinically visible defects in protein, bicarbonate, phosphate, and
amino acid reabsorption (200, 201). Approximately thirty percent

of body Cd is accumulated in kidney tubule segments, with tubular
injury proportional to the amount of Cd that is not bound to
metallothionein (202, 203). It was concluded that Cd toxicity
damages the kidney through oxidative stress.

Geographical distribution of metal
toxicity in cattle

Metal toxicity has been observed in different animals, but our
focus is on cattle in this review. We found that metal toxicity
is highly prevalent in cattle worldwide as detailed in Tables 1–3.
Different metals have been examined in various studies among
which one study measured Cd, As, and Pb concentrations in meat,
kidney, and liver from 56 cattle and 438 calves slaughtered in
Galicia, Spain in 1996. In cattle, the concentrations were observed
as 0.057, 0.066, 0.017 mg/kg (Pb), 0.046, 0.068, 0.005 mg/kg (As),
and 0.097, 0.458, 0.001 mg/kg (Cd) in meat, kidney, and liver,
respectively. The concentrations of Cd, As, and Pb in cattle in
Galicia infrequently exceeded the maximum acceptable limits that
many nations have adopted (235).

In another study, the correlation between toxic As, Cd, and Pb
was examined in the kidney, muscle, blood, and liver of 494 cattle
fromGalicia. These interactions aremost likely a result of the effects
that Cd has on the synthesis of metallothionein (107, 236). In the
kidney, Pb and Zn were positively correlated; however, it is unclear
how they interact. Overall, the levels of Pb and As in Galician cattle
do not pose a threat to animal health. However, in some areas of
Galicia, up to 20% of the cattle had toxic levels of Cd in their kidney
(Table 3) (235, 237).

In a study in Belgium, trace element concentrations were
found in the kidney, liver, and meat of cattle that had spent more
than 18 months in areas that historically had been polluted by
emissions from non-ferrous metal production or in areas with
high levels of metals contamination (120, 238, 239). Trace element
values were calculated using coupled plasma mass spectrometry.
Concentrations of Cd, As, and Pb in meat were low in cattle (240).
However, cattle from the polluted areas had kidney concentrations
that were, respectively, 1.8, 2.2, and 2.5 times higher than those
of animals from the reference locations. The European maximum
level for Cd in cattle kidneys exceeded 75% in cattle from polluted
environments and 47% of kidneys from reference sites. The levels
of Cd, As, and Pb in cattle livers from polluted locations were 2.3
times higher. Cattle accumulated muchmore Cd in the kidneys and
Pb in the liver and kidneys (Table 1) (120, 186).

In another study, metal detoxification and accumulation
processes were determined in cattle from unpolluted and polluted
areas of Italy. Dairy cattle from farms and free-ranging cattle
from nature reserves were chosen as study animals (241). The
concentration of Pb, Cd, and As were determined in the kidney,
muscle, blood, and liver of cattle from reference and polluted areas.
Cattle from contaminated areas had higher internal concentrations
of Cd, Pb, and As than cattle from reference areas (Table 2)
(206, 242). In another study, the results suggested Cd as the most
important metal for MT induction in the kidney. Pb and Cd were
significantly higher in both cattle from polluted and breed areas
(243). While Cd concentration exceeded the European level by 85%
in the kidney and 40% in the liver from sampled cattle, it was
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FIGURE 4

Source, mechanism, and e�ects of cadmium (derived from bio render).

higher in the kidney and the liver of cows from contaminated areas
(Table 3) (222, 244).

In yet another study, concentrations of Cd, As, and Pb was
determined in the kidney and the liver of cattle near a lead
and zinc mine in Zambia, which was ranked among the top ten
contaminated places in the world. The concentration of metals was
measured in the kidney and liver of 51 cattle from Kabwe and other
places in Zambia (79). Maximum metal concentrations expressed
in the kidney and the liver were 0.05 As, 19.37Cd, and 1.8 Pb.
Concentrations of Cd and Pb in Kabwe cattle were high than the
cattle from other parts of Zambia; the mean concentration of Cd
exceeded the benchmark value (Table 3) (207, 245).

