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Computer-based disease spread models are frequently used in veterinary science to

simulate disease spread. They are used to predict the impacts of the disease, plan and

assess surveillance, or control strategies, and provide insights about disease causation

by comparing model outputs with real life data. There are many types of disease

spread models, and here we present and describe the implementation of a particular

type: individual-based models. Our aim is to provide a practical introduction to building

individual-based disease spread models. We also introduce code examples with the goal

to make these techniquesmore accessible to those who are new to the field. We describe

the important steps in building such models before, during and after the programming

stage, including model verification (to ensure that the model does what was intended),

validation (to investigate whether the model results reflect the modeled system), and

convergence analysis (to ensure models of endemic diseases are stable before outputs

are collected). We also describe how sensitivity analysis can be used to assess the

potential impact of uncertainty about model parameters. Finally, we provide an overview

of some interesting recent developments in the field of disease spread models.

Keywords: simulation model, transmission model, disease dynamics, mechanistic model, disease model

INTRODUCTION

Adisease spreadmodel is a simplified representation of a real-life system of disease transmission. As
defined by Lessler and Cummings (1), disease spread models (also known as mechanistic models
of disease spread) include explicit hypotheses of the biological mechanisms that drive infection
dynamics. Therefore, they differ from statistical models such as regression models. Disease spread
models are motivated by a need to better understand the transmission dynamics of a disease,
predict the spread of the disease in a population and its effects, and study how the spread can be
influenced (including the evaluation of different strategies to improve surveillance and control of
diseases). The quote, “all models are wrong, but some are useful,” (2) is often stated because disease
spread models are simpler than reality, but they generate information which is otherwise difficult
to obtain (3). For example, experiments on disease transmission and control might insufficiently
represent real-life disease ecology, or not be feasible due to high resource requirements (such as
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time and monetary costs), or logistical and ethical constraints.
In addition, observational studies of disease spread might not
provide comparisons of the relevant control strategies, or not
occur in the population of interest (e.g., transboundary diseases).

Models of disease transmission can represent diverse diseases,
including bacterial and viral infections, as well as parasites
and vector-borne diseases, in a range of host populations
and environments, and at different scales (4). Disease spread
models might identify critical elements and knowledge gaps by
reconstructing a system using available knowledge (5). They can
also be useful decision-making tools by simulating surveillance or
control of a specific disease and comparing strategies in specific
contexts, such as outbreak situations (6, 7). Models have also
been used to inform outbreak preparedness [e.g., (8, 9)], and the
control of endemic pathogens [e.g., (10–13)].

Here, we focus on modeling the spread of infectious diseases
of animals in a range of contexts. The methods described are not
unique to veterinary systems and are used in other disciplines
such as ecology and human health. In particular, we focus
on a class of model called individual-based models (IBMs).
Mancy et al. (4) provide an in-depth discussion of the different
motivations for developing disease spread models in ecology
and animal health. They present a conceptual framework to
guide model construction, focusing on the pre-modeling stage
(model selection, establishing, and testing the theory). In building
on Mancy et al. (4) our objectives are 3-fold; (1) to provide
a practical introductory guide to the process of developing a
mechanistic model of animal disease transmission using IBMs,
aimed at researchers beginning in this field; (2) to describe
important concepts before, during and after the programming
stage of developing model of animal disease transmission; and
(3) to provide practical examples of models, including code, in
veterinary science. Thus, we provide a hands-on introduction to
model building, and its use and challenges, for scientists starting
to work on disease spread models.

METHODS

Definitions and Concepts
Before we describe the steps of model building in the context
of IBMs, we briefly describe some key terms, concepts, and
approaches applied in disease spread modeling. Terminology in
this field can be inconsistent; for a list of terms and definitions
used throughout this guide, see Appendix 1.

Terms Used in Disease Spread Modeling
Disease spread models simulate the transmission of an infectious
disease between the disease hosts, who are modeled as units of
interest. This unit is the smallest entity of the model and could
be an individual animal (or part of it; for example, a quarter of
the udder in a mastitis model), a group of animals, herds, or
populations in regions or countries. The units of interest can be
aggregated and modeled as proportions of the total population
in each disease state (see below) at a given time, or modeled as
individuals whose disease status is tracked through the disease
states included in the model.

The simulated system includes time, making the model
dynamic. Time can be modeled as a continuous or discrete
process. In the latter a fixed time-interval is chosen and themodel
steps through each consecutive interval (time-step) and updates
the numbers of units of interest in each disease state from the
beginning to the end of the simulated period (for example, every
day, for a year) or until the disease fades out. In contrast, if time is
modeled as a continuous process, the rate of change in the relative
numbers of units of interest in each disease state in the system is
continuously modeled using differential equations.

