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Welfare considerations and regulations for invertebrates have lagged behind

those for vertebrates, despite invertebrates comprising more than 95% of

earth’s species. Humans interact with and use aquatic invertebrates for

exhibition in zoos and aquaria, as pets, research subjects, and important food

sources. Recent research has indicated that aquatic invertebrates, in particular

cephalopodmollusks and decapod crustaceans, experience stress and may be

able to feel pain. With this article, we present results of a survey on attitudes

of aquatic animal health professionals toward aquatic invertebrate welfare and

provide practical recommendations for advancing aquatic invertebrate welfare

across four areas of opportunity: use of anesthesia, analgesia, and euthanasia;

development of less invasive diagnostic and research samplingmethods based

on 3R principles; use of humane slaughter methods for aquatic invertebrates;

and reducing impacts of invasive procedures in aquaculture and fisheries.

We encourage consideration of these opportunities to achieve far-reaching

improvements in aquatic invertebrate welfare.
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Introduction

Despite comprising >95% of the animal species on Earth (1), attention to

invertebrate animal welfare has lagged behind those for vertebrate animals. Although

the interest in ethics and anesthesia related to vertebrate animal welfare has been

increasing since the mid-twentieth century (2, 3), invertebrates have been less in the

focus of welfare research and regulations. Aquatic invertebrates are displayed in zoos

and aquaria, kept as pets, used as research animals, and serve as food sources for

humans and other animals. Efforts to provide high quality care, to improve public

perception and trust, and to extend ethical responsibilities to all veterinary patients and

research subjects have driven the need to be mindful of aquatic invertebrate welfare.
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Complicating our ability to discuss aquatic invertebrate

welfare is the variable complexity of aquatic invertebrate

nervous systems—from sponges which lack true nervous

tissues (4) to cephalopods with roughly half a billion neurons

(5). Cephalopods and decapod crustaceans are considered

“advanced invertebrates” and have been the focus of the majority

of research regarding invertebrate welfare. Cephalopods (e.g.,

cuttlefish, nautilus, octopus, and squid) have arguably the

most complex nervous system found in invertebrates (6) and

have a large body of literature devoted to exploring their

nociceptive capabilities and pain perception (7–11). Decapod

crustaceans (e.g., prawn, crab, lobster, and crayfish) have also

been the subject of similar studies on nociceptive capabilities

and pain perception (12–14) as well as indicators of stress (15–

18). Less information is available for other taxa. Given the

evidence of pain perception and stress in aquatic invertebrates,

welfare considerations provide opportunities for advancements.

In addition to the opportunities discussed in this paper, welfare

can be improved through further minimization of stressors and

the provision of species-appropriate housing, diet, water quality,

social structure, and choices within an enriched environment,

where appropriate (19–22).

Legal protections for aquatic invertebrates vary by country

and whether the animals are used for research or human

consumption. Cephalopods in research are protected in the

European Union by Directive 2010/63/EU (23); decapod

crustaceans were recommended for inclusion in this legislation

(24) but were ultimately not included. This legal protection

does not extend to animals intended for human consumption.

Cephalopods and decapod crustaceans are protected in

Switzerland (25), Norway (26), and New Zealand (27). Octopus

are protected in the UK (28), although a recent publication by

the London School of Economics reported strong evidence of

sentience in cephalopodmollusks and decapod crustaceans (29).

In Canada, cephalopods and “some other higher invertebrates”

are protected (30). In the United States, invertebrates are not

included in the Animal Welfare Act (31) but may be included

for oversight by certain Institutional Animal Care and Use

Committees if requested by the funding agency.

Here we present and discuss a survey on attitudes of aquatic

animal health professionals toward aquatic invertebrate welfare

and then provide practical recommendations for advancing

aquatic invertebrate welfare across four areas of opportunity.

Current attitudes toward aquatic
invertebrate welfare among aquatic
animal health professionals

In November 2019, a 10-question informal, anonymous

survey was distributed electronically to three veterinary

medicine-focused professional email listservs to determine the

attitudes of aquatic animal health professionals toward the

welfare of aquatic invertebrates. The majority of the 112

respondents identified as veterinarians (87%) while others

identified as animal care staff, pathologists, researchers,

veterinary technicians or assistants, or veterinary students.