Pb poisoning is commonly detected in American cattle. In one
of the studies, three groups of cattle were selected from various
herds that had accidentally been in contact with discarded Pb
batteries in the pasture (246). Blood samples were collected from
cattle and monitored for changes in Pb concentration. The herds
had Pb concentrations that were indicative of acute Pb exposure
(>0.35 ppm) and asymptomatic Pb toxicities; between 7% and
40% of these asymptomatic cattle were in the high normal limit
(0.1–0.35 ppm) (Table 1) (99).

One study evaluated the epidemiology of acute Pb poisoning in
cattle in Canada over 16 years from 1998 to 2013. Over the duration
of the study, there were 525 incidents of acute Pb poisoning.
The toxic level of Pb was 11.2% in 2001, reduced to 9.9% in
2006, and rose to 15.6% in 2009 (78). Cattle calves six months
of age were frequently poisoned (53.5%). The mean toxic Pb
concentration in the kidney, the liver, and the blood was 56.3 ±

39.7 (n = 61), 33.5 ± 80.5 (n = 172), and 1.30 ± 1.70 (n = 301),
respectively. The mean normal Pb concentration in the kidney,
the liver, and the blood was 0.41 ± 0.62 mg/kg (n = 64), 0.16

± 0.63 mg/kg (n = 382), and 0.036 ± 0.003 mg/kg (n = 1,081),
respectively (78).

Toxicokinetics

The majority of industrial activities affect animals and the
environment in both favorable and unfavorable ways. The energy
usage mitigation measures are coupling desalination plants with
renewable energy sources such as wind power, geothermal energy,
tidal power and solar energy (247). Typically heavy metals removal
techniques may depend on the reliability of the plants, cost,
operation, concentration of competitive ions and concentration of
heavy metals in water (248).

The total body kinetics that a chemical is subjected to in an
organism is referred to as toxicokinetics (193, 249). A toxicant
enters an organism through absorption. It is distributed throughout
the organism through diffusion (250). The chemical is subsequently
broken down into less dangerous metabolites, which the organism
may expel or store in different regions of its body (251). A chemical
toxicokinetic state can vary with prolonged exposure (252). In
toxicokinetics, the type of chemical which will end up in the animal
depends on the physicochemical composition of the metal and the
biological makeup of the recipient organism (253, 254). Metals
are absorbed into an organism either by conveyors or diffusion.
Pb ion, an electrically charged particle, enters using conveyors or
carriers like proteins (255). Other substances can enter intracellular
compartments through damaged membranes. Another possibility
is loss from the cells, which would result in a drop in intracellular
concentration. The amount of toxicity felt by the organism directly
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TABLE 1 Lead toxicity observed in di�erent organs of cattle.

Animal Organ Normal range Toxicity level Country References

Cattle Kidney 0.1–0.35 ppm >0.35 ppm Canada (99)

Cattle Blood 0.1 mg/kg 1.30 mg/kg Western Canada (78)

Cattle Liver 0.1–1.0 mg/kg 33.5 mg/kg Western Canada (78)

Cattle Kidney 0.2–1.0 mg/kg 56.3 mg/kg Western Canada (78)

Cattle Kidney 30 ppm 35.7–284.5 ppm Paraná and São Paulo, Brazil (105)

Cattle Body 0.48 mg/kg 2.90 mg/kg England (100)

Cattle Kidney >10 mg/kg >30 mg/kg England (100)

Cattle Liver 10 mg/kg 23.2 mg/kg America (204)

Cattle Kidney 35 mg/kg 62.8 mg/kg America (204)

Cattle Liver 4.99 mg/kg 47.5 mg/kg Spain (107)

Cattle Kidney 5.30 mg/kg 58.3 mg/kg Spain (107)

Cattle Muscle 7.12 mg/kg 50.3 mg/kg Spain (107)

Cattle Blood 4.81 mg/kg 34 mg/kg Spain (107)

Cattle Kidney 6.1 mg/kg 59.7 mg/kg Deza region (NW Spain) (205)

Cattle Blood 0.01 µg/ml 0.60 µg/ml India (76)

Bovine Kidney 0.5 mg/kg 0.8 mg/kg China (206)