For discrete time models, the length of a time step is
designated by the modeler and depends on the disease dynamics,
purpose of the model (for example, predictions in monthly time-
steps might be useful for surveillance or disease control), the
availability of data needed to parameterize the model (outbreak
data might only be available on a yearly scale), and the time spent
by an individual unit of interest in each disease state of the model
(see below). Whilst daily time-steps are typical for most discrete
disease-spread models (11), weekly (14) or biweekly [e.g., (15)],
biannual (16), or even yearly time steps can be used [for example,
when simulating long duration control programs, such as (13)].

A model can be deterministic or stochastic. A model is
stochastic when there is variation in model outputs arising from
the use of distributions to describe input parameters (rather
than fixed values), or by allowing model events to occur as
random processes (inherent stochasticity). See section “Modeling
Disease Transmission” for illustration of the difference between
deterministic and stochastic. The outputs from a stochastic
model will vary every time the model is run. In contrast, outputs
from deterministic models are consistent each time the model
is run.

Disease spread models represent the dynamics of infection,
or progression of the modeled units of interest through disease
states, for instance Susceptible (S), Infectious (I), and Recovered
(R) states (an SIR model). In a susceptible state, a unit of
interest has yet to be exposed to an infectious individual and
infected (termed “effective contact”). Once effective contact
has occurred, an individual is in an infectious state prior to
transition to a recovered state (or death). This basic formulation
can be expanded with other disease states; for example, an
Exposed (E) state representing the latent period of the infection
can occur prior to transitioning to the Infectious (I) state
[for example, within-herd spread of FMD; (17)]. The modeled
states are dependent on the natural history of the disease,
the purpose and scale of the model, and the resolution of
available data. For example, differentiation of clinical and
subclinical infectious states can be included if the subclinical
state is considered significant to spread given the scale of the
model, or if clinical detection of the disease is an essential
aspect in the model. In a model of rabies spread, the pre-
infectious period of rabies was considered essential to include
in a model in which the dog populations were small (18), and
not considered necessary in a similar but larger-scale model of
rabies spread in dog populations in Chad (19). We illustrate
how the dynamics of infection as modeled in an SEIR model
relate to the dynamics of disease (the observed states) in
Figure 1.

Frontiers in Veterinary Science | www.frontiersin.org 2 January 2021 | Volume 7 | Article 546651

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kirkeby et al. Introduction to Disease Transmission Modeling

The way in which the units of interest contact each
other, or how they “mix,” is a core component of a disease
model. Homogeneous contact means that all the units have
equal probability of contact with each other (no clustering).
Heterogeneous contact means that the probability of contact
between units of interest is not equal, hence clustering (spatial or
related to other contact characteristics) exists in the population.
Heterogeneous contact can be modeled by stratifying models
into population groups (for example, by age or farm type),
modeling contacts between units of interest according to a
network structure, or modeling specific characteristics of units
that influence contact [for example, furious rabies in dogs; (18)].

Modeling Approaches
Since Kermack and McKendrick first formulated the basic
compartmental equation-based SIR model using differential
equations in 1927 (20), numerous approaches to modeling
disease transmission have been developed. For a comprehensive
description of modeling approaches, see Mancy et al. (4). Briefly,
models can be classified according to how the disease hosts are
modeled (as individual units of interest, or as groups in which the
proportion of units of interest in disease states are followed) and
how contact occurs (the connectivity between units), then further
differentiated on how time is modeled (discrete or continuous)
and whether stochasticity is included.

Here, we focus on individual-based models [IBMs, or
Individual-level models; Mahsin et al. (21)] in which individual
units of interest are described and followed through the disease
states. The units of interest in IBMs represent discrete entities
(such as individuals or herds) and time steps are discrete.

An advantage of IBMs is that units of interest can be assigned
their own properties that can influence disease transmission,
detection or control. They are therefore useful to simulate
heterogeneity in disease transmission between the units of
interest. For example, in a model of foot-and-mouth disease
(FMD), an individual herd might be predominantly either
sheep or cattle, which might influence disease susceptibility
and transmission at the herd level (22, 23). Agent-based
models (ABMs) are a subset of IBMs in which contact—and
hence disease transmission—is simulated between explicit pairs
of individual units of interest. ABMs often include explicit
movement of—and therefore, contacts between—individual
units of interest, thus introducing contact heterogeneity in
the population due to spatial variation (24). In an example
in which rabies transmission was modeled, individual dogs
were assigned specific roaming characteristics that influenced
their contacts with other dogs (25). In a further example,
heterogeneity of contacts between individuals was assigned using
individuals’ social network parameters (18, 19). Consequently,
these models can have a high level of complexity, but also be
computationally intensive (and consequently, relatively slow to
implement and simulate).

