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Locomotor kinematics have been challenging inputs for automated diagnostic

screening of livestock. Locomotion is a highly variable behavior, and influenced

by subject characteristics (e.g., body mass, size, age, disease). We assemble a set

of methods from di�erent scientific disciplines, composing an automatic, high

through-put workflowwhich can disentangle behavioral complexity and generate

precise individual indicators of non-normal behavior for application in diagnostics

and research. For this study, piglets (Sus domesticus) were filmed from lateral

perspective during their first 10 h of life, an age at which maturation is quick and

body mass and size have major consequences for survival. We then apply deep

learning methods for point digitization, calculate joint angle profiles, and apply

information-preserving transformations to retrieve a multivariate kinematic data

set. We train probabilistic models to infer subject characteristics from kinematics.

Model accuracy was validated for strides from piglets of normal birth weight (i.e.,

the category it was trained on), but the models infer the body mass and size of

low birth weight (LBW) piglets (which were left out of training, out-of-sample

inference) to be “normal.” The age of some (but not all) low birth weight individuals

was underestimated, indicating developmental delay. Such individuals could be

identified automatically, inspected, and treated accordingly. This workflow has

potential for automatic, precise screening in livestock management.

KEYWORDS

locomotion, kinematics, probabilistic modeling, Fourier Series, precision livestock

farming, diagnostics, piglets, low birth weight

1. Introduction

Veterinary diagnostics have struggled with a methodological trade-off between high

precision and high through-put. In the era of genomics, proteomics, and the like, the

strive for accurate diagnostics of livestock diseases has directed considerable attention

to the development of modern laboratory tests (1, 2). Conventional imaging techniques

also play a role, but usually require special equipment and measurement techniques [e.g.,

radiography, microscopy, ultrasound, cf. (3)]. These methods are high precision tools,

but low through-put or expensive, some potentially invasive, and therefore not generally

suitable for broadmonitoring of farm animals. On the other hand, computational techniques

are increasingly available to mine extensive data sets collected with sensors or cameras

for diagnostically relevant signals (4–8). “Precision Lifestock Farming,” an application of
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integrated management systems, might be the desired economic

model. These techniques complement the high precision tools by

enabling broad screening and early detection of abnormalities,

often preceding manual, veterinary intervention. Precision

Lifestock Farming is promising in terms of its impact on animal

welfare and economic success, but pitfalls remain (9, 10). The

term “precision” might be misleading. In an animal management

context, it refers to the availability of individual animal data, and the

reduction of inefficient and thereby non-sustainable management.

However, in practice, the use of sensors and cameras often still is

restricted to superficial measures such as the overall activity or the

mere occurrence or frequency of certain behaviors of individuals.

For example, in swine farming, conventional video cameras can

be used to monitor activity, and reduction can be associated with

disease (11–13); specificity and precision of these methods deserve

further validation.

One class of behaviors that is typically monitored with

such cameras is locomotion. Locomotion involves multiple

subsystems, and one of the major challenges is to understand

how exactly locomotor patterns are altered by conditions of the

animal or by external circumstances. The involved subsystems

are the musculoskeletal apparatus, energy supply, metabolism,

and multiple levels of neuro-motor control. The kinematic and

dynamic measurements obtainable by cameras and measurement

equipment represent the collective output of interacting variables

of the ensemble of subsystems (14). In normal function, all of

them are potentially affected in different, non-trivial ways by

characteristics of the animal (15), e.g., age (due to individual

development), weight (due to body segment inertia), and size

and morphology (due to allometrics in general and specific

muscle lever relations in particular). In non-normal conditions or

disease, another dimension of complexity is added. In consequence,

studying alterations in specific locomotor patterns holds more

diagnostic potential than activity measurement alone. Kinematic

measurements have enabled the inference of many aspects of

the locomotion of domestic animals [e.g., (8, 16–18)]; even

individual recognition is possible in well-studied domestic species

[e.g., (19, 20)]. However, the cross-influence of the more or

less correlated systems and co-variates mentioned above, and

thus the superimposed effects of multiple factors, complicate

data analysis, and diagnostics. Most studies have relied on

derived measures, such as speed or duty factor, as performance

indicators, which neglects most of the individual movements

of the joints and their temporal orchestration. For precision

diagnostics, it would be desirable to have an automated system

which tracks the locomotion of an individual, extracts and

quantifies kinematics in all available detail, takes into account

possible co-factors (such as age, size, and external physical

conditions), and compares these observations to a reference for

the species. Implicitly, this is what “a medieval husbandman,”

i.e., a human classifier, would do with “his house cow or

sow” (9).

At the technical core of diagnostics is thus a classification

problem: finding a diseased subset in a population of observations.

Correct classification is complicated when there are multiple

influence factors, but even more when the observation is subject

to substantial intrinsic variability.1 Variability is a central feature

of motor behavior: even for identical external conditions and in a

single individual, it can be noted that “successive movements [. . . ]

never exactly repeat themselves” (21). Could a putatively abnormal

or pathological behavior actually fall “within the bell curve” of

normal variability? How likely is that? Which of the many “input

factors” is responsible, and how, for a given (temporary) alteration

in the collective output? These analysis questions are common in

research on bipeds [e.g., (22–24)] and quadrupeds [e.g., (25–27)],

and the solution is not novel. Multivariate models are capable

of handling complex situations, given sufficient data. Multivariate

probabilistic models (see below) are suited to also capture intra-

individual variability and yield effect likelihoods. However, the high

dimensionality of kinematic data sets, the multi-parameter, multi-

level (hierarchical) covariate situations, and the high digitization

workload have often been a limiting factor for the generation of

quantitative models of vertebrate locomotion (28–30).

