
TYPE Systematic Review

PUBLISHED 15 February 2023

DOI 10.3389/fvets.2023.1134925

OPEN ACCESS

EDITED BY

Yosra Ahmed Soltan,

Alexandria University, Egypt

REVIEWED BY

Panagiotis E. Simitzis,

Agricultural University of Athens, Greece

Nesrein M. Hashem,

Alexandria University, Egypt

Naifeng Zhang,

Institute of Feed Research (CAAS), China

Maghsoud Besharati,

University of Tabriz, Iran

*CORRESPONDENCE

Alejandro Lara-Bueno

alarab_11@hotmail.com

SPECIALTY SECTION

This article was submitted to

Animal Nutrition and Metabolism,

a section of the journal

Frontiers in Veterinary Science

RECEIVED 31 December 2022

ACCEPTED 30 January 2023

PUBLISHED 15 February 2023

CITATION

Orzuna-Orzuna JF, Dorantes-Iturbide G,

Lara-Bueno A, Chay-Canul AJ,

Miranda-Romero LA and

Mendoza-Martínez GD (2023) Meta-analysis of

flavonoids use into beef and dairy cattle diet:

Performance, antioxidant status, ruminal

fermentation, meat quality, and milk

composition. Front. Vet. Sci. 10:1134925.

doi: 10.3389/fvets.2023.1134925

COPYRIGHT

© 2023 Orzuna-Orzuna, Dorantes-Iturbide,

Lara-Bueno, Chay-Canul, Miranda-Romero and

Mendoza-Martínez. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Meta-analysis of flavonoids use
into beef and dairy cattle diet:
Performance, antioxidant status,
ruminal fermentation, meat quality,
and milk composition

José Felipe Orzuna-Orzuna1, Griselda Dorantes-Iturbide1,

Alejandro Lara-Bueno1*, Alfonso Juventino Chay-Canul2,

Luis Alberto Miranda-Romero1 and

Germán David Mendoza-Martínez3

1Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco, Mexico, 2División Académica de

Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico, 3Departamento de
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The objective of this study was to evaluate the e�ects of dietary supplementation with

flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood

serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle

through a meta-analysis. Thirty-six peer-reviewed publications were included in the

data set. The weightedmean di�erences (WMD) between the FLAs treatments and the

control treatment were used to assess the e�ect size. Dietary supplementation with

FLAs decreased feed conversion ratio (WMD=−0.340 kg/kg; p= 0.050) and increased

(p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD =
15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum,

FLAs supplementation decreased the serum concentration ofmalondialdehyde (WMD

= −0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration

of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD =
12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal

propionate concentration (WMD = 0.926 mol/100mol; p = 008) was observed in

response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased

(p < 0.05) shear force (WMD = −1.018 kgf/cm2), malondialdehyde content (WMD

= −0.080 mg/kg of meat), and yellowness (WMD = −0.460). Supplementation with

FLAs decreased milk somatic cell count (WMD = −0.251 ×103 cells/mL; p < 0.001)

and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content

(WMD= 0.080/100g) andmilk fat content (WMD= 0.142/100g). In conclusion, dietary

supplementation with FLAs improves animal performance and nutrient digestibility in

cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality

of meat and milk.
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1. Introduction

As part of the strategies to satisfy the growing demand for meat
and dairy products, it is necessary to increase effectiveness and
productivity in bovine production systems (1). Dairy cows and beef
cattle are frequently exposed to a wide variety of stressors, such as
environmental (heat or cold stress), physiological (for example, rapid
growth rate), and nutritional (presence of mycotoxins or oxidized
fat in diets) (2, 3). All these factors promote the overproduction of
reactive oxygen species, alter the redox balance and cause oxidative
stress in animals (4). Oxidative stress is associated with a higher
incidence of diseases (5, 6) and leads to diminished cattle productive
and reproductive performance (3). According to Abuelo et al.
(7), dietary supplementation with exogenous antioxidants such as
vitamins and trace elements can reduce oxidative stress and improve
cattle’s health status and productive performance. However, in recent
years, interest in using natural antioxidants (not from chemical
synthesis) as alternatives to the synthetic antioxidants commonly
used in animal feed has increased (8). Potential natural antioxidants
include flavonoids (FLAs). The FLAs consist of two benzene rings
joined by three carbon atoms to form an oxygenated heterocycle (9)
and are present in a wide variety of plants (10).

It has been documented that FLAs possess diverse biological
properties, such as antioxidant, anti-inflammatory, hepatoprotective,
and antimicrobial (10). The effects of dietary inclusion of FLAs
have been investigated mainly in broilers and laying hens (11–
13). However, in ruminants, there is limited information on the
effects of dietary supplementation with FLAs. In growing ruminants,
dietary supplementation with FLAs results in the reduction of
diarrhea’s occurrence and severity. However, it is ineffective in
improving animal metabolism and productive performance (14). On
the other hand, in adult ruminants, there is evidence that dietary
supplementation with FLAs increases the serum concentration of
antioxidant enzymes, reduces lipid peroxidation, and improves total
antioxidant capacity in blood serum (15). In cattle and goats, some
parts of plants containing FLAs have been used to increase the
productive performance and digestibility of consumed nutrients (16,
17). Previous studies (18, 19) have shown that, in adult cattle, FLAs
supplementation reduces agonistic interactions and modifies the
differential expression of genes involved in inflammation, regulation
of feeding behavior, and animal behavior. Specifically, in the ruminal
epithelium of beef cattle, Paniagua et al. (19) detected greater gene
expression of two genes (free fatty acid receptor 3 and free fatty
acid receptor 2) that improve the feeding pattern in beef cattle
by increasing the time the animals spend consuming forage and
concentrate (18). Likewise, in adult sheep and cattle, it has been
reported that the dietary inclusion of FLAs has a positive impact on
the composition of the rumen microbiome and the production of
volatile fatty acids in the rumen (20, 21).

Particularly in beef cattle and dairy cows, some studies have
evaluated the effects of dietary supplementation with FLAs on
animal performance (19, 22), serum antioxidant status (23, 24),
rumen fermentation and nutrient digestibility (16, 20), meat
physicochemical characteristics (25, 26) and milk production and
composition (15, 27). However, the results obtained so far are still
inconsistent and controversial, probably due to the wide variability
among these studies regarding the experimental periods, the doses,
and the type of FLAs used (14). Therefore, it is necessary to identify
and control this variability to develop products containing FLAs that

can improve the antioxidant status, animal performance, and quality
of beef and dairy cattle products.

In recent years, some review articles have been published (9, 14),
mentioning that it is possible to use FLAs for the improvement
of the antioxidant status in blood serum, health status, animal
performance, and quality of food products derived from ruminants.
However, these review articles neither focus only on beef cattle or
dairy cows nor used a meta-analytic approach. Meta-analysis (MA)
is a method that allows previously published results of a series of
individual studies to be collected, combined, and statistically analyzed
(28). Likewise, the MA helps identify sources of heterogeneity
between studies (29). Therefore, there is a growing interest in the
application of MA in the field of animal nutrition (30). However,
the use of MA in research related to the inclusion of natural feed
additives in ruminant diets is still limited (31). The hypothesis
of this meta-analysis states that adding FLAs in beef and dairy
cattle diets will benefit animal performance, antioxidant status, and
rumen parameters without affecting the quality of products derived
from these animals. Therefore, the objective of this study was to
evaluate the effects of dietary supplementation with flavonoids FLAs
on animal performance, diet digestibility, serum antioxidant status,
rumen parameters, meat quality, and milk composition derived from
beef and dairy cattle through a meta-analysis.