If the unit of interest in an IBM is a group of individual
animals (for example, herds), within-group disease spread can
be modeled using an equation-based model with proportions of
the unit of interest in disease-state compartments. In this case,

specific individuals are not tracked. Suchmodels are called nested
models in ecological modeling (26).

Building an Individual-Based Model
Model building can be divided into three stages: pre-
programming, programming and post-programming. These
stages are common to all model types, and include different
elements that should be considered (Figure 2). We describe
the concepts associated with each stage in detail below (labeled
according to Figure 2).

InAppendix 2 (and https://github.com/ckirkeby/MDT), code
examples are shown. We include code for a difference equation
model, and a differential equation model (two model types not
addressed in this article, but to enable the readers to compare the
inputs and outputs with IBMs), and IBMs, for which we include
examples of an individual-based stochastic model (at herd level),
and an individual-based stochastic model (at individual animal
level).We link the code for IBMs with each stage below.

Pre-programming Stage

Purpose
When designing a model, it is important to consider the research
question to be investigated. This not only drives the type of model
that might be appropriate, but also dictates the model outputs
required by the end-user (27).

For example, whilst a model generally estimates the
epidemiological consequences of the disease in terms of
the number of infected individuals and epidemic duration, in
the case of exotic diseases, the outputs could also be needed
for contingency planning to improve surveillance and control;
for example, identifying sentinel herds, culling capacity, or
laboratory capacity [for example, (28, 29)]. In this case, it is
essential to generate capacity-related data, such as the number
of surveillance teams required, by including these parameters
in the model. Similarly, if the purpose is to compare different
surveillance strategies, sensitivity and specificity of tests used to
detect disease need to be included (30, 31).

Evaluation and identification of optimal control strategies
given a particular set of circumstances and constraints might
also be a goal [for example (12, 17, 23, 32)]. This would require
policy-specific knowledge to inform model processes, as well as
data and knowledge ofmechanisms to simulate control strategies.
For example, to simulate vaccination, estimates of vaccination-
specific parameters such as the number of individuals or herds
vaccinated per day, vaccine efficacy, time required to order
vaccine and perform vaccination could be included (9, 32).
In addition to epidemiological metrics, the optimal control
strategies could be defined according to economic outputs (33)
such as in a bio-economic disease spread model [for example,
(11)].

In the context of an IBM, the minimum inputs that must be
included are a parameter to describe disease transmission (β; see
later), and the number of individuals in each disease state. This
will include at least one infectious individual as well as susceptible
individuals (see code example, Appendix 2; https://github.com/
ckirkeby/MDT). Additional parameters, such as the number of
surveillance teams deployed, can be included as the model steps
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FIGURE 1 | A diagram illustrating the relationship of the dynamics of an SEIR infectious process and observed disease states in individuals. In this case, individuals

become non-infectious prior to resolution of clinical signs.

through the discrete time intervals; for example, in response to
trigger levels such as a threshold number of infected animals for
disease detection.

Unit of Interest
The largest unit of interest is selected so the disease spread
model sufficiently represents the true system. As described
previously, this epidemiological unit of the model can range from
individuals [e.g., (16)] or their parts [e.g., (12)] to sub- or entire
populations (34).

The choice of epidemiologic unit of interest is highly
dependent on the purpose of the model, the disease of concern
and the data available to parameterize the model. In models
in which disease spread needs to be captured at the individual
animal level (for example, because disease detection or control
is performed at this level), individual animals are modeled and
followed. In the case of modeling the spread of an exotic disease
in animals aggregated in herds, the herd might be a more
realistic unit to model, because surveillance and decisions occur
at the herd-level.

Practical programming considerations also influence the
choice of this unit of interest. For example, it is more likely that
individual animals as units of interest are computationally more
challenging, and therefore, herds are often mire suitable to be
the epidemiologic unit of interest (see also Section Programming
stage). In some systems, there might be more than one unit of
interest to be modeled, as in the case of vector-borne diseases—
both the vector and the animal can be units of interest (35).

In Appendix 2 we provide code examples of IBMs using
different units of interest (also available online at https://github.
com/ckirkeby/MDT).