Several recent technological advances have enabled researchers

to tackle scientific questions on locomotion in a more efficient

way. Firstly, the past few years have brought huge leaps in terms

of computer vision, deep learning, and thereby semi-automatic

video digitization methods (30–34). These tools typically require

a manually digitized subset of the data as the “training set” for

a neural network, which is then able to digitize further videos in

high through-put, hopefully with reasonable accuracy. A second

field of technological advance are the aforementioned probabilistic

models, which build on an elegant computational implementation

of Bayesian theory [Markov ChainMonte Carlo /MCMC sampling,

cf. (35–37)]. Such models can naturally incorporate hierarchical

parameter interrelations and intrinsic variability. The main reason

for this is that probabilistic models work on data distributions,

and their outcome are distributions and “effect likelihoods,”

rather than point estimates. This can be informative on an

intrinsically varying process such as locomotion (38). Machine

learning methods for video digitization are validly advancing

to be the standard in kinematic analysis, whereas probabilistic

models still lack recognition in the field, despite their potential.

To summarize, the mentioned advances in computer vision and

statistical modeling enable us to (1) acquire a lot of quantitative

data with minimal to no workload, and (2) model them in a suitable

way. It would be desirable to adapt those technological advances

for veterinary use, generating a classifier which could identify

systematic alterations in the locomotion of domestic animals, and

thereby enabling the computer-supported diagnostic screening for

deficiencies, pathological states, and diseases.

Domestic pigs are a well-studied model system in which

scientific interest joins the economic interest of commercial

breeding. These animals have been subject to a variety of locomotor

studies, including paradigms to test the effects of breed (39),

birth weight (40–42), surface friction (43), welfare (44), various

pathologies (45–47), and more [cf. (8)]. Of particular interest has

been the occurrence of a subset of individuals which are born

1 Whether “intrinsic” just describes variability for which no influence factor

has yet been determined is a valid, but philosophical question beyond the

scope of this study.
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with lower weight (LBW, low birth weight) than their “normal”

(NBW) littermates. There are multiple standards to classify these

birth weight categories, using absolute mass, litter quantile criteria,

or asymmetry of body proportions (48–54). A possible cause of

low birth weight is intra-uterine growth restriction, and LBW

phenotype seems often, but not always, to correlate with low vitality

and a reduced chance of survival (55–58). Locomotor maturation

after birth is quick (40, 59), yet crushing by the sow constitutes one

of the major causes of piglet mortality (60, 61). The likelihood of

being crushed is directly reduced by more agile locomotion. Thus,

locomotor capabilities are crucial for piglet survival, and delayed

development might be fatal.

Previous studies from our group (40, 42) raised the hypothesis

that the apparent difference in LBW and NBW individuals can be

attributed to delayed development. They measured spatiotemporal

gait variables (e.g., stride frequency and distance, speed, duty

factor), which are collective variables of the actual kinematics

[cf. (14, 62, 63)]. This strategy has the advantage that it requires

only five landmarks (four limbs, one reference) to be digitized,

which used to be a crucial trade-off to handle large data sets.

However, the collective variables cannot capture full information

on intra-limb coordination (i.e., the relative timing of segmental

movements within a limb; as opposed to inter-limb coordination,

i.e., the relative timing of the cycling of the different limbs). This

complicates disentangling effects such as those of size, age, (birth)

weight, and disease. It is expected that animals adapt their gait to

the physical constraints of motor behavior, which are depending

on the weight and other characteristics of the subject. However,

the changes to kinematics might be more subtle, and collective

variables might not be altered in a distinct way. For example, an

animal might learn to move its joint angles in a more efficient way

by adapting clearance to substrate conditions (43), which could

in principle be achieved without changing the speed of voluntary

locomotion on those substrates. Hence, targeting automated gait

analysis and diagnostic classification of swine, it would be desirable

to include full kinematic information.

Using the semi-automatic, machine-learning digitization

techniques mentioned above, one can extend the analysis of gait

variables to quantities of intra-limb coordination with manageable

workload. However, using the whole set of raw point coordinates

of joint points of interest raises the issue of dimensionality (two

to three coordinates per reference point, simply too many data

variables). Statistical modeling requires a minimum number of

observations for being able to infer effects of the different variables

(64–67). The common solution is to reduce the dimensionality

with an appropriate transformation. To choose a transformation,

it can be exploited that common analysis procedures in locomotor

biomechanics require steady state locomotion. “Steady state”

implies that the behavior consists of repetitive blocks of kinematics,

i.e., stride cycles. And one of the most common sets of techniques

in physics and engineering to handle cyclic data is Fourier

analysis, or more specifically Fourier Series Decomposition [FSD;

(26, 68–72)]. With FSD, joint angle profiles are transformed into

their representation in the frequency domain, i.e., an array of

harmonics. Some of the characteristics of the profiles (namely

mean angle, amplitude, and phase) are more readily captured by

those harmonics and can optionally be removed. This is most

intuitive in the case of phase: removing phase differences enables

a mathematically optimal temporal alignment of the profiles.

By isolating the other characteristics, mean and amplitude, the

joint angle profiles can be transformed to meaningful quantities

such as dynamic posture [mean joint angle and effective range

of motion (eROM)], and coordination sensu stricto [relative

phase/joint timing and residual kinematics, cf. (68)]. Harmonics

are independent of temporal sampling and duration: the coefficient

array is of fixed size, which is useful for subsequent multivariate

analysis methods, such as Principal Component Analysis (PCA).

Another advantage of this transformation procedure is that it is

reversible because all mathematical information is retained in

the process (which is not the case when using collective variables

alone). This means that joint angle profiles can be reconstructed

for any observed or hypothetical point in parameter space, which

enables in-sample and out-of-sample predictive sampling.

To summarize, the Fourier Series decomposition provides

a mathematically convenient and biomechanically meaningful

representation of the kinematic data, which opens up new options

for data analysis and modeling.