2. Materials and methods

2.1. Literature search and study selection

To reduce publication bias and ensure the quality of the
meta-analysis, the present study was conducted following PRISMA
guidelines (32), as shown in Figure 1. A systematic search for
information was conducted using Web of Science, Scopus, PubMed,
and ScienceDirect databases to identify previous studies evaluating
the effects of dietary supplementation with FLAs on nutrient
digestibility, animal performance, carcass characteristics, antioxidant
status in blood serum, ruminal fermentation, as well as meat and
milk quality in beef (Holstein, Simmental, Angus×Nellore, Jinjiang,
Xianan, and native) and dairy cattle (Holstein). The keywords that
were used in all the databases were the following: “flavonoids,
beef cattle, growth performance, finishing steer, finishing bull,
carcass, meat quality, dairy cattle, milk production, milk quality,
digestibility, ruminal fermentation, antioxidant status”, and the main
representatives of FLAs (33), such as “daidzein, naringin, puerarin,
anthocyanin, and quercetin”. In all searches performed, results were
restricted to studies published between January 2010 and November
2022. In total, 1,010 scientific publications were identified (Figure 1);
however, duplicate publications found in more than one of the
databases were excluded. After this, the remaining publications
underwent a two-step selection process, as previously reported by
other authors (34–36). First, based on the titles and abstracts of
each publication, we excluded studies that were not conducted in
beef cattle or dairy cows, studies that did not measure any of the
variables of interest, in vitro experiments, studies that used animals
experimentally infected, as well as simulation and review articles.

Secondly, the articles analyzed had to meet some previously
defined inclusion criteria to be included in the final database.
In the present meta-analysis, the inclusion criteria used were
similar to those previously reported by Dorantes-Iturbide et al.
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FIGURE 1

A PRISMA flow diagram detailing the literature search strategy and study selection for the meta-analysis.

(35) and Orzuna-Orzuna et al. (36): (1) studies with beef cattle
or dairy cows housed in confined conditions; (2) data on animal
performance, nutrient digestibility, antioxidant status in blood
serum, carcass characteristics, ruminal fermentation or quality of the
derived products (meat or milk); (3) studies that had control and
experimental treatments with similar diets, except for the presence of
FLAs in the diets; (4) studies that reported the doses of FLAs used or
had sufficient information to estimate the amount of FLAs included
in the diets; (5) studies written and published in English and in peer-
reviewed scientific journals; and (6) studies that reported the means
of the control and FLA-supplemented treatments, the standard error
or standard deviation, and the number of replicates.

2.2. Data extraction

After applying the inclusion criteria, only 36 peer-reviewed
articles were included in the final database (Supplementary Table S1).
Likewise, we only extracted quantitative data for response variables
that were reported in at least three individual studies (31, 35, 36).
Among the response variables included in the final database of
this meta-analysis are the following: dry matter intake and nutrient
digestibility (neutral detergent fiber, crude protein), daily weight
gain, feed conversion ratio, carcass characteristics (carcass yield,
backfat thickness), serum concentration of malondialdehyde and
antioxidant enzymes (for example, superoxide dismutase), serum
immunoglobulins (IgA, IgM, and IgG), rumen parameters (pH,

ammonia nitrogen), physicochemical characteristics of the meat (pH,
shear force, color), milk production, and milk composition (lactose,
protein, and fat content).

Additionally, when available, the following complementary
information was obtained from the selected publications: (1) author
and year of publication; (2) period of supplementation with FLAs
(days); (3) type of FLAs (for example, anthocyanin, daidzein); (4)
method of inclusion of the FLAs (extract or naturally present in the
diet); (5) amount of concentrate included in the diets (g/kg DM); (6)
days in milk from dairy cows; (7) type of cattle (beef cattle or dairy
cow); (8) nutritional composition of the diets used; and (9) country
where the study was conducted.

Supplementary Table S1 shows the complete list of publications
included in the final database of the present meta-analysis. The
number of replicates, means, and standard deviations (SD) for the
control and experimental treatments (supplemented with FLAs) were
extracted from each of these publications. In all the publications
in which the SD was not reported, SD was determined using the
standard errors of the treatment means (SEM), by using the following
equation (37): SD= SEM×

√
n, where n= number of repetitions.

2.3. Calculations and statistical analysis

Meta-analysis and meta-regression, as well as analyzes of
subgroups, heterogeneity, and publication bias, were performed
using the “metaphor” package (38), which is available in the statistical
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TABLE 1 Dry matter intake and nutrient digestibility of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) WMD (95% CI) P-value P-value I
2 (%) P-value

DMI, kg/d 24 (43) 11.83 (5.08) 0.191 (0.047; 0.334) 0.009 <0.001 77.63 0.184

Digestibility, g/kg of DM

DMD 11 (22) 687.84 (34.53) 15.283 (7.306; 23.259) <0.001 0.348 0 0.112

OMD 10 (20) 712.10 (58.30) 7.204 (0.353; 14.055) 0.039 0.361 7.65 0.643

CPD 12 (25) 670.00 (90.10) 19.785 (13.099; 26.471) <0.001 0.116 27.97 0.090

NDFD 12 (25) 523.30 (69.60) 15.563 (9.215; 21.911) <0.001 0.723 0 0.377

ADFD 10 (20) 446.70 (104.80) 6.894 (0.524; 13.265) 0.034 0.417 3.19 0.883

EED 5 (8) 772.60 (87.80) 24.945 (8.962; 40.927) 0.002 0.498 0 NA

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

NA, variables with n < 10 observations, the test does not apply; DMI, dy matter intake; DMD, dry matter digestibility; OMI, organic matter digestibility; CPD, crude protein digestibility; EE, ether

extract digestibility; NDFD, neutral detergent fiber digestibility; ADFD, acid detergent fiber digestibility; EED, ether extract digestibility.

TABLE 2 Growth performance and carcass characteristics of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) WMD (95% CI) P-value P-value I
2 (%) P-value

ADG, kg/d 12 (22) 0.926 (0.41) 0.061 (0.026; 0.097) <0.001 <0.001 73.47 0.657

FCR, kg/kg 9 (16) 7.90 (2.41) −0.340 (−0.686; 0.005) 0.050 <0.001 81.77 0.122

Carcass traits

HCW, kg 5 (5) 277.7 (68.8) 0.101 (−3.145; 3.347) 0.951 0.656 0 NA

HCY, % 6 (7) 54.56 (3.03) −0.059 (−0.662; 0.544) 0.847 0.016 61.41 NA

BFT, mm 6 (8) 13.42 (3.63) 2.178 (0.829; 3.528) 0.002 <0.001 96.69 NA

LDMA, cm2 5 (7) 90.92 (19.98) 0.535 (−1.954; 3.025) 0.673 0.146 37.03 NA

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

NA, variables with n< 10 observations, the test does not apply; ADG, average daily gain; FCR, feed conversion ratio; HCW, hot carcass weight; HCY, hot carcass yield; BFT, backfat thickness; LDMA,

Longissimus dorsimuscle area.

software R (version 4.1.2, R Core Team, Vienna, Austria). The effects
of including FLAs in diets of beef cattle and dairy cows were evaluated
using the weighted mean differences (WMD) between treatments
supplemented with FLAs (diets with FLAs) and control treatments
(diets without FLAs). For this, the means of the treatments were
weighted by the inverse of the variance, according to the method
for random effects models previously proposed by DerSimonian and
Laird (39). In the present meta-analysis, the WMD was used because
it allows interpretation of the results obtained in the original units of
measurement (40). Additionally, with the PROC MEANS procedure
of the statistical software SAS (41), descriptive statistics values were
obtained for the continuous covariates level of concentrate in the diet,
dose of FLAs, experimental period, and days in milk.

