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Habitat conversion and the expansion of domesticated, invasive species into native

habitats are increasingly recognized as drivers of pathogen emergence at the

agricultural–wildlife interface. Poultry agriculture is one of the largest subsets of this

interface, and pathogen spillover events between backyard chickens and wild birds

are becoming more commonly reported. Native wild bird species are under numerous

anthropogenic pressures, but the risks of pathogen spillover from domestic chickens

have been historically underappreciated as a threat to wild birds. Now that the backyard

chicken industry is one of the fastest growing industries in the world, it is imperative

that the principles of biosecurity, specifically bioexclusion and biocontainment, are

legislated and implemented. We reviewed the literature on spillover events of pathogens

historically associated with poultry into wild birds. We also reviewed the reasons for

biosecurity failures in backyard flocks that lead to those spillover events and provide

recommendations for current and future backyard flock owners.
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INTRODUCTION

Transboundary emerging and reemerging infectious diseases are now increasingly recognized
as interconnected threats to public health, livestock, and wildlife communities (1–3). In North
America, almost 80% of World Organization for Animal Health (OIE) reportable pathogens
require at least one wildlife species to complete their life cycles, and half of those are zoonotic (4).
Almost two decades ago, Dobson and Foufopoulos (5) defined emergent pathogens as those whose
“geographical range, host range, and/or prevalence” are expanding.

The livestock–wildlife interface is a landscape now associated with rising incidences and
expanding distributions of OIE-reportable pathogens (6–9). The convergence of food animal
production activities with wildlife habitats forms optimal circumstances for multihost pathogen
and zoonosis emergence (10–13). A classic example of this phenomenon is Mycobacterium bovis
in the United Kingdom and the Republic of Ireland, whereby cattle and wild European Badgers
(Meles meles) remain locked in a spillover and spillback transmission loop that remains unsolved
with contemporary disease control measures (14–16). Fundamentally, pathogen emergence at
the livestock–wildlife interface is a consequence of simultaneous perturbations such as pathogen
pollution, climate change, biodiversity loss, habitat fragmentation, and agricultural sprawl (17–23).

At a community level, localized biodiversity loss is a consequence of land-use change, whichmay
result in a disproportionate number of competent or amplifying hosts (17, 24). These processes are
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ultimately shaped through the interactions of themost significant
components of the interface: first, the stability of the wildlife
community (25), second, the type of domestic animal production
(26, 27), and finally, the level of ecosystem fragmentation (28, 29).

In short, pathogen emergence at the livestock–wildlife
interface is the result of any one or many mechanisms.
Nonetheless, those factors generally fall into three broad
categories: changes among reservoir host and recipient host
densities (6), the rate of habitat transformation (30), and the
presence of multihost pathogens (31). Although one category
(host, habitat, or pathogen) may appear to dominate in a given
scenario, understanding how infectious diseases emerge from the
livestock–wildlife interface requires a holistic approach of the
host–habitat–pathogen triad (32–34).

Poultry Agriculture and Wild Birds
The pathogen dynamics of poultry agriculture are unique among
animal-based farming systems (35–38). Numerous bird species
are commonly owned as pets as well as for food and are
prominent in even the most developed environments (39, 40),
have a unique physiology (41–43), and have an extraordinary
taxonomic diversity (44–46). Many wild bird habitats also
now suffer consistent encroachment or habitat conversion from
the expansion of the poultry industry, which introduces new
microbes or parasites into the wild bird community (47–50).
In 2018, Birdlife International listed agricultural expansion
and intensification as a major threat to 74% of the world’s
1,469 globally threatened bird species (51). Global threats also
include the introduction of invasive species, habitat conversion,
pathogens, and logging for small-scale subsistence farming (51).
As early as the mid-twentieth century, emerging and reemerging
infectious diseases were increasingly recognized as threats to
avian populations around the globe (52–54).

Historically, avian infectious diseases were not appreciated
for their ability to influence populations and were relatively
neglected for their part in causing species declines (55, 56).
However, Sax et al. (57) tabulated 18 species of primarily endemic
island species that were declared extinct, or extinct in the
wild, due to infectious diseases coupled with invasive species
displacement (57, 58) (Supplemental Table 1). An additional 77
wild bird species are currently at risk by the International Union
for the Conservation of Nature (IUCN) and Birdlife International
due to infectious diseases (51, 59) (Supplemental Table 1).