In this study, we establish a workflow which can be automated

and used to identify individual animals locomoting differently from

the “normal” reference, based on video recordings, deep learning

digitization, mathematical transformations, and probabilistic

modeling. A conventional, 2D kinematics data set is extracted

with the aid of deep learning tools from lateral videos of walking

piglets. By applying multivariate analysis and FSD, we separate

spatiotemporal gait variables, dynamic posture, and coordination,

and model their relation to subject characteristics (mass, size, age,

and birth weight category). Crucially, this constitutes the complete

information captured by locomotor kinematics, and all parameters

are submitted to an inclusive, probabilistic model. As a test case,

we tackle the question of whether low birth weight in domestic

piglets is an indication of delayed development, and attempt to

quantify the delay with an inverse modeling strategy as follows.

Intuitively, and conventionally, joint kinematics are considered the

output of the locomotor system. Therefore, conventional statistical

models might consider them on the “outcome” side; on the “input”

side, the effects of birth weight, age, speed, or other parameters

are quantified. Herein, we use a different approach, and invert

the model. We construct a probabilistic computer model which

describes “age” and other subject characteristics as a function of all

available kinematic parameters. The rationale is similar to that in

subject recognition tasks: given a certain kinematic profile, can we

infer (characteristics of) the subject?We split our data set into birth

weight classes (LBW,NBW), and train themodel on only the strides

from NBW observations. This NBW model is our “kinematic

reference” model, quantitatively capturing the expectation of what

would be “normal” by inferring the plausible age range for a given

kinematic observation. We then use that trained model to compute

out-of-sample inference of individual LBW observations.

Our hypothesis is that, if LBW were at the same stage of

postnatal locomotor development as their NBW siblings, then

the model should accurately infer the age of the LBW animals.

Conversely, if the LBW piglets are delayed in development, the

model would underestimate their age. Thus, by applying this

inverse modeling strategy and comparing the computer-inferred
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age to the actual age of the LBW piglets, we can quantify and

potentially falsify a hypothesized delay in locomotor development.

The components of this classification workflow are not novel,

and commonly used in physics and engineering. We use available

machine learning tools to digitize videos, apply a series of well-

known transformations, and train a probabilistic model classifier.

We demonstrate that a set of individual locomotor events can

be used to distinguish individuals which develop slower than

expected, in a temporal accuracy of four to eight hours (which is

a considerable timespan for neonate animals). These are precise

diagnostic measurements, generated at high through-put, with the

overall aim of improving animal welfare, all of which is in line with

the prototypical ideal of precision livestock farming.

2. Materials and methods

2.1. Data acquisition

Recordings were done at a local farm in Belgium during several

trips in October and November 2017. Farrowing was monitored to

select Topigs × PIC piglets for another experiment (73). Piglets

from selected litters were weighed at birth and numbered with

non-toxic skin markers. Low birth weight (LBW) was classified

by birth weight quantile [lowest 10% of each litter] and by a

maximum mass of (800) g (49–51, 74); all other piglets are

assigned the NBW category. At variable time points afterwards

[ages (1–10) h], piglets were briefly taken from their pen and

brought to a separate room for video recording (see below).

Animals were recorded in pairs [as in (38)], which drastically

reduced anxiety and increased their motivation to cooperate. A

few animals were recorded repeatedly, usually with a changing

partner. Animals were ear-tagged and followed up: recording was

repeated at approximately 4 and 10 days of age. That data was part

of the digitization procedure (i.e., “deeplabcut” network training),

but excluded from further analysis (i.e., probabilistic modeling,

see below). The subject characteristics documented for analysis

are birth weight (continuous, and categories “LBW”/“NBW”),

mass at recording, age at recording (i.e., hours since farrowing),

sex, and size. The size of the animal was approximated by a

Principal Component Analysis (PCA) of digitization landmark

distances along all segments (“size PCA,” only first PC used, 93% of

variability). Size and mass are expected to correlate, yet deviations

would indicate animals of particularly slender or rotund habitus.

All procedures followed ethical regulations and guidelines, and

were approved by the Ethical Committee for Animal Testing of the

University of Antwerp, Belgium (ECD 2015-26).

The recording room contained an elevated runway (150 × 50

cm), covered with a rubber mat to increase friction, and visible

through a transparent frontal shield. Color videos were recorded

(camera model: GC-PX100BE, JVC, Japan) at a temporal sampling

rate of 50 frames per second and a spatial resolution of 1, 920 ×

1, 080 pixels (later cropped to 500 pixels height), from a distance

at which the field of view would exactly capture the entire runway.

A chess board at the back wall enabled spatial calibration. Video

surveillance was permanent during the presence of the animals and

stopped only in between recording sessions. Animals were able to

move freely on the enclosed platform. To stimulate locomotion,

the two animals were repeatedly placed on opposite ends of the

runway. Gentle tickling on the back and grunting vocalization of

the researcher were other successful strategies to induce targeted

locomotion in the direction perpendicular to the camera axis. After

recording sessions the piglets were returned to their litter and

remained with the sow. The workflow herein involved handling of

the animals as a consequence of the research setting. However, note

that the procedure could easily be automated for continuous data

collection by a suitable pen arrangement (8, 27, 75).

2.2. Digitization

We used the software DeepLabCut [DLC, (76)] for digitization

of all video material. In addition, a custom made point tracking

software (34) was used to generate a training set. In total, our

dataset contained 180 videos (more than 11 h, 169 animals) of

video. Our goal was to prepare a general DLC network which

is capable of automatically tracking piglets at multiple ages, and

which can be shared and re-used for subsequent research questions.