System Knowledge, Complexity, and Data Availability
To create a model that is a sufficient representation of a real-life
system, decisions need to be made about which known processes
to include and exclude. This decision is bound to available
information on the system. Such information is important to
gather prior to model building to assess the level of uncertainty
that is due to limited knowledge, how much data about the

system is available, and the feasibility of delivering requested
outputs. If essential data are missing to fulfill the designated
purpose, options include collecting more data before modeling
is initiated, re-specifying model complexity, or re-evaluating
the model purpose. Following the principle of parsimony, a
model should only be as complex as necessary to achieve the
model purpose, thereby requiring the minimum number of
assumptions (36).

Processes that should be considered include the population
dynamics of the unit of interest (birth and death rate, and
lifespan—this is usually based on age, or in the case of a
livestock production system, this could be parity), migration of
individual units in and out of the system, the contact patterns
between the units and the production system of the modeled
population (for example, milk or beef production), if this is
relevant. It also includes knowledge of the epidemiology of
the disease to be modeled, such as the relevant disease states
and their durations, the modes of transmission of the causative
pathogen (for example, whether or not airborne spread is an
essential pathway of transmission) and how the disease develops
in the individuals.

Model Type Selection
Model specification (units of interest, disease, and system
dynamics and how they are modeled—for example, discrete vs.
continuous time and deterministic vs. stochastic) is typically
an iterative process and is re-examined as data gathering for
parameterization occurs (Figure 2, section Documentation and
Communication). If data about population dynamics, disease
dynamics and the system in which disease occurs are available
at an individual level, and modeling at this level of detail
and heterogeneity is considered valuable (for example, if the
population is small or heterogeneity of the system is considered
an important feature of disease transmission), an IBM is likely
suitable. Otherwise, other model types can be considered (4).

In Figure 3 we show the difference in output between a
deterministic and a stochastic model.
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FIGURE 2 | Stages, and steps within each stage, in building a disease spread model.
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FIGURE 3 | Line plots of number of susceptible (S; blue) and infected (I; red) animals in a model with SI disease dynamics, illustrating deterministic output (left:

number of infected and susceptible animals on day 12 is 73 and 27, respectively), and stochastic output (centre). The histogram illustrates the variation in the number

of susceptible (dark gray; median 26 [blue dashed line], 95% CI 11–42 [dark green dashed lines]) and infected animals (light gray; median 74 [red line], 95% CI 58–89

[light green lines]) from the stochastic output at day 12.

Programming Stage

Programming Language and Coding
Programming languages can be classified in many ways—such as
whether interpreted directly or compiled (running one single line
of code at a time, rather than all the code has to be run together;
for example, Python and R vs. C++ and Fortran, respectively);
and whether they are “high” or “low” level languages. This latter
classification refers to the machine-readability of the language;
many languages used in the context of disease modeling can be
considered high-level (for example, Java, C++, R, and Python).

In general, programs written using high-level languages
require more memory space but are more readable by a
human, and therefore more accessible to people without
detailed programming knowledge. Programs written using
low-level languages (e.g., Assembly language) can better
utilize hardware specific features. These programs require a
high level of knowledge to write and maintain. They can
be hardware-dependent making them less portable between
computer architectures.

Features resulting from language classification are not always
exclusive; with many factors affecting the overall performance
and efficiency of a program. For example, a complex “real-
world” program written in a more user-friendly and high-level
language with a modern optimizing compiler can produce highly
efficient machine code with excellent performance. The result
is likely to outperform an equivalent program hand-written in
the less user-friendly, low-level Assembly language converted
to machine code via an assembler. Advances in computational
power and improvements in system architecture enable the
horizontal scaling of models by running processes in parallel
across multiple cores to reduce “wall time” (the time taken to
complete a simulation).

Focusing on final run speed also ignores the concept of overall
programming productivity. Programming in some languages is
more challenging and less accessible to the research team, which
increases the time required for programming. An increasing

number of researchers use the free software R (37), which is
a statistical programming language suitable for building many
model types, including equation-based [for example, (38)] and
individual-based models [for example, (11, 32)]. There are many
packages available for languages such as R, and they are well-
supported andmaintained by R’s open-source community, which
allows the team to focus on modeling the system and the disease.

In regards to code programming, we highly recommend that
modelers annotate their code during modeling with detailed
descriptions of each part of the code. For a description of good
practice in animal health modeling, see EFSA (39). Annotation
assists the modeler to remember the function of each line of
code, and also facilitates use of the model by others. Following
publication of a study, it is a requirement of many journals that
the code be made available to readers. Version control such as git
(https://git-scm.com, accessed 10/09/2019) is a very valuable tool
so that modelers can easily track changes in the code, and view
previous versions (branches) of the model. This is of particular
value when more than one modeler is involved in the project
or when published code is used by other researchers. Locally,
version control can be as simple as saving the script in a new
file named with the specific day it is changed. We also highly
recommend that during the programming process, each line or
chunk of co-de should be executed with fictitious inputs to check
for errors (debugging). This is part of the model verification (see
sectionModel Verification and Validation for more details).

