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Extensive research has been conducted to investigate the toxicological impact of
dioxins on mammals, revealing profound effects on the female reproductive
system in both humans and animals. Dioxin exposure significantly disrupts the
intricate functions of the ovary, a pivotal organ responsible for reproductive and
endocrine processes. This disruption manifests as infertility, premature ovarian
failure, and disturbances in sex steroid hormone levels. Comprehensive studies,
encompassing accidental human exposure and experimental animal data, have
raised awealth of informationwith consistent yet varied conclusion influenced by
experimental factors. This review begins by providing an overarching background
on the ovary, emphasizing its fundamental role in reproductive health, particularly
in ovarian steroidogenesis and hormone receptor regulation. Subsequently, a
detailed examination of the Aryl hydrocarbon Receptor (AhR) and its role in
governing ovarian function is presented. The review then outlines the sources
and toxicity of dioxins, with a specific focus on AhR involvement in mediating
reproductive toxicity in mammals. Within this context, the impact of dioxins,
notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on Folliculogenesis and
Preimplantation embryos is discussed. Furthermore, the review delves into the
disruptions of the female hormonal system caused by TCDD and their
ramifications in endometriosis. Notably, variations in the effects of TCDD on
the female reproductive and hormonal system are highlighted in relation to TCDD
dose, animal species, and age. As a forward-looking perspective, questions arise
regarding the potential involvement of molecular mechanisms beyond AhR in
mediating the female reproductive toxicity of dioxins.
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1 Introduction

The female reproductive system comprises vital structures, including the ovaries,
fallopian tubes (oviducts), uterus, and vagina. This intricately organized system is
hormonally regulated by the hypothalamus and pituitary. The harmonious functioning
of these organs is essential for fulfilling the primary roles of the female reproductive system,
which involve the production of female sex hormones, the generation of female gametes,
and the transportation of these gametes to a site where they can potentially be fertilized by
sperm. Following fertilization, the female reproductive system establishes an optimal
environment for the development of the embryo, ultimately leading to the delivery of
the fetus. Hence, the intricate functions of the female reproductive system rely on the
effective operation of each individual organ (Li et al., 1995).

There is now a well-established acknowledgment that exposure to toxic chemicals can
significantly impact the functioning of the female reproductive system across various levels,
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including the hypothalamus, pituitary gland, ovary, and
reproductive tract (Crain et al., 2008).

Dysfunction in any of these organs can ultimately manifest as a
disruption of ovarian function, resulting in infertility (Pocar et al.,
2003). A significant number of environmental pollutants are
recognized as endocrine-disrupting chemicals (EDCs) (Craig
et al., 2011). As per the Environmental Protection Agency (EPA),
Endocrine Disrupting Chemicals (EDCs) refer to external agents
that disrupt the synthesis, secretion, transport, metabolism, binding,
or elimination of naturally occurring hormones in the body, crucial
for maintaining homeostasis, reproductive functions, and
developmental processes (EPA, 2024) EDCs, such as bisphenol A
(BPA), phthalates, polychlorinated biphenyls (PCB), dioxins,
fungicides (vinclozolin), pesticides like DDT (dichlorodiphenyl
trichloroethane), methoxychlor, chlorpyrifos, phytoestrogens
(genistein and coumestrol), and pharmaceutical agent DES
(diethylstilbestrol), are frequently detected in in the food chain
according to the National Health and Nutrition Examination
Survey (NHANES) biomonitoring data (Diamanti-Kandarakis
et al., 2009). Toxic chemicals like these have been identified in
human adipose tissue and bodily fluids such as milk, amniotic fluid,
urine, and serum. Pregnant women often encounter EDCs through
personal care products, household items, and pharmaceuticals (Frye
et al., 2012; Kahn et al., 2020; Haggerty et al., 2021). Additionally,
women working in chemical industries or farming are particularly
exposed to EDCs found in pesticides and herbicides factories or on
farms (Combarnous, 2017).

Premature ovarian failure and abnormal sex steroid hormone
levels are notable health concerns due to their association with early
infertility and an elevated risk of conditions like osteoporosis,
depression, cardiovascular disease, and premature mortality
(Yoon et al., 2014; Darbre, 2018).

There is considerable apprehension regarding environmental
pollutants, encompassing, but not limited to EDCs, and their impact
on the female reproductive system. Heightened concerns surround
the adverse health consequences of dioxin, recognized as the most
potent group of organic persistent pollutants (POPs). Numerous
reports have raised serious alarms, indicating that occupational or
accidental exposure to dioxins can trigger conditions such as cancer,
cardiovascular events, pulmonary diseases, and substantial
abnormalities in the female reproductive system (Yonemoto, 2000).

