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Thermal stress causes severe e�ects on the wellbeing and reproduction of cattle,
including changes in oogenesis and spermatogenesis, generating great concerns,
which last for decades. In cattle, the occurrence of thermal stress is associatedwith
a reduction in the production of spermatozoids and ovarian follicles, in addition to
the increase of major andminor defects in gametes or in their intermediate stages.
In bovine females able to reproduce, a reduction in the rate of estrusmanifestation
and an increase in embryonic mortality has been observed. Therefore, keeping
animals on good welfare conditions, with water supply and in shaded areas can
favor the improvement of di�erent reproductive parameters. For all this, the
present study aimed to gather, synthesize and argue recent studies related to
animal welfare, focusing on the e�ects of thermal stress on the reproduction
of cattle, aiming to support possible strategies to mitigate the harmful e�ects of
thermal stress in this species.
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Introduction

Animal welfare (AW) is defined as the physical or mental state of an animal in relation 5

to the environment in which it lives and dies (1). Thus, a good degree of AW means
to say that an individual is safe, healthy, comfortable, well-nourished and free to express
natural behaviors of the species without suffering from harmful mental states such as pain,
frustration and stress.

The behavioral reactions observed in animals can be determined by the way they react
to the environment, with animals of other species or the same, as well as humans, which
can directly interfere with the change in their behavior, posture and attitude (2). When the
animals have behavioral characteristics defined as normal in an unknown environment, it is
believed that they have a good degree of AW, for example, the practice of rumination and
the waiting period signals tranquility (3).
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According to the five domains of animal welfare proposed
by Mellor et al. (4), the environment (for example, physical and
atmospheric characteristics) impacts the physical andmental health
of all species.

In cattle, one of the most mentioned causes capable of reducing
their well-being are thermal conditions, that is: temperatures that
are too high or too low, due to anatomical reasons or the places
where they are raised (5).

Several consequences derived from heat stress can be cited,
such as reduced oocyte and sperm quality. Thus, in tropical climate
regions these variables express greater influence on the thermal
comfort of cattle, a fact that worsens even more in pastures
without the presence of trees or shading, because the animals
start to receive high solar radiation, and are exposed to critical
temperatures and high relative humidity, resulting in thermal
stress (4).

Most livestock species, including cattle, define their thermal
comfort zone between 16 and 25◦C, that is, in this range of
ambient temperature the basal metabolism is lower and therefore
thermoregulation takes place without evapotranspiration (6).

Several studies have been carried out to measure the
effects resulting from microclimates that interfere with the
thermal comfort of cattle, the main variables being measurable;
temperature, humidity, wind speed and solar radiation that are used
to determine the indices of thermal comfort in animals (7–13).

Cattle, being a homeothermic animal, have the ability to
control body temperature when exposed to large temperature
variations, and the thermoregulation mechanism is responsible for
this balance (14). Thus, when the animal is exposed to critical
temperatures, sweating, increased water intake, respiratory rate and
vasodilation can occur, andwhen the ambient temperature is higher
than the thermoneutrality zone (Figure 1) thermal stress can occur,
harming wellbeing, health and reproduction (16).

For all these reasons, the main objective of this research
was to analyze scientific information on welfare, but also to
gather, synthesize and discuss recent discoveries, with a focus
on heat stress in bovine reproduction, providing information
capable of supporting strategies to mitigate its negative effects in
this species.

Generalities about animal welfare

The AW theme is widely discussed in animal production.
Historically, it began in the United Kingdom in 1964, with different
reports published by journalist Ruth Harrison, warning of the need
to observe animals as living beings and not mechanically, as inert
beings (17).

In 1965, the British Parliament set up a committee coordinated
by Professor Rogers Brambell to provide information to livestock
farmers on how to raise animals. The guidelines set out in the
report were known as: “Brambell’s five freedoms”, such as: “turn
around”, “lie down”, “get up”, “scan your limbs” and “take care
of your own body” (18). After these publications, different views
were established about the AW, seeking to create criteria in order
to measure this parameter in the animals.

In conceptual terms, the definition of the most accepted
AW was established by Broom (19), who described it as the

FIGURE 1

Critical temperatures and thermo-neutral zone in dairy cattle.
Adapted from Avendaño-Reyes (15).

state of an individual during his attempts to balance himself
in an environment. Thus, when animals are placed in different
environments or subjected to inadequate management, they
tend to present stress, which results in negative aspects in
production (20).