Sixty-seven of 111 (60%) thought that invertebrates can feel

pain and 52 of 61 (85%) thought that cephalopod mollusks

could feel pain. Only 49% had attempted pain control in

invertebrates. Seventy-five of 112 (67%) indicated that they

strongly consider the welfare of the invertebrates when

performing treatments, procedures, or euthanasia. Respondents

indicated that they euthanized aquatic invertebrates most

frequently due to illness (95%), followed by population control

(20%), cosmetic reasons (15%), research (5%), diagnostics (2%),

feed for other animals (2%), age-related reasons (2%), and health

surveillance (1%). The most common methods for euthanasia,

either individually or in combination, included immersion in

tricaine methanesulfonate, otherwise known as MS-222 (58%),

magnesium salts (52%), physical methods (30%), freezing (20%),

immersion in alcohol (18%), and/or Aqui-S/clove oil/eugenol

(13%). Less common methods included sodium pentobarbital

(5%), removal from water (4%), isoflurane (2%), formalin

(2%), 2-phenoxyethanol (1%), lidocaine (1%), propofol (1%),

and “shock” (1%) which was not further defined. Fifty of

92 (54%) identified that they used a two-step process. The

results of this survey highlighted the need for development

and implementation of evidence-based guidelines to improve

the welfare of aquatic invertebrates in various settings and

as appropriate. Future research on the topic could benefit

from a formal survey with more participants to enable further

statistical analyses.

Opportunity 1: Promote the use of
anesthesia, analgesia, and
euthanasia

Anesthesia, analgesia, and euthanasia can provide

great improvements to aquatic invertebrate welfare when

appropriately implemented. Anesthesia can be used to

immobilize aquatic invertebrates for physical examination,

sample collection and procedures, and to reduce stress

and the potential for injury for both animal and handler.

Commonly used anesthetic concentrations have been previously

reported for a limited number of species (32–36). The

selection of anesthetic should be based on a knowledge of

species biology, mechanisms of action of the agent, clinical

judgment and if possible, recent literature, though even

published methods should be critically evaluated. While

hypothermia, carbon dioxide, and calcium-free seawater have

been utilized as anesthetics, these procedures likely induce

physiologic derangements, and their use may raise welfare

concerns. Anesthesia for aquatic invertebrates typically involves

immersing the animal in a solution (such as magnesium salts
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or 1–10% ethanol) or providing flow of anesthetic solution

across the animal. Care should be taken that the solution is at

the same temperature, pH, and osmolality as the animal’s life

support system water and is aerated to prevent hypoxia, and

that water quality is monitored during prolonged procedures.

Invertebrates should be frequently monitored and adjustments

to the concentration of anesthetic made to maintain an optimal

anesthetic plane. While MS-222 is commonly used in aquatic

animal medicine, it may not be the best anesthetic choice for

some invertebrate taxa as high concentrations are required

which may lead to substantial changes in water chemistry that

potentially impact animal health (37, 38).

When performing invasive or potentially painful

procedures, the use of analgesic medications should be

considered. However, there is a lack of information on

appropriate analgesic medications for aquatic invertebrates. The

few published research studies have focused on the use of local

anesthetics such as lidocaine, given the conservation of sodium

channels across species (39, 40). Lidocaine injections appear to

have analgesic properties in cephalopods due to blocked afferent

nerve signals and the prevention of behavioral responses

to noxious stimuli (8, 11). Topical benzocaine decreased

behavioral responses of glass prawn (Palaemon elegans) to

noxious stimuli, also indicating potential analgesia (41). While

morphine has been frequently used in decapod crustacean

research, the observed results appear to be from sedation rather

than analgesic properties (42). More evidence-based analgesic

options are needed for all taxa of aquatic invertebrates.