The term “Dioxins” refers to a group of 210 closely related
compounds that share structural similarities but exhibit significant
variation in toxicity. This group comprises 75 polychlorinated
dibenzo-p-dioxins (PCDDs) and 135 polychlorinated dibenzo-p-
furans (PCDFs). While most of these compounds do not pose a
health hazard at commonly found environmental levels,
17 congeners among them are highly toxic. The 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) stands out as the most
toxic congener within the dioxin group. As a prototype of
halogenated aromatic compounds, TCDD is frequently employed
to illustrate the toxicological effects of dioxins on organisms.
Numerous studies have reported that TCDD induces a range of
toxicological effects, encompassing reproductive, developmental,
and carcinogenic impacts in both exposed individuals and a
diverse array of experimental animal models (White and
Birnbaum, 2009; Faiad et al., 2022; Aldeli et al., 2023; Faiad
et al., 2023; Hammoudeh et al., 2023).

In rats, exposure to even a low concentration of TCDD (less than
50 μg/kg), with a reported half-life of approximately 19 days can
induce various toxic effects, including hepatotoxicity, reproductive
and developmental toxicity, thymic atrophy, wasting syndrome,
immune suppression, and acute lethality (Geyer et al., 2002;
Marshall and Kerkvliet, 2010). In humans, the half-life of TCDD
is longer, it is estimated to be approximately 8 years. The main
reported data on the toxicity of TCDD exposure in humans comes
primarily from two sources, the exposure to the agent orange during
the Vietnam war as well as the exposure to dioxins by industrial
accidents such as what happened in July 1976, when a chemical plant
explosion near Seveso in Italy exposed locals to high level of 2,3,7,8-
tetracholorodibenzo-p-dioxin, causing a public health crisis to the
residential population (Pocchiari et al., 1986; Landi et al., 1998;
Eskenazi et al., 2018).

In both cases, a wide range of toxicological effects have been
authenticated in the TCDD-exposed individuals as well as in the
subsequent generations (Mocarelli et al., 2011). Due to its long half-
life, effects of TCDD that are observed up to F2 generation can be
refer to direct multigenerational exposure. Exposure the female to
(F0) can persist in the body leading to immediate exposure of any
offspring (F1), through the placenta and breast milk (Prokopec et al.,
2020). However, several studies have shown that the endocrine-
disrupting effects of TCDD are, at least in part, caused by a direct
action on the ovary, suggesting that TCDD can modify the
hormonal profile in the exposed female, in part, by binding to its
receptor known as the Aryl hydrocarbon Receptor (AhR) (Hirakawa
et al., 2000; Hirakawa and Minegishi, 2006).

The main objective of this review is to succinctly summarize,
elucidate, discuss, and ultimately emphasize new perspectives on the
toxicological impacts of TCDD on the female reproductive system.
To achieve this, a comprehensive examination of the ovarian
structure and ovarian steroidogenesis was undertaken.
Subsequently, the elusive explanation of the role of the AhR in
mediating dioxin toxicity was provided, with particular attention
given to its function in the female reproductive system. Additionally,
the review delves into and discusses the effects of dioxin on
Folliculogenesis and preimplantation embryos, on the hormonal
system and its levels, and on endometriosis.

2 Structure and functions of ovary

The ovary, a vital female reproductive organ, serving two
essential physiological roles. Firstly, it oversees the development,
differentiation, and release of oocytes for fertilization, contributing
to reproductive processes (Hernández-Ochoa et al., 2009). Secondly,
the ovary is responsible for synthesizing and secreting sex steroid
hormones, including estrogens, progesterone, and androgens. These
hormones play a pivotal role in sustaining follicle development,
ensuring fertility, regulating proper menstrual/estrous cyclicity, and
supporting pregnancy (Hirshfield, 1991; Hernández-Ochoa et al.,
2009). The cycling ovary encompasses ovarian follicles at various
developmental stages, and after ovulation, one or more corpora lutea
form depending on the species. The transformative process through
which the most immature follicles (primordial) evolve into
preovulatory follicles is known as Folliculogenesis (Oktem and
Urman, 2010).
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Primordial follicles, characterized by a singular oocyte
enveloped by a solitary layer of flattened somatic cells called
“granulosa cells” are limited in number. During Folliculogenesis,
these granulosa cells undergo stimulation, transform into a cuboidal
shape, and proliferate to form multiple layers around the oocyte.
Simultaneously, the oocyte enlarges, and additional somatic cells,

known as “theca cells” are recruited to the follicular structure.
Ultimately, at the end of Folliculogenesis, the follicle develops a
fluid-filled cavity referred to as antrum, marking its transition into
an antral follicle. Antral follicles serve as a crucial source of ovarian
steroids and have the capability of ovulation upon appropriate
stimulation by Luteinizing Hormone (LH), a hormone produced