2.4. Heterogeneity and publication bias

The presence of heterogeneity between studies was identified with
the chi-square (Q) test, in which a significance level of p ≤ 0.10 was
used since this test has relatively low power (42). Additionally, to

quantify the proportion of observed heterogeneity, we used the I2

statistic (29). For this test, I2 values <25% indicate that the degree of
heterogeneity is low, I2 values between 25 and 50% indicate moderate
heterogeneity, while I2 values >50% indicate high and significant
heterogeneity (29, 43). On the other hand, to detect the presence
of publication bias, the Egger regression asymmetry test (44) was
applied, in which a significance level of p ≤ 0.05 was used. When
publication bias was detected (p ≤ 0.05 in Egger’s test), the “trim and
fill” method of Duval and Tweedie (45) was applied to estimate the
possible number of missing observations.

2.5. Meta-regression and subgroup analysis

Meta-regression analyses were performed on some of the
variables evaluated to identify the presence of possible sources
of heterogeneity. The criteria considered to apply meta-regression
analysis were: (1) presence of significant heterogeneity (i.e., p ≤ 0.10
for Q or I2 > 50%); (2) p-value > 0.05 for Egger’s test (44); and (3)
response variables reported in 10 or more individual studies (46). For
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TABLE 3 Oxidative status and immune response of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) RMD (95% CI) P-value P-value I2 (%) P-value

SOD, U/mL 10 (27) 72.39 (39.23) 8.516 (5.095; 11.937) <0.001 <0.001 91.50 0.125

CAT, U/mL 3 (10) 39.26 (15.32) 3.762 (1.691; 5.833) <0.001 <0.001 92.69 0.481

GPx, U/mL 7 (22) 63.73 (25.51) 12.400 (8.481; 16.319) <0.001 <0.001 80.42 0.063

TAC, U/mL 5 (13) 7.86 (3.52) 0.771 (0.274; 1.267) 0.002 0.118 35.53 0.067

MDA, nmol/mL 7 (24) 5.51 (2.82) −0.779 (−1.220;−0.339) <0.001 <0.001 85.26 0.203

Immunoglobulins, g/L

IgA 4 (14) 0.792 (0.14) 0.063 (0.018; 0.108) 0.006 0.001 61.32 0.492

IgG 5 (15) 9.137 (2.13) 1.150 (0.633; 1.667) <0.001 <0.001 76.47 0.063

IgM 4 (14) 2.183 (0.59) 0.215 (0.139; 0.292) <0.001 <0.001 73.86 0.400

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; TAC, total antioxidant capacity; MDA, malondialdehyde; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM,

immunoglobulin M.

TABLE 4 Ruminal fermentation of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) RMD (95% CI) P-value P-value I
2 (%) P-value

Ruminal pH 11 (20) 6.43 (0.46) 0.029 (−0.059; 0.117) 0.517 <0.001 83.29 0.129

NH3-N, mg/dL 9 (18) 15.03 (6.23) 0.030 (−0.559; 0.618) 0.921 <0.001 85.95 0.061

SCFA, mol/100 mol

Acetate 12 (22) 62.12 (8.22) 0.188 (−0.794; 1.170) 0.708 <0.001 79.63 0.104

Propionate 12 (22) 22.34 (4.51) 0.926 (0.240; 1.611) 0.008 <0.001 89.01 0.261

Butyrate 12 (22) 11.72 (3.62) 0.138 (−0.105; 0.381) 0.265 0.237 17.09 0.086

Total protozoa,
×105/mL

3 (8) 6.50 (2.40) −0.301 (−0.561;−0.042) 0.023 0.054 49.37 NA

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

NA, variables with n < 10 observations, the test does not apply; NH3-N, nitrogen ammonia; SCFA, short chain fatty acids.

all meta-regression analyses, themethod ofmoments of DerSimonian
and Laird (39) was used, as it is well-established for estimating
between-study variance. Subsequently, for the covariates analyzed
that were significant with p ≤ 0.05, the WMD was evaluated through
subgroup analysis. A subgroup assessment was not performed
when an individual stratum has less than two effect sizes in the
meta-analysis (35, 36). The type of FLAs (daidzein, anthocyanin,

puerarin, naringin, quercetin, catechin, and blend), the method
of supplementation with FLAs (extract or naturally present in an

ingredient in the diet), and the type of cattle (beef cattle or dairy
cow) were used as categorical covariates. On the other hand, the
duration of the experimental period (days), the days in milk of the
dairy cows, the content of concentrate in the diet (g/kg of DM), and
the doses of FLAs were used as continuous covariates. When any
categorical covariate (type of FLAs, type of bovine, and method of
supplementation with FLAs) was found to be statistically significant
(p ≤ 0.05), subgroup analysis was used to assess WMD (34, 35).
Likewise, when the meta-regression was significant (p ≤ 0.05) for
the continuous covariates, these were analyzed using the following

subgroups: dietary dose of FLAs (≤600 and>600mg/kg of DM), level
of concentrate in the diet (≤400, 401–700, and >700 g/kg of DM),
days in milk (≤100 and >100 days) and period of supplementation
with FLAs (≤75 and >75 days).

3. Results

3.1. Study attributes

The studies included in this meta-analysis were conducted
in eight different countries, mainly in China (44.4%), Spain
(16.7%), Brazil (13.9%), and Japan (5.5%). Regarding the animal
species (bovine), in 66.7% of the studies, beef cattle were used,
and in the remaining studies (33.3%), dairy cows were used
(Supplementary Table S1). Supplementary Table S2 shows that the
doses of FLAs used were between 12 and 3,104 mg/kg DM. Dairy
cows had between 7 and 164 days in milk and the experimental
periods ranged between 24 and 168 days (Supplementary Table S2).
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TABLE 5 Meat quality of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) WMD (95% CI) P-value P-value I
2 (%) P-value

pH 24 h 6 (10) 5.47 (0.21) 0.063 (−0.032; 0.158) 0.194 <0.001 86.34 0.769

CL, g/100 g 4 (8) 23.54 (4.98) 0.628 (−1.433; 2.690) 0.550 0.028 55.52 NA

ShF, kgf/cm2 5 (8) 5.98 (2.54) −1.018 (−1.470;−0.566) <0.001 <0.001 88.17 NA

MDA, mg/kg 4 (8) 0.44 (0.16) −0.080 (−0.101;−0.059) <0.001 0.608 0 NA

Meat color

Lightness (L∗) 6 (13) 44.52 (10.32) −2.174 (−5.117; 0.769) 0.148 <0.001 93.47 0.337

Redness (a∗) 6 (13) 24.05 (6.62) −0.065 (−0.734; 0.605) 0.850 0.177 26.42 0.669

Yellowness (b∗) 6 (13) 10.65 (2.33) −0.460 (−0.892;−0.028) 0.037 0.272 17.50 0.681

Chemical composition, g/100g of DM

Protein 6 (10) 20.61 (1.90) 0.390 (−0.622; 1.401) 0.450 <0.001 87.37 0.897

IMF 6 (10) 5.90 (2.52) 0.703 (0.070; 1.336) 0.029 <0.001 69.02 0.079

Moisture 6 (10) 70.28 (1.80) −0.601 (−1.304; 0.101) 0.093 0.073 42.76 0.734

Ash 3 (5) 2.63 (1.17) 0.013 (−0.012; 0.039) 0.304 0.905 0 NA

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

NA, variables with n < 10 observations, the test does not apply; WHC, water holding capacity; CL, cook loss; ShF, shear force; MDA, malondialdehyde; IMF, intramuscular fat.