This is why the full data set was used for digitization and for

the calculation of some derived measures (size PCA). However,

the analysis focus of this study (see below) was only a subset

of the data (i.e., the 58 animals of the youngest age class). The

video processing workflow, applied to the full data set, was as

follows. To get a balanced training set, one stride of each of the

animals was selected, and the video was cut, cropped to runway

height, and optionally mirrored horizontally so that movement

would always be rightwards. All videos were concatenated and

submitted to the DLC training set generation. DLC was set to

select 2,552 frames from these videos, which were tracked in

an external software and re-imported for training (80% training

fraction). Seventeen landmarks (i.e., points of interest or “key-

points”; usually joint centers, Figure 1) were digitized, representing

all body parts visible on the lateral perspective (head: snout, eye,

ear; back line: withers, croup, tail base; forelimb: scapula, shoulder,

elbow, carpal/wrist, fetlock, forehoof; hindlimb: hip, stifle/knee,

tarsal/ankle, hind fetlock, hindhoof). We selected a “resnet 152”

network architecture and trained for 540, 672 iterations (16 days of

computer workload). The network was then applied to digitize the

continuous, full video recordings twice: once in default direction

and once horizontally mirrored, because training set was always

rightward movement.

The next step is to find the relevant temporal sequences

of walking in the continuous videos. Naturally, the trained

network would only extract potentially useful landmark traces

for episodes which resembled the training set, i.e., in episodes

with a piglet moving perpendicular to the image axis, in lateral

aspect and rightward direction. We automatically extracted 2, 597

of such sequences by filtering for high digitization “likelihood”

provided by DLC, low noise (i.e., steady landmark movement) and

consistent, plausible landmark distances. We further applied an

automatic algorithm to find footfalls and label stride cycles in the

candidate episodes (4, 730 cycles). This procedure involved a start-

end-matching optimization (using Procrustes superimposition)

to ensure that strides were indeed cyclical. To further assess

digitization quality, gait variables were automatically extracted.
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FIGURE 1

Video digitization and joint angle definitions. White circles mark

points of interest (“landmarks”). Movement was always rightwards.

Labels show joint angles, defined as shown in the inset: straight joint

(parallel segments) corresponds to zero; counter-clockwise angles

are positive. Forelimb angle was used as a reference for temporal

alignment, but did not enter the analysis.

Definition of these variables was chosen to simplify the automatic

procedure, as follows. Stride distance, frequency, and speed are

trivial measures of the animal movement. Duty factor is available

for fore- and hindlimb, and measures the fraction of stride time

in which the respective hoof is in ground contact. Clearance is

approximated by quantifying the ratio of flexion of each limb

(one minus the quotient of minimum and maximum absolute

hip-toe-distance during the stride). Head and torso angle are the

stride-average angles of the snout-ear or withers-croup lines with

respect to the coordinate system. Hindlimb phase measures the

time between hind- and forehoof touchdown, divided by the stride

cycle duration. Where applicable, gait variables were prepared

for analysis (see below) by converting them to dimensionless

values (77, 78) using the cumulated distance of landmarks along

the snout-to-tailbase line of the animal as reference, extracted

as stride average from the digitized landmarks. Only strides

with plausible values (i.e., those which lie within the theoretical

distribution of each parameter; 1, 862 cycles) where processed.

Manual inspection further boiled down the data set to 897 stride

cycles (the others excluded for digitization errors, multi-animal

confusion, non-walking gait, intermittent or sidewards locomotion,

or incompleteness).

Finally, 368 of the remaining strides from 58 animals were in

the youngest age category (<10 h) and thus selected for the present

analysis, the data table is available online (see below).

2.3. Data processing

The landmark data provided by DLC was further processed for

analysis. Python code for the whole procedure is available (https://

git.sr.ht/~falk/piglet_fcas, Python version 3.10.8 at time of model

calculation, https://www.python.org). First, joint angle profiles (i.e.,

joint angle values over time) were extracted for all relevant joints

and for the total forelimb angle (croup-withers-hoof). Shoulder,

elbow, carpal, hip, stifle, and tarsal were the six joints sufficiently

well-digitized and therefore considered relevant for analysis. We

then applied Fourier Series decomposition in the framework

we previously termed Fourier Coefficient Affine Superimposition

[FCAS, (68)], a flexible procedure which subsumes the following

steps. Joint angle profiles are cyclic, i.e., periodical, and can

therefore be transformed to the frequency domain with a Fourier

Series decomposition (eight harmonics were deemed sufficient by

visual comparison of raw and transformed/retransformed profiles).

In the frequency domain, the affine components (mean, amplitude,

phase) of a joint angle profile are easily accessible [cf. (68)]. The

forelimb angle served as reference to temporally align all cycles

in the data set (removal of phase differences between different

cycles; forelimb angle was not used further). Then, mean and

amplitude of the joint oscillations were isolated for all joint angles

and are categorized as “dynamic posture” parameters. Mean joint

angle is the temporal average, whereas amplitude is related to

effective range of motion (eROM). The residual, i.e., differences

captured by non-affine Fourier coefficients, can be categorized

as “coordination” sensu stricto (it measures the precise temporal

succession of joint configurations). In our case, there were 96

variables of coordination (six angles, eight harmonics, real and

imaginary) which were submitted to a PCA. Only the first 12

coordination components (CC) were used for statistical analysis,

capturing 80.2% of the variability in coordination.

To summarize, FSD and FCAS served three purposes:

(i) temporal alignment of the cyclic traces, (ii) separation

of meaningful parameter categories (dynamic posture and

coordination), and (iii) preparation for multivariate analysis via

PCA. Basic script code (Python, Matlab, and R) to perform FCAS

can be found on a dedicated git repository (https://git.sr.ht/~falk/

fcas_code).

Information retention is generally a strength of this method.

FCAS and PCA are mathematical transformations, which means

that the information content after transformation is theoretically

identical to that prior to transformation (theoretically, because only

a finite number of harmonics can be used, yet this is of little concern

for continuous, smooth joint angle profiles). The neglected PCs

and the residual not captured by eight harmonics were the only

information from kinematics of the given joints to be lost in this

procedure, and by definition these contain the least information.