It is only recently that the mechanisms contributing to disease
emergence in free-living birds have been investigated (60). In
particular, endangered species and the role that avian diseases
present in regulating their populations have garnered specific
attention from conservationists and wildlife disease ecologists
and epidemiologists (58, 61–69). Pathogens have been implicated
in more than just mortality events. They have also exhibited
sublethal population-level consequences to native birds such as
fluctuations in breeding success and reductions to fecundity (70,
71). Pathogens have also been demonstrated to inhibit territorial
defense mechanisms and allow non-native species to outcompete
native birds from their habitats (70–73). Unfortunately, public
perception also plays a role on the effects that pathogens have
on avian populations. For example, in Southeast Asia, the

preemptive culling of migratory waterfowl and shorebirds was
sporadically used to control the spread of H5N1 (74, 75).

The spillover of poultry pathogens are reported regularly
(76–79); unfortunately, much remains unknown regarding
which wild species are consistently affected by which pathogen
and the frequency with which these infections occur. The
intensive practices that allow the poultry industry to produce
more chickens [e.g., high-density rearing], also result in the
maintenance of pathogens and increased pathogen transmission
(36, 80). Poultry vaccines have contributed to the efficient,
high-density, and high-output avian production that comprises
the commercial poultry industry (81–83). However, the same
vaccines may also provide optimal conditions for pathogens to
spread rapidly due to a lack of sterilizing immunity (82, 84–89).
In commercial systems, producers routinely apply live, killed, or
vector-based vaccines to counter high-profile viruses and reduce
economic losses (81).

However, high-density commercialization is not the only
form of poultry production nor is it likely the most dominant
worldwide. Backyard poultry remains the primary source of
protein among many industrializing nations (90–94), while
urban backyard chickens and keeping pet chickens are expanding
among industrialized nations (95–97). In fact, in some European
nations, the production of meat and eggs from backyard chickens
are even outcompeting commercial industries (98). Overall,
poultry production has increased over the last 70 years, and the
growth of the industry is unlikely to slow in the foreseeable
future (93, 99, 100). For the purpose of this review, we define
backyard chickens as low densities of chickens that are owned by
private individuals, which are not constricted by the biosecurity
regulations common to commercial operations.

The recent rise in backyard poultry ownership or
“microlivestock” among developed nations such as the
United States is a unique subsection of the agricultural–
wildlife interface, with tremendous implications for multispecies
pathogen transmission (101–111). Common avian pathogens
that have been isolated from, or that have been detected as,
producing a previous infection through antibody testing from
backyard chickens and turkeys around the globe include
infectious bronchitis virus (IBV) (102, 112), Marek’s disease virus
(113), infectious bursal disease virus (IBDV) (102, 112, 113),
Mycoplasma spp. (102, 112, 113), Newcastle disease virus (NDV)
(102, 112, 114), Escherichia coli (113), and Salmonella spp.
(101, 102, 113).

A meta-analysis performed by Wiethoelter et al. (8) reported
that the free-living bird–poultry interface was the most highly
reviewed interface in relation to the worldwide risks of
emergent pathogens—primarily concerning highly pathogenic
avian influenza virus (HPAIV). This increased scrutiny is partly
due to the evidence supporting that backyard chickens are
now being commonly kept within the world’s largest cities
(109, 115–117) to the edges of protected areas in developing
nations (118–121)—suggesting that few terrestrial habitats
have remained untouched and without risk from pathogens
originating from poultry.

The explosive growth of backyard chickens as an industry
results from increasing consumer demands for organic, humane
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meat and eggs (122–124), and the growing desire for a
sustainable, farm-to-table food source (95). Also, many backyard
chickens are kept as pets, sometimes resultant from humanely
rehoming “spent” or nonlaying hens (125, 126). Last, in
many areas, there remains a desire to continue long-standing
cultural practices of maintaining family flocks (103–105). What
remains unresolved are the potential long-term effects of the
backyard poultry industry’s unregulated biosecurity and limited
veterinary care (127, 128) on native wild bird species. Poor
pathogen management, coupled with the overlap of native
wild bird habitats, serves to bring together the microbial
communities endemic to domestic chickens (129, 130) and native
birds (131, 132).

