
TYPE Original Research
PUBLISHED 09 January 2023
DOI 10.3389/fvets.2022.1083255

OPEN ACCESS

EDITED BY

Pablo Almazan Rueda,
Consejo Nacional de Ciencia y
Tecnología (CONACYT), Mexico

REVIEWED BY

Jose Fernando Lopez-Olmeda,
University of Murcia, Spain
Li Shuisheng,
Sun Yat-sen University, China

*CORRESPONDENCE

Jaume Pérez-Sánchez
jaime.perez.sanchez@csic.es

SPECIALTY SECTION

This article was submitted to
Animal Behavior and Welfare,
a section of the journal
Frontiers in Veterinary Science

RECEIVED 28 October 2022
ACCEPTED 13 December 2022
PUBLISHED 09 January 2023

CITATION

Holhorea PG, Felip A, Calduch-Giner
JÀ, Afonso JM and Pérez-Sánchez J
(2023) Use of male-to-female sex
reversal as a welfare scoring system in
the protandrous farmed gilthead sea
bream (Sparus aurata).
Front. Vet. Sci. 9:1083255.
doi: 10.3389/fvets.2022.1083255

COPYRIGHT

© 2023 Holhorea, Felip,
Calduch-Giner, Afonso and
Pérez-Sánchez. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Use of male-to-female sex
reversal as a welfare scoring
system in the protandrous
farmed gilthead sea bream
(Sparus aurata)

Paul G. Holhorea1, Alicia Felip2, Josep À. Calduch-Giner1,
Juan Manuel Afonso3 and Jaume Pérez-Sánchez1*
1Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal,
CSIC, Castellón, Spain, 2Group of Fish Reproductive Physiology, Institute of Aquaculture Torre de la
Sal, CSIC, Castellón, Spain, 3Aquaculture Research Group, Institute of Sustainable Aquaculture and
Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Las Palmas, Spain

Gilthead sea bream is a highly cultured marine fish throughout the

Mediterranean area, but new and strict criteria of welfare are needed to

assure that the intensification of production has no negative e�ects on animal

farming. Most welfare indicators are specific to a given phase of the production

cycle, but others such as the timing of puberty and/or sex reversal are of

retrospective value. This is of particular relevance in the protandrous gilthead

sea bream, in which the sex ratio is highly regulated at the nutritional level.

Social and environmental factors (e.g., contaminant loads) also alter the sex

ratio, but the contribution of the genetic component remains unclear. To

assess this complex issue, five gilthead sea bream families representative of

slow/intermediate/fast growth were grown out with control or a plant-based

diet in a common garden system from early life to the completion of their

sexual maturity in 3-year-old fish. The plant-based diet highly enhanced the

male-to-female sex reversal. This occurred in parallel with the progressive

impairment of growth performance, which was indicative of changes in

nutrient requirements as the result of the di�erent energy demands for

growth and reproduction through development. The e�ect of a di�erent

nutritional and genetic background on the reproductive performance was also

assessed by measurements of circulating levels of sex steroids during the two

consecutive spawning seasons, varying plasma levels of 17β-estradiol (E2) and

11-ketotestosterone (11-KT) with age, gender, diet, and genetic background.

Principal component analysis (PCA) of 3-year-old fish displayed a gradual

increase of the E2/11-KT ratio frommales to females with the improvement of

nutritional/genetic background. Altogether, these results support the use of a

reproductive tract scoring system for leading farmed fish toward their optimum

welfare condition, contributing to improving the productivity of the current

gilthead sea bream livestock.
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Introduction