Apart from that, all information present in the raw joint angle

profiles enters the analysis. Though we used a 2D dataset herein, the

procedure could be applied equally well to angles measured from

3D coordinate data (79).

Furthermore, all transformations are reversible, hence any

analysis outcome can be translated back to kinematics with high

accuracy. Reversibility bares a lot of herein unused potential, for

example for interpolating unobserved subject states or for inferring

kinematics of fossil species by phylogenetic and morphometric

bracketing. Reversibility can also be of use when presenting raw

joint angle profiles and their averages, as follows. One crucial

aspect of the FCAS procedure is temporal alignment of the joint

angle profiles in the frequency domain. In conventional temporal

alignment, a single characteristic point in the stride cycle is

chosen as a reference, wherein this is only “characteristic” for a

certain part of one limb (e.g., left hindlimb hoof touchdown).

Temporal alignment to the hindhoof touchdown might cause

distinct peaks in the forelimb angle joint profiles to occur at
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different relative points in the stride cycle (e.g., tarsal joint profiles

in Figure 3 below, lower half, green traces). If profiles show such

variable peak positions, then their average will have a wider, less

pronounced (i.e., lower amplitude), and potentially unnatural peak.

For illustration, this is analogous to averaging two sine-waves of

identical amplitude, but phase shifted: in the worst case, they cancel

each other out (as in “destructive interference”). The problem is

not restricted to pronounced peaks, but generally occurs if the

temporal intra-limb coordination varies within a data set. Using

FCAS, it is possible to get a more representative average of the

raw traces which has its amplitude conserved, but phase and

mean angle averaged. This is enabled by transformation to the

frequency domain, separation of affine components, removal of

phase differences by shifting to average phase, profile averaging,

followed by inverse transformation back to the time domain.

Because a set of profiles and phases may be calculated for each angle

individually, and because phase relations can differ between joints,

there are the options to align based on one reference angle (e.g., the

whole forelimb, as done herein) or minimize all phase differences

across all joints. Choosing the first option herein has implications:

when plotting hindlimb joints aligned by a forelimb reference (as

in Figure 3, lower half), phases still differ, and the “destructive

interference” problem might hamper averaging. In such cases it is

possible to apply an extra, joint-wise FCAS alignment for the sole

purpose of generating meaningful averages.

2.4. Statistical modeling

To summarize, four categories of variables were used for

analysis:

• subject characteristics: age, sex, mass, birth weight category,

size

• spatiotemporal gait variables: distance, frequency, speed,

clearance (fore-/hindlimb), duty factor (fore-/hindlimb), head

angle, hindlimb phase

• dynamic posture: mean joint angles and eROM for six joints

• coordination: the residual after extraction of dynamic posture

(see above).

Our guiding question for model design is whether a

probabilistic, linear model is able to infer subject characteristics

(specifically: age, mass, and size) from raw kinematics (expressed

as dynamic posture and coordination) and gait variables (collective

variables). Given the common conception that kinematics are a

complex output of an individual motor system, this might be

considered an “inverse” modeling approach. The present analysis

focused on three outcome variables (Figure 2): mass (kg), size (arb.

units, from a PCA of marker distances), and age (h). Though

these outcome variables were specific per individual and recording

session, we analyzed them “per stride” (i.e., there were multiple

strides with identical subject measures on the outcome side).

The model formula is:

θ ∼ v1 ·α+vs ·βs+

∑

G

vg ·βg+

∑

P

vp ·βp+

∑

C

vc ·βc+v1 ·ǫ (1)

Herein, θ is either of the outcome subject characteristics, β are

slopes associated with the model parameters (s sex, G gait variables,

P dynamic posture, C coordination), v are data vectors (e.g., v1 is

a vector of ones for the intercept α and model residual ǫ, and vs is

a boolean vector coding for subjects of “sex == male”). The models

have a total number of 36 degrees of freedom. Priors (i.e., a priori

assigned distributions) for all slopes were Normal distributions

with mean and standard deviation corresponding to the mean

and two times standard deviation of all observed values of each

parameter; logarithmic transformwas applied where necessary. The

observable (“likelihood”) prior for θ was a Student’s t-distribution

(allows for wider-than-normal tails and robust regression) with a

Gamma distributed ν (degrees of freedom); ǫ was modeled to be a

Half Cauchy distribution. The model was implemented using the

Python library “PyMC” [version 4.2.2, (80)].

To re-emphasize, dynamic posture and coordination together

effectively capture all the kinematic information of the stride.

Hence, we train the predictor model with all kinematics, gait

variables, and sex. Birth weight category (LBW, NBW) is a filter

parameter: we split our data set into LBW strides and two NBW

subsets (training and validation). Training is performed by MCMC

sampling (“sample” function in PyMC), and a No U-Turn sampler

was set to sample with 32 chains, each 214 tuning and equally many

sampling steps. All post-hoc model checks confirmed convergence

(inspection of traces, bfmi > 0.94 for all chains, Gelman-Rubin

statistics ≈ 1 for all parameters, sufficient effective sample size).

Model comparison was performed, iteratively leaving out model

parameters or replacing some by meaningful combinations (e.g.,

duty factor combined for fore- and hindlimb). However, because

we follow an “all in” strategy, the results have little instructive value

for model construction: we might thus have retained parameters

which are numerically unimportant for the NBW-only models.

The data set of N=368 strides was split into three categories:

(i) the NBW training set as reference with N=294 strides, (ii) the

NBW validation set (N=35 strides), which is a random subset of

NBW strides, approximately equal in size to (iii) the LBW test set

with N=39 strides.