The five freedoms are presented as an important milestone
in the science of AW, where the animal must be: 1. free
from hunger and thirst, with free access to water and diet to
maintain health and vigor; 2. free from discomfort, with an
appropriate environment, with shelter and comfortable waiting
area; 3. free from pain, injury and illness, with rapid prevention,
diagnosis and treatment; 4. free to express normal and natural
behavior, with sufficient space, adequate and species-specific
facilities; and 5. freedom from fear and distress, with conditions
and treatment that prevent mental suffering (21). However, it
is worth noting that the FAWC suggests that the five freedoms
should not be adopted as minimum animal welfare standards (22)
(Figure 2).

In 2004, the European Union presented the “Welfare Quality R©

Project”, stimulating integration between researchers about AW
from different institutions. Four approaches and 12 criteria were
proposed (23), such as: Good nutrition, defined by absence of
hunger and prolonged thirst (1 and 2); Good accommodation,
for waiting (3) and providing thermal comfort (4), in addition to
ease of movement (5); Good health, characterized by the absence
of injuries (24), diseases (6), pain induced by handling (7); and
present appropriate behavior, such as: the expression of social
behavior (8), of other behaviors (9), in addition to having a good
interaction between human and animal (10) and positive emotional
states (11).

Mellor (25) proposed the model of the five domains, seeking
to encompass the negative and positive aspects related to animals,
divided into four physical principles and one mental, namely:
nutrition, environment, health, behavior and the mental state of
animals, considering- whether positive and negative emotions and
feelings are presented. Thus, the search for positive AW indicators
is essential, combined with measures that aim to maximize the
expression of normal behaviors (26).
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FIGURE 2

Temperature-humidity index (THI) table for dairy producer to
estimate heat stress for dairy cows. Deg, Degrees. Relative humidity
expressed as percentage. Adapted from Armstrong (23).

Key animal welfare indicators

To understand AW, it is necessary to know the species to be
studied, considering the behavioral characteristics in the natural
habitat, as well as the breeding system of the individuals. When
trying to measure AW, attention should be paid to a variety of
multidimensional indicators, in addition to different parameters to
understand the general state of everyone (27).

AW indicators can be classified into two types: the first is
related to animals that cannot adapt to a certain environment, the
second represents the effort made by the animal to adapt to the
environment (28).

Mismanagement errors during the animal’s adaptation process
in a given environment can cause problems such as an increase
in the mortality rate (29) (Table 1) and a decrease in live-born
calves (30). Attempts to adapt to the new environment may present
different indicators, such as an increase in the number of diseases
(31), a decrease in milk production (32) (Table 2) and in the growth
rate of animals (34).

Another important factor is the milk production index, which
is also affected when heat stress is evident in dairy cattle (Figure 3).

Regarding fertility (36), heat stress promotes deleterious effects
at all stages (Figures 4–6). Starting from the development of the

TABLE 1 Neonatal mortality rates in di�erent farm animals in di�erent

countries.

Animal Overall mortality
rate (%)

Climate
(country)—source

Lambs 10–25 Temperate to cold-temperate
(Australia, NZ, UK)

Kids 15–51 Temperate/tropical (India)

12–50 Temperate (South Africa)

7–17 Warm-temperate (Mexico)

15–50 Cold-temperate (NZ)

Bovine calves 8 Indoors (Canada)

50 Outdoors (Canada)

6–15a USA

0–10 UK

Deer calves 10–12 Farmed (NZ)

10–90b Natural herds (USA)

Foals 0–35b Natural herd (USA)

30c Natural herd (NZ)

Piglets 5–20 Indoors (UK)

12–19b With farrowing crate

13–35b Without farrowing crate

NZ, New Zealand; UK, United Kingdom; and USA, United States of America.
aMortality in first 24 h.
bPreweaning mortality rates.
cLoss from pregnancy to newborn foals at foot. Adapted fromMellor and Stafford (29).

TABLE 2 E�ect of heat stress on dairy cattle.

THI Stress level E�ects

22.2◦C
(<72◦F)

None

22.2–26.1◦C
(72–79◦F)

Mild Dairy cows will adjust by seeking shade,
increasing respiration rate and dilation
of the blood vessels. The effect on milk
production will be minimal.

26.6–31.6◦C
(80–89◦F)

Moderate Both saliva production and respiration
rate will increase. Feed intake may be
depressed and water consumption will
increase. There will be an increase in
body temperature. Milk production and
reproduction will be decreased.

32.2–36.6◦C
(90–98◦F)

Severe Cows will become very much
uncomfortable due to high body
temperature, rapid respiration (panting)
and excessive saliva production. Milk
production and reproduction will be
markedly decreased.