The Backyard Chicken–Wild Bird Interface
At this time, the backyard chicken–wild bird interface currently
lacks a unified, conceptual definition. Defining it is challenging,
considering that local wild bird communities vary across
geographic locations and that the husbandry protocols and
regulations for backyard chickens differ from village to
municipality. Moreover, wild birds differ in their susceptibility
to “poultry” pathogens, and not all chicken breeds are susceptible
to wild bird pathogens. Not surprisingly, reports of the backyard
chicken–wild bird interface also take on many forms. In Egypt,
a study of cocirculating LPAIV and HPAIV viruses in backyard
chickens described the backyard–chicken wild bird interface as
the zone where waterfowl and shorebirds interact with household
chickens (133). In China, the HPAIV backyard chicken–wild bird
interface was a densely populated, large-scale wetland system,
which incorporated farmed waterfowl, wild waterfowl, and free-
ranging backyard chickens (134). In Thailand, backyard chicken
farms consist of free-ranging native chickens and fighting cocks,
which interact with wild birds in nearby ponds or canals (135).
In Mali, the NDV–AIV backyard chicken–wild bird interface was
located within the Inner Niger Delta, where backyard chickens
free ranged during the day but resided in rural village households
at night (136). In Argentina, the LPAIV backyard–chicken
interface comprised 22 species of waterfowl and shorebirds that
shared a wetland habitat with backyard chickens (137).

Thus, when characterizing the backyard chicken–wild
bird interface, one of the most important, yet understated,
components is habitat. It not only influences the composition
of the avian community but also the presence of wild bird
species that are susceptible to a particular pathogen. Therefore,
in defining the backyard chicken wild bird interface, we define it
as a habitat in which susceptible or infectious wild birds overlap
in land use with susceptible or infectious backyard chickens.
In the literature review below, we discuss instances of spillover
or suspected spillover of “backyard chicken” pathogens into
susceptible wild birds.

Literature Review
We searched for studies describing potential pathogen spillover
from backyard chickens to wild birds. We also conducted
searches for studies on the occurrence of pathogens common
to backyard chickens that are also found in wild birds, where
spillover has not yet been documented, but the potential for such

spillover exists. Both searches utilized the Google Scholar and
Web of Science databases. In our search strategy, we included
pathogens in which chickens serve as the primary or reservoir
host to demonstrate evidence of spillover. We used the following
search terms and Boolean operators: “pathogen of interest” OR
“pathogen and disease” OR “pathogen infect∗” and “wild bird”
OR “wild birds” OR “spillover” OR “feral birds” (n= 28,110). We
excluded experimental inoculation studies, research that had not
undergone peer review, studies concerning commercial poultry,
and we also excluded any study in which the primary host and
the recipient host could not be determined (exclusion criteria
n = 27,878). For example, many bacterial species are shared
between wild birds and backyard chickens (e.g., Salmonella spp.).
Thus, we only included that pathogen/study in the review portion
of the paper when the pathogens were host specific or when
laboratory analyses, such as sequencing, could identify the most
likely primary host. In Supplemental Table 2, we provide a list
of pathogens shared between both groups, but where insufficient
data for spillover events were available. Finally, while our review
is generally USA-centric, we drew examples from the global
literature to provide a comprehensive assessment of pathogen
spillover from backyard chickens into wild birds.

Pathogen Transmission to Wild Birds
Pathogen transmission dynamics at the poultry–free-living
bird interface are not only subject to within-host ecological
and evolutionary pressures (138) but also, most importantly,
are frequently bidirectional in nature (27, 139, 140). The
establishment of “open-air” or “free-range” poultry habitats
that overlap with wild bird habitats is a key step in the
loss of sympatric species contact barriers, which may facilitate
the transmission of opportunistic microbes (132, 141–143).
The introduction of high densities of poultry into a diverse,
susceptible avian community is likely to accelerate wild and
domestic bird encounter rates with generalist pathogens. For
example, the most commonly cited group of viruses that
follow this model are the HPAI subtypes (144, 145). Repeated
transmission events of generalist, multihost pathogens into a
recipient species, in this case, domestic chickens, from wild
bird spillover hosts may lead into pathogen establishment and
spillback from backyard poultry (146). This has the potential
to establish a positive feedback cycle among susceptible wild
birds and domestic chickens; such has occurred over the last
two decades with the H5N1 goose/Guangdong (GsGD) lineage
of HPAI (147–150).