FIGURE 1
Ovarian steroidogenesis. Ovarian steroidogenesis requires collaborative interactions between the theca and granulosa cells within the follicle. STAR,
Steroidogenic acute regulatory protein; CYP11A1, cytochrome P450 11A1 or cholesterol side-chain cleavage; 3β-HSD, 3β-hydroxysteroid
dehydrogenase; CYP17A1, cytochrome P450 17A1 or 17a-hydroxylase, 17,20 desmolase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; CYP19A1,
cytochrome P450 19A1 or aromatase.
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by gonadotropic cells in the anterior pituitary gland. The production
of LH is regulated by gonadotropin-releasing hormone from the
hypothalamus. In females, an acute rise of LH known as an LH
surge, triggers ovulation and development of the corpus luteum.
Following ovulation or the release of the oocyte from the follicle, the
remaining granulosa and theca cells undergo a differentiation
process known as Latinization. This transformation results in the
conversion of granulosa and theca cells into luteal cells, and the
formerly follicular structure is now recognized as a corpus luteum
(CL). A functional corpus luteum produces progesterone, essential
for successful implantation and the maintenance of pregnancy. In
the absence of fertilization or the achievement of pregnancy, the
corpus luteum undergoes a process of cell death termed Luteolysis or
corpus luteum retrogression. Disturbances in Folliculogenesis and
corpus luteum formation can lead to adverse reproductive
outcomes, including anovulation, reduced fecundity, infertility,
estrogen deficiency, and premature ovarian failure (Craig et al.,
2011; Carlson, 2018).

2.1 Ovarian steroidogenesis

The antral follicle and the corpus luteum (CL), both pivotal
structures in the ovary, function as steroidogenic glands.
Steroidogenesis in the antral follicle has been meticulously

examined in both cellular compartments, adhering to the two
gonadotropin theory of ovarian steroidogenesis. This theory
precisely elucidates the collaborative efforts of granulosa and
theca cells in the synthesis of ovarian steroids (Williams and
Erickson, 2015).

Figure 1 provides a comprehensive overview of ovarian
steroidogenesis in both theca and granulosa cells. Theca cells
house receptors for luteinizing hormone (LH), released from the
anterior pituitary upon binding to its receptor. LH signals are crucial
for theca cells, stimulating the transcription of genes encoding
enzymes necessary for the conversion of cholesterol into
androgens, including androstenedione and testosterone.
Conversely, granulosa cells possess receptors for follicle-
stimulating hormone (FSH), also released from the anterior
pituitary (Craig et al., 2011). Similarly, FSH signals play pivotal
roles in granulosa cells by upregulating the expression of genes
encoding enzymes that convert theca-derived androgens into
estrogens, such as 17β-estradiol (E2) and estrogen (Wu et al.,
2022). Cholesterol in the theca cell can be acquired through
internalization via lipoprotein receptors or synthesized de novo
(Arias et al., 2022).

Upon residing in the cytoplasm, cholesterol undergoes transport
into the mitochondria facilitated by Steroidogenic Acute Regulatory
Protein (STAR) (Christenson and Strauss, 2000; Stocco, 2001).
Inside the mitochondria, cholesterol undergoes conversion into

FIGURE 2
AHR-mediating reproductive toxicity of TCDD in mammalian female. The biological effects of TCDD are mediated through AHR pathways. Upon
TCDD binding to AhR, the AhR complex, initially residing in the cytoplasm with chaperone proteins [heat shock protein 90 (HSP90), X-associated protein
2 (XAP-2), and co-chaperone (p23)], undergoes translocation to the nucleus. There, it dimerizes with the aryl hydrocarbon receptor nuclear translocator
(ARNT). This AhR-ARNT complex binds to the xenobiotic responsive element (XRE), promoting the activation of various genes, including
cytochrome P450 A1 (CYP1A1).
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pregnenolone through the action of cytochrome P450 cholesterol
side-chain cleavage (CYP450scc; CYP11A1) (Craig et al., 2011).
Pregnenolone is then translocated from the mitochondria to the
smooth endoplasmic reticulum, where it is further converted to
progesterone by 3β-hydroxysteroid dehydrogenase (3β-HSD)
(Penning, 1997) or to dehydroepiandrosterone (DHEA) by 17α-
hydroxylase-17,20-desmolase (CYP45017a; CYP17A1). Both 3β-
HSD and CYP17A1 facilitate the diversion of progesterone and
DHEA into androstenedione, respectively (Rossetti et al., 2016).

Androstenedione can undergo transformation into testosterone
within the theca cell through the action of 17β-hydroxysteroid
dehydrogenase (17β-HSD) or be transported into the granulosa
cell. In the granulosa cell, aromatase (CYP450arom; CYP19A1)
converts androstenedione into estrone, and testosterone is
transformed into 17β-estradiol (E2) (Guo et al., 2007).
Additionally, within granulosa cells, estrone can be converted
into E2 through the action of 17β-HSD (Karman et al., 2012a).
E2, the most potent estrogen in female reproduction, undergoes
further metabolism into 2-hydroxyestradiol by CYP1A1/2 and
CYP3A4 or alternatively into 4-hydroxyestradiol by CYP1B1
(Tsuchiya et al., 2005).

2.2 Ovarian hormone receptors

The endocrine system is a complex network of glands that
release hormones into the bloodstream, serving as chemical
messengers to regulate various physiological functions
throughout the body, with a particular impact on the
reproductive system (Darbre, 2018). Likewise, the
neurosecretory cells, glands, and nonendocrine cells within the
neuroendocrine system release hormones into the bloodstream,
directly or indirectly influencing the expression of target genes.
Lipophilic hormones, such as steroid and thyroid hormones,
directly bind to receptors such as the aryl hydrocarbon
receptor (AhR), leading to alterations in gene expression
(Singh and Verma, 2017; Darbre, 2018).

