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Background and objectives: Animal models for motor neuron diseases (MND)

such as amyotrophic lateral sclerosis (ALS) are commonly used in preclinical

research. However, it is insu�ciently understood how much findings from these

model systems can be translated to humans. Thus, we aimed at systematically

assessing the translational value of MND animal models to probe their external

validity with regards to magnetic resonance imaging (MRI) features.

Methods: In a comprehensive literature search in PubMed and Embase, we

retrieved 201 unique publications of which 34 were deemed eligible for qualitative

synthesis including risk of bias assessment.

Results: ALS animal models can indeed present with human ALS neuroimaging

features: Similar to the human paradigm, (regional) brain and spinal cord atrophy

as well as signal changes in motor systems are commonly observed in ALS animal

models. Blood-brain barrier breakdown seems to be more specific to ALS models,

at least in the imaging domain. It is noteworthy that the G93A-SOD1 model,

mimicking a rare clinical genotype, was the most frequently used ALS proxy.

Conclusions: Our systematic review provides high-grade evidence that preclinical

ALS models indeed show imaging features highly reminiscent of human ALS

assigning them a high external validity in this domain. This opposes the high

attrition of drugs during bench-to-bedside translation and thus raises concerns

that phenotypic reproducibility does not necessarily render an animal model

appropriate for drug development. These findings emphasize a careful application

of these model systems for ALS therapy development thereby benefiting

refinement of animal experiments.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier: CRD42022373146.
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1. Introduction

Preclinical neuroscience has advanced our understanding of the

pathophysiology of neurological diseases, and research in animal

models of these diseases has identified many putative treatment

targets for human diseases. However, this progress stands in stark

contrast to the high attrition rates in drug development, being

among the highest in neuroscience (1–4). This gap in bench-to-

bedside translation can be attributed to multiple factors (5, 6),

some of them inherent to the challenge of developing innovative

therapies (7). However, the inappropriate design and conduct of

preclinical studies have been flagged as major concerns (8–10). To

this end, some attention has focused on external validity (11), i.e.,

the extent to which an experimental finding can be extrapolated to

other settings, e.g., translation from animals to humans (12, 13).

A neuroscience subfield with particularly low bench-to-bedside

translation and only exiguous therapeutic options are motor

neuron diseases (MND), including entities such as amyotrophic

lateral sclerosis (ALS) (4, 14, 15). In these mostly fatal diseases,

magnetic resonance imaging (MRI) has become among the

most important paraclinical tools for diagnostic workup (16–

19). Although unspecific to MND; MRI can present with certain

patterns of brain and spinal cord atrophy as well as signal changes

in the corticospinal tract and motor cortex (Figure 1).

A variety ofMND animalmodels are used for pathomechanistic

investigations of these disorders, most prominently transgenic

rodents with mutations in the SOD1 gene, thus mimicking familial

ALS (24). However, it is insufficiently understood how well these

animal models mimic human MND imaging phenotypes, i.e., what

is external validity of these animal models in the neuroimaging

domain? Improved understanding of the external validity of these

animal models would not only benefit researchers using these

models to assess putative drug candidates for MND, but it would

also help to implement refinement strategies from the 3R—reduce,

replace, refine—within the field (13, 25).

Thus, based on this shortcoming, we here aim at assessing

the external validity of motor neuron disease animal models by

systematically summarizing MRI features of MND animal models,

and to compare these features with human MRI phenotypes. We

focus our analysis on structural MRI as used in the clinical routine

for MND diagnostic work-up. This study complements a recently

published systematic review on structural neuroimaging findings in

human MND (20).

2. Methods

2.1. Protocol registration

We registered a prospective study protocol in the International

Prospective Register of Systematic Reviews (PROSPERO,

CRD42022373146, https://www.crd.york.ac.uk/PROSPERO/) and

Abbreviations: ALS, amyotrophic lateral sclerosis; BBB; blood-brain barrier;

CNS, central nervous system; CST, corticospinal tract; FTD, frontotemporal

dementia; MND, motor neuron disease; MRI, magnetic resonance imaging;

SWI, susceptibility-weighted imaging.

used the Preferred Reporting Items for Systematic Reviews and

Meta-Analysis (PRISMA) guidelines for reporting (26).