>36.6◦C
(>98◦F)

Danger Potential cow deaths can occur.

THI, temperature humidity index. Adapted from Samal (33).

oocyte (38, 39), continuing through the later stages, as well as its
fertilization capacity (40). It is also harmful to the estrous cycle and
estrous behavior (41). As well as the development and implantation

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2023.1083469
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Silva et al. 10.3389/fvets.2023.1083469

FIGURE 3

For milk production, the yield was relatively constant up to about 24◦C and then began to decline as the temperature increased. Adapted from the
study developed by Ravagnolo et al. (35).

FIGURE 4

Impact of heat stress on female reproductive performance. Adapted from Krishnan et al. (37). Mitigation of the heat stress impact in livestock
reproduction.

of the embryo, persisting in the uterine environment, extending to
the fetal calf (42).

The assessment of the degree of AW can be performed under
different conditions, such as short-term conditions, for example,
in the case of pre-slaughter management, instantaneous indicators
such as heart rate, blood cortisol levels and the different behaviors

of the animals during the slaughter are used (43), or conditions of
prolonged duration, occurring in rearing systems, in which animals
have a longer time to adapt (44).

AW is associated with different indicators that arise in response
to forms of adaptation of environments, evidenced among animals;
therefore, the adoption of a single indicator is an unfeasible
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FIGURE 5

Impact of heat stress on pregnancy in livestock. Adapted from Krishnan et al. (37). Mitigation of the heat stress impact in livestock reproduction.

alternative (28). In this sense, Botreau et al. (45) provided indicators
that can be adopted in the evaluation of AW, such as the principle
of good food, good accommodation, good health and expression of
appropriate behavior.

In the first principle “good nutrition”, two criteria were defined
that address issues related to the absence of hunger and thirst for
long periods. In the second, described as “good accommodation”,
comfort criteria were formulated related to the animals’ waiting
place, thermal comfort and mobility within the facilities. The third,
“good health”, follows the criteria of absence of injuries, diseases
and pain caused during the handling of the animals. Finally, the
fourth criterion: “appropriate behavior”, has as its principle the
expression of adequate social behavior and other behaviors, a
harmonious relationship between the human being and the animal
and the positive emotional state of the animals (45, 46).

Thus, in each criterion, we sought to identify specific measures
that can be adopted to carry out the AW assessment, giving
importance to its validity, repeatability and feasibility (47). It is
worth mentioning that the measures established aim to evaluate
the welfare of the animals individually, as it allows acquiring
information directly linked to the adaptation of the animal to the
environment, pointing out its performance in the breeding system,
during a given production cycle.

Four principles are intrinsically linked to the reproduction
of cattle and can be used when evaluating the AW, they are:
nutrition related to the supply of water, food and essential nutrients;

the environment, which represents the environmental challenges
that are inserted; health linked to diseases, injuries and functional
impairment; animal behavior, and, finally, the mental state of
animals, which considers the positive and negative emotions and
feelings presented (48).

Behavioral indicators of AW in cattle

The behavioral reactions observed in animals can be
determined by the way they react to the environment, animals
of other species or the same, as well as the presence of human
beings, which can directly interfere in the change of their behavior,
attitude and posture (2). Communication between cattle is carried
out through their senses and their behaviors are linked to their
perception ability to relate sensory functions such as vision,
hearing, smell and touch (49).

Bovines use visual signals as a strong means of communication,
because due to issues related to the evolutionary process, these
animals have anatomically large and well-developed eyes, in
addition to panoramic vision (320◦), which help in their survival.
Visual sign language or body movements may relate to body
movement or just a part of it (50).

Regarding body movement, the head and tail deserve to
be highlighted. They have great mobility and allow different
movements in relation to the body, being able to express different
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FIGURE 6

Aspects of the main impacts caused by heat stress during cattle handling. Adapted from Krishnan et al. (37).

FIGURE 7

Schematic drawing on the main aspects that a�ect cattle, as well as the mediators of stress in the animal, and finally the associated strain that a�ects
the pregnancy outcome. HPG, hypothalamic-pituitary-gonadal; HPA, hypothalamic-pituitary-adrenal. Adapted from Matthew (52).
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types of information, mainly during aggressive or submissive
behavior (2), constituting, therefore, a strong mood indicator (51).

The vocalizations of cattle do not prove to be specific to a given
situation, but mainly due to the degree of arousal, being reported
mainly during situations of stress (Figure 7, Table 3), frustration
and pain (50, 53).