Euthanasia is used to describe the act of ending the life

of an animal in a manner that minimizes or eliminates pain

and distress. Slaughter on the other hand is the act of killing

animals for human or another animal’s consumption (43)

and is discussed in Opportunity 3. A follow-up anonymous

survey was distributed electronically in May 2022 to four

professional email listservs, predominantly aquatic animal

veterinarians, to determine current euthanasia techniques for

aquatic invertebrates. Of the 36 respondents who had euthanized

an aquatic invertebrate in the previous 2 years, 92% identified

as clinical veterinarians. The results of the survey are reported

in Table 1.

To be considered euthanasia, an animal should be quickly

rendered non-responsive and the method should minimize

stress, be reliable, reproducible, and irreversible (44). A two-

step approach is recommended for the euthanasia of aquatic

invertebrates by the American Veterinary Medical Association

(43). The first step should render the animal non-responsive

and can include immersion in anesthetics such as magnesium

salts (MgCl2 or MgSO4), clove oil, eugenol, or ethanol (1-10%).

Injections of potassium chloride in direct proximity to the

ventral nerve chord or injectable anesthetics can be used in

crustaceans (45, 46). The second step should be unsurvivable

and include physical or chemical destruction of the brain or

major ganglia. Acceptable options for the second step include

immersion in 70% alcohol, 10% formalin, or physical methods

such as pithing, freezing, boiling, or sharp dissection. Methods

that are unacceptable as a first or solo step include removal

from the water to die by desiccation and hypoxia, freezing, or

immersion in caustic chemicals (such as tissue fixative or 70%

ethanol) (43).

Opportunity 2: Development of less
invasive sampling methods for
research and diagnostic procedures

Research protocols and diagnostic procedures in aquatic

invertebrates often involve terminally collected samples which

may not be sustainable considering population declines in many

invertebrate species. As of 2021, the International Union for

Conservation of Nature (IUCN) lists 1,661 invertebrate species

as critically endangered or endangered and an additional 1,326

species as threatened (47). Furthermore, lethal sampling may

become unacceptable due to changing public attitudes and

increasing animal welfare concerns by the scientific and animal

health communities.

In animal research, scientists are obligated to use the 3Rs

(replacement, reduction, and refinement) as a framework for

the humane treatment of animals. The 3Rs were originally

developed in 1959 by Russel and Burch (48) to improve

laboratory animal welfare but are generally applicable to any

situation where animals and humans interact. Replacement

refers to replacing the use of animals; this can include the use

of in vitro and in silico models. Reduction refers to the use of

appropriate experimental design to appropriately power a study

and optimize the number of animals used, as well as the data

collected from each animal. Refinement refers to minimization

of the pain, suffering, distress, and harm experienced by research

animals (49).

We support application of the 3Rs principles across the

animal kingdom. In various research settings and for diagnostic

testing, lethal sampling techniques can be replaced with non-

lethal procedures, including collection of hemolymph, coelomic

fluid, or tissue biopsies. Current guidelines for blood collection

in mammals limit removal to 10% of the total circulating

blood volume (50), but very few analogous recommendations

exist for invertebrates. Hemolymph and coelomic fluid removal

should be limited to the minimum amount necessary, and

perhaps no more than 10% of the circulating volume until safe

guidelines can be established through research. Tissue biopsies

should also be kept to the minimum practical size needed

to fulfill sampling objectives. Only a few milligrams of tissue

are necessary for conservation genetics and other molecular

testing. Non-lethal sampling has been performed in sponges,

corals, crustaceans, insects, echinoderms, and mollusks (51).

Examples of non-lethal procedures include in vivo solid phase

microextraction using a fiber inserted near the mouth of the
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TABLE 1 Responses from an electronically delivered survey on currently used methods for euthanasia of aquatic invertebrates.