2.2. Search strategy

We searched PubMed and Ovid EMBASE for relevant

publications from inception up to December 19, 2022.

See Supplementary Table 1 for the search strings in each of

these databases.

2.3. Inclusion and exclusion criteria

We included original publications that reported on

any structural brain or spinal cord MRI outcome in MND

animal models. Conference abstracts, non-English articles, and

publications which reiterated previously reported quantitative data

were excluded. Reviews were excluded but retained as potential

sources for additional records. Reference lists of these reviews were

screened for additional eligible publications.

2.4. Study selection and data extraction

Titles and abstracts of studies were screened for their relevance

in the web-based application Rayyan (27) by two independent

reviewers followed by full-text screening. From eligible full

texts, the following data was extracted by two independent

reviewers: title, authors, publication year, journal, MND model,

number of animals in the treatment and control groups, MRI

static magnetic field strength, and main findings related to

structural neuroimaging.

2.5. Quality assessment

Risk of bias was assessed against a 3-item checklist according

to the consensus statement for good laboratory practice in the

modeling of stroke (sample size calculations provided, reporting of

animal welfare, statement of a potential conflict of interest) (28), as

well as four items on reporting any measure of randomization or

blinding (29).

3. Results

3.1. General study characteristics

3.1.1. Eligible publications
In total, 364 publications were retrieved from our database

search, and an additional 2 publications from reference lists of

reviews on related topics. After abstract and title screening, 46

publications were eligible for full-text search. After screening the

full text of these records, 34 publications (17% of deduplicated

references) were included for the qualitative synthesis (Figure 2).
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FIGURE 1

Magnetic resonance imaging signs in human amyotrophic lateral sclerosis (ALS). Magnetic resonance imaging (MRI) from two amyotrophic lateral

sclerosis (ALS) patients with the “motor band sign,” i.e., motor cortex hypointensities, on susceptibility weighted imaging [SWI, (A, D)] and T2

hyperintensities along the corticospinal tract on 3T 3D T2w-FLAIR (B, C, E, F). Image adjusted from (20). For comparison, T2 signal changes in rodent

brain stem motor nuclei are shown in (21–23).

3.1.2. Experimental parameters of eligible
publications

The most frequently used MND animal model was the

SOD1G93A transgenic model, mimicking familial ALS (26

publications, 76%, we will refer to these models as ALS animal

models in the remainder of the manuscript). The B6SJL-

Tg(SOD1G93A)1Gur/J was the most commonly used mutant (15

publications, 58%), the B6.Cg-Tg(SOD1G93A)1Gur/J was only used

in one publication, the remaining publications did not further

specify the mutant.

Only mice and rats were used in the eligible publications (30

[88%] and 4, [12%], respectively). The employed static magnetic

field strengths ranged from 1.5T to 17.6T, with most publications

employing 7T (16, 47%). The median sample size of animals

was 10 and 5.5 animals for the experimental and control groups,

respectively (interquartile range, IQR [7–21.75] and [0.75–7.75],

respectively). Four publications did not report the number of

used animals.

Seven publications (21%) tested a therapeutic intervention

for MND, among them mostly stem cell-based approaches (4

publications, 12%) (21, 30–32). One study each investigated

liposomal encapsulated glucocorticoid (33), davunetide (an

intranasal neuropeptide therapy) (34), and deferiprone (an iron

chelator) (35).

More detailed data on experimental parameters can be found in

Supplementary Table 2.

3.1.3. Risk of bias assessment
Most publications showed a low risk of bias in the animal

welfare (reported by 29/34 publications, 85%) and conflict of

interest domain (19/34, 56%). Yet only few publications reported

randomization (7/34, 21%), blinding (6/34, 18%) or sample size

calculations for their study (3/34, 9%) (Supplementary Table 3).