It is well-established that backyard chickens may serve as
pathogen reservoirs to the commercial poultry industry (151,
152) and that the most likely mechanism of spillover involves
wild birds (139). For example, Lebarbenchon et al. (153)
hypothesized that small passerines served as bridge hosts for the
H7N9 virus low-pathogenic avian influenza virus (LPAI) from
infectious waterfowl to US commercial turkey houses. However,
some of those wild bird species may also be species of special
concern as defined the by the IUCN (154).

Although much of the literature has examined the risks that
wild birds pose to backyard chickens and commercial poultry
(74, 132, 155–157), a few studies have examined the converse.
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Backyard chickens may not only serve as a biosecurity risk
to commercial flocks but also as a reservoir for the spillover
of common “poultry” pathogens to wild birds (120, 158). For
example, on the Galápagos Island of Santa Cruz, Soos et al. (121)
found that backyard poultry had a high prevalence of seropositive
chickens for six common “poultry” pathogens, although all
nearby wild birds that were tested were seronegative (121).

However, a similar study was conducted on the Galápagos
island of Floreana, which has a much longer history of
anthropogenic and agricultural modification than Santa Cruz. In
this case, surveys of endemic wild bird found serological evidence
against NDV, avian poxvirus, and avian adenovirus-2 (119). As a
result of the Floreana study, the risk of pathogen transmission
from backyard chickens was considered too high to attempt
reintroduction efforts of endangered, endemic Galápagos wild
bird species (119). These observations are significant for the
endangered species repatriation across all wildlife refuges, as
pathogen transmission from backyard chickens has the potential
to extend beyond the borders of protected habitats (159, 160).

Perhaps the best example in which the transmission of
a bacterial pathogen from chickens to wild birds has been
documented isMycoplasma gallisepticum (MG). MG spilled over
from poultry in 1994 into house finches (Haemorhous mexicanus)
and rapidly became endemic in North American passerine
species (161, 162). A related species,Mycoplasma synoviae, which
is also commonly detected in backyard chickens (163, 164),
has also occasionally been isolated from passerines and near-
passerine species (165, 166). In one instance, an isolate with
genetic similarities to an M. synoviae vaccine strain was isolated
from a captive lesser flamingo (Phoeniconaiasminor) inNorthern
Italy (167).

Other notable examples of bacterial pathogens known to
originate from chickens and/or backyard turkeys include the
Gram-negative bacterium Bordetella avium, which has been
isolated from waterfowl, psittacines, and passerines in the eastern
United States of America (168). Although Bordetella avium is
most commonly associated with bordetellosis in commercial
turkeys (169, 170), it is also frequently found in backyard and
wild turkeys (171, 172). Pasteurella multocida is a pathogen
known for its acute nature and substantial mortality in both
chickens and waterbirds (173, 174) and has a seemingly global
distribution in backyard chickens, having been reported from
areas such as Upper Egypt (175), Ethiopia (176), Zimbabwe
(112), Tanzania (177), Denmark (178), California (113), and
India (179). The spillover and potential spillback of P. multocida
ssp. multocida between backyard flocks and wild waterfowl,
cormorants, and shorebirds were documented in the late 1990’s
in Denmark (180).

Viral pathogens, due to their pathogenicity, have been better
studied. Newcastle disease (ND), caused by virulent Newcastle
disease virus (NDV) strains is among one of the most significant
pathogens at the backyard poultry–wild bird interface (49). It
is a highly contagious, acute, and systemic illness primarily
known to afflict poultry; however, clinical symptoms have also
been documented among bird species outside of the Galliformes
family (181, 182). NDV has been isolated from a broad range of
avian hosts, and it is now generally presumed that all bird species

are susceptible to the replication, shedding, and transmission
of the virus (183–186). NDV is also often endemic among the
backyard flocks of developing nations (187). For example, in
Vietnam, up to 34% of unvaccinated backyard chickens tested
positive for antibodies against NDV (188). In Bushehr province,
Iran, 40% of unvaccinated chickens tested positive for antibodies
against NDV (189). In a review of NDV vaccine spillover events,
Ayala et al. found that 9.3% of spillover events involved a wild
bird belonging to a species listed by the IUCN as either in
decline or in an eminent threat of decline (154, 190). In Latin
America, free-ranging backyard flocks have been investigated as
potential sources of pathogen spillover into resident and endemic
wild birds, including NDV (120, 129, 130). Across four African
countries, Cappelle et al. (191) found that 8.9% of the species
that tested positive for NDV by real-time PCR were listed by the
IUCN as either vulnerable or near threatened.