The model was thus trained with a set of 294 NBW

training strides (i). Inferences (model “predictions”) were

then done per stride, for all observed strides (NBW training,

NBW validation, and LBW test), iteratively using the

“pymc.sample_posterior_predictive” function in PyMC after

setting all the data arrays to the actual observed values for one

given stride (using “pymc.set_data”). The number of predictions

usually matches the number of training samples, which means

that all posterior information is used to construct the prediction

distributions. We would thus retrieve mass, size, and age

predictions (i.e., probabilistic inference) for each stride in the data

set, which were then compared to the known, actual mass, size, and

age.

All procedures, code, data, and this manuscript are available

online (https://git.sr.ht/~falk/piglet_fcas).

3. Results

The present analysis is centered around a linear model which

is designed to infer mass, size, and age (subject characteristics)
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FIGURE 2

Histogram of observations. Trivially, the LBW group measured the lowest body masses in the data set. This correlated with a lower body size, whereas

age is rather uniformly sampled for all study groups. Recordings happened opportunistically within the first 10 life hours of the animals, repeated

measurements were possible. Number of strides per class are indicated in brackets on the legend. Bar heights are scaled by sample size to show

relative value distributions.

from an extensive set of kinematic parameters from 2D videos. The

numbers provided by the model sampling are equally extensive,

and will only be reported in brief. The key purpose of the model

is posterior predictive sampling of the LBW strides which were left

out of the model, and which are analyzed in detail below.

To assess whether there are qualitative differences between the

birth weight categories, one can compare the joint angle profiles

(i.e., raw, angular kinematics) on which the present analysis was

performed (Figure 3). The intra-group variability clearly exceeds

the differences between groups, although it must be emphasized

that groups are inhomogeneous (with regard to age, speed, etc.),

which might lead to a bias if composition of LBW and NBW

data differs. Low birth weight piglets walk with a more flexed

hindlimb posture, as indicated by the parallel offset average hip,

stifle, and tarsal profiles. Additionally, NBW individuals on average

seem to set the shoulder at a more extended angle. No differences

in coordination are apparent (which would manifest in altered

temporal structure of the profiles). These findings indicate that

LBW kinematics are hardly distinguishable from NBW kinematics

by qualitative, visual assessment, which is at least in part be due to

high variability.

A quantitative comparison of variable kinematic measurements

can be achieved with probabilistic linear models. For the purpose

of predictive sampling (see below), we train models to describe the

interrelations of kinematic parameters and subject characteristics

in NBW piglets. The outcome of MCMC sampling of a linear

model are value distributions for slopes, which in our case indicated

how certain kinematic parameters are associated with a change

in mass, size, and age (Supplementary Table S1). Of the gait- or

coordination parameters, only hindlimb clearance was correlated

with differences in animal mass. Mass was also associated with

changes in the dynamic posture of the hip and tarsal. For size, the

model inferred associations with head angle, hindlimb duty factor

and clearance, and one coordination component (CC3), as well as

changes in the fore- and hindlimb posture and an effect of sex.

Finally, age was associated with an increase in forelimb clearance,

potential changes at the hip and carpal, and several coordination

components (CC9, CC11). Some eROM slope distributions for

age were high in average magnitude, but variable (the “credible

interval” contained zero). These model results provide detailed

insight into parameter interrelations in the present data set and

indicate which of the parameters are the relevant ones to infer a

given subject attribute in predictive sampling.

Performing in-sample and out-of-sample predictive inference

with the models trained on NBW strides elucidated if and how left-

out strides differed from NBW model expectation (Figure 4). Note

that, to capture variance (i.e., uncertainty in the prediction), each

stride was sampled repeatedly.

Out-of-sample inferences for the NBW validation set matched

those of in-sample NBW inference in terms of average values

and standard deviation for all modeled outcome variables, which

confirms that inference of subject characteristics from kinematics

is possible. In contrast, inferences for LBW strides did not match

those of the NBW training set. Low birth weight animals were

inferred to be on average 0.44 kg heavier than actual, and their size

was overestimated (+ 1.71 units). Both faults matched the actual

differences in magnitude (cf. methods, Figure 2). In contrast, the

age inference for the low birth weight subjects were not normally

distributed: most ages were correctly inferred from stride-wise

kinematics, but ages for some strides were underestimated. The

underestimation of those strides quantified to just below 5 h.

In summary, the NBW-trained model “guesses” the

size and mass of the animals producing LBW strides to

be “normal” (although they are not), which indicates that

these defining features of LBW do not reflect in altered

kinematics. However, age inference is non-normal, i.e., some

strides are classified as typical for animals of younger than

actual age.

To find out whether the offset age inference was related to

certain individuals, or certain strides from different individuals,
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FIGURE 3

Joint angle profiles per joint, grouped by birth weight category. An angle of zero would be a fully extended (i.e., straight) joint. Thick lines represent

the average profiles, dashed lines indicate the average of the opposite birth weight group for comparison. Colored, shaded lines show all raw profiles

available for the present analysis. Temporal alignment was done based on total forelimb angle (see methods), yet for the shown hindlimb averages

(but not for the raw profiles), a separate alignment of the hindlimb was performed.

FIGURE 4

Model inference. For all included subject characteristics, models which were trained on NBW strides correctly inferred the training data (gray) and

values from the validation set (blue). In contrast, the same models wrongly inferred the characteristics of LBW subjects (orange). The x-axes show the

di�erence (1) between actual and predicted values per prediction. To facilitate comparison, histogram heights are again normalized per category.

we grouped the inferences per stride or subject and calculated

the chance of over- or underestimating age. Of the 8 low birth

weight subjects who contributed 39 strides, 4 individuals were

consistently underestimated (Table 1). Consistently means that

more than 75% of all predictive samples were below actual age,

and that the ages for a majority of strides were on average

underestimated. The magnitude of underestimation was between

2 and 5 h. Curiously, those were the individuals recorded at

a slightly higher age (>5 h). Overestimation in the other four

LBW individuals was also consistent, but less so (less extreme
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TABLE 1 Age inference per LBW animal (compared to NBW average, last row).