3.2. Neuroimaging findings in motor
neuron disease animal models

3.2.1. Atrophy of brain and spinal cord
Neuroimaging has consistently shown local central nervous

system (CNS) tissue volume loss in MND animal models. Yet the

affected anatomical CNS regions show a high degree of variability

between reports. 1-year old mice overexpressing both APP and

SOD1 mutations exhibited gray matter atrophy, most pronounced

in the hippocampi as well as in entorhinal and cingulate cortices

(36). In contrast, mice only overexpressing SOD1 exhibited

atrophy specifically in cortical regions (cingulate, retrosplenial, and

temporoparietal cortex) but not in the hippocampi (36). A loss

in motor cortex volume has also been observed in the murine

SOD1G93A model at postnatal day 100 (37). However, such motor

cortex atrophy has not been consistent in other study using mice of

similar age (38). Along these lines, a report using the TARDBPQ331K

transgenic mouse strain, i.e., a model for ALS-FTD, found a
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FIGURE 2

PRISMA flow chart for study inclusion. A total of 34 publications were eligible for the qualitative synthesis. MND, motor neuron disease; MRI,

magnetic resonance imaging.

more prominent atrophy in the entorhinal cortex compared to

the motor cortex (39). Mice fed with cycad toxins (resulting in

motor neuron loss) show lower volumes in the substantia nigra,

striatum, basal nucleus/internal capsule, and olfactory bulb (40).

A more recent study using a conditional TDP-43 mouse model

found progressive volume loss of the gray matter in the olfactory

bulb, frontal association cortices, lateral and dorsolateral orbital

cortices, agranular insular cortices, globus pallidus, hippocampi,

dorsal subiculum, secondary visual cortices, as well as in the

cerebellum (41). Finally, several studies described atrophy of brain

stem nuclei (42), particularly ofmotor nuclei, e.g., trigeminal, facial,

and hypoglossal nuclei (34, 38).

Spinal cord volume loss has been observed in the murine

SOD1G93A model (37, 43), but also in the cycad toxin animal

model (40).

3.2.2. Signal changes of brain and spinal cord
T2w hyperintensities have been described in rodent ALS

models in the brain stem (21–23, 44, 45). These hyperintensities

seem to parallel or even precede first behavioral ALS symptoms

(46, 47). Histopathological correlations found associated vacuolar

degeneration (23, 45–49) as well as micro- and astroglial activation

(42). Interestingly, magnetic resonance microscopy was able to

also detect hyperintensities in the ventral motor tracts within

the murine spinal cord (50). Higher T2 values, mainly in the

ventral portions of the spinal cord, have also been observed using

conventional sequences at 7T (51).

One study found iron accumulation in the cervical spinal

cord (based on T2∗ contrast), that, however, disappeared with

progressing disease (37). Iron changes have also been observed in

the medulla oblongata and motor cortex (35).

3.2.3. Contrast enhancement patterns
Overt breakdown of the blood-brain barrier adjacent to lateral

ventricles and in the hippocampal region was described in a rat

ALS model (22). Such breakdown of the BBB was consistent in

another study which also employed Ultrasmall superparamagnetic

iron oxide (USPIO) enhanced MRI (52). Here, BBB breakdown

was congruent with T cell infiltration. Finally, a study using

dynamic contrast-enhanced MRI upon intracisternal injection of

gadolinium found altered contrast medium clearance in ALSmodel

mice compared to controls (41).

4. Discussion

4.1. Main findings

The main objective of this study was to systematically

summarize the available evidence on structural CNS MRI features

in ALS animal models. Frequent MRI features include brain and

spinal cord atrophy, signal changes in brain stem motor nuclei
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TABLE 1 Synopsis of brain and spinal cord magnetic resonance imaging findings in amyotrophic lateral sclerosis (ALS) animal models.