Avian encephalomyelitis virus is a picornavirus with a
worldwide distribution that infects juvenile chickens, pheasants,
quail sand turkeys, including juvenile backyard chickens (112,
192). It has also been reported in songbirds of the Paridae family
(192), wild turkeys (Meleagris gallopavo) in the Southeastern
United States (193), and rock pigeons (Columba livia) in Turkey
(194). Corvids appear to be particularly susceptible to infection
with avian reovirus (195), a poultry pathogen also commonly
detected in backyard chickens (112, 196). In addition, two die-
offs of AmericanWoodcocks (Scolopax minor) were attributed to
the virus (197).

Avian lymphoid leukosis virus has been isolated from
backyard chickens (113), as well as both captive and wild
bird species, including passerines, columbids, waterfowl, and
psittacines (198–202). Fowl adenovirus-4 (FAdV-4), an emerging
pathogen of poultry, was isolated from rock pigeons of
Hong Kong and black kites (Milvus migrans) of Kashipur, India
(203–205). IBV, a gamma-coronavirus of poultry and backyard
chickens (206), has been isolated from waterfowl and wading
birds of Beringia, Alaska, and the nation of Poland (207). IBDV
is an immunosuppressive virus of poultry and backyard chickens
that targets B-lymphocytes and associated tissues of the immune
system (208–210). It has been isolated from a wide variety of bird
species, including waterfowl, columbids, passerines, Galliformes,
and members of the Charadriiformes (211–214).

Marek’s disease virus is a neoplastic virus in the Herpesviridae
family, which is ubiquitous among backyard chicken flocks and
poultry worldwide (215). The virus or antibodies against the virus
have been detected in captive members of the Galliformes and
wild waterfowl, including endangered lesser white-fronted Geese
(Anser erythropus) (216–219). Reticuloendotheliosis viruses
(REV) are a group of retroviruses and the causative agent
of reticuloendotheliosis, an immunosuppressive and neoplastic
disorder of poultry and backyard chickens (112, 220). The virus
has been isolated from Galliformes, waterfowl, columbids, and
endangered Attwater’s prairie chickens (Tympanuchus cupido
attwateri) (221–223).

MacQueen’s bustards (Chlamydotis macqueenii) are
categorized as vulnerable by the IUCN (224). Illegally trapped
and transported individuals were found to have been exposed
to NDV, avian poxvirus, and Chlamydia spp.; pathogens were
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also found in backyard chickens (188, 225–227). In Burkina
Faso, three hooded vultures (Necrosyrtes monachus), a western
plantain-eater (Crinifer piscator), and an Ovambo sparrowhawk
(Accipiter ovampensis) were infected with various combinations
of HPAI, NDV, and IBV (228). Given that hooded vultures are
categorized as critically endangered by the IUCN, this finding
is extremely significant (229). Similarly, Eurasian oystercatchers
(Haematopus ostralegus) are listed by the IUCN as vulnerable
in Europe (230) and in the United Kingdom; 12% of sampled
Eurasian oystercatchers, along with various waterfowl and
shorebirds were found to be infected with IBV (231). Several
species of Antarctic penguins, including the near-threatened
emperor penguin (Aptenodytes forsteri), have been found to be
infected with Chlamydia spp., LPAI, NDV, and IBDV (232).
A die-off of reintroduced, endangered whooping cranes (Grus
americana) in Florida was attributed to IBDV, serotype 2 (233).
Last, a low-virulent NDV strain was isolated from two bald
eagles (Haliaeetus leucocephalus) and one great horned owl
(Bubo virginianus) in Minnesota during the winter of 2009 (234).