Fish farming has evolved as one of the most sustainable

production sectors because of its high feed conversion efficiency

and its lower carbon footprint when compared with other

animal production systems (1). Nonetheless, aquaculture

production is becoming more intensified to meet the increased

global demand for fish protein aquaculture (2). It is, thereby,

important to encompass the development of aquaculture with

novel and stricter criteria of welfare for the simultaneous

improvement of aquaculture productivity and welfare of

farmed fish (3, 4). Certainly, important research efforts are

now conducted within the AquaIMPACT H2020 project for

integrating information from fish breeding and nutrition to

promote the production of healthier and more robust fish

with higher phenotypic plasticity to cope with a challenging

environment. This includes the use of gut microbiota as

a reliable criterion to evaluate the success of selective

breeding for improving the performance and competitiveness

of European aquaculture (5, 6). At the same time, novel fish

feed formulations, and epigenetic and behavioral approaches

are widely applied to assure a more ethical and sustainable

aquaculture production with the increase of water temperature

and hypoxia as major environmental problems in coastal marine

ecosystems (7–9). Thus far, fish welfare assessment is still in the

infancy state due to the limited understanding of the diverse

fish species’ welfare-relevant biology (10). However, several

benchmarking systems on key performance indicators (KPIs)

based on growth performance, survival rates, and external

tissue damage (skin/fin erosion) have been currently validated

in salmon, but also in Mediterranean fish species, to ensure

that farmed fish are not far from their optimum welfare (11–

14). Otherwise, behavioral indicators are becoming especially

useful for alerting farmers that something is potentially wrong

and warrants investigation before significant welfare issues can

occur (15, 16). In any case, the best monitoring solution,

especially those based on telemetry techniques and bio-loggers

for tracking swimming activity and/or heart or breathing rates,

highly depends on the asked question, species biology, and

culture system (17).
A common feature of welfare indicators is their accuracy

for a given time and culture condition, reflecting immediacy

rather than a historical background. However, the success of

reproductive performance, measured by means of fecundity,

puberty onset, and sex reversal, can also have a high value

from a retrospective point of view, as it is the end point of

a complex cascade of developmental events that encompass a

wide range of biotic and abiotic factors (18–22). In particular,

the sex ratio in gonochoristic fish tends to be balanced in

optimal culture conditions (23), although it can be affected

by chemicals (24) and other environmental factors such as

rearing density, temperature, pH, oxygen, and diet composition

(25–29). Similarly, sex reversal in hermaphrodite species, such

as in the protandrous gilthead sea bream, is socially controlled

and endocrine-regulated by the circulating levels of estradiol

(E2) and 11-ketotestosterone (11-KT) (30), and intriguingly

the exposure to synthetic estrogens (e.g., 17α-ethynylestradiol)

prevents the male-to-female sex reversal (31). Stress may also

influence the onset of sex change through the mediation of

cortisol, although the exact mechanisms in which it may act as

a mediator in sex change remain to be fully established (32).

Otherwise, puberty onset is determined by genetic factors and

controlled by the nutritional status and/or the body’s growth

(33). Thus, similar to what occurs in humans, better welfare

conditions for fish entail an increase in their growth before

reaching their first sexual maturation (34, 35). However, early

puberty, in particular in males, occurs in several species kept

under aquaculture conditions and is often associated with a final

growth retardation or health risks (36, 37). Moreover, the age of

puberty can be controlled in farmed fish by selective breeding

and feeding level (38–40), and a recent gilthead sea bream study

stated that plant-based diets have the potential to alter the sex

steroid profile during the pre-spawning and spawning period,

promoting the enhanced male-to-female sex reversal when the

presence of powerful functional females is compromised by the

diet (41).

Taking into account all the above findings, we had herein

a double objective: (i) to assess how the male-to-female sex

reversal is affected by nutrition and genetics in the protandrous

gilthead sea bream and (ii) to provide new insights into the

use of male-to-female sex reversal and population sex ratio as a

reliable best practice framework for animal welfare certification

of a highly cultured farmed fish in all the Mediterranean basin.

The rationale for this procedure is that the complex balance of

environmental variables that regulate animal welfare conditions

can also affect sex change in sequential hermaphrodites. To

pursue this issue, sex reversal was monitored in fish families

with different nutritional backgrounds and different heritable

growth within the PROGENSA
R©

selection program (42),

which co-selected among other traits with changes in gut

microbiota composition and metabolic plasticity (5, 43), as well

as swimming performance and aerobic scope (44, 45).