Hydrophilic hormones, such as peptides or catecholamines,
indirectly engage their respective receptors on the cell’s surface.
This activation initiates intracellular signal transduction pathways,
commonly known as second messenger systems, which
subsequently interact with gene expression (Darbre, 2018).
Ovarian hormone receptors encompass those specialized for sex
steroid hormones like estrogen, progestins, and androgens
(Drummond et al., 2002), as well as orphan receptors like the
AhR (Pocar et al., 2005), and gonadotropin receptors that bind
to LH and FSH. Both sex steroid hormone receptors and AHR
function as ligand-attached transcription factors, binding to DNA
and regulating the expression of specific genes. On the other hand,
LH and FSH receptors are G protein-coupled receptors that
modulate various cell functions by initiating second messenger
signaling pathways upon binding to their peptide hormone
ligand (Althumairy et al., 2020).

Disruption of hormonal functions can occur due to various
factors, and among them, an increasing number of environmental
contaminants are recognized as endocrine disruptors (EDCs),
leading to ovarian toxicity (Costa et al., 2014). In the ovary, the
effects of EDCs appear to be linked to estrogen receptors (ESRs), the

androgen receptor (AR), and the aryl hydrocarbon receptor (AhR)
(Sofo et al., 2015).

2.2.1 Estrogen receptors (ESRs)
Estrogen plays pivotal roles in the female reproductive system,

and its biological functions are primarily mediated by two estrogen
receptors, namely, ESR1 and ESR2. These receptor subtypes exhibit
distinct tissue expression patterns, ligand specializations, and
functions (Drummond and Fuller, 2009). Within the ovary,
ESR1 is primarily expressed in theca and interstitial cells, and its
central role is to regulate steroidogenesis in theca cells (Britt and
Findlay, 2002). In contrast, ESR2 is predominantly expressed in
granulosa cells, where its fundamental functions include FSH-
directed granulosa cell differentiation, follicle maturation, and
ovulation (Drummond and Fuller, 2009). Moreover, the
transmembrane G protein-coupled receptor 30 (GPR30) was
recently identified as having a high affinity for estradiol, leading
to its renaming as G protein-coupled estrogen receptor 1 (GPER)
(Thomas et al., 2005). Apart from estradiol, this receptor also binds
selective estrogen receptor modulators (SERMs), such as tamoxifen,
as well as antagonists, such as ICI 182780, eliciting an agonistic
response (Thomas et al., 2005). GPER exhibits widespread
expression throughout the human body, being present in both
normal and pathological tissues (Revankar et al., 2005; Sanden
et al., 2011). Specifically, GPER has been detected in ovarian cells
and is believed to play crucial physiological and pathological roles in
the ovary (Albanito et al., 2007; Kamanga-Sollo et al., 2008).
Moreover, GPER expression has been observed in high-risk
epithelial ovarian cancer and is associated with poor survival
rates (Smith et al., 2009).

2.2.2 Androgen receptor (AR)
The androgen receptor (AR) is present in the ovaries of diverse

species, ranging from rodents to primates, including humans. Its
expression primarily occurs in granulosa cells and oocytes, with
lesser presence in theca/interstitial cells (Pelletier, 2000). While the
functions of androgens and the AR are well understood in male
reproduction, their roles in females remain less explored. Research
on AR knockout mice has revealed the critical importance of AR
function in maintaining female fertility. It optimizes follicular
growth, eventual follicle development, and ovulation (Walters
et al., 2010).

2.2.3 Aryl hydrocarbon receptor (AHR)
AhR is a ligand-activated nuclear transcription factor widely

distributed in vertebrates. It serves as an intracellular regulator of
xenobiotic signaling pathways, including those involving man-made
chemicals (Hirakawa et al., 2000). Initially identified in toxicological
research, AHR mediates the toxicity induced by xenobiotics such as
halogenated dibenzo-p-dioxins and similar compounds
(Hernández-Ochoa et al., 2009). Under normal conditions, AHR
resides in the cytoplasm, forming complexes with at least three
distinct chaperone proteins: heat shock proteins 90, immunophilin-
like protein XAP2, and co-chaperone p23 (Petrulis and Perdew,
2002). Upon binding a ligand, AHR undergoes a conformational
change, leading to its dissociation from the chaperone proteins and
subsequent translocation into the nucleus (Heid et al., 2000). Once
in the nucleus, the ligand-bound AhR associates with the aryl

Frontiers in Toxicology frontiersin.org05

Aldeli et al. 10.3389/ftox.2024.1392257

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1392257


hydrocarbon nuclear translocator (ARNT) (Heid et al., 2000). The
resulting ligand-AHR-ARNT complex binds to specific enhancer
sequences known as AHR response elements (AHRE), or xenobiotic
responsive elements (XRE), located in the promoter regions of target
genes, thereby activating their expression (Hankinson, 2005; Pocar
et al., 2005) (Figure 2).