Bovine Kidney 0.5 mg/kg 0.1 mg/kg China (206)

Bovine Muscles 0.2 mg/kg 0.001 mg/kg China (206)

Cattle Kidney 0.05 µg/ml 1.04 µg/ml Kabwe, Zambia (207)

Cattle Kidney 0.5 mg/kg 0.52 mg/kg Jamaica (37)

cattle Kidney 0.5 mg/kg 2.64 mg/kg Netherland (208)

Cattle Muscle 2.00 mg/kg 1.95 mg/kg Croatia (209)

Cattle Kidney 0.172 mg/kg 0.167 mg/kg Croatia (209)

Cattle Kidney 0.04–2.97µg/g 0.92µg/g Canada (210)

Cattle Kidney 0.022–1.21 mg/kg 0.006 mg/kg Belgium (211)

Cattle Kidney 0.05 ppm 0.08 ppm India (120)

Cattle Kidney 0.006 mg/kg 0.002 mg/kg Italy (212)

Cattle Blood 0.46µg/g 0.54µg/g Pakistan (213)

depends on the uptake and reduction in intracellular concentration
(256, 257).

Biological transformation

Biological transformation is the process of transforming
substances within an organism (258). Biological transformation
processes show how the organism’s toxicant concentrations are
decreased after being ingested (259, 260). The chemical breakdown
within an organism is crucial to the biological transformation
process because it creates new less dangerous compounds (261).
In phase 1, enzymes convert a chemical toxin through the
oxidative, reductive, and hydrolytic processes (262). In phase 2,
transferase enzymes involve in the transformation of chemicals
formed by toxicants. At this stage, the hydrophilicity of toxicants
is increased (263).

Prevention and control of
bioaccumulation of toxic metals

Physical danger could potentially injure an animal and its
consumer physically; therefore, safe meat must be free of toxic
metals. Soil remediation is employed to make soils more useful and
therefore indirectly lower the susceptibility of animals to hazardous
metals (123, 264).

Bioremediation

Techniques for restoring soil are dependent on chemical or
biological principles. Toxic metals that damage the environment
are removed from water and soil through bioremediation (53, 265).
This entails using microbes and plants to biologically restore the
utility values of polluted areas (266, 267). As a result, the hazardous
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TABLE 2 Arsenic toxicity observed in di�erent organs of cattle.

Animal Organ Normal range Toxicity level Country References

Cattle Liver 4.57 mg/kg 10.02 mg/kg Spain (107)

Cattle Kidney 5.03 mg/kg 15.2 mg/kg Spain (107)

Cattle Muscle 3.34 mg/kg 4.25 mg/kg Spain (107)

Cattle Blood 3.11 mg/kg 2.92 mg/kg Spain (107)

Cattle Muscle 6.07 mg/kg 5.87 mg/kg Croatia (209)

Cattle Kidney 0.033 mg/kg 0.031 mg/kg Croatia (209)

Cattle Kidney 0.1 mg/kg 0.1–0.5 mg/kg Croatia (214)

Cattle Kidney 0.02–0.20µg/g 0.17µg/g Canada (210)

Cattle Liver 0.02–0.13µg/g 0.26µg/g Canada (210)

Cattle Kidney 0.002 mg/kg 0.048 mg/kg Netherland (210)

Cattle Liver 0.002 mg/kg 0.013 mg/kg Netherland (210)

Cattle Meat 0.002 mg/kg 0.004 mg/kg Netherland (210)

Cattle Kidney 0.002 mg/kg 0.048 mg/kg Netherland (215)

Cattle Kidney 0.002 mg/kg <0.02 mg/kg Finland (216)

Cattle Kidney 0.002 mg/kg 0.034 mg/kg Germany (217)

Cattle Kidney 0.002 mg/kg 0.03 mg/kg Australia (218)

Cattle Kidney 0.002 mg/kg 0.018 mg/kg Australia (219)

Cattle Kidney 0.001–0.147 mg/kg 0.030 mg/kg Belgium (211)

Cattle Kidney 0.002 mg/kg 0.001 mg/kg Italy (212)

metals in plants get immobilized, preventing their proliferation.
These contaminants can be absorbed by bacteria that live in
harmony with these plants (268).