Even given all these reports, pathogen transmission between
backyard poultry and native birds remain only causally linked
and likely underreported (190). For example, the inclusion
criteria for this review and Supplemental Table 2 yielded
232 papers. However, after accounting for duplicate reports,
only 11 papers remained. These remaining studies provided
evidence of pathogen spillover to and from domestic chickens
and wild birds using genomic comparisons and molecular
epidemiology techniques. Economically significant viruses such
as HPAIV and NDV were highly represented (50, 139, 141,
146, 158, 190, 235–237), whereas bacterial and parasitic
species were less so (141, 162, 180). A contributing factor
to this scarcity of evidence is likely that the mechanisms of
transmission differ across pathogens and avian host species
(238, 239). Consequentially, conclusive evidence for pathogen
host shifts has generally only been reconstructed with molecular
techniques after enzootics have resulted in high mortality
rates [i.e., Mycoplasma gallisepticum in Fringillids (162)].
Moreover, the same molecular techniques have also clarified
the origins of pathogens once attributed to chickens. For
example, canarypox has been identified as the causative agent
of disease in Hawaiian and Galápagos avifauna as opposed to
fowlpox viruses that originated from chickens, as previously
believed (240, 241).

It has become clear that backyard poultry play a role in
the transmission of potentially virulent pathogens (56, 242,
243), yet their impact on wild bird populations remains largely
unknown. Specifically, it is the absence of cross-species barriers
between backyard chickens and native birds that may exacerbate
pathogen transmission. When gregarious and social native bird
species overlap in habitat with high-density chicken operations,
the ecological barriers to pathogen transmission are lost (244).
This scenario pertains to peridomestic birds that consume free-
ranging backyard chicken feed and water sources, which may
then interact with other wild bird species that would have
otherwise remained unexposed (Ayala et al. unpublished data
2020) (245–247).

Backyard Chickens and Biosecurity
Backyard flocks are implicated in maintaining enzootics of two
critically important RNA viruses around the globe, NDV and
HPAIV (237, 248–255). This is largely due to essential differences
in the biosecurity of backyard flocks and commercial flocks
(238, 256). For instance, while the commercial industry practices
high containment and mass immunization against NDV, only 3%
to 10% of backyard flocks are immunized for common poultry
pathogens (103, 257, 258). Backyard flocks are also often subject
to little to no biosecurity regulations, where biosecurity protocols
and vaccination serve as the essential management practices
that mitigate the transfer of infectious agents into and from the
flock (238).

For backyard chickens, biosecurity and vaccination lead to
healthier and more productive backyard chicken operations—
and these benefits apply across global poultry operations. For
example, in Mozambique, backyard flocks that were vaccinated
against NDV with the thermostable I-2 vaccine had a higher
hatch rate during brooding than those who were not vaccinated
(259). In Ethiopia, up to 50% of backyard chicken flocks
suffer mortality from infection by NDV (260). A biosecurity
risk assessment found that large flock sizes, reduced cleaning
frequencies, and water sources that were shared with other
flocks were significant predictors for increased NDV incidence
(261). In Thailand, the greatest risk factor associated with
increased HPAI H5N1 flock incidence included the trade of live
chickens between backyard flocks, while the use of disinfectants
during a cleaning regimen reduced transmission (135). In
Maryland, AIV seropositivity in backyard flocks was associated
with proximity to waterfowl, while the use of pest control was
associated with a reduced likelihood of seropositivity (131).
In Bangladesh, increased HPAI H5N1 incidence in backyard
flocks was associated with feeding backyard chickens offal from
slaughtered birds, allowing contact with rock pigeons, and living
near a body of water. However, the likelihood of HPAI H5N1
incidence was reduced when chickens were separated from
waterfowl (262). In Oman, between 84 and 90% of backyard
flocks were seropositive for AIV and NDV, respectively. Flock
contact with wild birds, the presence of water bodies, high human
densities, and the presence of live bird markets were proposed as
explanatory variables for AIV and NDV (263).

Thus, in addition to a lack of regulation, in some areas,
vaccination, hygienic measures, and biosecurity compliance
remain logistically prohibitive, which means that backyard
chickens and live bird markets may remain sources of
transmissible pathogens (264, 265). Moreover, limitations in
husbandry practices are sometimes the result of finite resources.
In these cases, clinical illness may be overlooked due to limited
experience with disease, or otherwise unreported, for fear of
mandatory flock culling (81, 104). Even more worrisome is
the practice of covertly transporting and selling sick fowl or
discarding infected eggs and carcasses into the environment.
Such practices have been attributed to maintaining cyclic NDV
among unvaccinated flocks (266).