Among the well-studied genes activated by AHR are those
belonging to the cytochrome P450 subfamily, such as CYP1A1,
CYP1A2, and CYP1B1, which encode xenobiotic-metabolizing
enzymes (Barnett et al., 2007a). Notably, the induction of
CYP1A1 gene expression serves as a key molecular consequence
of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), often
used as a biomarker for dioxin exposure (Nebert et al., 2000).

2.2.4 Roles of AHR in the female
reproductive system

Numerous studies employing diverse techniques such as
immunohistochemistry, radio-labeling, RT-PCR, and western blot
analysis have demonstrated the expression of the AHR protein and
its translocator (ARNT) in various ovarian cell types (oocytes,
granulosa cells, and theca cells) across different mammalian
species, including primates, humans, pigs, rats, mice, and rabbits.
These findings suggest a potential role of AHR in ovarian function
(Hernández-Ochoa et al., 2009). In this context, the biological
functions of the AhR in the ovary have been explored using
AhR-knockout mice (AhRKO). It was observed that AhRKO
mice had significantly more fully formed primordial follicles.
Further evidence supporting the role of AhR in regulating follicle
growth comes from studies examining follicle growth in vitro and
assessing the proliferation rate of granulosa cells (Benedict et al.,
2000). Specifically, research indicates that cultured AHRKO antral
follicles exhibit slower growth, as evidenced by a smaller follicle
diameter after 168 h of culture compared to wild-type (WT) follicles
(Barnett et al., 2007b). Moreover, it was demonstrated that an
agonist capable of activating the AhR pathway enhances the
proliferation of cultured rat granulosa cells by enhancing the
mitogenic effects of follicle-stimulating hormone (FSH) and
estradiol (E2) (Bussmann et al., 2006). Additionally, Benedict
et al. (2003) investigated DNA fragmentation in ovarian follicles,
a key indicator of apoptosis, and found no difference between
AHRKO and WT follicles. Collectively, these data suggest that
the AHR may regulate follicle growth by promoting granulosa
cell proliferation.

It is reasonable to hypothesize that AHR contributes to the
regulation of ovarian follicular growth, the capacity of follicles to
produce sexual steroid hormones, and the detection of the ovulation
process and corpus luteum (CL) formation. The synthesis of steroid
hormones is predominantly regulated by the anterior pituitary gland
and occurs sequentially in the theca and granulosa cells within
follicles (Drummond et al., 2002; Baba et al., 2005).

3 Dioxins and their sources

Dioxin is a term used to describe a group of closely related
compounds with similar chemical structures but which vary
greatly in their toxicity. Dioxin comprise polychlorinated
dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans

(PCDFs) and co-planar polychlorinated biphenyls (PCBs). The
general chemical structures of PCDD and PCDFs consist of two
benzene rings connected by one or two oxygen atoms and can
contain four to eight chlorines (Van den Berg et al., 2006). Due to
their extreme lipophilicity, dioxins can bio accumulate by both
plants and animals, causing thus several developmental
abnormalities in (Hanano et al., 2014a; Hanano et al., 2014b;
Hanano et al., 2015; Hanano et al., 2018a; Hanano et al., 2018b;
Hanano et al., 2018c; Hanano et al., 2019; Mahfouz et al., 2020a;
Mahfouz et al., 2022). Terrestrial and aquatic environments are
objected to dioxin contamination, subsequently elevated levels of
dioxins can be accumulated in marine organisms and livestock.
From these sources dioxins can readily get in human food chains
and thereby constitute a potentially serious health risk (Desforges
et al., 2016; Hanano et al., 2018a). Dioxins are realized into the
environment through natural sources such as volcanic activities
or forest fires (Li et al., 2006a). Such episodes are becoming more
common with particular increases in the incidence of large-scale
forest fires over two last decades (Zhang et al., 2016; Oliveira et al.,
2020). In addition, dioxins are also release into the environment
by certain industry including the synthesis of chlorinated
aromatic and aliphatic compounds, such as pesticide and
herbicides (Chen et al., 2005) and paper production (Haq and
Raj, 2020). Other unintentional sources of dioxins include wastes
containing chlorinated aromatic combination from chemical
facilities, sewage sludge, incineration of domestic and medical
wastes, incineration of fossil fuels and fly ash storage (El-Shahawi
et al., 2010). Lastly, road transport emissions and plastic
substances have also been identified as an important sources of
different kinds of Dioxins (Mahfouz et al., 2020b). In term of
toxicity, it is well recognized that dioxin at low dose may seriously
disrupt reproduction in humans and animals (Li et al., 2006a). It
decreases fertility, increases prenatal mortality, causes birth
defects, and increases the peril of endometriosis (Vandenberg
et al., 2013; Yilmaz et al., 2020). However, at high dose, dioxin
suppresses the immune system (Marshall and Kerkvliet, 2010)
and causes weight lack, oxidative stress, lymphoid atrophy,
gonadal atrophy, and cutaneous lesions (Giampaolino et al.,
2020). In addition, dioxins motivate certain kinds of cancers
and disrupts reproduction (Li et al., 2006a). When it comes to the
mean dioxin intake and exposure dose limits, international
agencies have indeed set a “safe” or tolerable daily dose for
dioxin. In 1994, the EPA defined a dose of 0.01 pg TEQ/kg
body weight/day, which is equivalent to 0.7 pg/day for a 70 kg
adult, as posing a cancer risk of one additional cancer in one
million people exposed (US EPA Environmental Protection
Agency, 1994). This “risk dose equivalent” is primarily
designed to protect adults and does not include any added
protection for children. In 1990, the WHO established a
tolerable daily intake (TDI) for dioxin, ranging from 1 to
4 pg/kg body weight/day, corresponding to a daily ingestion of
70–280 pg in a 70 kg adult (WHO, 1998). Additionally, the
Agency for Toxic Substances and Disease Registry assessed the
non-cancer risks from dioxin exposure by setting minimal risk
levels (MRLs) for acute, sub-chronic, and chronic exposures to
dioxins. The chronic MRL was established based on dioxin’s
developmental neurotoxicity in rhesus monkeys and was set at
1 pg/kg body weight/day (Stellman et al., 2003).