TABLE 6 Milk production and quality of cattle supplemented with flavonoids.

Item N (NC) Heterogeneity Egger testa

Control means (SD) WMD (95% CI) P-value P-value I
2 (%) P-value

Milk production, kg/d 11 (24) 21.29 (6.87) 1.348 (0.517; 2.179) 0.001 <0.001 75.86 0.193

Milk composition, g/100 g

Protein 11 (24) 3.71 (0.67) 0.080 (0.045; 0.116) <0.001 0.004 53.81 0.347

Fat 11 (24) 3.65 (0.88) 0.142 (0.073; 0.211) <0.001 <0.001 69.98 0.060

Lactose 10 (18) 5.10 (0.95) 0.016 (−0.033; 0.066) 0.517 0.118 26.76 0.132

SCC,×103 cell/mL 6 (12) 2.52 (0.72) −0.251 (−0.364;−0.138) <0.001 <0.001 74.29 0.344

N, number of studies; NC, number of comparisons between flavonoids treatment and control treatment; SD, standard deviation; WMD, weighted mean differences between control and treatments

with flavonoids; CI, confidence interval of WMD; p-value to χ2 (Q) test of heterogeneity; I2 , proportion of total variation of size effect estimates that is due to heterogeneity.
aEgger’s regression asymmetry test.

SCC, somatic cell count.

Supplementary Table S1 shows seven different types of FLAs used
in the present meta-analysis. Most of the studies used mixtures of
FLAs (36.1%), daidzein (16.7%), anthocyanin (16.7%), and naringin
(16.7%). Three other different types of FLAs were used in the
remaining studies (13.8%). In addition, 61.1% of the studies used
FLAs extracts, and 38.9% used plants or by-products naturally high
in FLAs.

3.2. Dry matter intake and nutrient
digestibility

Dry matter intake (DMI) increased in response to FLAs
supplementation (Table 1). Likewise, dietary supplementation with
FLAs increased (p < 0.05) dry matter digestibility (DMD), organic
matter digestibility (OMD), crude protein digestibility (CPD), neutral
detergent fiber digestibility (NDFD), acid detergent fiber digestibility
(ADFD), and ether extract digestibility (EED).

3.3. Growth performance and carcass traits

Table 2 shows that daily weight gain (ADG) and backfat thickness
(BFT) increased in response to dietary supplementation with FLAs
(p < 0.05). In contrast, the dietary inclusion of FLAs decreased the
feed conversion ratio (FCR; p = 0.050). However, hot carcass weight
(HCW), hot carcass yield (HCY), and Longissimus dorsi muscle area
(LDMA) were not affected by FLAs supplementation (p > 0.05;
Table 2).

3.4. Antioxidant status and immune response

Table 3 shows that dietary supplementation with FLAs increased
(p < 0.01) the serum concentration of superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase (GPx), and total
antioxidant capacity (TAC). In contrast, a lower (p < 0.001)
serum concentration of malondialdehyde (MDA) was observed in
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TABLE 7 Meta-regression comparing the associations between covariates and measured outcomes.

Parameter Covariates QM Df P-value R
2 (%)

Dry matter intake (DMI) Flavonoids dose 1.62 1 0.202 0.00

Supplementation period 12.97 1 <0.001 5.90

Concentrate level 0.22 1 0.634 0.00

Flavonoid type 25.68 5 <0.001 29.55

Method of inclusión 0.85 1 0.654 0.00

Beef cattle/dairy cattle 0.38 1 0.536 0.00

Average daily gain (ADG) Flavonoids dose 0.28 1 0.596 0.00

Supplementation period 5.62 1 0.018 28.28

Concentrate level 3.89 1 0.049 40.10

Flavonoid type 6.81 4 0.146 33.47

Method of inclusion 0.93 1 0.628 0.00

Ruminal pH Flavonoids dose 1.38 1 0.240 9.18

Supplementation period 0.08 1 0.772 0.00

Concentrate level 4.50 1 0.034 37.92

Flavonoid type 8.49 3 0.037 20.69

Method of inclusion 0.02 1 0.883 0.00

Beef cattle/dairy cattle 0.258 1 0.611 0.00

Acetate Flavonoids dose 0.25 1 0.615 0.00

Supplementation period 6.98 1 0.108 0.00

Flavonoid type 2.71 3 0.100 0.00

Concentrate level 13.45 3 0.104 0.00

Method of inclusion 1.73 1 0.188 0.00

Beef cattle/dairy cattle 1.78 1 0.182 0.00

Propionate Flavonoids dose 1.18 1 0.277 0.00

Supplementation period 6.77 1 0.009 6.87

Concentrate level 0.58 1 0.445 0.00

Flavonoid type 0.99 3 0.803 0.00

Method of inclusion 1.69 1 0.193 0.00

Beef cattle/dairy cattle 1.59 1 0.207 0.00

Superoxide dismutase (SOD) Flavonoids dose 2.11 1 0.146 0.00

Supplementation period 0.01 1 0.977 3.26

Concentrate level 0.06 1 0.940 2.55

Flavonoid type 25.18 4 <0.001 41.84

Method of inclusion 8.39 1 0.004 15.12

Beef cattle/dairy cattle 19.66 1 <0.001 40.60

Milk production Flavonoids dose 4.72 1 0.030 23.80

Supplementation period 1.40 1 0.236 0.00

Concentrate level 0.49 1 0.484 0.00

Flavonoid type 80.93 3 <0.001 35.49

Method of inclusion 19.19 1 <0.001 40.45

Days in milk 1.26 1 0.261 0.00

(Continued)
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TABLE 7 (Continued)

Parameter Covariates QM Df P-value R
2 (%)

Milk protein Flavonoids dose 3.21 1 0.073 06.87

Supplementation period 11.44 1 <0.001 39.61

Concentrate level 10.84 1 <0.001 10.18

Flavonoid type 14.03 3 0.003 48.21

Method of inclusion 1.44 1 0.229 12.92

Days in milk 0.56 1 0.455 0.00

Milk fat Flavonoids dose 1.28 1 0.257 0.00

Supplementation period 0.21 1 0.648 11.24

Concentrate level 2.97 1 0.085 0.00

Flavonoid type 18.54 3 <0.001 56.70

Method of inclusion 0.53 1 0.464 0.00

Days in milk 17.75 1 <0.001 41.75

QM, coefficient of moderators; QM is considered significant at p ≤ 0.05; R2 , the amount of heterogeneity accounted for; df, degree of freedom.

animals supplemented with FLAs. On the other hand, the serum
concentration of immunoglobulin A (IgA), immunoglobulin G
(IgG), and immunoglobulinM (IgM) increased in response to dietary
supplementation with FLAs (p < 0.01).

3.5. Rumen fermentation and protozoal
count

Table 4 shows that the pH and the ruminal concentration of
ammonia nitrogen (NH3-N), acetate, and butyrate were not affected
by dietary supplementation with FLAs (p > 0.05). However, a higher
(p = 0.008) rumen concentration of propionate and a lower (p =
0.023) concentration of total protozoa were observed in response to
supplementation with FLAs.

3.6. Meat quality

Dietary supplementation with FLAs did not affect (p > 0.05)
pH, cooking loss (CL), lightness (L∗), redness (a∗), or meat protein,
moisture, and ash content (Table 5). On the other hand, FLAs
supplementation decreased (p < 0.05) the shear force (ShF), the
malondialdehyde content (MDA), and the yellowness (b∗) of the
meat. However, meat’s intramuscular fat content (IMF) increased in
response to FLAs supplementation (p= 0.029).

