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In vitro toxicology research has accelerated with the use of in silico,
computational approaches and human in vitro tissue systems, facilitating
major improvements evaluating the safety and health risks of novel consumer
products. Innovation in molecular and cellular biology has shifted testing
paradigms, with less reliance on low-throughput animal data and greater use
of medium- and high-throughput in vitro cellular screening approaches. These
new approach methodologies (NAMs) are being implemented in other industry
sectors for chemical testing, screening candidate drugs and prototype consumer
products, driven by the need for reliable, human-relevant approaches. Routine
toxicological methods are largely unchanged since development over 50 years
ago, using high-doses and often employing in vivo testing. Several disadvantages
are encountered conducting or extrapolating data from animal studies due to
differences in metabolism or exposure. The last decade saw considerable
advancement in the development of in vitro tools and capabilities, and the
challenges of the next decade will be integrating these platforms into applied
product testing and acceptance by regulatory bodies. Governmental and
validation agencies have launched and applied frameworks and “roadmaps” to
support agile validation and acceptance of NAMs. Next-generation tobacco and
nicotine products (NGPs) have the potential to offer reduced risks to smokers
compared to cigarettes. These include heated tobacco products (HTPs) that heat
but do not burn tobacco; vapor products also termed electronic nicotine delivery
systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral
smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral
nicotine pouches. With the increased availability of NGPs and the requirement of
scientific studies to support regulatory approval, NAMs approaches can
supplement the assessment of NGPs. This review explores how NAMs can be
applied to assess NGPs, highlighting key considerations, including the use of
appropriate in vitro model systems, deploying screening approaches for hazard
identification, and the importance of test article characterization. The importance
and opportunity for fit-for-purpose testing and method standardization are
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discussed, highlighting the value of industry and cross-industry collaborations.
Supporting the development of methods that are accepted by regulatory bodies
could lead to the implementation of NAMs for tobacco and nicotine NGP testing.

KEYWORDS

new approach methodologies (NAM), organs on a chip (OoC), human 3D tissues, next-
generation products (NGP), airway models, high-content analysis, adverse outcome
pathway (AOP), dosimetry

1 Introduction

Toxicological risk assessment methods have remained largely
unchanged for half a century, with the traditional default approach
using high doses administered in animal studies, human exposure
estimates, and the use of conservative assessment (uncertainty)
factors or linear extrapolations to establish whether a given
chemical exposure is deemed “safe” or “unsafe” based on human
exposure as well as estimating levels of potential risk. Despite the
implementation of some changes to animal testing protocols over
the years, the results from new in vitro approaches are still judged
against this process of extrapolating the adverse effects of high doses
in animals to low-dose exposures in humans. Refinements to animal
studies have come in the form of reducing numbers of animals or
ultimately waiving certain in vivo tests completely (e.g., acute in vivo
toxicity “6-pack” testing for oral, dermal, and inhalation acute
lethality; eye and skin irritation; and skin sensitization)
(Mansouri et al., 2021; Lee et al., 2022). This is consistent to the
guiding principles (3Rs) for ethical use of animals in product testing
and scientific research that has been introduced by Russel and Burch
(Russell and Burch, 1959).

The 3Rs are:

• Replacement that seeks to use methods to avoid or replace the
use of animals;

• Reduction using methods that allow researchers to obtain
information using fewer numbers of animals in scientific
studies; and

• Refinement using methods to reduce potential pain, suffering
or distress, and enhance animal welfare.

These broadly accepted ethical principles are now embedded in
the conduct of animal-based science in many countries. In 2004, the
UK government funded the creation of the National Centre for
Reduction Refinement and Replacement of Animals in Research
(NC3Rs) with the goal that research trends do not lead to increased
animal usage or suffering (Burden et al., 2015). In the U.S., the Toxic
Substances Control Act (TSCA), as amended by the Chemical Safety
for the 21st Century Act, directs the U.S. Environmental Protection
Agency (EPA) to “reduce and replace, to the extent practicable and
scientifically justified, the use of vertebrate animals in the testing of
chemical substances or mixtures; and promote the development and
timely incorporation of alternative test methods or strategies that do
not require new vertebrate animal testing” (U.S. Environmental
Protection Agency, 2023).

The challenges to use of animal models have arisen from several
different applications of toxicology. Issues with animal models have
been reported, including questioning the usefulness of current
mouse models due to irreproducibility and poor recapitulation of

human conditions and highlighting the fact that almost no animal
models are validated (Justice and Dhillon, 2016; Perlman, 2016).
There is also difficulty in extrapolating high doses in animal studies
to low doses in humans, with 22% of all the chemicals tested in high-
dose in vivo carcinogenicity studies being positive for cancer
(Ennever and Lave, 2003). During development, 30% of drugs in
Phase 1 (first use in humans) fail due to unexpected side effects or
lack of efficacy, but the overall failure rate is ~90% for drugs in Phase
1 clinical trials due to other causes such as low efficacy (Sun et al.,
2022). In light of this issue, the U.S. National Academies of Science,
Engineering, and Medicine (NASEM) were asked to radically
rethink traditional toxicological testing methodology, based on
the large numbers of chemicals already released into the
environment (>10,000) that had no associated toxicological data
and the potential time and cost required to implement animal tests.
The primary goals for the report were: to provide as wide a coverage
of chemicals, outcomes and life stages as possible; reduce the costs
and time for testing; use fewer animals with less suffering; and
develop more robust methods for environmental chemical
assessment. It was further recommended that assays chosen
should also reflect the large gains in science that have been made
in the last decades such as the use of the omics technologies. The U.S.
National Research Council (NRC) released a 2007 report entitled
“Toxicity Testing in the 21st Century: A Vision and a Strategy”
(TT21C) (National Research Council, 2007) that proposed an
alternative assessment testing paradigm where virtually all
routine toxicity testing would be conducted in vitro (in human
cells or cell lines). The underlying concept was that high-throughput
toxicity pathway assays could evaluate disruption in key cellular
processes. Toxicological risk assessment based on results from such
assays would help avoid significant perturbations of known key
cellular pathways in exposed human populations. Instead, dose-
response modeling of altered pathway functions could be organized
based on computational systems biology models of the networks
underlying each toxicity pathway (Andersen and Krewski, 2009).
This concept of pathway-based approaches to risk assessment was
expanded by the description of “Adverse Outcome Pathways”
(AOPs). Now the challenges are translating the AOP/TT21C
vision into practical tools that will be useful to those making
safety decisions and determining how to provide new
mechanistic data not normally reviewed by risk assessors.