Frontiers in Toxicology frontiersin.org06

Aldeli et al. 10.3389/ftox.2024.1392257

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1392257


3.1 Effects of TCDD on mammalian females

Due to its lipophilic nature and slow metabolism, TCDD has a
prolonged environmental half-life and can persist in humans for
over 10 years following a single exposure (Karman et al., 2012b).
TCDD has been detected in human adipose tissue, blood serum,
breast milk, and ovarian follicular fluid (Humblet et al., 2011;
Ulaszewska et al., 2011). Recognized as one of the most potent
carcinogenic compounds, TCDD exerts significant toxic effects on
various tissues and organs (Karman et al., 2012a). Regarding
reproductive toxicity, previous research has demonstrated that
TCDD directly and indirectly affects ovarian functions, leading to
disruptions in the estrous cycle (Brown et al., 1998). TCDD
exposure has been associated with delayed puberty and early
onset of menopause in women (Warner et al., 2007). Similarly,
in female rodents, TCDD exposure results in early puberty,
irregular estrous cycles, reduced or blocked ovulation, decreased
circulating estradiol levels (E2), and premature reproductive
senescence (Franczak et al., 2006; Jablonska et al., 2010). Given
that disruption of steroid hormone synthesis, activity or
metabolism can lead to follicular dysfunction and atresia,
thereby affecting the functions of female reproductive system
(Sanderson, 2006), female exposure to TCDD influences the
production of estrogens and progesterone by porcine granulosa
cells (Jablonska et al., 2011; Jablonska et al., 2014). In this regard, it

was reported that TCDD disrupted endocrine signaling pathways,
potentially causing significant impairments in growth and
reproduction (Baldridge et al., 2015). Mechanistically, this effect
was induced by altering the expression of transcripts involved in
follicular atresia, as well as in cell proliferation and cell cycle
regulation (Ruszkowska et al., 2018; Nynca et al., 2019). Further
investigations have focused on the impact of TCDD on enzymatic
activities within the estrogen biosynthesis pathway. It has been
observed that TCDD directly affects antral follicles and inhibits the
production of steroid hormones (Karman et al., 2012a). Table 1
summarizes the information on the models, species, molecules
used and effects of dioxins on mammalian females.

3.2 Effect of TCDD on folliculogenesis and
preimplantation embryos

Several studies have revealed inconsistencies in the effects of
TCDD on folliculogenesis and preimplantation embryos. Son et al.
(1999) conducted a study on pre-pubertal IHR rats following oral
administration of TCDD, which resulted in altered gene expression
of the CYP1A1 gene but no change in the expression of the
CYP1B1 gene. This was associated with a significant decrease in
the rate of ovulation and the number of developing follicles in the
ovary (Son et al., 1999).

TABLE 1 Summarizes the information on the models, species, molecules used and effects of dioxins on females.

Models Species Dose/age Compound Route of
exposure

Toxic effects Reference

Rat Holtzman Maternal exposure on
GD15 and GD8/

(1 μg/kg)

TCDD Oral dose GD15 Decreased ovarian weights, abnormalities
in the reproductive organs

Gray et al. (1995)

GD8 Decreased fertility, increased incidence of
persistent estrus, and decreased ovarian size

Rat Sprague-
Dawley

Immature females/
(10 μg/kg)

TCDD Oral dose Inhibition of ovulation; and an increase in the
concentration of estrogen

Petroff et al.
(2000)

Rat Sprague-
Dawley

Maternal exposure on
GD13/(0, 0.04, 0, 2,

1 μg/kg)