Phytoremediation

Utilizing phytoremediation, landfill soils are recovered. This
technique is based on the utilization of plants that take up metals
from the soil or water and collect them (269, 270). The capacity of
plants to store and absorb metals as well as their accessibility to the
plants both affect the efficacy of phytoremediation (271, 272).

Rhizofiltration

Rhizofiltration is a type of phytoremediation in which
wastewater, surface water, and contaminated groundwater are
filtered by a dense network of roots to remove toxins or surplus
nutrients (273, 274). The pollutants on the root undergo both
adsorption and absorption during the process (275). Rhizofiltration
is used for removing heavy metals from the environment.

Biochar

The term “biochar” refers to a material rich in carbon
formed during the pyrolysis process, which is the thermochemical

degradation of biomass at a temperature of roughly 700◦C
with little or no oxygen present (276). Biochar, which can
be used in a variety of environmental applications, syngas,
which is converted into electricity or heat (combined power
and heat), and bio-oil, which can be used as a fuel or added
to petroleum refining products, are all byproducts of pyrolysis
(277–279). The best way to dispose of wastewater is biochar,
which can also be utilized to enhance the soil’s characteristics
and fertility (280). Metals that are not eliminated during sewage
treatment could be successfully decreased by adding biochar
to sewage sludge (281). Pollution in wastewater is reduced by
pyrolyzing it to create biochar and using it further. Biochar
lowers the bioavailability of harmful metals and raises the pH
of the soil (282). Additionally, biochar has the potential to
enhance soil quality and drastically lower the bioavailability
of hazardous metals (283). Biomass is pyrolyzed to make
biochar (282).

Pyrolysis

Pyrolysis is the thermal breakdown of organic compounds
at temperatures between 300 and 900◦C in an oxygen-free
atmosphere (284, 285). The technique of pyrolysis involves heating
sewage sludge in an inactive environment to release organic
material that can subsequently be recycled (286, 287). The heavy
metals are concentrated by this mechanism around carbonaceous
deposits (288).
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TABLE 3 Cadmium toxicity observed in di�erent organs of the cattle.

Animal Organ Normal range Toxicity level Country References

Cattle Liver 6.15 mg/kg 23.4 mg/kg Galicia, NW Spain (107)

Cattle Kidney 5.91 mg/kg 110 mg/kg Spain (107)

Cattle Muscle 9.46 mg/kg 8.28 mg/kg Spain (107)

Cattle Blood 9.17 mg/kg 1.65 mg/kg Spain (107)

Cattle Kidney 0.3 mg/kg 59.7 mg/kg Deza region (NW Spain) (205)

Cattle Kidney 0.01 µg/ml 0.05 µg/ml India (220)

Cattle Kidney 1.0 mg/kg 2.15 mg/kg China (206)

Bovine Liver 0.5 mg/kg 2.47 mg/kg China (206)

Bovine Muscle 0.01 mg/kg 0.02 mg/kg China (206)

Bovine Kidney 0.05 µg/ml 19.37 µg/ml Kabwe, Zambia (207)

Cattle Kidney 0.1 mg/kg 9.58 mg/kg Netherland (208)

Cattle Kidney 0.1 mg/kg 10.3 mg/kg Morocco (221)

Cattle Kidney 0.1 mg/kg 33.1 mg/kg Jamaica (37)

Cattle Liver 0.1 mg/kg 0.642 mg/kg Belgium (186)

Cattle Kidney 0.1 mg/kg 4.22 mg/kg Belgium (186)

Cattle Liver 0.50 mg/kg 2.655 mg/kg Belgium (186)

Cattle Kidney 0.1 mg/kg 15.3 mg/kg Belgium (186)

Cattle Liver 0.50 mg/kg 1.17 mg/kg Belgium (222)

Cattle Kidney 0.1 mg/kg 7.99 mg/kg Belgium (222)

Cattle Liver 0.50 mg/kg 0.061 mg/kg Finland (223)

Cattle Kidney 0.1 mg/kg 0.35 mg/kg Finland (223)

Cattle Kidney 0.1 mg/kg 0.036 mg/kg Finland (224)