Taxa

Solo step method Bivalve and

gastropod

mollusks

Cephalopod

mollusks

Cnidarians Crustaceans Echinoderms Horseshoe

crabs

Number of respondents (n) 12 23 24 27 21 13

Single/solo step performed 5 (41.7%) 4 (17.4%) 9 (37.5%) 8 (29.6%) 6 (28.6%) 4 (30.8%)

Im
m
er
si
o
n

MS-222 2 (16.7%) 1 (4.3%) 1 (4.2%) 3 (11.1%) 1 (4.8%) 0

Clove oil/Eugenol/AquiS
R©

0 1 (4.3%) 1 (4.2%) 2 (7.4%) 0 0

Magnesium chloride or

magnesium sulfate

2 (16.7%) 2 (8.7%) 5 (20.8%) 2 (7.4%) 4 (19.0%) 0

1–10% Ethanol 0 0 0 1 (3.7%) 1 (4.8%) 0

>50% Ethanol 0 0 0 2 (7.4%) 0 0

Formalin 0 0 0 0 0 0

2-PE 0 0 0 0 0 0

In
je
ct
io
n

KCl 0 0 0 0 0 0

Pentobarbital 0 0 0 1 (3.7%) 0 4 (30.8%)

Lidocaine 0 0 0 0 0 0

Propofol 0 0 0 0 0 0

Physical method 0 0 1 (4.2%) 0 0 0

Freezing 1 (8.3%) 1 (4.3%) 1 (4.2%) 1 (3.7%) 0 0

Removal from water 0 0 0 0 0 0

Other 0 0 0 1 (3.7%) 0 0

Taxa

1st step method Bivalve and

gastropod

mollusks

Cephalopod

mollusks

Cnidarians Crustaceans Echinoderms Horseshoe

crabs

Im
m
er
si
o
n

MS-222 0 1 (4.3%) 5 (20.8%) 4 (14.8%) 3 (14.3%) 1 (7.7%)

Clove oil/Eugenol/AquiS
R©

0 1 (4.3%) 1 (4.2%) 5 (18.5%) 2 (9.5%) 2 (15.4%)

Magnesium chloride or

magnesium sulfate

6 (50%) 10 (43.5%) 9 (37.5%) 7 (25.9%) 10(47.6%) 3 (23.1%)

1–10% Ethanol 3 (25%) 7 (30.4%) 4 (16.7%) 2 (7.4%) 3 (14.3%) 0

>50% Ethanol 1 (8.3%) 5 (21.7%) 2 (8.3%) 0 2 (9.5%) 0

Formalin 0 0 1 (4.2%) 0 0 0

2-PE 0 0 0 1 (3.7%) 1 (4.8%) 3 (23.1%)

In
je
ct
io
n

KCl 0 0 0 3 (11.1%) 0 1 (7.7%)

Pentobarbital 0 1 (4.3%) 0 2 (7.4%) 1 (4.8%) 1 (7.7%)

Lidocaine 0 0 0 0 0 0

Propofol 0 0 0 0 0 0

Physical method 0 0 0 1 (3.7%) 0 0

Freezing 0 0 2 (8.3%) 0 0 0

Removal fromWater 0 0 0 0 0 1 (7.7%)

Other 0 0 0 0 0 0

(Continued)
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TABLE 1 (Continued)

Taxa

2nd step method Bivalve and

gastropod

mollusks

Cephalopod

mollusks

Cnidarians Crustaceans Echinoderms Horseshoe

crabs

Im
m
er
si
o
n

MS-222 0 0 0 0 0 0

Clove oil/Eugenol/AquiS 0 0 0 0 0 0

Magnesium chloride or

magnesium sulfate

0 3 (13.0%) 2 (8.3%) 0 0 0

1–10% ethanol 0 1 (4.3%) 0 0 1 (4.8%) 0

>50% ethanol 0 0 3 (12.5%) 2 (7.4%) 0 1 (7.7%)

Formalin 1 (8.3%) 0 5 (20.8%) 2 (7.4%) 2 (9.5%) 1 (7.7%)

2-PE 0 0 0 0/27 0 0

In
je
ct
io
n

KCl 0 2 (8.7%) 0 4 (14.8%) 0 2 (15.4%)

Pentobarbital 0 4 (17.4%) 0 4 (14.8%) 0 4 (30.8%)