Modeling the Population Structure and Characteristics
Initially when constructing an IBM, the host population
dynamics are modeled as the “background” for the disease
dynamics. For example, a model of canine rabies spread requires
a population of dogs or a foot-and-mouth disease model the
population of cloven-hoofed animals. An understanding of
the population of interest’s demographics are critical. Whilst
demographic data for livestock populations can often be gained
from government or industry sources, it might be necessary
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to conduct studies of other populations (such as companion
animals) prior to modeling to for example determine age
structure and birth and death rates (40).

The population dynamics are linked to the disease model; for
example, newborns can be susceptible, infected or immune (see
section Modeling disease transmission). Also, characteristics can
be allocated to the units of interest in case they influence disease
transmission. In an example of Johne’s disease (paratuberculosis)
transmission, individual cattle or herds are modeled, and
characteristics, such as individuals’ milk production and lactation
duration, are included because these characteristics influence
disease spread [e.g., (11, 41)].

In disease spread models, it can be important to include a
spatial component to the population to allow spatio-temporal
modeling of disease transmission (see section Modeling disease
transmission). This can be realized by using geolocations of
the units of interest, e.g., farms, as a feature of the population
structure [e.g., (17, 42)]. Spatio-temporal modeling could also
represent population structures other than farms, as in the case of
modeling spatio-temporal distributions of vectors that transmit
bluetongue virus (43), or in the location of dog’s residence in a
rabies transmission model (44).

Once the background structure of the disease dynamic system
has been modeled, it should be verified and tested (see sections
Model verification and validation) before disease transmission is
added to the model. This is to ensure that the model simulates
the system with sufficient accuracy, as well as to determine
computing requirements such as the number of iterations
required for burn-in (see sectionModeling disease transmission).

Modeling Disease States
As discussed previously, each stage of disease in the transmission
model should reflect a -state during the course of infection in
the modeled system. In the simplest framework, an SI model
with two, mutually exclusive disease states; Susceptible (S) and
Infectious (I), all individuals in the model are assigned to either
S or I (see code examples in Appendix 2; https://github.com/
ckirkeby/MDT). For each simulated time step, each individual
has a probability of acquiring infection and thus transitioning
from S to I, depending on the contact pattern between individuals
and the disease transmission rate given a contact. In the case
of the SI model, there is no probability of individuals returning
to the S state. In the case that animals can recover from the
disease, the model becomes an SIS model in which infectious
individuals return to the S state. The transmission from I to S is
quantified by the recovery rate (see below, in the context of an SIR
model), which can be influenced by self-recovery or by treatment.
The recovery rate is thus a probability of recovering during each
time step. Recovery ratesmust be estimated from epidemiological
studies on the duration of infection. This duration of infection
can either be modeled as a fixed timespan, i.e., a fixed number of
days can be assigned to it, or as a distribution, after which it will
revert to the S state.

Another common framework is the SIR model (see the code
example in Appendix 2, https://github.com/ckirkeby/MDT), in
which the infectious individuals can enter the Recovered (R)
state – which represents either “recovery” (and resistance to

infection) or “removal” from the population; for example, in the
case of a rabies model, infected dogs always die and therefore are
removed. The transition from I toR is alsomodeled via a recovery
rate (denoted as “r” in the code example). Following this logic,
the disease transmission framework can be further extended
dependent on the disease; for example, by introducing an Exposed
(E) state for latently infected individuals before progressing to the
I state. As previouslymentioned, even if some disease states occur
in reality, it is not always useful or necessary to represent them in
the model.

In the case of modeling endemic diseases, once the population
and disease dynamics frameworks are modeled, an IBM might
need to be simulated for enough time steps to reach a stable
prevalence (“burn-in” period; the number of time steps for the
population characteristics and the disease prevalence to stabilize).
When such a model is used to assess control strategies, these
strategies are usually implemented after the burn-in period, when
a stable situation has been reached.

Modeling Disease Transmission
The process of disease transmission is the core dynamic process
in the model. Generally, transmission can be considered as
either direct (from host to host) or indirect, for example via the
environment or vector transmitted (45). It can also be dependent
on model features that increase contact heterogeneity; for
example, some models are spatially explicit and the probability
of transmission varies according to distance, mimicking a system
in which transmission varies with spatial location (46).