Materials and methods

Diets

Two extruded diets were formulated and produced by

BioMar (BioMar Process Innovation Technical Center, Brande,

Denmark), at a range of pellet sizes corresponding to the

respective fish size as fish grew (i.e., 1.9, 3, 4.5, and 6.5mm).

Both diets were isonitrogenous, isolipidic, and isoenergetic and

met all known nutritional requirements of gilthead sea bream.

Fish meal (FM) was included at 23% in the control diet (D1)

and at 3% in the experimental diet (D2). The addition of
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fish oil (FO) was 14.1% for D1, and 3.9% for D2 with the

replacement of rapeseed oil, decreasing EPA+DHA content

from 3.8 to 1.02%. Lysine, methionine, choline, lecithin, and

monocalcium phosphate were added to D2 to reach D1 levels

(Supplementary Table S1).

Experimental setup and sample
collection

Broodstock crossings of eight (two females and six males)

and five (three females and two males) fish from the gilthead

sea bream PROGENSA
R©

selection program rendered sixteen

families with differences in heritable growth, as described

elsewhere (42). Briefly, juvenile fish of these families, previously

genotyped by DNA fin analysis, were individually tagged

(dorsal muscle) with passive integrated transponders (PITs)

(ID-100A 1.25 Nano Transponder, Trovan, Madrid, Spain) and

maintained in a common garden system fed D1 or D2 diets

in replicate 3,000-L tanks under the natural photoperiod and

temperature conditions (latitude 40◦ 5
′
N; 0◦ 10

′
E) at the

Institute of Aquaculture Torre de la Sal (IATS), over the course

of a 12-month feeding trial (September 2017 to September

2018). At this end, five families were selected by their growth

trajectories during this period as a representative of fast growth

(e5e2, e6e2; 158 and 49 individuals, respectively), intermediate

growth (c2c7, e4e1; 91 and 174 individuals, respectively),

and slow growth (c4c3; 60 individuals), and were distributed

at similar family in the common garden system. Growth

performance and reproductive status were assessed in these

families until the completion of sexual maturation in 3-year-old

fish (December 2020).

Over the course of the entire trial, the concentration of

water oxygen was always higher than 80% saturation. Fish

were fed by automatic feeders 1–2 times per day and 3–7 days

per week according to fish size and season, with the ratio

adjusted weekly to a level close to satiation. The final rearing

density was 19–20 kg/m3. Fish body weight and body length

were measured individually using an FR-200 FishReader W

(Trovan, Madrid, Spain) at different monthly intervals during

the first (Age +1), second (Age +2), and third year (Age

+3) of the production cycle. At the time of a maximum

number of spermiating fish (December), overnight-fasted fish

were anesthetized with 100 mg/L MS-222 (Sigma, Saint Louis,

MO, USA) for blood extraction and sexing by stripping. It

is a non-lethal and accurate sexing method at this time and

developmental stage as almost all males are fluent by stripping,

in coincidence with the annual peak of E2 in females and 11-

KT in males that resulted in a minimum presence (<5%) of

intersex fish (41). Blood was collected (100 fish/diet for Age +2

fish, 150 fish/diet for Age +3 fish) from caudal vessels using

heparinized syringes and centrifuged at 3,000 × g for 20min

at 4◦C, and plasma aliquots were stored at −20◦C until sex

steroid analyses.

All procedures were approved by the Ethics and Animal

Welfare Committee of IATS and CSIC. They were carried out

in the IATS’s registered aquaculture infrastructure facility (code

ES120330001055) in accordance with the principles published in

the European Animal Directive (2010/63/EU) and Spanish Laws

(Royal Decree RD53/2013) for the protection of animals used in

scientific experiments.

Sex steroids

Quantification of plasma sex steroids was performed by

enzyme immunoassays (EIAs) as described by Rodríguez

et al. (46) for 11-KT and by Molés et al. (47) for E2.