3.7. Milk production and composition

Dietary supplementation with FLAs increased (p < 0.01) milk
production and milk protein and fat content (Table 6). However, the
lactose content in milk was not affected by FLAs supplementation
(p > 0.05). In addition, lower milk somatic cell (SCC) counts
were observed in response to dietary supplementation with FLAs (p
< 0.001).

3.8. Meta-regression and publication bias

Tables 1–6 show no publication bias since the Egger regression
asymmetry test was not significant (p > 0.05) for any of the variables
evaluated. On the other hand, Tables 1–6 show that there was
significant (p ≤ 0.10) heterogeneity (Q) for DMI, ADG, FCR, HCY,
BFT, SOD, CAT, GPx, MDA in blood serum, IgA, IgG, IgM, rumen
pH, NH3-N, acetate, propionate, total protozoa, meat pH, CL, ShF,
L∗, protein content, meat IMF and moisture, milk yield, and protein,
fat, and SCC content in milk. However, to obtain reliable results,
meta-regression analyses are only recommended when the variable of
interest is reported in 10 or more studies (46). Consequently, meta-
regression analyses were only performed for the following variables:
DMI, ADG, rumen pH, acetate, propionate, SOD, milk yield, and
milk protein and fat content.

Table 7 shows that the FLAs dose explained (p < 0.05)
23.80% of the observed heterogeneity for milk production. The
supplementation period explained (p < 0.05) 5.90, 28.28, 6.87,
and 39.61% of the heterogeneity observed for DMI, ADG, rumen
propionate concentration, and milk protein content, respectively. On
the other hand, the level of concentrate in the diet explained (p
< 0.05) 40.10, 37.92, and 10.18% of the heterogeneity observed for
ADG, ruminal pH, and milk protein content, respectively. The type
of FLAs used explained (p < 0.05) between 20.69 and 56.70% of the
observed heterogeneity for DMI, rumen pH, SOD, milk yield, milk
protein, and milk fat content. Likewise, the FLAs inclusion method
explained (p < 0.05) 15.12 and 40.45% of the observed heterogeneity
for SOD and milk production, respectively. Bovine type explained (p
< 0.001) 40.60% of the observed heterogeneity for SOD, and days
in milk explained (p < 0.001) 41.75% of the observed heterogeneity
for milk fat content. There was no significant relationship (p > 0.05)
between the covariates used and the ruminal acetate concentration.

3.9. Subgroup analysis

DMI increased (WMD = 0.532 kg/d; p = 0.038) when dietary
supplementation with FLAs lasted up to 75 days (Figure 2A).
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However, supplementation with FLAs for more than 75 days did
not affect DMI (WMD = 0.015 kg/d; p = 0.805). Higher ADG
(WMD = 0.093 kg/d; p < 0.001) was observed when cattle were
supplemented with FLAs for periods up to 75 days (Figure 2B).
However, when supplementation with FLAs lasted more than 75
days ADG was not affected (WMD = 0.017 kg/d; p = 0.206).
Ruminal propionate concentration was increased (WMD = 1.962
mol/100mol; p = 0.043) in animals supplemented with FLAs for up
to 75 days (Figure 2C). However, ruminal propionate concentration
was not affected when FLAs were offered for more than 75 days
(WMD= 0.306 mol/100mol; p= 0.486). The protein content in milk
increased (p< 0.05) regardless of the period of supplementation with
FLAs used (Figure 2D). However, the effect was greater when FLAs
supplementation lasted longer than 75 days (WMD = 0.113/100 g)
than when it lasted up to 75 days (WMD= 0.097/100 g).

Figure 3A shows that ADG increased (WMD = 0.048 kg/d; p
< 0.001) only when FLAs were included in high-concentrate diets
(>700 g/kg DM). However, the inclusion of FLAs in diets with
low (≤400 g/kg DM) or moderate (401–700 g/kg DM) concentrate
levels did not affect ADG (p > 0.05). Rumen pH increased (WMD
= 0.336; p < 0.001) when FLAs were supplemented in diets with
more than 700 g/kg DM of concentrate (Figure 3B). However, the
inclusion of FLAs in diets with low (≤400 g/kg DM) or moderate
(401–700 g/kg DM) concentrate levels did not affect rumen pH.
Figure 3C shows that the inclusion of FLAs in diets with 401–700
g/kg DM of concentrate increased the protein content in milk (WMD
= 0.089/100 g; p < 0.001). However, milk protein content was not
affected when FLAs were fed in low-concentrate diets (≤400 g/kg
DM).

Figure 4A shows that DMI increased (p < 0.05) when the type
of FLAs used was daidzein (WMD = 0.500 kg/d), puerarin (WMD
= 0.700 kg/d), and anthocyanin (WMD = 0.535 kg/d). However,
DMI decreased when the type of FLAs used was naringin (WMD
= −0.129 kg/d; p = 0.021) and was not affected when mixtures of
FLAs were used (p > 0.05). Rumen pH increased (WMD = 0.071;
p = 0.030) when FLAs mixtures were used (Figure 4B); however, it
decreased when the FLAs used were daidzein (WMD = −0.350; p =
0.001) and anthocyanin (WMD=−0.100; p= 0.041). Likewise, when
the type of FLAs used was naringin, the rumen pH was not affected
(p > 0.05). Figure 4C shows that the serum concentration of SOD
increased (p< 0.001) only when the FLAs used were daidzein (WMD
= 9.373 U/mL) and puerarin (WMD = 19.733 U/mL). However,
the serum SOD concentration was not affected when anthocyanin
or FLA mixtures were used (p > 0.05). On the other hand, milk
production increased (p < 0.001; Figure 4D) when mixtures of FLAs
(WMD= 0.701 kg/d) and daidzein (WMD= 3.923 kg/d) were used;
however, it decreased when the FLAs used were anthocyanins (WMD
=−1.612 kg/d; p< 0.001). Figure 4E shows that milk protein content
increased when mixtures of FLAs (WMD = 0.113/100 g; p < 0.001)
and daidzein (WMD = 0.174/100 g; p = 0.044) were used. However,
the protein content in milk was not affected when the FLAs used
were anthocyanins (p > 0.05). Milk fat content increased (p < 0.01;
Figure 4F) in response to supplementation with mixtures of FLAs
(WMD= 0.106/100 g) and daidzein (WMD= 0.373/100 g); however,
it was not affected by anthocyanin supplementation (p > 0.05).

Serum SOD concentration increased (WMD=11.016 U/mL; p <

0.001) when FLAs extracts were added to diets (Figure 5A). However,
when FLAs were supplied as part of the diet ingredients, serum SOD
concentration was not affected (p > 0.05). Milk production increased

(WMD= 2.748 kg/d; p< 0.001) in response to supplementation with
FLAs extracts (Figure 5B). However, milk productionwas not affected
(p > 0.05) when FLAs were supplied as part of the diet ingredients.

Figure 6A shows that milk production increased when FLAs
doses ≤600 mg/kg DM were used (WMD = 1.774 kg/d; p < 0.001).
However, milk production decreased (WMD = −1.209 kg/d; p =
0.002) when the FLAs doses used were >600 mg/kg DM. In addition,
serum SOD concentration increased regardless of the type of bovine
used (p < 0.001; Figure 6B). However, the effect was greater when
FLAs were offered to beef cattle (WMD = 14.712 U/mL) than dairy
cows (WMD = 3.615 U/mL). Likewise, milk fat content increased
(WMD = 0.217/100 g; p < 0.001) when FLAs were offered to cattle
that were longer than 100 days in milk (Figure 6C). However, in cattle
that were up to 100 days in milk, FLA supplementation did not affect
milk fat content (p > 0.05).