The following parameters are recommended for interpreting
vocalization levels: if 1% of the cattle emit sound (excellent), 3%
(acceptable), 4–10% (not acceptable) and >10% indicate serious
problems related to welfare (54).When an animal continuously and
intensely avoids a situation, it externalizes information related to
its degree of wellbeing. Thus, an accentuated avoidance reaction,
during the presence of a stimulus, can signal a good or bad degree
of welfare (55).

When an animal cannot express a natural behavior, even trying
to perform it at different times, it has a poor degree of wellbeing
when compared to another animal that can perform the behavior.
For this reason, knowing the behavior of animals in a natural
environment makes it more feasible to evaluate the behavior of
individuals in a different condition than the natural one, allowing a
more accurate diagnosis of welfare (56).

TABLE 3 Sources of stress and recent review papers written on the topic.

Sources of stress

Infectious disease of the reproductive tract

Injury

Heat

Metabolic imbalance postpartum

Social/psychological

Nutritional

Transportation

Adapted fromMatthew (52).

Stress

Stress can be defined as the set of physiological reactions that
occurs in an organism in order to adapt to different situations.
However, these reactions can cause imbalance, depending on the
intensity and duration (57). The emotional state of the animal,
whether positive or negative, can cause stress. However, the
adaptation to the new environment will provide the restoration of
balance or return to the normal state (58).

The animal organism tends to prioritize homeostasis, however,
when subjected to factors that trigger stress, they may respond
through a combination of biochemical, physiological and
behavioral reactions (2).

The General Adaptation Syndrome (GAS) is divided into three
different phases: the first phase, also called alarm or alert, is
characterized by the response of the Sympathetic Nervous System
(SNS), which signals the activation of the adrenal glands, with
secretion of hormones cortisol, adrenaline and noradrenaline. As
a consequence, there will be tachycardia, tachypnea and elevated
blood glucose levels (59).

The second phase (adaptation or resistance) is characterized
by the continuous secretion of glucocorticoid hormones (Figure 8),
providing the animal’s organism with a considerable improvement
in physical and cognitive activity, which aims to nullify the
aggressor (59). Finally, the last and third phase begins, called
exhaustion, when the animals are subjected to intense and
prolonged stress, which thus preserves the body’s response. Thus,
stress becomes chronic, which promotes physiological reactions
and changes in behavior, in addition to causing energy overload and
system exhaustion (60).

Heat stress

The sum of external environmental forces acting on
animals is defined as heat stress, which results in an increase

FIGURE 8

Illustration of the initial response when there is a stressor stimulus in cattle. The sympathetic nervous system stimulates the adrenal gland to release
catecholamines [adrenaline (AD) and noradrenaline (NAD)] and cortisol (CT).
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FIGURE 9

Infographic of environmental e�ects on physiological, behavioral and stress parameters in male and female cattle conditioned in sun and shade
systems. Adapted from Edwards-Callaway et al. (82). TA, Ambient Temperature.

in body temperature and causes a physiological response
(61). Reduced productivity, decreased wellbeing, increased
susceptibility to diseases and decreased fertility are effects of
heat stress, which in extreme situations increase the mortality
rate (62) and cause negative effects on all the domesticated
species (63).

Thus, among the parameters affected by heat stress, the energy
reserves of cattle stand out (64, 65), impairing the development
of beef cattle and lactating cows, as these animals need good
nutrition. Heat dissipation is the animal’s main response to heat
stress (64) which takes place through behavioral and physiological
thermoregulatory mechanisms (65–67).

In this scenario, these mechanisms dissipate heat through
sweating and peripheral circulation, increased respiration,
wheezing, and decreased rate of food intake to retain metabolic
heat (67). Finally, the detailed mechanism of heat dissipation in
cattle exposed to heat stress was be reviewed by Berman (68) and
Collier et al. (69).

Other studies sought to investigate the consequences caused
by heat stress on the physiology of dairy cattle [for example, (70–
73)] and confined livestock [for example, (74–81)] with revision
limitation in the cow-calf sector. Note that most mechanisms
are consistent between beef and dairy cattle. The different visual
mechanisms of heat stress in beef cattle can be seen in Figure 9.
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TABLE 4 Reproductive problems identified in dairy cows under heat

stress.

Problems identified References

Lower estrus detection rates. Collier et al. (84)

Reduction in the size of the ovarian follicle. Wilson et al. (85),
Schüller et al. (86)

Altered follicular fluid composition combined with
abnormal concentrations of ovarian steroids.