Since disease transmission is the core process in a disease
transmission model, we guide the reader through the foundation
of this in the context of an IBM, such as those shown in code
in Appendix 2 (https://github.com/ckirkeby/MDT). In the case
of direct transmission, we first describe β, a parameter that
underpins the modeling of disease transmission in equation
based models, and then we describe how this parameter can be
used in IBMs (47). Beta is defined as the per capita rate at which
two specific individuals come into effective contact per unit time
[sometimes called the transmission rate; Vynnycky and White
(48)]. An effective contact is one which is sufficient for disease
transmission to occur. This effective contact rate, β , comprises
a contact rate between individuals (C), and the probability of
transmission per contact (P):

β = C · P (1)

The contact rate C in the above equation is defined per unit
time, and is fundamentally different between density-dependent
or frequency-dependent transmitted diseases (49–51). In density-
dependent transmission, the greater the density of individuals,
the greater the probability of contact per unit time (52):

dI

dt
= β · S · I (2)

where dI/dt is the rate of new infections per unit time t, β is the
effective contact rate, and S and I are the number of susceptible
and infected individuals, respectively.

Frontiers in Veterinary Science | www.frontiersin.org 7 January 2021 | Volume 7 | Article 546651

https://github.com/ckirkeby/MDT
https://github.com/ckirkeby/MDT
https://github.com/ckirkeby/MDT
https://github.com/ckirkeby/MDT
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kirkeby et al. Introduction to Disease Transmission Modeling

In frequency-dependent transmission, the rate of new
infections per unit time, dI/dt, is independent of the density of
individuals in the population (N):

dI

dt
= β ′

·
S · I

N
(3)

where S and I are the same as in Equation 2, but β ′ is not
equivalent to β in Equation 2 due to the underlying difference
between the contact rates (C) of these two types of transmission.
The difference between these two types of transmission is
demonstrated in a study of mange in a fox population in the UK,
in which researchers compared density and frequency dependent
transmission and found that mange transmission was most likely
frequency dependent in this population (53).

As an example of a method to allow a random process of
becoming infected that can be used at each time step in an IBM,
we extend Equation 3 to calculate a probability of infection per
susceptible individual, P(S), so each individual can be separately
subjected to a Bernoulli process of becoming infected (54):

P (S) = 1− exp(−β ′
·
I

N
) (4)

with the same notation as for Equation 2, and N is the total
number of individuals in the modeled population. If β is fixed,
then the probability of infection for all susceptible individuals
is the same (for all individuals and all simulated time), and
assumes homogeneity of transmission in the population. In
IBMs, β may vary from one individual to another representing
the susceptibility and infectiousness of the individual, thus
representing natural heterogeneity in transmission. This could
be driven by a lower probability of infection as a result of,
for instance, vaccination or due to different contact rates
between individuals.

The R code examples demonstrate this type of transmission
in Appendix 2 (https://github.com/ckirkeby/MDT). In this way,
the infection pressure is scaled to the proportion of the
population that are infected within each time step, i.e., I changes
over time, whereas β and N (within a closed system) remain
constant. The infection process is dynamic because the P(S)
changes over time with changing numbers of I in the population
(assuming a fixed N and β).

As mentioned at the start of this section, it is possible to
consider the spatial structure of the underlying demography
and define the probability of effective contact per time step for
a susceptible unit of interest dependent on its distance from
infectious units in the model. For this approach, distance kernels
can be built from which the probability of effective contact can
be drawn (such as used in 8, 23). This spatially dependent contact
rate can be combined with information on the frequency of
contacts between units of interest. For example, the frequency
of potential contacts between herds may not only depend on the
distance between them, but also on the frequency of movements
between herds, which in turn may depend on the herd types
(55, 56).

When appropriate knowledge and data are available, the
contact structure of a population can be based on a social network

(18, 57). A heterogeneous herd contact structure between groups
of animals (for example, calves and heifers) and homogenous
contacts within animal groups might also be described (11, 12).

There are also several ways to simulate indirect
(environmental) disease transmission. It can be similarly
spatially dependent as described for the direct transmission, or
simulated as a fixed transmission probability:

P (S) = 1− exp(−βi) (5)

Here, P(S) is the probability of infection of a susceptible
individual S, and βi is the indirect disease transmission rate.
This fixed transmission rate can be based on a stable baseline
infection pressure, or more variable, such as bacteria from
infected individuals shed over time in the environment (11).

When disease transmission occurs through both direct and
indirect contacts, a combination of both of these direct and
indirect pathways can be used (12).