Cattle Kidney 0.1 mg/kg 8.63 mg/kg Ireland (225)

Cattle Kidney 0.1 mg/kg 1.66 mg/kg Netherlands (208)

Cattle Kidney 0.1 mg/kg 0.25 mg/kg Poland (226)

Cattle Kidney 0.1 mg/kg 0.937 mg/kg Poland (227)

Cattle Kidney 0.1 mg/kg 0.161 mg/kg Spain (228)

Cattle Kidney 0.1 mg/kg 0.545 mg/kg Spain (229)

Cattle Kidney 0.1 mg/kg 0.39 mg/kg Sweden (230)

Cattle Kidney 0.1 mg/kg 0.373 mg/kg Slovenia (211)

Cattle Kidney 0.1 mg/kg 0.65 mg/kg Australia (231)

Cattle Kidney 0.1 mg/kg 38.3 mg/kg China (206)

Cattle Kidney 0.1 mg/kg 7.92 mg/kg Jamaica (37)

Cattle Kidney 0.1 mg/kg 0.1371 mg/kg Iran (232)

Cattle Kidney 0.1 mg/kg 4.38 mg/kg Morocco (221)

Cattle Muscle 0.348 mg/kg 0.341 mg/kg Croatia (209)

Cattle Kidney 0.544 mg/kg 0.535 mg/kg Croatia (209)

Cattle Kidney 2.91µg/g 17.84µg/g Canada (210)

Cattle Kidney 0.093–4.22 mg/kg 0.002 mg/kg Belgium (211)

Cattle Kidney 0.05 ppm 0.09 ppm India (120)

Cattle Kidney 0.001 mg/kg 0.0008 mg/kg Italy (212)

Cattle Kidney 0.41 mg/kg 11.50 mg/kg Ethiopia (233)

Cattle Liver 0.06 mg/kg 0.5 mg/kg Ethiopia (233)

Cattle Liver 0.46µg/g 0.54µg/g Pakistan (213)

Cattle Kidney 0.5 mg/kg 0.34 mg/kg Turkey (234)
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Leachate

Any liquid that removes soluble or suspended particles and
any other component of the matter it has passed through is
known as leachate (289). Leachate is made up of different
combinations of suspended and dissolved materials, heavy metals
contaminants, inorganic and organic pollutants, and more (290,
291). To avoid the undesirable outcome of surface water and
groundwater contamination, landfill leachate should be gathered
and properly treated. Leachate is produced as a result of waste
degradation or water access, and it can contaminate groundwater
and soil (282, 283). A source of contamination in cattle is metal-
containing leachate.

Thermal process

Manure has a similar energy value to wood waste, making it
a suitable source of biomass for the production of energy (292,
293). Toxic metals are stabilized during the thermal processing
of biomass for energy production, which lessens their toxicity
(294). Most metals remain in their low-toxicity solid phase during
combustion. This procedure generates energy while preventing
metal contamination (294, 295).

Several preclinical and clinical research has examined the
effects of heavy metal supplementation as chelating agents to
facilitate pollutants elimination or as synthetic antioxidants to
mitigate the oxidative stress caused by environmental pollutants
to avoid or lessen toxicity (237, 296). These therapies and
approaches themselves are believed to have a variety of safety and
effectiveness issues.

Conclusion

We conclude that lead and cadmium have high toxicity in
the kidney and thus lead to acute kidney disorders in cattle;
however, arsenic also accumulates in the kidney but at low intensity.
As regards other body parts, these heavy metals penetrate the
liver and muscles, but with lower intensity compared to the
kidney. Advanced technologies can reduce occupational exposure
to heavy metals. Monitoring exposure and perhaps intervening

to reduce subsequent exposure to heavy metals in the animals
and environment can be a significant step toward prevention.
There is an urgent need to decrease the concentration level of
these heavy toxic metals through advanced scientific techniques
such as biochar, bioremediation, and pyrolysis to minimize global
economic losses. In the future, it will help develop advanced
techniques to control heavy metals in cattle. Failure to reduce
the exposure will lead to serious issues in the future due to
the negative effects of heavy metals. National and international
collaboration is essential for developing adequate heavy metal
toxicity prevention strategies.
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