Lidocaine 0 0 0 1 (3.7%) 0 0

Propofol 0 0 0 0 0 0

Physical method 1 (8.3%) 11 (47.8%) 1 (4.2%) 7 (25.9%) 5 (23.8%) 2 (15.4%)

Freezing 7 (58.3%) 4 (17.4%) 11 (45.8%) 10 (37.0%) 11 (52.4%) 2 (15.4%)

Removal from water 1 (8.3%) 0 1 (4.2%) 1 (3.7%) 1 (4.8%) 0

Other 0 0 0 1 (3.7%) 0 0

Respondents were permitted to select all options that apply so the total count of percentages are >100%.

animal to evaluate plastic contaminants in corals and bivalves

(52) and the use of dragonfly fecal pellets and shed exoskeletons

for DNA extraction (53). Further refinement can include the use

of anesthetics and analgesics for invasive procedures. Handling

techniques can be evaluated and improved to minimize stress

and harm. If non-lethal sampling is performed but animals

must be permanently removed from the wild, a plan to

provide life-long care presents an opportunity for placement

in educational or display settings. For example, if planned in

advance, disposition to public aquaria may be an option for

some non-releasable invertebrates, depending on capacity and

institutional collection plans.

In cases where invasive sampling cannot be avoided,

sharing samples with other researchers can reduce the

need for additional specimen collection (54). If lethal

sampling is required, aquatic invertebrates should be

euthanized prior to sampling. Due to concerns over sample

quality, invertebrates are often terminally sampled without

methods rendering them non-responsive prior to sampling.

However, several studies have demonstrated that high quality

samples can still be obtained from euthanized animals.

High quality RNA was successfully extracted from sea stars

immersed in MgCl2 prior to sampling (55) and jellyfish

immersed in MgCl2 provided useful samples for NMR-based

metabolomics (56).

Opportunity 3: Use of humane
slaughter methods for aquatic
invertebrates

Aquatic invertebrates including non-cephalopod mollusks

(e.g., bivalves and gastropods), crustaceans, cephalopod

mollusks, jellyfish, sea cucumbers, and sea urchins are

commonly consumed by humans with 41 million tons captured

or cultured in 2018 (57). While euthanasia methods are

published for many of these taxa, there is a lack of peer-reviewed

literature evaluating humane stunning and slaughter methods.

The only taxon with published information on humane

slaughter are decapod crustaceans (58). Surprisingly, while

cephalopods are the focus of much research on sentience

and pain perception, no published article could be found on

appropriate slaughter techniques for this taxon, as of April 2022.

Methods for cephalopod slaughter include decapitation without

prior stunning (59), “clubbing, slicing the brain, reversing the

mantle, and asphyxiation in a suspended net bag”, none of

which are considered to be humane (29).

The debate on humane slaughter methods for decapod

crustaceans started in the 1950s with publications by Baker and

Gunter (60, 61). There is contradictory evidence on whether

slowly warming live animals or placing live animals in boiling
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water is humane (62, 63), but boiling lobsters alive has been

banned in New Zealand (64), Norway (26), Switzerland (65),

and certain parts of Italy (66). Ice slurries and electrical shock

may paralyze crustaceans, but neural circuits still remain intact

and functional so these methods are likely best used after

rendering the animal insensible (67). Based on the available

scientific evidence, all animals should have their nerve ganglia

destroyed prior to cooking to prevent any potential suffering (60,

68). A commercially available stunning device, the CrustaStun

(Mitchell & Cooper, Uckfield, England) that is recommended

by the Royal Society for the Prevention of Cruelty to Animals

(RSCPA), can be used to stun crustaceans prior to boiling and

has been shown to arrest nervous activity after use (69).

Regardless of the method for slaughter chosen, stress should

be minimized throughout the supply chain and animals should

be killed quickly to avoid unnecessary suffering and pain. More

evidence-based and species-appropriate methods are needed for

practical humane slaughter of aquatic invertebrates, particularly

for cephalopod mollusks.