Briefly, steroids were extracted from 100 µl plasma in 1ml

methanol and supernatants were dried and reconstituted in

EIA buffer (0.1M potassium phosphate, pH 7.4 containing

0.01% sodium azide, 0.4M NaCl, 0.001M EDTA, and 0.1%

BSA). Steroid standards were purchased from Sigma-Aldrich.

Mouse anti-rabbit immunoglobulin monoclonal antibody (Ab),

rabbit steroid Abs (T-Ab, 11-KT-Ab, and E2-Ab), and enzymatic

tracers [steroid acetylcholinesterase (AChE) conjugates: T-AchE,

11-KT-AChE, and E2-AChE] were obtained from Vitro S.A.

(Sevilla, Spain). Samples and standard curves of 11-KT (0.0001–

1.0 ng/ml) and E2 (0.005–9.0 ng/ml) were run in duplicate.

Optical density was read at 405 nm using a microplate reader

(Bio-Rad 3550). The inter-assay coefficients of variation at 50%

of binding were 5.02% (n = 10) with a 0.88 slope for 11-KT and

5.97% (n= 10) with a 0.68 slope for E2.

Statistical analysis

Statistical analysis was performed using SigmaPlot version

14.0 (Systat Software, San Jose, CA, USA) with all P-values set

to 0.05 for significance determination. Body weight and sex ratio

differences between both dietary groups were assessed by means

of the Student’s t-test. Male and female body weight differences

within each age, diet, and family (or grouped families) were

determined by means of the Student’s t-test. One-way ANOVA,

followed by a Holm-Sidak post-hoc test, was conducted in

order to assess significant differences in male-to-female sex

steroids (11-KT and E2) concentration between families of

the same diet and age. Sex steroid differences between diets

within each family were assessed by means of a Student’s t-

test. For evidencing gradation in sex steroids and body weight

between diets, families, and males/females of each family,

a principal component analysis (PCA) was performed using

EZinfo version 3.0 (Umetrics, Umea, Sweden). Differences in

E2/11-KT quotient between families and diets were assessed
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FIGURE 1

(A) Body weight and (B) female percentage in 1-, 2-, and 3-year-old gilthead sea bream fed an FM/FO diet (D1) or a plant-based diet (D2). Values
are the mean ± SEM of three tanks per diet (n = 261 (D1) −271 (D2) fish/diet at Age +1, 202 (D1) −207 (D2) fish/diet at Age +2, 138 (D1) −146
(D2) fish/diet at Age +3). Asterisks indicate significant di�erences between the experimental diets within each age (Student’s t-test, **P < 0.01,
***P < 0.001).
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by means of a one-way ANOVA, followed by a Holm-Sidak

post-hoc test.

Results

Growth and sex ratio progression

Dietary treatment had a clear effect on fish size regardless of

their genetic background. Thus, considering all fish families as

a whole under each dietary treatment, fish fed D2 consistently

showed a lower body weight than that fed D1. Differences

in body weight were not statistically significant at Age +1

(Figure 1A). However, at Age +2 and Age +3, the body weight

difference between both dietary groups was 12.5 and 18%,

respectively, with the growth performance negatively affected

(P < 0.001) by the plant-based diet. Regarding sex, all fish

were males at Age +1 regardless of diet (Figure 1B). However,

the plant-based diet largely enhanced the male-to-female sex

reversal, resulting in a significantly (P < 0.01) higher female

percentage at both Age +2 (20.9 vs. 7.2%) and Age +3 (81.2 vs.

54.4 %).

Sexual dimorphism: Body weight and sex
steroids

Data on body weight at Age +2 showed no significant

differences between males and females fed D1, neither when

considering all fish families as a whole nor analyzing each family

separately (Figure 2A). However, in fish fed D2, a significant

body weight sexual dimorphism toward larger females was

evidenced comparing male and female populations (Figure 2B).

It must be noted that this feature was significant only for the

fast-growing family e6e2 (Figure 2B).