In Figure 4 we show an example of an SI model in which the
transmission rate, β , is varied.

Post-programming Stage

Model Verification and Validation
Model verification and validation is essential to ensure that
model concepts, programming and outputs are reliable, accurate,
and representative for the modeled system (27, 58). Model
verification ensures that model code and the conceptual
framework are implemented correctly. Verification is also
called computerized model verification, internal validation, or
conceptual validation (58). Several methods can be used for
model verification, including: (1) The rationalism method, in
which several scenarios are simulated with different inputs, and
outputs are compared to determine whether the changes in
outputs are rational given the changes in the inputs (sensitivity
analysis, see below); (2) The tracing method, in which individuals
or other units of interest are followed through the different time
steps and checked that they behave as expected; and (3) The face
validitation method, in which an expert is asked to evaluate the
outputs or even the code to verify the credibility of the model.

Model validation (also called external or operational
validation) ensures that the model predictions have a satisfactory
range of accuracy in relation to the actual behavior of the
modeled system in real life (adapted from 54). Real-life data
(i.e., empirical outbreak data) is needed to fully execute this
process. To our knowledge, few models in veterinary science
have been externally validated (59–61). This is usually due to
the high associated costs or ethics of obtaining such data, and
the complexity of the modeled systems. If empirical outbreak
data are lacking from the setting in which the model was built
and applied—such as in the case of exotic diseases and regions
with historical disease freedom—then validation options might
include either adapting the model to a region where data
are available, or using previous outbreak data. For example,
historical data from the last Swiss FMD outbreak was used to
validate a current FMDmodel for Switzerland (61).

Frontiers in Veterinary Science | www.frontiersin.org 8 January 2021 | Volume 7 | Article 546651

https://github.com/ckirkeby/MDT
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kirkeby et al. Introduction to Disease Transmission Modeling

FIGURE 4 | Line plots illustrating the effect of varying the transmission rate, β, on the number of susceptible (S) and infected (I) animals in a stochastic model with SI

disease dynamics. In the two upper plots, β is higher than the two lower plots. This results in higher number of infected than susceptible at day 12 in the upper

scenario compared to the lower scenario. In the histograms on the right, the resulting distributions of susceptible (dark gray) and infected (light gray) individuals are

shown. Note that β is not kept constant, but varied for each iteration, incorporating uncertainty around this key parameter.

Convergence Analysis
Convergence analysis assesses the repeatability of the outputs
based on the number of iterations (repetitions) the model is
simulated, and is conducted before final model simulations.
Above a given threshold of simulations, the output statistics
should be independent of the number of model iterations.
This stability can be checked by ensuring that the variance
of the outputs of interest (for example, the number of

infected individuals or epidemic duration) is stable. A
commonly used approach is to visualize the change in the
variance when increasing the number of iterations (62), or
to use thresholds of the coefficient of variance as a decision
metric (9, 18, 63).

We have included an example of how to determine
convergence of a model in Appendix 2 (https://github.com/
ckirkeby/MDT).
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Sensitivity Analysis
Sensitivity analysis is essential to understand and examine the
robustness of model predictions to changes in input parameter
values, model structure and processes (64). Sensitivity analysis
can be used to identify parameters and processes that have a
major influence on model predictions; therefore, the values of
these parameters—and the way in which processes aremodeled—
must be certain enough to produce model predictions acceptable
to the end-user.

During sensitivity analysis, the behavior of the model and
the outputs of interest are examined when the model or its
parameters are varied. There are different ways to approach
sensitivity analysis. Sensitivity analysis of input parameters can
be assessed by changing input values within a specified range
(local sensitivity analysis) or the entire parameter space (global
sensitivity analysis) to examine the impact of these changes on
model outputs. The influence of parameters can also be examined
singly (one-at-a-time sensitivity analysis) or in combination with
other parameters [for example, a “Sobol” sensitivity analysis,
(65)]. Sensitivity analysis can also be implemented by modeling
a specific process in alternative ways to examine the impact of
this process on model predictions (this is sometimes referred to
as structural sensitivity analysis).

The simplest method of sensitivity analysis of input
parameters is one-at-a-time perturbations (66). However, this
does not allow assessment of the sensitivity of the model output
to changes in combinations of other parameter values’ change.
Many more methods exist and have been used in the context
of IBMs (10, 66, 67); a complete review is beyond the scope of
this article.

We have included code in Appendix 2 to conduct a simple
sensitivity analysis on a model parameter (also available online
at https://github.com/ckirkeby/MDT).