Alves et al. (87),
Roth and
Wolfenson (88)

Relative location, morphology, and function of
ooplasmic organelles (especially mitochondria) are
altered by heat stress, and these changes are especially
apparent in oocytes of Bos taurus taurus origin.

Silva et al. (89),
Maya-Soriano et al.
(90)

Transient effects up to 50 days after exposure to heat
stress.

Lussier et al. (91),
Roth et al. (92)

Decreased sperm concentration and motility and
increased morphological abnormalities.

Malama et al. (93),
Sabés-Alsina et al.
(94), Rahman et al.
(95)

Abnormal condensation of chromatin in sperm. Rahman et al. (95),
Lúcio et al. (96)

Early embryonic death. Ealy et al. (42),
Edwards and
Hansen (97)

Source: Adapted from Negrón-Pérez et al. (98).

Egg loss and early embryo loss caused
by heat stress

Embryonic death is considered one of the main causes of
low reproductive efficiency in cattle, reaching 25–40% of cases
and can be divided into early and late, and early can record
40% of embryonic losses. In bovids, the occurrence of early
embryonic losses begins between the 7th and 16th day of
gestation, during the hatching of the blastocyst and its subsequent
implantation, without interfering with the extension of the
cycles (83).

In addition, it directly harms production and economic
investment in the sector. For this reason, some parameters seek to
be addressed in order to reduce cases of embryonic loss and ensure
pregnancy rates in cattle. Regarding the clinical factors manifested
by early embryonic loss, progesterone deficiency, inbreeding,
multiple pregnancy, incompatibility, chromosomal aberrations and
heat stress, among others, stand out.

Heat stress is related to early embryonic losses, more common
in high dairy animals. Due to the presence of greater productive
capacity, there is a greater intake of dry matter, requiring an
instantaneous metabolic work, causing the animal to produce
more heat. Heat stress between the 1st and 3rd days of embryo
development decreases embryo viability due to its high sensitivity
(42) (Figure 10).

In dairy cows subjected to heat stress, there is a tendency
to present fertility problems. This is due to different factors,
affecting from the manifestations of estrus signs, to changes in
follicular function, ovulation, or even promoting embryonic death
(Table 4) (72, 84, 99–103).

E�ects of heat stress on female
reproduction

Heat stress is defined as one of the limiting and essential factors
in the dairy production sector, even though the bovine property
is maintained under controlled environmental techniques. Severe
heat waves in early summer can be harmful to the animal when it is
not in a climate-controlled environment (104, 105). For this reason,
heat stress in bovine reproduction has been widely addressed in
recent decades (52, 106–114).

In this context, it is observed that heat stress has had
negative consequences in terms of reproductive function. Among
these effects, oocyte maturation, early embryonic development,
fetal and placental growth and lactation stand out (115). It
is noteworthy that the unfavorable effects are related to the
situation of hyperthermia or physiological changes developed
by the animal in a situation of thermal stress, making it
impossible for this individual to dissipate heat to regulate body
temperature (105).

The impacts of heat stress on reproductive function affect
the formation and function of male and female gametes,
embryonic development, as well as fetal growth and development.
The proportion of these effects is greater in high producing
cows than in low producing cows and non-lactating heifers.
The result of this process can occur immediately or late
in various reproductive tissues and reproduction processes
(101, 115–118).

E�ects on ovarian follicle
development and dynamics

The most evident effect of heat stress that interferes
with reproduction occurs through deleterious mechanisms on
ovarian follicles. Heat stress tends to alter follicular growth
and development in addition to affecting ovarian follicular
dynamics during the estrous cycle (119–121). Follicles developed
exposed to temperatures close to 40◦C can be permanently
damaged and become unviable (85). The identification of these
damages can be expressed after a short interval or belatedly
(122, 123).

Some authors emphasize that heat stress delays follicle selection
and, to make matters worse, prolongs the interval of the follicular
wave and follicular steroidogenesis. All of this results in suppression
of large follicles, as the dominant follicle fails to exert dominance
(120, 124, 125).

The effects can be evidenced through the incidence of large
follicles and follicular codominance. However, there are no reports
of the immediate effect of heat stress on the small, medium and
large follicles present in Girolando cows (123). The period of
follicular growth can occur before the antral phase (42 days), or in
the primary follicle (85 days), or in the period above three estrous
cycles (123).

Heat stress interferes with follicular growth and dominance
in the pre-ovulatory phase. In heat-stressed cows and heifers,
dominant and subordinate follicles are smaller and larger,
respectively, resulting in codominance (126–129).
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FIGURE 10

E�ects of heat stress on bovine embryo development and heat shock protein (HSP) production (42).