At Age +3, gilthead sea bream females had approximately

15% more body weight than their male counterparts regardless

of diet (Figure 3). In fish fed D1, this clear sexual dimorphism

was mostly observed in families c2c7, e5e2, and e6e2

(Figure 3A), whereas for fish fed D2, it was supported by a

significantly higher body weight of females of families e4e1, e5e2,

and e6e2 (Figure 3B).

E2 plasma levels in Age+2males were quite similar, with the

only significant difference between families e5e2 and e4e1 when

fed the D1 diet (Figure 4A). For Age +2 and Age +3, plasma

levels of E2 increased around 130% in males fed D1, whilst those

of males fed D2 decreased to around 50% (Figure 4B). Age +3

male fish fedD1 showed higher E2 plasma levels than fish fedD2,

with no differences among families for the same dietary group.

Male plasma levels of 11-KT at Age +2 showed a gradually

decreasing trend from slow- to fast-growing families, with e5e2

and e6e2 families significantly different from the slow and

intermediate families within both diets (Figure 4C). Comparison

between diets showed that fish fed D2 had significantly higher

levels of 11-KT in the case of slow- and intermediate-growing

families, and the same trend, although non-significant, was

maintained in fast-growing families (Figure 4C). Male 11-KT

levels generally increased from Age +2 to Age +3, keeping the

gradual decrease of 11-KT from slow- to fast-growing families

(Figure 4D). Four of five families of Age +3 males displayed

higher 11-KT levels when fed D2.

Results of female sex steroids at Age+2 were not conclusive

due to the low number of gilthead sea bream that underwent

sex change from male to female (Figures 5A, C). Nonetheless, at

Age +3, female E2 plasma levels showed a clear diet effect, with

fish fed D1 having significantly higher levels within all families

(Figure 5B). A genetic effect was reduced to fish fed D2, with

higher circulating levels of E2 in slow-growing fish than in fast-

and intermediate-growing families (Figure 5B). 11-KT plasma

levels of all 3-year-old female families were below 0.05 ng/ml,

and no differences were observed between families and dietary

groups (Figure 5D).

Sex steroids ratio

The PCA of plasma sex steroid levels at Age +3 showed

that >86% of the total variance was explained by the two first

components (Figure 6A). Each fish was categorized according to

its diet, sex, and family group. For better representation, exey
families were joined as a unique fast-growth family group, while

cxcy families were joined as a unique slow-growth family group.

Movement along the X-axis (60.32% of total variance) accounted

for plasma sex steroid levels, with the highest values of E2 on

the left and the maximum values of 11-KT on the right. This

sex steroid distribution clearly discriminated females (black and

orange boxes) on the left and males (green and blue boxes)

on the right. The Y-axis (25.85% of total variance) accounted

for body weight changes, separating the fast-growth families

at the top from the slow-growth families at the bottom. In

other words, the resulting plasma E2/11-KT ratio was affected

by both diet and genetics, increasing this hormonal quotient

with the improvement of both the nutritional and genetic

background (Figure 6B). In males, a genetic effect was not seen,

but the diet effect persisted with a decreased E2/11-KT ratio

in fish fed the plant-based diet. This occurred in parallel with

a genetically regulated male-to-female sex reversal, displaying

fast-growing families fed D1 a significantly lower percentage of

phenotypic females (54%) than slow-growing families (65%)

fed the same diet (Figure 6C). This percentage of phenotyped

females reached a plateau (79–81%) in fish fed D2 regardless

of their genetic background, which is indicative of a genetic

and nutrition interaction according to which the plasma E2/11-

KT ratio becomes more fine-regulated in females than in

males, and in fish fed D1 diet rather than in fish fed D2 diet.