Surveys of backyard chicken owners suggest that extension
education should focus on management practices associated with
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disease transmission, such as carcass disposal, coop cleaning
regimens, and the proximity of wild birds (97, 116, 267). Even
in developed countries, with ample access to education and
resources, backyard chickens remain a concern. For example, in
the United States, ∼30% of backyard poultry owners maintain
wild bird feeders, increasing contact rates to free-living birds
within infectious environments (258). There, backyard flock
owners span socioeconomic, geographical, and community types
[i.e., urban, rural, and suburban (267)], and the average flock
size per household varies from 25 to 49 birds (96, 268). With
the exception of local zoning regulations, backyard chicken laws
remain primarily unregulated and/or unenforced. In addition,
poultry specialists, extension veterinarians, and community
educators increasingly lack the resources needed to monitor
the continuously expanding and vulnerable backyard poultry
sector (268).

In the United States, backyard chickens are increasing in
popularity, and between 2 and 7.4% of US without chickens
plan to own them within 5 years (96). As the backyard
chicken industry continues to expand, the issues are pressing
further to the surface. Practices such as inconsistent husbandry
management (103), poor vaccination compliance (258), and a
reduction in national poultry “herd immunity (269)” perpetuate
disease vulnerability to the commercial food supply and to
native bird communities. Wet markets, the illicit pet bird trade,
and poultry trafficking have instigated low-pathogenic avian
influenza outbreaks in the Northeastern United States (270,
271) and were responsible for the 1972 (272), 2002 (273), and
current virulent NDV outbreaks in California (274). In 2013,
the Food and Agriculture Organization of the United Nations
identified “smallholder livestock systems” as disproportionately
large facilitators of infectious disease spread (275).

Critical events, such as the 2014–2015 HPAIVH5Nx outbreak
in the United States not only leads to the loss of public confidence
in food security but also further decimates the agricultural
economy through mass depopulation, quarantines, and trade
embargos (276, 277). In addition, while LPAI is commonly
transmitted by wild birds, not all wild bird species are adapted
to HPAI, and morbidity or mortality may result in some wild
individuals (277–279). For example, in the 2014–2015 H5Nx
outbreak, some North American waterfowl, shorebirds, and even
raptors died from the pathogen (256).

In the United States, outbreaks of low-pathogenic avian
influenza (LPAI) H7 variants in live bird markets were
sporadically detected in the mid-Atlantic and Northeastern areas
between 1986 and 2004. These occurred primarily in New
York, New Jersey,Massachusetts, Rhode Island, Connecticut, and
Pennsylvania (270, 271, 280). Upon investigating an extensive
outbreak of HPAI in Houston, Texas, in 2004, the evidence
suggests that it also originated from a live bird market (281).
In eastern Texas, an earlier survey of backyard poultry flocks
found that 100% of each flock harbored individuals with
antibodies to IBDV (282). Such events demonstrate that backyard
chickens and the movement of live poultry not only pose a
risk to native birds but to the commercial poultry industry as
well (116).

CONCLUSIONS AND

RECOMMENDATIONS

Although spillover and spillback at the poultry–avifaunal
interface has been documented, for many pathogens, the
underlying reasons that facilitate spillover and spillback remain
confounded. Recommendations are provided here, but they are
not exhaustive, and should be tailored to the local circumstances,
flock types, laws, and regulations (283). Arzey et al. (283) provide
a thorough review of backyard poultry recommendations for
small-scale producers, which are easily adapted to the backyard
flock owner.

Pathogen spillover may be a result of poor bioexclusion, such
as the failure to quarantine new flock individuals or inadequate
coop enclosures that do not separate wild birds from backyard
chickens (273, 284). For instance, biosecurity and quarantine
protocols are two of the most common measures undertaken
by the poultry industry to reduce pathogen transmission from
backyard chickens and wildlife (285). Restricting the movements
of infectious birds or equipment, including transport, is
imperative to reduce transmission to susceptible individuals—
into both chickens and wild bird species (283, 286). Poor vaccine
compliance is also a failure of disease management, specifically
because vaccination can reduce clinical signs, and the amount
of virus shed from an infected chicken that was previously
vaccinated (287–289).