Presentation of Model Outputs
Presentation of clear results that deliver project requirements
is an important element for transparent communication of the
model outputs. This should already be reflected and incorporated
during the design stage. Deterministic models provide single
value outputs (without variation), whereas stochastic models
provide distributions of outputs. Thus, when results from
stochastic models are presented, it is essential to not only show
median or mean values, but also the variation around these
values; for example, using boxplots or histograms. From a disease
spread model, outputs usually include the number of infected
units of interest and the epidemic duration. Other outputs can
also include the number of units of interest under control (culled,
vaccinated, or banned in movements), economic metrics in
case of a bio-economic model, predicted changes in production
(such as milk yield or growth rates), or maps from spatially-
explicit models.

Documentation and Communication
Good documentation is essential to enable reproducibility of
the model, communication of model outcomes, and comparison
between different models. Standardized protocols for disease
spread model documentation have been developed, such as

the ODD (Overview, Design concepts, and Details) (68) and
TRACE (69) and can be used to communicate models in
scientific publications.

At all stages of model design, development and
implementation, communication should be maintained
with relevant stakeholders. These will include the end-users
of the model, but can also include experts for the specific
disease and system modeled, and those that are funding
model development and implementation. Comprehensive
communication at all stages ensures that the model focus
remains on the defined purpose so that useful information
is provided to the end-users, or that the end-user can
adapt the model according to specific needs during the
modeling process.

Recent Developments
Recent developments in disease spread models used in
veterinary science include the development of models that
model more than one disease. Mostert et al. (70) present
a bio-economic stochastic dynamic model that simulates
subclinical and clinical ketosis, mastitis, metritis, displaced
abomasum, and lameness in dairy cattle. In intense production
systems, such as in the dairy sector, it is an advantage
to evaluate the impact of several diseases concurrently,
to optimize management strategies. Inclusion of economic
impacts and the economics of disease mitigation in these
models facilitates broader use, in addition to improving
animal welfare.

Many populations can also be captured in one model. One
example is the trend for models of vector-borne diseases (which
we have not covered here, and introduces at least one more
population, the vector, into the model).

Ensemble modeling is a relatively new approach in veterinary
epidemiology (71). Decisions on how to respond to an incursion
of FMD virus in a previously disease-free country are complex
and several models of FMD spread have been developed
and applied. These vary in their disease processes modeled,
assumptions made and parameterization. For any set of inputs,
outputs from these various models are plausible. Variability
in model outputs can be valuable because these are likely
to include the range of realizations that could be observed
during an FMD outbreak. A method of reconciling variability—
borrowed from fields such as meteorology, climate-change
science and medical science—has recently been applied to
this situation. Using outputs from six different models which
simulated the spread of FMD in the Midlands and Wales areas
of the United Kingdom in 2001, Webb et al. (71) applied a
Bayesian Reliability Ensemble Average (BREA) method to
integrate outputs regarding outbreak duration and two control
methods. The BREA method determines the weights applied
to each model output based on agreement with observed data
(bias criterion) and consensus between models (convergence
criterion). The latter was used by Webb et al. (71) and their
case study highlights the potential of ensemble modeling to
reduce the uncertainty of outputs from individual models, thus
improving decision-making.
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CONCLUSIONS AND
RECOMMENDATIONS

We emphasize two well-known, key axioms: (1). disease spread
models are simplified representations of real-life systems so that
“all models are wrong, but some are useful” (2), and (2). model
outputs can only be as accurate as model inputs allow.

Model simplification is often driven by data availability;
therefore, full use of any available data is recommended.
However, when considering whether more data should be
collected or how a process should bemodeled, we note that highly
detailed models (more complex processes with more parameters,
such as IBMs) can produce output thatmight be less generalizable
than more simplified models. In addition, the output from
more simplified models might adequately predict the essential
components of disease transmission needed to achieve the end-
users’ objectives. This presents modelers with dilemmas: a highly
detailed model is not necessarily less “wrong” or more “useful”
than a simplified model. Whilst the steps of model verification,
validation, and sensitivity analysis can help avoid too much
or too little simplification, we recommend that particularly
during the design phase, modelers focus on development of the
simplest model to achieve useful output—whilst we focus on an
introduction tomodeling using IBMs, we do not suggest that they
are the foundation of modeling approaches.

Communication between end-users and modelers about the
value and assumptions of a model is critical. We therefore

recommend that modelers and end-users, wherever possible,
establish a framework for communication about modeling

objectives, the need for verification, validation, and sensitivity
analysis, and application of model outputs to ensure optimal
use of simulation modeling, to improve animal health, welfare,
and production.
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