It is noteworthy that the follicular proportion of the first wave
is similar, however the secondary wave in thermoneutral cows has a
larger diameter when compared to animals under heat stress (120).
On the other hand, different results were obtained in Holstein
cows, in which heat stress had a permanent negative effect on the
antral follicles, especially in the period between 40 and 50 days after
growth (130).

E�ect of heat stress on oocyte
development

Oocytes are temperature-sensitive female germ cells that
are subject to heat shock (131–133), remaining vulnerable
to heat stress during the pre-ovulatory period (101).
According to Paula Lopes et al. (133), the germinal vesicle
and maturing oocytes are among the main ones affected by
the adverse effects of heat stress. In this way, cows affected
by heat stress have the quality of the gamete impaired,
since the stressed animal cannot obtain greater production
of oocytes.

Heat stress causes cellular damage to the cytoplasm and nucleus
of the oocyte. In addition, it can stimulate apoptosis, compromise
cytoskeleton and mitochondrial function. All this will end up
harming the quality of oocyte development (132, 133).

The cytoplasm is the part most susceptible to heat shock
compared to the nucleus (133), this anomaly is closely linked to
changes in the amount of progesterone, LH and FSH secreted
during the estrous cycle (105, 122, 134).

The reaction to heat stress in Bos taurus taurus and Bos taurus

indicus cattle shows negative and late results regarding oocyte
competence (123). Thus, the development of small follicles can be
impaired by heat stress during the summer and lead to ovulation of
immature oocytes (135).

Influence of heat stress on
fertilization, embryonic development
and early embryonic losses

For Hansen et al. (115), heat stress impairs oocyte quality and
fertilization rate, which can result in the formation of poor quality
embryos (116, 131, 132).

According to Wolfenson et al. (117), the early embryo is the
most susceptible to the effects of heat stress. Thus, the deleterious
effect becomes more worrying when it occurs in the first divisions
of cleavage, or when part of the embryonic genome is inactive. After
that, depending on the progress of its development, the bovine
embryo gradually acquires greater resistance to the increase in
temperature (105). Paula Lopes et al. (133) emphasize that the
consequences of heat stress are less common in heat-tolerant breeds
(Bos taurus indicus) when comparing them with heat-sensitive or
exotic breeds.

Cows under heat stress tend to lose their embryos before
completing 42 days (101, 136, 137). This can be explained by the
fact that in less heat-tolerant breeds, there is a decrease in blood
flow to the ovaries, causing a reduction in the supply of nutrients
and hormones, which will interfere unfavorably with embryonic
development. This scenario can lead to increased production
of PGF2y promoting premature luteolysis and early embryonic
mortality (138).

Heat stress in the male bovine

Consequences of increased testicular
temperature due to climate change

The process of transpiration and respiration in cattle has
the function of dissipating the heat retained in their body, but

Frontiers in Veterinary Science 10 frontiersin.org

https://doi.org/10.3389/fvets.2023.1083469
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Silva et al. 10.3389/fvets.2023.1083469

TABLE 5 Morphological defects observed in studies after heat stress due to scrotal isolation in cattle.

Heat stroke period Days on which sperm
morphological
abnormalities are
evidenced in semen after
heatstroke

Observed morphological defects References

48 h 6–23 days Decapitated sperm, abnormal acrosomes,
abnormal tails, and protoplasmic droplets

Wildeu and Entwhistle
(149)

48 h 12–36 days Tailless sperm, diadem defects, piriform head,
nuclear vacuoles, knotty acrosomes, and drag
defects

Vogler et al. (150, 151)

48 h 14–42 days Piriform heads, large heads, nuclear vacuoles Rahman et al. (152)

48 h 23–34 days Piriform heads, vesicle formation in the equatorial
region of the sperm head (diadem defect), apical
vacuoles

Walters et al. (153)

72 h 15–49 days Piriform heads, detached heads, midpiece defects,
proximal droplets

Newton et al. (154)

96 h 18–25 days Piriform heads, nuclear vacuoles, microcephalic
sperm and abnormal DNA condensation

Barth and Bowman (155)

120 h 14–21 days Head abnormalities, nuclear vacuoles, acrosome
and midpiece defects

Fernandes et al. (156)

Source: Adapted from Rahman et al. (95).

these mechanisms are not so favorable to transfer heat to the
environment, thus characterizing the limit of ambient temperature
as thermal stress (139).

One of the mechanisms responsible for the occurrence of
testicular heat stress is the increase in ambient temperature
provided by global climate change (140). Given this condition,
several studies have reported the negative effects of increased
environmental temperatures on male reproduction (141).