MRI phenotype in ALS rodent models MRI phenotype in human ALS

Atrophy of brain and spinal cord

Cortical gray matter

Entorhinal (39), cingulate, retrosplenial, temporoparietal (36), motor (37),

frontal association, lateral/dorsolateral orbital, agranular insular, and

secondary visual cortices (41). No motor cortex atrophy (38)

Motor cortex (53–56); pre- and postcentral gyrus (57). No cortical thinning

(58–62)

Subcortical gray matter

Hippocampi (39), substantia nigra, striatum, and basal nucleus (40, 41) as

well as brain stem motor nuclei (34, 38, 42)

Hippocampi (57, 58, 63, 64), thalamus (65–67), caudate nucleus, putamen,

amygdala (68), and basal ganglia (69). No subcortical volume loss (58–61)

White matter structures

Internal capsule (41) Overall white matter (70); corpus callosum (69, 71)

Other brain structures

Olfactory bulb (40, 41); cerebellum (41) Total brain volume (62, 72); cerebellum (73, 74). No cerebellar atrophy (75)

Spinal cord

Spinal cord atrophy (37, 40, 43) Spinal cord atrophy (63, 76)

Signal changes of brain and spinal cord

T2 hyperintensities

T2 hyperintensities in the brain stem (21–23, 44, 45) and ventral motor

tracts of the spinal cord (50, 51)

CST hyperintensity in T2w-FLAIR, but also T2w, PDw, T2∗w (77, 78)

Iron accumulation/motor cortex hypointensity

Iron accumulation in the cervical spinal cord (37), medulla oblongata, and

motor cortex (35)

Motor cortex hypointensity (motor band sign) on T2w, T2∗w, T2w-FLAIR, or

SWI (79–82). Iron deposition in deep subcortical gray matter structures (83)

Contrast enhancement patterns

Blood-brain barrier breakdown adjacent to lateral ventricles and in the

hippocampal region (37, 47). Altered CSF gadolinium clearance (33)

No imaging data

Comparing magnetic resonance imaging (MRI) findings between amyotrophic lateral sclerosis (ALS) animal models and human ALS. Most commonly reported MRI findings in ALS animal

models are brain and spinal cord volume loss, T2 and T2∗ signal changes as well as contrast-enhancement indicating breakdown of the blood-brain barrier.

ALS, amyotrophic lateral sclerosis; CSF, cerebrospinal fluid; CST, corticospinal tract; FLAIR, fluid-attenuated inversion recovery; FTD, frontotemporal dementia; MND, motor neuron disease;

MRI, magnetic resonance imaging; PDw, proton density-weighted; SWI, susceptibility weighted imaging.

and the motor cortex as well as breakdown of the blood-brain

barrier (Table 1). In the following paragraphs, we will compare this

phenotype with MRI features of human ALS.

4.2. Findings in the context of existing
evidence

Based on the findings of our systematic review, ALS animal

models seem to feature several imaging signs reminiscent of human

ALS (Table 1). Among these features is the volume loss of CNS

structures with progressive disease. Atrophy in both the motor

cortex (37) and the spinal cord (37, 40, 43) has been reported in

ALS animal models, similar to the human imaging phenotype (20,

53, 54), which could correspond to the underlying decline of the

upper and lowermotor neurons (14). These similarities between the

human and animal imaging phenotype are particularly interesting

since most eligible animal studies used the G93A-SOD1 model

thus mimicking familial ALS, a rare clinical phenotype constituting

around 10% of ALS patients. It is also noteworthy that, similar to

the human population (20), a wide and not always consistent array

of CNS structures have been reported to be affected by volume

loss in animal models. For example, motor cortex atrophy has not

been consistently shown in ALS animal models (38). It is likely

that different methodological approaches for the quantification of

atrophy patterns between animal studies is in part responsible

for these inconsistencies: This has been emphasized by a human

study in ALS-FTD patients which found variable atrophy patterns

when comparing different software to assess cortical volumes

(FSL, FreeSurfer, and SPM) (84). Further confounders could be

technical parameters such as intra-/inter-scanner variability and

physiological factors such as hydration state of animals during

imaging [reviewed in (85)].