Piglet Age Strides Underestimation Underestimation Pred. mean 1 Pred. std

h count ratio h h

b23 2.0 6 0 0.29 1.13 2.00

b15 2.9 5 0 0.37 0.68 1.96

b76 3.1 4 0 0.39 0.57 2.01

b74 4.2 7 1 0.40 0.52 1.97

1794.5 5.6 5 5 0.90 -2.57 1.99

b58 7.8 3 3 0.91 -2.85 2.00

b19v2 9.8 1 1 1.00 -6.14 1.99

b56 9.9 8 8 0.99 -4.58 1.96

All NBW < 3.8 > 329 158 0.49 -0.03 1.95

1, “inferred - actual” difference. Underestimation is defined as 1 < 0, “count”, per stride; “rate”, per predictive sample; h, hours; std, standard deviation.

underestimation rate, mean 1 < 2 h). Standard deviation of

the estimates did not vary across individuals or birth weight

categories.

We conclude that underestimation of age is consistent over

multiple strides of the same individual, and thus individual-specific.

4. Discussion

Quadruped terrestrial locomotion is the collective output of

an ensemble of organismal subsystems, which is both reason

and challenge for its usefulness in veterinary diagnostics. On

one side, the kinematics can be quantified in multidimensional

data sets, capturing the many degrees of freedom of the limb

joints. On the other side, kinematic quantities are context

dependent and affected by numerous subject characteristics (age,

weight, pathologies, . . . ) which also cross-influence each other.

The challenge emerges to find the right trace of a given (or

unknown) condition in the multidimensional observation on

the background of kinematic variability. Deep Learning methods

for video digitization have become available, and probabilistic

computational models offer a flexible framework tomirror complex

parameter relations. Once trained to a given question, these

computer tools can achieve comparative diagnostic classification

with minimal human interaction, e.g., for continuous screening

in a farm setting. Multivariate systems have been a challenge to

integrated management and precision farming, and the presented

locomotor analysis workflow highlights a possible way to succeed

in that challenge.

In this study, we have demonstrated a test case for generating

a probabilistic model of piglet locomotion which incorporates all

kinematic information.

Our example model was trained on a high number of

observations which are considered “normal,” and applied to

classify untrained observations in terms of deviation from normal

behavior. The data stems from laterally filmed videos of normal

(NBW) and low birth weight (LBW) piglet locomotor behavior

from unrestricted walking gait (an inexpensive, high-throughput

arrangement, and a common behavior). Low birth weight is often

associated with low vitality (55–57), and this supposedly correlates

with deficient locomotion. Hence, the obvious first research

question is whether birth weight has an influence on the locomotor

behavior. Top-down, direct, visual assessment could justify the

hypothesis that LBW walking kinematics are somehow different

from “normal” (81). Yet that is (i) hard to assess due to high

behavioral variability and (ii) trivially expected given the adaptation

to different physical properties of their body: gravitational force is

a predominant constraint of locomotion, and it simply scales with

animal weight. Our results showed that the eight LBW individuals

we submitted to the weight-kinematics model were all over-

estimated in terms of their weight, by the amount that matched

LBW–NBW weight difference (Figure 4). The same is true for the

sizemodel. This indicates that LBW, at least all those in our data set,

are capable of walking as if they were of normal birth weight and

size. This is the first example of a diagnostic model application: the

model confirms quantitatively normal locomotor behavior despite

occurrence of a given non-normal co-variate (weight).

A second diagnostic application is the identification of

individuals (or even strides) which systematically deviate from an

expectation or norm. Probabilistic models do not only classify

“normal” or “not”: they yield a distribution of plausible values,

and thereby a likelihood that a given observation is indicative of

a problem. The same model architecture as above, but configured

to infer age from a kinematic measurement, estimated some (but

not all) individuals to be of lower than actual age (Table 1). Those

were specifically the older of the LBW individuals, whereas the

youngest ones (<4 h) walked as expected for neonates. Though

we cannot fully rule out chance with our limited sample size,

this provides evidence that the quick postnatal development was

halted in those individuals. Our interpretation is that, at birth,

LBW individuals putatively had the same capabilities as their NBW

siblings, yet at least some “fell behind” regular development in the

first hours. We can think of two possible reasons for this: (1) the

birth process as a trauma might mask the actual capabilities of

all neonates alike, concealing actual, pre-existing differences (74);

(2) development is impeded by depleted energy reserves and a

failure in (kin) competition and the perinatal struggle for teats and

warmth (82). We found little support for the first possible reason:
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top-down locomotor development is quick for both groups (40, 41),

and muscular architecture shows no differences (83). On the other

hand, there is evidence for quick depletion of energy levels in the

low birth weight individuals, which rectifies within a period of 10 h

(84). This finding is consistent with the present study and supports

the perinatal struggle hypothesis. Delayed development does not

necessarily corroborate the hypothesis of locomotor deficiency in

LBW. We would expect truly deficient strides to be substantially

different from the data trained to themodel, thus be either excluded

or misclassified. Exclusion means that the used Deep Learning

implementation could not capture deficient strides, or only in a way

which led to exclusion in subsequent (automatic) quality checks

(see below). We acknowledge that there currently still is room for

refinement in the Deep Learning digitization procedure. Yet in the

likely case that some deficient strides passed quality checks and

were subjected to the model, we would expect them to be more

“unpredictable” (i.e., higher variance of posterior samples). Instead,

in our data set, inferences were consistent for repeated measures

of an individual, without notable increase in variance across

inferences per stride. For the affected subjects, we can even quantify

a plausible delay of less than 5 h, which could nevertheless be critical

given the rapid maturation of locomotor behavior in this species

(40) and the importance of postnatal competition. Such detailed

information is valuable when evaluating the success of different

mitigation strategies [e.g., supplementing energy to piglets, (85)]. It

must be emphasized that, just like other computational diagnostic

tools, the method outlined herein is not intended for standalone

use. Instead, it is complementary to or can facilitate the in-

depth inspection. Nevertheless, the specificity of the presented gait

analysis supersedes mere activity analysis: to our knowledge, being

able to automatically retrieve an individual, probabilistic measure

for developmental delay in swine has not been achieved before.