Moreover, it is noteworthy that the highest plasma E2/11-KT
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FIGURE 2

Mean male and female body weight of 2-year-old gilthead sea bream-fed control (A) or experimental diet (B) as a whole population and
separated by family. Values are the mean ± SEM of three tanks per diet (n = 207 fish for diet 1, 202 for diet 2). Asterisks indicate significant
di�erences (Student’s t-test, P < 0.05) between males and females body weight. Inserts indicate individual body weight in each population. The
number of males and females for the populations and families is indicated in parenthesis.
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FIGURE 3

Mean male and female body weight of 3-year-old gilthead sea bream-fed control (A) or experimental diet (B) as a whole population and
separated by family. Values are the mean ± SEM of three tanks per diet (n = 138 fish for diet 1, 146 for diet 2). Asterisks indicate significant
di�erences (Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001) between males and females body weight. Inserts indicate individual body
weight in each population. The number of males and females for the populations and families is indicated in parenthesis.
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FIGURE 4

Plasma levels at spawning season of estradiol (A, C) and 11-ketotestosterone (B, D) in 2 and 3-year-old males fed control (D1) or experimental
diet (D2). Values are the mean ± SEM. Di�erent capital letters indicate significant di�erences between families fed D1. Di�erent lowercase letters
indicate significant di�erences between families fed D2. Asterisks indicate significant di�erences between dietary groups within each family
(Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001).

ratio (powerful sex female steroid profile) was concurrent with a

lower abundance of functional/powerful females when fish from

fast- (exey) or slow-growth (cxcy) fish families were grouped and

analyzed together as two different experimental groups in our

common garden rearing system.

Discussion

The present study underlines the effect of different nutrition

and genetic backgrounds in the plasma sex steroids profile

and male-to-female sex reversal in gilthead sea bream with
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FIGURE 5

Plasma levels at spawning season of estradiol (A, C) and 11-ketotestosterone (B, D) in 2 and 3-year-old females fed control (D1) or experimental
diet (D2). Values are the mean ± SEM. Di�erent letters indicate significant di�erences between families fed D2. Asterisks indicate significant
di�erences between dietary groups within each family (Student’s t-test, **P < 0.01, ***P < 0.001).

differences in heritable growth and a sexual growth dimorphism,

which was exacerbated in fast-growing fish by feeding a

plant-based diet. Indeed, when fish attained 2 years of age,

a sexual growth dimorphism was only observed in fish fed

D2. However, body weight differences intensified as fish grew,

and were equally significant and visible with both diets,

especially in fast-growing families. Besides, previous studies have

highlighted that families with a fast growth phenotype within

the PROGENSA
R©

selection program displayed a plastic gut

microbiota to cope better with changes in diet composition,

also contributing to a better disease progression of parasitic

enteritis in fish challenged with the myxozoa Enteromyxum
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FIGURE 6

(A) Principal component analysis of body weight and plasma sex steroids levels during the second spawning period (3-year-old fish). (B) Sex
steroids quotient of females (F) and males (M) of each dietary group (D1–D2), and fast (FG) or slow (SG) growth family groups. Values are the
mean ± SEM of the E2/11-KT quotient. Di�erent letters indicate significant di�erences between each group. Asterisks indicate significant
di�erences between males and female groups with di�erent dietary regimes (Holm-Sidak post-hoc test, ***P < 0.001). (C) Female percentage of
fast and slow growth family groups.
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leei (5, 43). Available studies also evidenced that such selective

breeding for growth and skeletal deformities has an impact on

humoral immunemarkers (48), carcass andmorphometric traits

(49, 50), energy partitioning between growth and swimming

activity (44), and even more in reproductive success as recently

evidenced in fish with a normal phenotype but with a genetic

background of skeletal deformities (51). It appears, thereby,

that selection for growth and deformity traits co-selects in the

PROGENSA
R©

selection program for a number of relevant

traits, including the sex ratio, which is becoming nutritionally

and genetically regulated through the life cycle. The ultimate

physiological mechanism remains elusive, but this study aimed

to provide new insights into the sex ratio in a protandrous

fish for its use as an operational welfare scoring system in a

challenging environment.