TCDD Oral dose/maternal Reduced body weights, Plasma estradiol levels in
dams and female pups were reduced and FSH
levels were increased in female pups. Decreased
in isolated ovarian follicles

Myllymäki et al.
(2005)

Exposure

Mice C57BL/
6 females

Maternal exposure on
GD15/(10 μg/kg)

TCDD Oral dose/maternal Decreased of Placental weights and pups birth
weights, and developmental exposure of either
parent to TCDD is associated with preterm birth
in a subsequent adult pregnancy due to altered
progesterone expression and placental
inflammation

Ding et al. (2011)

Exposure

Zebrafish Danio rerio F0 Generation TCDD 1 h, static
waterborne at 3 and

7 wpfa

Changed in sex ratio Baker et al.
(2014)

50 pg/mL Increased skeletal malformations

Rat Wistar Maternal exposure on
GD15/(0,5, 1, 2 mg/kg)

TCDD Oral dose/maternal A decrease in the mating index, fertility, and the
average number of embryos implanted and
nested in the uterus

Mai et al. (2020)

Exposure/

Rat Sprague-
Dawley

Maternal exposure on
GD (8–14)/(100 or

500 ng/kg)

TCDD Oral dose/maternal Reduced the ovarian reserve and inhibited
follicular development in adult female offspring,
an effect that persisted for multiple generations

Yu et al. (2020)

Exposure/

Mice BALB/c Adult female (25 μg/kg) TCDD Oral dose Atrophy of the ovary, histological alterations in
ovary. Female fertility was declines across
generations with a reduced male\female ratio

Aldeli et al.
(2023)

Maternal exposure on
GD (13)/(25 μg/kg)
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Yokoi et al. (1993) demonstrated that assessing the gene
expression of AHR, ARNT, and CYP1A1 in TCDD-exposed
embryos at different stages could help identify stage-specific
effects of TCDD on preimplantation embryos. Conversely, Wu
et al. (2002) found that TCDD exposure did not alter cell
proliferation, differentiation, or survival in embryos. Similarly,
Blankenship and co-workers reported that TCDD stimulated
blastocyst differentiation without affecting embryo viability or the
number of embryo cells (Blankenship et al., 1993).

Several studies also indicated that the sensitivity of each stage of
embryonic development of rats differs to TCDD. The changes in
gene expression of CYP1A1, AhR and Arnt genes at specific stages of
life of fetuses of rat mothers were evaluated as a response to TCDD,
namely, the single-cell stage (fertilized egg), the two-cell stage, the
eight-cell stage and the blastocyst stage, and it was found that at
single-cell and two-cell stages, the expression of these genes did not
change, while the expression of CYP1A1 increased in the eight-cell
stage, while no change was observed in the blastocyst stage
(Penning, 1997).

Another study revealed that injecting TCDD compound into
female mice can directly impact the embryo’s implantation stage,
leading to reduced viability. Embryos from injected mothers
exhibited poorer survival rates compared to those from control
mothers (Hanukoglu, 1992). This finding was corroborated by
research involving pregnant NIH mice exposed to increased
TCDD doses from days 1–8 of gestation. The study
demonstrated a decrease in the number of implantation embryos
when dosed on days 1–3 of pregnancy, just before the implantation
stage, compared to mothers dosed on days 4–8. This highlights the
heightened sensitivity of endometrial implantation areas during
early developmental stages (pre-implantation) to TCDD
compared to the post-implantation stage (Tsuchiya et al., 2005).

Additionally, administering TCDD orally to pregnant rats of the
same strain with doses of 100 or 500 ng/kg from gestation days
8–14 resulted in poor ovulation and a decrease in the number of
ovarian follicles, particularly primary and secondary follicles in
females of the second and third generation (Britt and Findlay,
2002). Karman et al. (2012c) suggested that species’ sensitivity to
TCDD could be linked to their biological capacity to metabolize
TCDD and the level of AHR expression. While the effects of TCDD
on folliculogenesis vary by species, exposure to TCDD has been
shown to decrease or block ovulation in rodents in vivo (Jung et al.,
2010). The mechanism by which TCDD blocks ovulation likely
involves reducing the numbers of granulosa cells in the S-phase and
inhibiting the levels of cyclin-dependent kinase 2 (Cdk2) (Jung et al.,
2010). Furthermore, TCDD exposure was reported to diminish
ovarian reserve in rats and impede follicular development in
adult female offspring, effects observed across the F1 and
F2 generations. Changes in ovarian Anti-Mullerian hormone
(AMH) levels may contribute to these adverse effects, shedding
light on the multigenerational impacts of TCDD on follicular
development and ovarian quality (Yu et al., 2020).

3.3 Effect of TCDD on the hormone system

Studies have documented that TCDD alters the steroidogenic
structure of both granulosa and theca cells, likely mediated by a

cholesterol-transporter protein found within the mitochondria
known as steroidogenic acute regulatory protein (STAR)
(Murray, 2001). Several studies have highlighted the negative
effects of dioxin in inhibiting estrogen biosynthesis, which is
considered one of the most significant hormones in the female
reproductive system (Petroff et al., 2001). In rats, TCDD exposure
reduces the number of antral follicles without any marked changes
in atresia, suggesting that TCDD has an antiproliferative effect on
the rat ovary (Heimler et al., 1998). In the same context, Li et al.
(2006b) reported that TCDD at very low concentrations (2 ng/kg)
significantly reduced serum progesterone levels but had no effect on
serum estradiol.