It was observed in bulls exposed to high ambient temperatures
(40◦C), lower sperm quality, in other words, a reduction in the
percentage of motile sperm and an increase in the percentage of
abnormal sperm (142–144).

In addition, there is a significant reduction in testicular blood
flow during the warmer months, causing deleterious effects on
seminal plasma enzymatic activity and various aspects of semen
quality (145).

In a study carried out with Simmental (Bos taurus) bulls,
Koivisto et al. (146) reported higher rates of sperm defects in
summer compared to winter, because younger animals are more
sensitive to high ambient temperatures.

These studies help to clarify why bulls more resistant to heat
tend to have a higher quality of thawed semen, varying throughout
the year, due to the occurrence of a high proportion of ejaculates
discarded during the summer (147, 148) (Table 5).

E�ects of heat stress on
spermatogenesis and semen quality

The direct effects of heat stress on sperm production can also
impact sperm quality, through the proportion and duration of
testicular heating. Sperm morphology can be altered by an increase
in testicular temperature, although they may remain normal for
a few days if the epididymal spermatozoa are minimally affected,

TABLE 6 Anomalies evidenced in sperm after heat stress in cattle.

Anomalies References

The increase in GPx activity was insufficient
to minimize the damage caused by the
amount of ROS produced during the
summer.

Nichi et al. (147)

Partial impairment of motility, genetic
modifications and heritability

Al-Kanaan et al. (160)

Significant DNA fragmentation in summer Valeanu et al. (161)

Decreased percentage of live sperm, reduced
amount of sperm per unit volume of semen

Sharma et al. (162)

Decreased seminal pH and reduced plasma
membrane

Sharma (163)

The occurrence of heat stress during
spermatogenesis affects seminal quality

Sabés-Alcina et al. (164)

Increased defects in sperm morphology,
sperm DNA fragmentation, elevation of lipid
rate, mitochondrial membrane modification
potential, sperm motility and IMP

Garcia-Oliveros et al.
(165)

Semen collected in periods with high indices
of Temperature and Humidity Index (THI)
present reduced viability in vitro favoring the
reduction of blastocysts and delay in hatching

Luceno et al. (166)

Commitment to viability and seminal quality Residiwati et al. (167)

Nutritional factors associated with climatic
conditions alter the concentrations of NPY e
ATP1A1

Pires et al. (168)

IMP, plasma membrane integrity; NPY, neuropeptide Y; ATP1A1, ATPase Na+/K+

transporting subunit alpha 1; DNA, Deoxyribonucleic Acid; THI, Temperature and Humidity

Index; ROS, Reactive oxygen species.

followed gradually by the emergence of morphologically abnormal
sperm (157).
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FIGURE 11

Bovine testis. (A) Morphological characteristics of the testis without heat stress. (B) Morphological characteristics of the testis under heat stress.

In contrast, elevated testicular temperatures were observed in
spermatozoa in the epididymis (150, 151, 158, 159), which after 2
days of scrotal isolation were adversely affected, showing reduced
mobility and acrosomal integrity capacity.

As for sperm reproduction, Vogler et al. (151) report
several morphological defects (Table 6) that are evidenced
by the distal reflexes of the midpiece, by the proximal
and distal droplets and by the knotty acrosomes that
appeared when reaching the peak between 11 and 18 days
post-isolation. The aforementioned team also reports the
identification of microcephalic and teratoid spermatozoa,
with nuclear vacuoles, pyriform heads, in addition to
curled tails.

Scrotal isolation associated with dexamethasone treatment
can also be used to relate the effects of testicular heating
and the effect of stress on spermatogenesis in bulls, although
similar results can be obtained in the types of morphological
defects and in the temporal relationships of ascent and
descent (155).

Mild testicular heat stress in bulls (8 h of scrotal isolation) has
negative effects on the quality of frozen and thawed sperm (169).
This was reported by Pérez-Crespo et al. (170) when studying
the isolation of the scrotal neck in B. taurus bulls that showed
an increase in scrotal-testicular temperature accompanied by an
increase in the percentage of abnormalities between the head and
the midpiece.

Some bull breeds, especially those crossbred between B. taurus

taurus x B. taurus indicus, have no impact on semen quality during
isolation from the scrotum. However, total isolation of the scrotum
within 4 days is capable of reducing sperm production and quality
in crossbred bulls (171).