ALS rodent models can present with T2 signal changes in the

CNS, potentially corresponding to axonal degeneration (23). In

rodents, these signal alterations seem to commonly affect brain

stem motor nuclei (21, 22). In ALS patients, T2 signal changes are

also commonly observed (20, 77), albeit at different locations, i.e.,

mostly along the corticospinal tract (Figure 1).

Abnormal iron deposition in the motor cortex and spinal cord

has been reported by some rodent ALS studies, measured by T2∗-

based MRI approaches (35, 37). Although respective publications

did not include pictorial examples of iron deposition within the

motor cortex, this feature could correspond to the “motor band
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sign” (linear motor cortex hypointensity) which is commonly

observed in the motor cortex of ALS patients on T2∗-based

sequences (Figure 1). In ALS, these signal drops seem to correspond

to astro- and microglia iron deposition within deep layers of the

motor cortex (86).

One imaging feature which seems more specific to rodent

ALS models is breakdown of the blood-brain barrier, as visualized

by gadolinium enhancement in periventricular and hippocampal

regions (22). However, although gadolinium enhancement is not

observed in the clinical setting in ALS, several lines of evidence

demonstrate damage to the blood–brain and blood-spinal cord

barrier in ALS [reviewed in (87)]. Such vascular changes seem

to include alterations of tight junction proteins (88) and can be

observed already early in the disease process (89). Structural MRI

features of preclinical ALS models are summarized in Table 1,

alongside with MRI features of human ALS.

4.3. Limitations

To assess the external validity of ALS animal models, we

focused our analysis on structural brain and spinal cord MRI

features. However, other disease aspects such as patterns of physical

disability or also more advancedMRImethods like diffusion-tensor

imaging, which are able to more specifically reflect pathogenic

disease processes, might enable a more comprehensive comparison

between experimental and human phenotypes.

A genuine limitation of this systematic review is that only a

limited number of studies employing MRI in ALS animal models

was eligible. As a result, it is difficult to map imaging phenotypes of

less commonly used ALS models such as cycad toxins or wobbler

mice or even for different SOD1G93A mutants. It is possible that

certain ALS rodent models might mimic specific human imaging

phenotypes better than others (36), similarly to the situation in

experimental autoimmune encephalomyelitis (EAE)—a commonly

used animal model for multiple sclerosis (90).

Finally, although seven of the eligible publications tested

a putative therapeutic intervention for ALS, no corresponding

human MRI studies could be identified. Correlating the impact

of therapeutic interventions on neuroimaging phenotypes between

rodent models and humans would further enhance understanding

of the translational value of experimental ALS models.

5. Conclusions

Our systematic review provides high-grade evidence that

preclinical ALS models do show imaging features highly

reminiscent of human ALS, including certain brain and spinal cord

atrophy patterns and signal changes in motor systems (Table 1).

Certain imaging features such as breakdown of the BBB are only

partly reflected by these experimental models. Thus, ALS rodent

models show a high external validity in the neuroimaging domain.

This contrasts the high attrition of drugs in clinical ALS trials

which have shown promising results in ALS animal models; and

this raises concerns that a mere phenotypic comparability between

experimental models and corresponding human diseases does

not necessarily render an animal model appropriate for drug

development. These findings emphasize a careful application of

these model systems for ALS drug development thereby benefiting

refinement of animal experiments.
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monitoring of brain damage in the rat model of amyotrophic lateral sclerosis. Gen
Physiol Biophys. (2009) 28:212–8.