Information retention is a feature of the presented workflow which

we think can enable researchers and veterinaries to differentiate

a multitude of potential influences on locomotor behavior, given

sufficient reference data and an appropriate model design.

These observations are specific to the present test case, and

the question remains whether the method is generally suited

to diagnose animal pathologies. In the proposed workflow, data

transformations (e.g., Fourier Series, PCA) are preparing the

kinematic data for diagnostics. Diagnostics are the classification

of “non-normal” observation, herein achieved by comparison of

the probabilistic predictive samples and the actual observation

(Figure 4 and Table 1). In the present example, there is no

pathology, which was surprising to us: when observing NBW

and LBW piglets (human classifier), one tends to see differences

in how they walk. However, there are confounding factors: first

and foremost, their weight and body proportions, age (locomotor

maturation), sex, etc. In other words: they walk differently, but this

is expected, given the biomechanical and physical constraints of

the phenomenon. These are general complications in diagnostics.

Our models provide evidence that, when accounting for potentially

confounding factors (e.g., by working on “dynamically similar”

joint angle profiles), no difference remains. Given the high level

of detail that could be extracted for the present case, we would

expect it to be as accurate as a human classifier in cases where

pathologies can be visually identified. Whether the workflow

could even outperform human diagnosis in other cases, for

example because confounding factors are accounted for, remains to

be evaluated.

There are other limits imposed by the present test case.

Our data set is limited and potentially biased in terms of LBW

observations. There are much fewer valid LBW strides in our

data set, in absolute numbers: only 39 of 368 observations are

LBW. This could be interpreted as evidence for a lower capacity

(despite equal potential) of LBW to produce normal locomotion.

Yet there are proximal, trivial explanations: for this study, the

10% lower quantile of birth weights in a litter is considered LBW,

and there is a hard cap of 800 g. The resulting share is equal in

our training set for video digitization, and in the final data set,

because of pseudo-random, opportunistic sampling on-site (i.e.,

recording work was permanent, yet determined by farrowing and

feeding of the subjects). The minority of LBW training videos

might lead to an under-learning of those animals in the digitization

network, which could lead to reduced digitization quality and

therefore an exclusion bias for “non-normal” individuals. Though

it seems unlikely, we cannot rule out reduced locomotor capacity in

LBWs: the present data set is unsuited to count the occurrence of

locomotor behavior due to its automatic generation. On the other

hand, the strict stride filtering criteria for “good” kinematics may

have involuntarily filtered out deficient individuals. Our conclusion

that low birth weight individuals are non-deficient is strictly tied

to the definition of the low birth weight category, which is herein

based on weight criteria and did not regard phenotypical indicators

of intra-uterine growth restriction [which we did not record, cf.

(54)].

A corollary question is which patterns in the kinematic

variables cause the different age inferences. We report high

magnitude (but also highly variable, i.e., “non-significant”) slopes

inferred from the age model (Supplementary Table S1). Note that

these slopes solely reflect effects within the NBW data subset. We

also observed slight differences in the average hindlimb dynamic

posture (Figure 3). In fact, a more flexed hindlimb is typical

for the youngest animals of both birth weight categories. We

emphasized potential differences in group composition to explain

that (e.g., sex effect in the “size” model), and different age per

group might be a proximal explanation for the non-normal age

inference in LBW. However, the average age of LBW animals

(5.3 h) in our data set is nominally above that of NBW (3.8 h),

which is a discrepancy with the age underestimation. Yet if we

assume that the hypothesis of delayed locomotor development

is correct, the nominal age would be misleading, and LBW

effectively behave similar to younger animals. This can explain the

apparent discrepancy in age group composition and age inferences

from kinematics. It also suggests that dynamic posture might be

the major proxy for perinatal maturation, though many other

parameters also entered the probabilistic model and influenced the

model outcome.

To summarize, we herein assembled state-of-the-

art computer techniques for the purpose of individual

diagnostics in quadruped locomotion, which we think

constitute a valuable workflow for livestock screening and

management. All components require some manual and

computational efforts for initialization (network training,

model regression). However, once that is done, the workflow is

as follows:
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• generate more video recordings (e.g., in an instrumented

runway)

• apply the trained Deep Learning network for automated

digitization

• identify stride cycles (automatic with framewise Procrustes

comparison)

• stride cycle quality filtering by automatic criteria (end-start

difference, constant speed, . . . )

• Fourier Series decomposition, temporal alignment, and

parameter transformation (PCA)

• probabilistic classification (i.e., posterior predictive sampling)

with an inverted model structure

• validation of above-threshold classifications.

Except for the last (crucial) step, all of this can be fully

automated, and the whole workflow is readily available for

precision livestock farming. Modules of the workflow can

be altered: for example, Probabilistic Deep Learning models

could be applied instead of the currently implemented

classification. Monitoring can happen automatically [as in

(8, 74)], which reduces delay in identifying individuals in need

of intervention. Multiple models can be tested in parallel:

in the present test case, the “weight” and “size” models

found LBW locomotion indistinguishable from the “normal”

reference group, whereas the “age” model specifically identified

those animals which likely experience a delay in locomotor

development. Likewise, tests for specific diseases could be

set up. A more extensive (longitudinal) data set and more

specific models are required to bring this tool into “clinical” or

economical/commercial use, and one purpose of the present

study was also to give sufficient explanations and references for

readers unfamiliar with the mentioned methods. Nevertheless,

we demonstrated that the modeling workflow is able to provide

a high precision, high throughput method for domestic pig

locomotor diagnostics.
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