Backyard flock owners should not maintain wild bird feeders
on their properties, thereby inhibiting visits from large flocks
of multiple wild avian species, which may include susceptible
or even infectious wild birds (103). Backyard chicken feeders
should be kept where only chickens can reach them, while mesh
should be utilized wherever possible to prevent wild birds from
interacting with chickens, their coops, or their resources (290).
Removing contaminated water sources, insects, and rodents
reduces point sources of pathogen contamination, not just to
other chicken flocks but also to wild birds (283). Increased
attention to owner and visitor hygiene [i.e., the changing
of footwear when visiting different flocks, and limiting the
number of visitors to backyard coops], are important principles
of bioexclusion and biocontainment (103, 257). Last, dead
birds or eggs that are suspected of contamination should be
disposed of in a manner that complies with local guidelines,
for example, incineration or, if applicable, burial, according to
environmental guidelines (283). In the case of an unexplained
death and especially if infectious diseases are suspected in a
mortality event, submission of carcasses and samples to approved
diagnostic labs with experience in avian cases for testing is highly
recommended (291).

Backyard flock owners increasingly report emotional ties
to their chickens (258, 292). Thus, the inclusion of standard
avian veterinary care and the management of common chicken
pathogens into flock routines are realistic objectives in nations
like the United States (108, 111). However, in the rural areas
of developing nations, where backyard chickens are kept strictly
as livestock, these recommendations may appear impractical for
the small-scale flock owner (238). Backyard chickens in these
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areas, also known as village chickens, are low-input, low-output
agricultural models that serve as more than a source of protein
(90). Meat and eggs from these chickens can be bartered or sold,
providingmuch needed income for other needs such asmedicine,
clothing, and school fees (293). Biosecurity implementation may
increase the required input of the system, affecting profits,
reducing food security, and lessening overall benefits for small-
scale flock owners (238, 294). However, pathogen management
and biosecurity in such areas is crucial; for example, in India,
backyard chickens are often utilized to ensure a steady food
supply in the case of crop failures (295). For these reasons,
low-cost biosecurity measures should be implemented at the
community level (296). This not only ensures a steady source
of protein for residents but also may mitigate the potential for
a spillover–spillback pathogen transmission feedback loop into
and from wild birds (129).

Low-cost biosecurity recommendations for backyard
chickens in rural communities includes breeding individuals
that are resistant to locally prevalent pathogens, biosecurity
educational programs, improving local hygiene, the culling
of sick individuals, and the use of thermostable, low-cost
vaccines (294–296). For instance, flock rotation is commonly
utilized in Australia to reduce the prevalence of endoparasites,
such as coccidia (281). In addition, effectively implementing
biosecurity beyond the community level likely includes a
regional assessment of critical backyard chicken pathogens,
their mechanisms of spread, and a methodology to interrupt
those pathways (38). Regional biosecurity planning should likely
involve educational, financial, and regulatory interventions at a
governmental level.

As previously discussed, pathogen spillover is ultimately
driven through the ecological loss of natural barriers between
species. When multiple species of the same phylogenetic order
are thrust into sharing the same habitat, spillover between
those species is likely to occur. Moreover, certain behaviors
in domestic and wild birds lend themselves to increasing
that probability, such as being foraging generalists, ground
foragers, or flocking species. However, in the literature on
the poultry–avifaunal interface, there remains a paucity of
experimentally and empirically derived field data regarding the
bidirectional potential of poultry–avifaunal pathogens outside
of HPAI.

Bidirectional potential includes the ability of the collectivewild
and domestic avian host community to maintain a pathogen
traditionally associated with poultry above the threshold levels
required to continue an outbreak. Some pathogens have
been extensively studied in the field, laboratory, and through
mathematical models (i.e., avian influenza). This is likely due
to the zoonotic potential and public health risk of the virus,
in addition to the economic burden following a commercial
or village poultry outbreak (297–300). However, even current
surveillance methods for HPAI among reservoir avian species
have been reported as “unsatisfactory” when contrasted against
the efforts applied toward understanding human-to-human
transmission (301). Further research is needed into the backyard
chicken–wild bird interface, especially near sites such as
Important Bird Areas (IBPs), where the conservation of declining
species is a priority.
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