Sex reversal in fish is defined as a mismatch between the

phenotypic and the genetic sex (52). Thus, in gilthead sea bream,

in particular, the general thinking is that individuals of this

fish species act as functional males by the end of the first-

second year of life, and sex reversal generally takes place 1 year

after the first male sexual maturation (53). The percentage of

male-to-female sex reversal can vary from 15 to 80% during

the second year of life (53), but the possibility of a later sex

reversal was reported by Brusléa-Sicard and Fourcault (54) and

further corroborated by Chaoui et al. (55). Herein, the male-

to-female sex reversal was accomplished by a relatively high

percentage of individuals (50–85%) regardless of diet, which

confirms the notion that a sex change in gilthead sea bream

is cued by social and environmental factors when a critical

age or size is attained (30, 56, 57). Indeed, the removal of

functional females from the population drives the feminization

of the remaining males (53, 58), probably via the production

and release of specific pheromones that can activate or block

some sex-specific networks. The aquatic environment may also

contain a wide range of endocrine-disrupting chemicals that

reduce reproductive performance and can even inhibit the sex

reversal in gilthead sea bream (31, 59, 60). However, xenobiotic-

induced sex reversal did not appear to be our case, because

fish grew from early life stages in an eco-friendly environment

where a wide-screening of undesirable compounds in fish edible

matter revealed bio-contaminant loads to be much lower than

the maximum established residue level (61).

The net balance between gonadal estrogen and androgen

production directs sexual differentiation and gonadal

development in fish (62). Indeed, E2 and 11-KT are typically

considered the predominant steroids in the regulation of sex

change in most fish species (63). Thus, we found herein that

both E2 and 11-KT increased over time, with males and females

displaying the highest plasma levels of 11-KT or E2 at Age +3,

respectively. A nutritionally mediated effect was also reported,

although it is difficult to deconvolute the extent to which this

observation is due to a specific nutrient or to a different loading

of plant phytoestrogens with both estrogenic and antiestrogenic

effects on vertebrates (64). In tilapia farming, in particular,

herbal extracts could be used as safe alternative agents to control

precocious tilapia maturity and prolific breeding in production

(65). In the present study, the inclusion level of soy protein

concentrate, a rich source of phytoestrogens, varied between

16% in D1 and 25% in D2, although it is within the tolerance

range for gilthead sea bream (65). In any case, plasma levels of

fish fed D2 were lower for E2 and higher for 11-KT, displaying

these fish a masculinized sex steroid profile that would

promote the male-to-female sex reversal in the absence of high

powerful functional females that ensure reproduction success,

as stated before by Simó-Mirabet et al. (41). Masculinization of

gonochoristic fish populations also occurs as a result of elevated

temperatures and other environmental stressors. This would

be mediated, at least in part, by the increase of circulating

cortisol, which is now recognized as a universal mediator of sex

reversal in fish due to its implication in delaying ovarian meiosis

and increasing 11-KT (52). For instance, in the protogynous

three-spot wrasse, cortisol treatment had a masculinizing effect

(66). This feature was also reported by us in the protandrous

gilthead sea bream-fed plant-based diets, regardless of the

well-known hypocholesterolemic effect of plant ingredients in

most farmed fish (67). In fact, since cholesterol is the precursor

of cortisol, its reduced dietary supply or intestinal absorption

could initially lead to a female-biased sex ratio. Nonetheless,

there are more factors at play in this process, and Nile tilapia

fry fed with saponin-supplemented diets (hypocholesterolemic

diets) displayed a significant male-biased population (68).

In other words, the sex ratio can be influenced by a number

of nutritional factors, including changes in the dietary fatty

acid composition as a result of a high replacement of marine

feedstuffs by vegetable oils (69). However, all this is the result

of a complex trade-off, which is also indicative of the amazing

diversity and evolution of sex determination in vertebrates,

and fish in particular (70). Similarly, global warming due to

climate change would affect the offspring quality of a wide range

of animals (71–73). This is especially important for aquatic

ectotherms, where temperature values above the optimal for

each species and fish strain can shift the sex ratio toward either

the male or female phenotype in gonochoristic fish (74–76) and

perhaps hermaphroditic fish.