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2023.1135282
https://doi.org/10.1093/biostatistics/kxx069
https://doi.org/10.1038/nrd1470
https://doi.org/10.1038/nrd.2016.88
https://doi.org/10.1080/17482960701856300
https://doi.org/10.1038/nrd4609
https://doi.org/10.1038/s41573-021-00301-6
https://doi.org/10.7554/eLife.63294.sa2
https://doi.org/10.3390/ani9121163
https://doi.org/10.1016/S0140-6736(13)62227-8
https://doi.org/10.1136/bmjos-2019-100046
https://doi.org/10.1371/journal.pmed.1000245
https://doi.org/10.1371/journal.pone.0218014
https://doi.org/10.3390/ani10071199
https://doi.org/10.1038/nrdp.2017.72
https://doi.org/10.1007/s13311-014-0332-8
https://doi.org/10.1097/WCO.0000000000000728
https://doi.org/10.1586/14737175.2016.1146590
https://doi.org/10.1016/j.nicl.2014.02.011
https://doi.org/10.3389/fneur.2022.947347
https://doi.org/10.1002/mrm.26685
https://doi.org/10.1002/ar.20995
https://doi.org/10.1111/j.1460-9568.2004.03648.x
https://doi.org/10.1002/0471141755.ph0567s69
https://doi.org/10.1093/ilar/ilz015
https://doi.org/10.1186/2046-4053-4-1
https://doi.org/10.1186/s13643-016-0384-4
https://doi.org/10.1038/jcbfm.2008.101
https://doi.org/10.1038/s41598-018-35734-4
https://doi.org/10.1371/journal.pone.0032326
https://doi.org/10.3390/ijms21103651
https://doi.org/10.2119/molmed.2011.00123
https://doi.org/10.1186/2051-5960-2-66
https://doi.org/10.1016/j.nbd.2013.04.012
https://doi.org/10.1089/ars.2017.7493
https://doi.org/10.1002/jnr.21778
https://doi.org/10.1038/s41598-018-19938-2
https://doi.org/10.1016/j.expneurol.2011.05.007
https://doi.org/10.1186/s40478-019-0800-9
https://doi.org/10.1016/j.neuroimage.2004.05.026
https://doi.org/10.1186/s40035-022-00291-4
https://doi.org/10.1038/jcbfm.2014.19
https://doi.org/10.1016/j.expneurol.2017.03.018
https://doi.org/10.1016/j.bbr.2013.11.002
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Cannon et al. 10.3389/fvets.2023.1135282

46. Angenstein F, Niessen HG, Goldschmidt J, Vielhaber S, Ludolph AC, Scheich H.
Age–dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS.
Neuroreport. (2004) 15:2271–4. doi: 10.1097/00001756-200410050-00026

47. Majchrzak M, Drela K, Andrzejewska A, Rogujski P, Figurska S,
Fiedorowicz M, et al. SOD1/Rag2 mice with low copy number of SOD1
gene as a new long–living immunodeficient model of ALS. Sci Rep. (2019)
9:799. doi: 10.1038/s41598-018-37235-w

48. Bucher S, Braunstein KE, Niessen HG, Kaulisch T, Neumaier M, Boeckers TM,
et al. Vacuolization correlates with spin–spin relaxation time inmotor brainstem nuclei
and behavioural tests in the transgenic G93A–SOD1 mouse model of ALS. Eur J
Neurosci. (2007) 26:1895–901. doi: 10.1111/j.1460-9568.2007.05831.x

49. Caron I, Micotti E, Paladini A, Merlino G, Plebani L, Forloni G, et al.
Comparative magnetic resonance imaging and histopathological correlates in Two
SOD1 transgenic mouse models of amyotrophic lateral sclerosis. PLoS ONE. (2015)
10:e0132159. doi: 10.1371/journal.pone.0132159

50. Cowin GJ, Butler TJ, Kurniawan ND, Watson C, Wallace RH. Magnetic
resonance microimaging of the spinal cord in the SOD1 mouse model of amyotrophic
lateral sclerosis detects motor nerve root degeneration. Neuroimage. (2011) 58:69–
74. doi: 10.1016/j.neuroimage.2011.06.003

51. Niessen HG, Angenstein F, Sander K, Kunz WS, Teuchert M, Ludolph AC, et al.
In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A–
SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion
coefficient. Exp Neurol. (2006) 201:293–300. doi: 10.1016/j.expneurol.2006.04.007
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