4. Discussion

4.1. Dry matter intake and
nutrient digestibility

It has been reported that the dietary inclusion of FLAs increases
the relative abundance of ruminal bacteria involved in fiber
degradation in adult sheep and cattle (20, 47). This effect could
increase the rate of passage of feed particles in the rumen and
result in higher DMI. In addition, in ruminants (yaks and sheep)
dietary supplementation with FLAs increases the relative rumen
abundance of the bacterial family Rikenelleceae (48, 49), which have
a positive correlation with DMI in beef cattle (50). Therefore, similar
effects of FLAs supplementation in the present meta-analysis partially
explain the observed increase in DMI. On the other hand, in beef
cattle, it has been reported that FLAs supplementation reduces the
gene expression of bitter taste receptors (TAS2R, such as TAS2R7,
TAS2R16, TAS2R38, and TAS2R39) in the rumen (18) and duodenal
epithelium (51). This effect could decrease the release of anorexigenic
molecules and increase DMI, since the activation of TAS2R triggers
the release of anorexigenic molecules, such as cholecystokinin and
peptide YY (52, 53). However, a subgroup analysis revealed that
naringin supplementation decreased DMI. Naringin is part of the
flavanones (a particular class of FLAs), which are abundant in citrus
and impart a bitter taste (33). This effect could reduce the food’s
palatability and explain the lower DMI observed in response to
naringin supplementation.

Previous studies (20, 47) have reported that, in adult ruminants
(sheep and cattle), dietary supplementation with FLAs increases the
relative abundance of ruminal bacteria of the genus Ruminococcus.
Within this genus are the species Ruminococcus albus and R.

flavefaciens, which play an important role in fiber degradation in
the rumen (54). Kim et al. (55) observed that, under in vitro

conditions, FLAs (catechins) increase the relative abundance of
Fibrobacter succinogenes bacteria, which are also involved in fiber
degradation in the rumen. Low doses (60 mg/kg body weight) of
FLAs (mixtures of various types not reported) have been documented
to increase the relative abundance of fungi in the rumen of dairy
cows by up to 79% (56). According to Akin and Borneman (57),
rumen fungi can completely penetrate the cell wall and produce
large amounts of cellulases, hemicelluloses, and xylanases, which
can increase cellulose degradation. In beef cattle, Niu et al. (58)

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2023.1134925
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Orzuna-Orzuna et al. 10.3389/fvets.2023.1134925

FIGURE 2

Subgroup analysis [subgroup = supplementation period (days)] of the e�ect of flavonoids on the diet of the cattle; WMDs, weighted mean di�erences

between flavonoid treatments and control. (A) Dry matter intake (DMI), kg/d. (B) Average daily gain (ADG), kg/d. (C) Propionate, mol/100mol. (D) Milk

protein, g/100g.

FIGURE 3

Subgroup analysis [subgroup = concentrate in diet (g/kg of DM)] of the e�ect of flavonoids on the diet of the cattle; WMDs, weighted mean di�erences

between flavonoid treatments and control. (A) Average daily gain (ADG), kg/d. (B) Ruminal pH. (C) Milk protein, g/100g.

observed that the dietary inclusion of plants with FLAs increased
the relative abundance of rumen bacteria of the genus Succinivibrio,
which have been positively correlated with NDFD, ADFD, and DMD
in cattle (58). Furthermore, Zhao et al. (47) reported that, in growing
lambs, supplementation with FLAs (anthocyanins) extracts decreases

the relative abundance of ruminal microorganisms of the genus
Prevotella, which have been negatively correlated with CPD in dairy
cows (59). Thus, similar effects of FLAs supplementation in the
present study partially explain the observed increases in CPD, NDFD,
ADFD, DMD, and OMD.
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FIGURE 4

Subgroup analysis (subgroup = flavonoid type) of the e�ect of flavonoids on the diet of the cattle; WMDs, weighted mean di�erences between flavonoid

treatments and control. (A) Dry matter intake (DMI), kg/d. (B) Ruminal pH. (C) Superoxide dismutase (SOD), U/mL. (D) Milk production, kg/d. (E) Milk

protein, g/100g. (F) Milk fat, g/100g.

FIGURE 5

Subgroup analysis [subgroup = method of FLA’s inclusion (extract or naturally present in the diet)] of the e�ect of flavonoids on the diet of the cattle;

WMDs, weighted mean di�erences between flavonoid treatments and control. (A) Superoxide dismutase (SOD), U/mL. (B) Milk production, kg/d.

4.2. Growth performance and carcass traits

In the present study, supplementation with FLAs increased
DMI, CPD, NDFD, ADFD, EED, OMD, and DMD, which partially

explains the higher ADG and lower FCR observed. In dairy cows,
Zhan et al. (56) reported that dietary supplementation with FLAs
increases the relative abundance of Tenericutes andMollicutes rumen
microorganisms, which have been positively correlated with ADG
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FIGURE 6

Subgroup analysis [subgroup = flavonoid dose (mg/kg of DM), type of cattle (beef cattle or dairy cattle), and days in milk] of the e�ect of flavonoids on the

diet of the cattle; WMDs, weighted mean di�erences between flavonoid treatments and control. (A) Milk production, kg/d. (B) Superoxide dismutase

(SOD), U/mL. (C) Mil fat, g/100g.

in finishing lambs (48). In growing lambs, FLAs supplementation
reduces the relative ruminal abundance of the bacterial family
Veillonellaceae (47), which has a negative correlation with ADG in
sheep (60). Du et al. (48) reported that the dietary inclusion of plants
containing FLAs increases the relative abundance of the Rikenellaceae
microbial family in rumen fluid, which has a positive and negative
correlation with ADG and FCR in beef cattle, respectively (50).
Dorantes-Iturbide et al. (61) reported that, in finishing lambs,
supplementation with low doses (1 g/kg DM) of polyherbal additives
with FLAs increases up to 23% the efficiency of utilization of
dietary energy for weight gain. Furthermore, supplementation with
FLAs-rich plants increases muscle protein synthesis in lambs (62).

Thus, similar effects of FLAs supplementation in the present study
partially explain the observed increase and decrease for ADG and
FCR, respectively.

In beef cattle, supplementation with FLAs (200 and 400 mg/kg

DM) increases serum levels of IGF-1 (insulin-like growth factor 1)
(24), which have a positive correlation (r within 0.61 and 0.67) with
ADG in ruminants (63). In addition, in the present meta-analysis,
higher serum concentrations of antioxidant enzymes (SOD, CAT,
and GPx) and immunoglobulins (IgA, IgG, and IgM) were observed

in response to FLAs supplementation. These effects could reduce
oxidative stress and improve the health status of the animals, which
could result in improved animal performance. On the other hand,
a subgroup analysis revealed that ADG was significantly increased
when FLAs were offered with high-concentrate diets (>700 g/kg
DM). In beef cattle fed high-concentrate diets, FLAs supplementation
increases the duodenal flux of microbial protein (64), which may
increase metabolic amino acid availability and lead to higher ADG.
In addition, previous studies (51, 65) have shown that the dietary
inclusion of FLAs (400 mg/kg DM) improves the health of the rumen

epithelium in beef cattle fed diets high in concentrate. This effect
could result in increased absorption of volatile fatty acids and lead
to increased ADG since the rumen epithelium contains papillae that
serve as absorptive structures (66).