Opportunity 4: Reduce the impact of
invasive procedures in aquaculture
and fisheries

Crustaceans have been shown to experience stress and likely

have the capacity to feel pain, which should be considered

during processes from collection to slaughter. Industry practices

that might be adjusted to minimize stress include decreasing

the trawling duration, live transport duration, and handling

needs (70). Additional good practice recommendations include

maintenance of the animals’ thermal preference zone, provision

of good water quality, and allowance of recovery periods (71).

Anesthetics can also be used to decrease stress throughout the

supply chain from collection to slaughter. Isobutanol, a food safe

anesthetic, reduced ammonia concentrations and mortalities

during live transport of tropical spiny lobsters (Panulirus

spp.) (72).

Crabs in fisheries worldwide have their claws manually

removed followed by release back into the water. Live declawing

is performed with brown crabs (Cancer pagurus) (73), stone

crabs (Menippe spp.) (74), and fiddler crabs (Uca tangeri)

(75). While crustaceans do autotomize claws naturally, manual

declawing is more stressful and causes significantly higher

mortality than natural autotomy (73). This practice is often

considered better than whole crab landing, based on the

assumption that these animals survive and regenerate their

claws, while remaining in the fishery. However, mortality was

>60% in stone crabs with both claws removed (76) and

regenerated claws only comprised 3% of legal stone crab

landings (77), indicating that this practice is little or no

more sustainable than whole crab harvest. Crabs that survive

declawing show decreased feeding (74, 78) and decreased

reproductive fitness (75, 79). Based on animal welfare concerns

and negligible population benefits, declawing may not be

preferable over humane harvest and slaughter.

Brown crabs are often transported alive, and mechanisms

are needed to prevent them from damaging each other during

transport. In the Irish fishery, they undergo a process known

as nicking, which involves cutting the ligament under the

dactylus of the claw since their claw shape makes traditional

banding used in other crustaceans challenging (80). Nicking

results in hemolymph loss, risk of infection, inability to molt,

and increased mortality (81–83). Nicked crabs had higher

hemolymph glucose, lactate, and refractive index, indicating

they experienced increased stress (80). In the Norwegian fishery,

the crabs are not nicked and are instead transported dry (84).

However, emersion can also result in welfare issues, particularly

at higher temperatures (85). Adapted banding techniques [e.g.,

Elastrator (castrator) rings combined with a wooden dowel

through the claw] could be considered (86). Finding a solution

that balances crab welfare with the needs of the fisheries offers

an opportunity for research.

In shrimp aquaculture, eyestalk ablation is performed

to induce female broodstock to spawn, since the eyestalks

are a source of vitellogenesis-inhibiting hormone (VIH)

which is a negative regulator of crustacean reproduction

(87). Following eyestalk ablation, shrimp exhibit stress-related

behaviors including erratic and spiral swimming, rubbing,

and tail flicking, which are prevented by topical anesthetic

application (88, 89). Beyond the stress and potential pain

caused by handling and the procedure, eyestalk ablation can

also impact the immune system of shrimp (90). Non-ablated

broodstock females appear to perform at a similar level as

ablated females, with larvae that are more resilient to typical

pathogens and environmental stress (91, 92). As eyestalk

ablation carries negative health and welfare consequences,

evaluation of alternatives could be beneficial. Switching from a

1:1 ratio of females to males to a 1:2 ratio improves performance

without ablation (91) and a single injection of anti-GIH

monoclonal antibody was shown to have similar performance

to eyestalk ablation (93).

Conclusions

Aquatic animal health professionals believe that aquatic

invertebrates, especially cephalopods, can feel pain. However,

<50% have used analgesia during invasive procedures with

aquatic invertebrates, likely due to a dearth of well described

effective options. This highlights the need for more research

on appropriate anesthetic and analgesic options for aquatic

invertebrates. While the discussion of pain perception in

invertebrates is important, the ability to feel pain is not a

prerequisite for promoting positive animal welfare in aquatic

invertebrates. Many cost- and time-effective opportunities for
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the improvement of aquatic invertebrate welfare exist and

can be appropriate in various settings. We advocate the

use of these advancements and further investigations in this

underrepresented but important field of animal welfare.
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