In Nelore Bulls (B. taurus indicus), there may be a reduction in
the amount of normal sperm and an increase in sperm with some
type of head deficiency, mainly nuclear vacuoles and chromatin
defects, during isolation from 14 to 21 days, after 5 days of total
isolation of the bull scrotum (156).

On the other hand, in Brahman bulls (B. taurus indicus),
submitted to 48 h of scrotal isolation, there was a tendency to
decrease sperm motility. As a consequence, there was an increase
in the rates of malformation of the head and cytoplasmic droplets,
after 41 days of isolation (173).

In the case of mammals in the process of normal
spermatogenesis, the testes need to be at room temperature,
that is, in the range of 4–5◦C lower than the body’s core
temperature (174). All this can be evidenced in most mammals,
due to the location of the testes in the scrotum, therefore, outside
the abdominal cavity (175).

The proportion of the vasculature and the lymphatic
arrangement of the testes together with the superficial blood vessels
of the scrotum seek to facilitate the removal of heat dissipation
from the testes. The action of these neurons by the cold causes
a reduction in the constriction of blood vessels while, on the
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FIGURE 12

Illustration of the e�ects of heat stress on male bovine reproduction. ACTH, adrenocorticotropic hormone, or corticotropin; CRH, corticotropin
releasing hormone. Adapted from Krishnan et al. (37) and Singh et al. (172).

other hand, the heat provides a vasodilation vasodilation. of these
arterioles and, therefore, decreases or increases, respectively, the
blood supply to the scrotum (176).

Beneath the surface of the scrotal skin is the tunica dartos,
which plays an important role in thermoregulation. In this context,
cutaneous muscle, specifically, a layer of smooth, thin muscle
located under the tonic control of nerves corresponding to the
lumbar sympathetic system that positions the scrotum towards the
abdomen or further away from the abdomen in response to cold
and environmental conditions (cold and hot, respectively) (113).
As for the cremaster muscle, one of its contributions is to bring
the testicles closer to the abdomen after contraction. Therefore, the
striated nature of this muscle means that the muscle cannot sustain
contraction for an extended period of time (95).

Other structures also favor the cooling of the testes, such as
the vascular system. With regard to the testicular artery, one of its
attributes is to transport warm blood from the body’s core to the
testicles. This artery is intertwined by a venous network known as
the pampiniform plexus and this structure formed by the venous
network plus the artery is called the testicular vascular cone (177).

Because of this characteristic vasculature, a countercurrent
blood circulation system may be evident in the testes. As a result of
this circulation system, arterial blood entering the testes is cooled
as venous blood is eliminated by the testes (Figures 11A, B).

According to Makker et al. (178), in bulls, sweat glands are
another important factor. They also have attributes related to the
control of testicular temperature, since the density of these glands is
greater in the scrotal skin than in other regions of the body and for
this reason—to a certain extent—bulls that have adequate scrotal

circumference may have a greater ability to cope. with heat stress to
some extent.

Mechanisms of the e�ects of heat
stress on spermatogenesis and semen
quality

The temperature resistance capacity is influenced by the
duration of insolation (Figure 12), according to the degeneration of
the germ cells that are induced (179). In this case, the exposure of
male mice to a high temperature and humidity index compromises
the sperm morphology and the integrity of the plasma membrane,
disfavoring sperm mortality, and may even lead to infertility (163,
165, 170, 180).

The impacts caused by heat stress induce an increase in
testicular temperature, evolving to sperm abnormalities. The
appearance, proportion and severity of sperm abnormalities
present in the ejaculate vary due to the intensity and duration
of heat stress and the developmental stages of the affected germ
cells (181).

It is noteworthy that the abnormalities are predominantly
located in the sperm head, with emphasis on the presence
of acrosomal defects, piriform heads, micro and macrocephalic
heads (163). Sperm motility during 14–21 days can also be
compromised by mild or short-term heat stress, resulting in
aggravations in the spermatid and spermatocyte developmental
stages (182, 183).
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Final considerations

Based on the information described in the literature on animal
welfare and stress in reproductive aspects, it was possible to
observe that the ability of thermal stress to negatively influence
ovarian and testicular activity in cattle of different breeds, reared
in different environmental and climatic conditions, is evident
conditions, causing detrimental effects on spermatogenesis, sperm
quality, folliculogenesis, ovulation, manifestation of estrus and
embryo survival. In addition, other harmful consequences resulting
from heat stress have also been reported, such as the increase in
embryonic mortality rates that occurred in several countries, even
in temperate climates. It is suggested to condition the animals in
environments with shaded areas and the use of places that allow
the animals to thermoregulate efficiently.
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