It has been documented that FLAs supplementation increases the
number and diameter of muscle fibers in the ruminant Longissimus

dorsimuscle (62, 67), whichmay result in increased LDMA.However,
in the present study, FLAs supplementation did not affect LDMA.
On the other hand, Liang et al. (25) reported that, in beef cattle,
supplementation with FLAs (500 mg/kg DM) increases serum leptin
concentration, which has been positively correlated with BFT in beef
cattle (68). Consequently, similar effects of FLAs supplementation
in the present study partially explain the higher BFT observed. In
addition, FLAs promote adipogenesis in the subcutaneous adipose
tissue of beef cattle through changes in the expression of several genes
(delta like non-canonical notch ligand, insulin like growth factor
binding protein 2, wnt family member 6, enhancer binding protein
beta, DNA-binding protein inhibitor ID-3, sonic hedgehog protein,
and family zinc finger 1) involved in adipogenesis differentiation of
subcutaneous adipocytes (69).

4.3. Antioxidant status and immune response

According to Celi (5), the excessive accumulation of reactive
oxygen species (ROS) causes oxidative stress in ruminants. Shi et al.
(70) mentioned that FLAs can be used as natural antioxidants for
cattle since they stimulate antioxidant enzymes and eliminate ROS.
In the present study, supplementation with FLAs increased the serum
levels of SOD, CAT, and GPx. These results suggest that FLAs reduce
the oxidative stress caused by ROS in bovines since SOD, CAT, and
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GPx play an important role in converting ROS into other compounds
that are less damaging to the tissues and cells of organisms (10).
Furthermore, FLAs have been reported to induce activation of the
transcription factor Nrf2 (71), which activates several antioxidant
enzymes (10). Consequently, similar effects of FLAs consumption in
the present meta-analysis partially explain the observed increases in
SOD, CAT, and GPx.

In the present meta-analysis, FLAs supplementation increased
TAC in beef and dairy cattle blood serum. This result suggests
that the consumption of FLAs improves the total antioxidant status
of bovines since TAC considers the total antioxidants present in
the blood serum (5). Furthermore, Ghiselli et al. (72) mentions
that serum TAC levels obtained after consuming products with
antioxidants serve as indicators of the absorption and bioavailability
of ingested antioxidants. Consequently, the higher TAC observed
in the present study suggests that FLAs consumed by bovines may
be absorbed and transferred to the bloodstream to act as blood
antioxidants. Furthermore, it has been documented that TAC and
ROS serum levels are negatively correlated (73). Therefore, the
observed reduction of TAC in the present study suggests that FLAs
supplementation decreases ROS in bovine blood serum. On the other
hand, supplementation with FLAs decreased the serum concentration
of MDA. This result suggests that the consumption of FLAs decreases
lipid peroxidation in cattle blood because when lipid peroxidation is
low, serum levels of MDA decrease (74).

According to Zhan et al. (75), immunoglobulins are a type
of protein with chemical structures similar to antibodies, which
participate in the regulation of immune responses. Therefore,
obtaining information related to serum immunoglobulin
concentrations in ruminants is important since it is an indicator of
immunity against pathogenic microorganisms (76). Wolf et al. (77)
mention that IgA inhibits the release of inflammatory cytokines,
phagocytosis, and antibody-dependent cellular cytotoxicity. In
addition, IgM and IgG act against infection since they participate in
the phagocytic system and activate the complement system (24). In
the present meta-analysis, FLAs supplementation increased serum
IgA, IgG, and IgM concentrations, suggesting that FLAs improve
immune competence in cattle. The mechanism of action of FLAs
on serum immunoglobulin concentrations has not been studied in
ruminants. However, FLAs have been documented to increase the
expression of genes encoding IgA in mice (78). Likewise, various
FLAs increase the number and activity of B1 and B2 lymphocytes
(79), which secrete IgG and IgM (80, 81). Therefore, similar effects
of FLAs consumption in the present meta-analysis would explain the
observed increases in IgA, IgG, and IgM.

4.4. Ruminal fermentation

In the presentmeta-analysis, FLAs supplementation did not affect
rumen pH. This result suggests that FLAs do not affect the stability
of rumen functions in bovines since rumen pH is an important
indicator of internal rumen homeostasis (36, 82). However, a
subgroup analysis revealed that rumen pH increased when FLAs were
offered in high-concentrate diets (>700 g/kg DM). Under in vitro

conditions, FLAs decrease the concentration of lactate-producing
bacteria (Streptococcus bovis) (83). In addition, in beef cattle fed high-
concentrate diets, FLAs supplementation increases the abundance

of lactate-consuming bacteria (Megasphera elsdenii and Selenomonas

rumiantium) (64, 84). Similar effects of FLAs consumption in the
present study could result in a lower rumen lactate concentration,
which partially explains the increased rumen pH. On the other hand,
the ruminal concentration of NH3-N is the primary nitrogenous
substrate used by rumen bacteria for microbial protein synthesis (85).
Therefore, the absence of changes observed in the present study for
the ruminal concentration of NH3-N suggests that, in cattle, FLAs
supplementation does not affect the synthesis of microbial protein
in the rumen. Likewise, the absence of changes observed for NH3-
N suggests that FLAs supplementation does not affect the balance
between rumen ammonia release and uptake.

Balcells et al. (64) mentioned that FLAs supplementation
improves rumen fermentation in cattle. In the present study,
supplementation with FLAs increased the rumen concentration of
propionate with no effect on the concentration of acetate and
butyrate. It has been reported that FLAs supplementation decreases
the relative abundance of the microbial families Succiniclasticum and
Christensenellaceae (47), which negatively correlates with the rumen
concentration of propionate in sheep (67). In addition, under in vitro
conditions, FLAs increase the relative abundance of the microbial
family Succinivibrionaceae (86), which positively correlates with the
rumen concentration of propionate in beef cattle (87). Therefore,
similar effects of FLAs consumption in the present meta-analysis
partially explain the increased ruminal propionate concentration.
Furthermore, the observed increase in propionate suggests that FLAs
increase energy availability for growth and production in cattle, since
ruminal propionate is the main precursor of gluconeogenesis in
ruminants (88).

FLAs supplementation decreased the ruminal concentration of
total protozoa. This effect could improve the utilization efficiency of
the protein and energy consumed by bovines since the reduction of
rumen protozoa leads to less rumen protein degradation (89) and
decreases enteric methane emissions (90).

4.5. Meat quality

The supplementation with FLAs did not affect the meat’s pH or
CL. These results indicate that the FLAs do not affect the quality or
the water-holding capacity (WHC) of beef since the pH and CL serve
as indicators to evaluate the quality (91) and WHC of the meat (92),
respectively. On the other hand, lower ShF and MDA were observed
in beef cattle meat in response to FLAs supplementation. These
results indicate that FLAs improve beef ’s tenderness and oxidative
stability, as ShF and MDA are indicators of meat tenderness (93)
and lipid peroxidation (94), respectively. The lower ShF could be
related to the reduction in IMF observed in beef from bovines
supplemented with FLAs, since there is a negative correlation (r =
−0.54) between ShF and IMF in beef (95). In beef cattle, low doses
(400 mg/kg DM) of FLAs have been reported to decrease skeletal
muscle fiber diameter (67), which is positively correlated with ShF
in beef (96). The reduction observed in the present study for lipid
peroxidation of meat partially explains the lower ShF, as oxidation
decreases post-mortem calpain activity and myofibrillar proteolysis,
leading to higher ShF (97).