Furthermore, the level of TCDD in the uterus was found to be
similar to its levels in the liver but lower than in adipose tissue. These
findings suggest that TCDD sensitivity may be influenced by its
localized accumulation in the uterus (Li et al., 2006a). Additionally,
immature hypophysectomized rats (IHR) exposed to TCDD
exhibited significant ovarian dysfunction, leading to blocked
ovulation (Son et al., 1999). Karman et al. (2012c) suggested that
the effects of TCDD on ovarian steroidogenesis are likely attributed
to its inhibitory effects on specific steroidogenic enzymes such as
Hsd17b1 and Cyp19a1, resulting in steroidogenic defects in antral
follicles. Moreover, exposure of mice to 90 ng TCDD/kg/day
markedly increased the testosterone-to-estradiol ratio (Maranghi
et al., 2013), while TCDD exposure in chicken ovaries led to
decreased estradiol levels (Sechman et al., 2014). Moreover,
Grochowalski et al. (2000) demonstrated that treatment of
porcine thecal and granulosa cell co-cultures with 0.1 nM or
10 nM TCDD resulted in reduced estradiol levels, while
progesterone levels were significantly decreased with 10 nM
TCDD treatment. Similarly, isolated mouse antral follicles
exposed to TCDD (0.1–100 nM) showed reduced levels of
progesterone, androstenedione, and estradiol (Karman et al.,
2012c; Karman et al., 2012d). These hormonal deficiencies were
restored with the addition of pregnenolone, suggesting that TCDD
may act prior to pregnenolone formation to decrease hormone levels
(Karman et al., 2012b). Consistent with this, female mice exposed to
TCDD exhibited low levels of estradiol (Huang et al., 2011). A
similar scenario was observed in Sprague-Dawley rats after oral
administration of TCDD for a long period (Chen et al., 2009). Other
studies have revealed that TCDD inhibits estrogenic signaling in the
kidney and liver but paradoxically promotes estrogenic signaling in
the pituitary gland within the same individual (Yoshida et al., 2020).
In conclusion, the effects of dioxin on the female reproductive
system have shown considerable variability in the literature, likely
attributed to differences in TCDD concentration, duration of
exposure, animal species, and age of the animal. Understanding
the impact of dioxins on the ovary is crucial for refining existing
policies aimed at addressing dioxin-induced ovarian toxicity. This
knowledge can also facilitate the development of novel therapies to
address dioxin-induced abnormalities in both reproductive and
non-reproductive health (Patel et al., 2015).

3.4 Effect of TCDD on endometriosis

Endometriosis is characterized by the presence of stromal and/
or endometrial glandular epithelium implants outside the uterine

Frontiers in Toxicology frontiersin.org08

Aldeli et al. 10.3389/ftox.2024.1392257

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1392257


cavity, often leading to symptoms such as pelvic pain,
dysmenorrhea, dyspareunia, urinary symptoms, and sometimes
presenting asymptomatically (Soave et al., 2015). Normally, the
immune system clears endometrial tissue from the peritoneal
cavity. However, dioxin-like environmental pollutants have been
implicated in altering the inflammatory processes responsible for
tissue clearance, thereby promoting the development of endometrial
tissue (Soave et al., 2015). As a marker for endometriosis, the
expression of matrix metalloproteinase (MMP) system, which
degrades extracellular matrices, has been investigated (Alali et al.,
2018). In healthy tissue, progesterone typically suppresses the
expression of MMPs (Soave et al., 2015). However, exposure to
TCDD can disrupt this balance in endometrial tissue, leading to
elevated production of matrix metalloproteinases (MMPs) (Soave
et al., 2015). Additionally, TCDD exposure can reduce the levels of
progesterone, further exacerbating the increased expression of
MMPs in the endometrium (Bruner-Tran et al., 2008).

4 Conclusion and future remarks

The current review provides an overview of the effects of dioxin,
primarily functioning as endocrine-disrupting chemicals (EDCs), on
the female reproductive system at molecular, biochemical, and
histological levels, thereby impacting the overall health and
function of reproductive organs in mammalian females. Our
analysis emphasizes the variability in data related to dioxin’s
reproductive toxicity, which is influenced by factors such as
dosage, animal species, and age. It is now well-established that the
reproductive toxicity of dioxin is predominantlymediated by the AhR.
However, other molecular mechanisms remain under investigation.
Particularly noteworthy are the regulatory roles of microRNAs
(miRNAs) in targeting and suppressing mRNAs related to

hormone regulation. Further exploration of these mechanisms is
crucial for a comprehensive understanding of dioxin-induced
reproductive toxicity and for the development of targeted
interventions.
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