Moreover, in the present study, discriminant analysis of

sex steroids and body weight displayed a clear separation

of phenotypic males and females, with also a differentiation

of slow- and fast-growth families. Thus, families of fast

heritable growth displayed a more mature/advanced sex steroid

phenotype, resulting in a higher E2/11-KT ratio (feminization

phenotype) that would trigger the inhibition of male-to-female

sex reversal of the remaining males. This hormonal quotient,

rather than the circulating amount of a given sex steroid,

would determine what sex-specific network is activated or

suppressed, leading or not to the sex reversal in the individual.

Indeed, the rise of the E2/11-KT ratio was associated with
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a female bias in painted turtles (77), and we found herein

that this plasma sex steroid ratio was progressively increased

from males to females with both the nutritional and genetic

improvement. However, the increased plasma E2/11-KT ratio

in female fish fed D1 was negatively associated with the

rate of male-to-female sex reversal in genetically improved

fish, whereas this genetically mediated response was mostly

masked in fish fed D2. This finding highlighted a nutrition and

genetic interaction on the progression of sexual maturation, as

reported for gut microbiota composition and function. Indeed,

fast-growing fish families in the PROGENSA
R©

program are

more resilient to changes in gut microbiota composition, but

at the same time, metatranscriptomic analyses confirm and

extend the notion that the core microbiota of genetically

improved fish is able to modulate their metabolic activity

to cope better with changes in diet composition (5, 43).

Otherwise, there is no evidence in gilthead sea bream that

the modulating effects of gut microbiota by feed additives are

a specific feature of each additive and genetic background

(unpublished results).

As indicated earlier, reproductive physiology and spawning

are sensitive processes to changes in environmental conditions

and physiological stress, and how and to what extent external

and internal factors have an impact on broodstock welfare

is of relevance to assure reproduction success, but also the

offspring plasticity and quality (78, 79). Concretely, in gilthead

sea bream, several attempts at nutritional programming are

made through changes in the parental nutrition (80–83). Such

an approach is not unique to fish, as parental nutrition and

hormonal status of humans and terrestrial animals directly

impact all stages of gamete maturation, fetal development,

and long-term offspring health (84, 85). Therefore, one of the

challenges of modern aquaculture is to assure the welfare of

breeders, which could also inform the welfare condition from a

retrospective point of view. Certainly, we can conclude that fast-

growing fish families fed a control diet became powerful females,

whilst fish of slow-growth families and/or fish fed plant-based

diets experienced a pseudo-feminization effect (i.e., fish with a

weaker female signal, which enhances the ratio of sex reversal).

Therefore, it appears that the progression of sex reversal is

directly regulated by both nutritional and genetic background

among many other environmental and social factors. Thus, the

study of sex reversal as a biological endpoint is becoming a

reliable tool of relevance for the animal welfare certification of

a highly cultured protandrous fish such as gilthead sea bream.

Several items support this assumption. First, fish growing with

plant-based diets from early life stages shared an enhanced

onset of puberty and sex reversal in concurrence with some

growth impairment of sexually mature fish. Second, genetically

improved fish for growth are more resilient to the progression of

male-to-female sex reversal with the use of alternative fish feed

formulations, but further research should be directed toward

the effect of specific nutrients on reproductive performance and

maturation as a means to enhance the offspring quality. Finally,

a decreased plasma E2/11-KT ratio is becoming indicative of

a negative welfare status in the long term, supporting this

finding the use of such reproductive tract scoring systems

for leading a protandrous farmed fish toward their optimum

welfare condition.

Conclusion

Results of this long-term dietary and genetics trial disclose

that sex steroids profile and male-to-female sex reversal are

nutritionally and genetically regulated in the protandrous

gilthead sea bream. Moreover, the sex ratio is proposed

as a reliable welfare indicator alerting of disturbances in

reproductive performance, and perhaps overall growth and

offspring quality. Such a scoring system is becoming, thereby,

an exploitable finding for the certification of animal welfare in a

given gilthead sea bream production system.
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