The reduction observed for MDA in meat indicates that FLAs
supplementation improves beef ’s quality and shelf life because when
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oxidation reactions in meat increase, the quality, and shelf-life
decrease (98). Previous studies (62, 99) have reported that FLAs
supplementation increases the activity of SOD, CAT, and GPx in
the Longissimus dorsi muscle of small ruminants. Therefore, similar
effects of FLAs consumption in the present meta-analysis partially
explain the lower MDA content observed. On the other hand, it is
widely documented that meat color is a crucial factor that consumers
consider when choosing fresh meat (93). L∗ and a∗ values are
related to meat brightness and metmyoglobin content, respectively
(93, 100). In the present meta-analysis, supplementation with FLAs
did not affect L∗ and a∗ in meat, indicating that FLAs do not affect
metmyoglobin formation or appearance in beef. Furthermore, the
lower b∗ observed in response to FLAs supplementation is positive,
as consumers expect to find low b∗ values in fresh meat (101).

FLAs supplementation did not affect the meat’s protein, moisture,
and ash content; however, the IMF increased. These results indicate
that FLAs do not negatively affect the nutritional value of beef since
the protein and ash content of the meat are related to its nutritional
value (93, 102). In contrast, the higher IMF observed could be
positive since IMF correlates positively with beef ’s tenderness and
juiciness (103). In addition, some FLAs increase the adipogenesis of
bovine preadipocytes (104), which participate in the deposition of
IMF (105). In pigs, FLAs supplementation increases skeletal muscle
PPARγ mRNA expression levels (106), which positively correlates
with IMF (107). Similar effects of FLAs consumption in the present
study partially explain the higher IMF observed.

4.6. Milk production and quality

It has been mentioned that increasing the utilization efficiency of
ingested feed is necessary to improve milk production in ruminants
(108). In the present study, FLAs supplementation increased DMD,
OMD, CPD, NDFD, ADFD, and EED. These results indicate that
FLAs increase the utilization efficiency of ingested feed and partially
explain the higher milk production observed in response to FLAs
supplementation. In addition, the higher milk production could be
related to the increased ruminal propionate concentration observed
since milk production in dairy cows increases curvilinearly in
response to the supply of gluconeogenic precursors (109). In lactating
buffaloes, it has been reported that supplementation with FLAs-
rich plants increases serum somatotropin levels by up to 50% (110),
which positively correlates with milk production in dairy cows
(111). It has been documented that FLAs decrease the ruminal
abundance of Clostridium microorganisms (112), which negatively
correlates with milk production in bovines (113). In growing sheep,
FLAs supplementation increases the relative abundance of the
Ruminococcaceae microbial family (47), which positively correlates
with milk production in dairy cows (113). Consequently, similar
effects of FLAs consumption in the present meta-analysis partially
explain the higher milk production observed.

Higher protein and fat content in milk was observed in
response to FLAs supplementation. Under in vitro conditions,
FLAs decrease the relative abundance of Clostridium (112) and
Methanobrevibacter spp. (114), which negatively correlates with
the percentage of milk protein in ruminants (115, 116). In beef
cattle, FLAs supplementation increases the ruminal presence of
the microbial family Succinivibrionaceae (57), which positively

correlates with the protein content in milk from dairy cows
(116). In the present study, the FLAs decreased the ruminal
concentration of total protozoa, which negatively correlates with
the fat content in the milk of small ruminants (117). In dairy
cows, Kong et al. (59) detected that FLAs supplementation increases
the relative rumen abundance of the microbial genus Butyrivibrio,
which has a positive correlation with the fat percentage in dairy
cows (116). In dairy goats, FLAs supplementation increases the
expression of genes involved in milk fat synthesis, such as genes
related to de novo fatty acid synthesis [acetyl-CoA carboxylase α

(ACACA), fatty acid synthase (FASN), and stearoyl-CoA desaturase
(SCD1)] and triglyceride synthesis [diacylglycerol Oacyltransferase 1
(DGAT1), diacylglycerol O-acyltransferase 2 (DGAT2), and glycerol-
3-phosphate acyltransferase 1 (GPAM)] (118). Briefly, acetyl-CoA
and malonyl-CoA are condensed under FASN catalysis, two carbon
atoms are added to the carboxyl of the fatty acid, the ACACA
gene limits the rate of the process, and the SCD1 gene catalyzes
the synthesis of monounsaturated fatty acids (118). Likewise, the
GPAM gene catalyzes the acyl group transfer from acyl-CoA to
generate 1-acylglycerol-3-phosphate, while the GDAT1 and DGAT2
genes catalyze the formation of triglycerides with fatty acyl-CoA
(118). Therefore, similar effects of FLAs consumption in the present
study partially explain the increased milk fat and protein content
observed. On the other hand, FLAs supplementation did not affect
the lactose content in milk. This result was not expected since the
FLAs increased the rumen concentration of propionate, which is the
primary short-chain fatty acid required for lactose biosynthesis (108).

Tong et al. (119) mention that SCC is a widely used indicator
to assess the health of the mammary gland and the quality of milk
in bovines. For example, an increase in SCC is associated with
intramammary infection and negatively affects raw milk quality
(120). In the present meta-analysis, lower SCC was observed in
response to FLAs supplementation, indicating that FLAs improve
mammary gland health andmilk quality in cattle. In dairy cows, FLAs
supplementation decreases the presence of Staphylococcus bacteria
in milk (121), which positively correlates with SCC in ruminant
milk (122). In addition, IgA has been reported to be involved in the
protection of mucous membranes, IgM is the first line of defense
against infections, and IgG plays an important role in the immune
response against infections (75, 121). In the present meta-analysis,
IgG, IgA, and IgM serum levels increased in response to FLAs
supplementation. Therefore, similar effects of FLAs consumption in
the present study partially explain the lower SCC observed.

4.7. Limitations and strengths of the
meta-analysis

The present meta-analysis was limited to research conducted only
in beef cattle and dairy cows and may not apply to other ruminant
species. In addition, high heterogeneity was detected in most of
the response variables evaluated, which may represent a limitation
in applying the global results obtained. However, this problem was
diminished with the use of subgroup analysis, which allowed us to
identify the specific conditions under which FLAs could be used
successfully to improve different important parameters in beef cattle
and dairy cows. Finally, this meta-analysis also establishes the steps
for implementing future standardized experimental designs on the
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use of FLAs as growth promoters and natural antioxidants in beef
cattle and dairy cows.

5. Conclusions

The results obtained in the present meta-analysis indicate that
FLAs can be used as natural growth promoters in beef cattle
and, at the same time, improve feed conversion. The best result
for daily weight gain is obtained with FLAs supplementation
periods up to 75 days and diets high in concentrate (>700
g/kg DM). Likewise, including FLAs in bovine diets improves
dry matter intake and nutrient digestibility. The best dry matter
intake is obtained with periods up to 75 days and when the
FLAs used are puerarin, anthocyanin, and daidzein. Furthermore,
supplementation with FLAs improves total antioxidant status and
immune response in cattle by reducing serum concentration of
malondialdehyde and increasing serum levels of antioxidant enzymes
and immunoglobulins. The best results for serum concentration
of superoxide dismutase are obtained with FLAs extracts and
when the FLAs used are puerarin or daidzein. At the same time,
FLAs supplementation improves meat quality by reducing shear
force and malondialdehyde content. In addition, FLAs improve
milk production and composition. The highest milk production is
obtained when FLAs extracts are used, with daidzein or mixtures of
FLAs, and low doses of FLAs (≤600 mg/kg DM). The best results
for milk protein content are obtained with supplementation periods
longer than 75 days, diets with moderate levels of concentrate (400–
700 g/kg DM), and daidzein or mixtures of FLAs. Likewise, the best
fat content in milk is achieved with daidzein or mixtures of FLAs
and using cows with more than 100 days in milk. Finally, FLAs
supplementation improves ruminal fermentation in cattle through
increased ruminal propionate concentration and reduced total rumen
protozoa. The best rumen propionate concentration is obtained with
supplementation periods of up to 75 days.
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