Following the release of the 2007 NRC report, consortia,
collaborations, and initiatives were adopted to apply
TTC21 in vitro toxicological approaches. In the US, Toxicology
in the 21st Century (Tox21) was formed as part of a federal agency
consortium, bringing together the EPA, the National Toxicology
Program at the National Institute of Environmental Health Science,
National Institutes of Health’s National Center for Advancing
Translational Sciences, and the Food and Drug Administration
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(Thomas et al., 2019). The goal of this program set out to develop
assays to measure the pathways that lead to adverse effects in
humans and develop models that can predict toxicity by using
robotic technology to screen tens of thousands of environmental
chemicals. Phase 1 of Tox21 involved testing 2,800 chemicals in
50 in vitro assays, with Phase 2 covering a further 10,000 chemicals
(Attene-Ramos et al., 2013). European initiatives were developed
following the ban on testing of cosmetic ingredients that came in to
force in Europe 2013 (76/768EEC) (Silva and Tamburic, 2022) and
continued as part of the European Union’s Horizon 2020 project
(Vinken, 2020). Similar to U.S. approaches, they have goals of
looking for alternative testing methods via the Safety Evaluation
Ultimately Replacing Animal Testing (SEURAT) (Daston et al.,
2015). More recently in 2018, the Interagency Coordinating
Committee on the Validation of Alternative Methods (ICCVAM,
2018) released its roadmap for the evaluation and implementation of
new approach methodologies (NAMs) to support agile validation of
scientific data from TT21C-based methods to be accepted by
regulatory agencies without going through full Organisation for
Economic Cooperation and Development (OECD)-like validation
that could take 20 years or more. At the same time, utilization of
NAM approaches including extrapolating in vitro data to in vivo
exposures in humans would require computational and
pharmacokinetic models to predict human blood and tissue
concentrations under specific exposure conditions. Unfortunately,
the scientific tools needed to make these changes in toxicological risk
assessment practices are still in various stages of development and
qualification (ICCVAM, 2023).

Realizing this vision for the future of toxicity testing will require
wide-ranging scientific discussion among stakeholders and regulators,
with a potential education program to motivate a shift from animal-
based toxicological tests toward an appropriate approach more firmly
based on human biology. This review focuses on how such a paradigm
could be applied for the evaluation of alternative next-generation
tobacco and nicotine products (NGPs). The review explores how
NAMs approaches can be used to assess NGPs, and will highlight key
considerations, such as the use of appropriate in vitromodel systems,
the use of screening approaches for hazard identification, and test
article characterization. Furthermore other considerations such as
AOPs, acute verses repeated-exposures, and in vitro to in vivo
extrapolation will be explored. The value of industry and cross-
industry collaborations are discussed outlining the importance and
opportunity for fit-for-purpose testing and method standardization.
With the increased requirement of scientific studies to support
regulatory approval of NGPs, use of NAMs approaches should be
considered for the assessment of NGPs as part of a testing strategy.

2 Next-generation inhaled tobacco and
nicotine products (NGPs)

Next-generation tobacco and nicotine products (NGPs) have
evolved significantly over the last decade as adults who smoke seek
less-harmful alternatives to conventional cigarettes. Increased global
consumer uptake has driven innovation and development, which has
led to greater product complexity. Toxicological risk assessment and
the development of technical ingredient and product standards have
enabled the development and maintenance of product quality

standards and product material and ingredient quality for
responsible manufacturers (Simms et al., 2019). Inclusion and
adaptation of in vitro testing strategies can play a critical role in
supporting NGP assessment, especially of inhalable products in filling
the data gap in potential inhalation toxicity. NGPs not only offer the
consumer an alternative choice to smoking, but these products have
been reported to typically contain fewer toxicants and in lower levels
compared to cigarette smoke (Margham et al., 2016; Schaller et al.,
2016; Forster et al., 2018; Lu et al., 2021), offering a significant
opportunity to potentially reduce the health impact of cigarette
smoking on a global scale (McNeill et al., 2018; McNeil et al.,
2022). This paper primarily discusses the in vitro testing of
inhalable NGPs such as heated tobacco products (HTPs) and
vapor products (also known as electronic nicotine delivery system
(ENDS) or e-cigarettes (e-cigs)). While other oral products (e.g.,
Swedish-style smokeless tobacco products (snus) and oral nicotine
pouches (ONPs) (Back et al., 2023) are increasingly available, the
focus of this review is on inhalable products, soONPs are out of scope.

HTPs utilize a specifically designed tobacco rod for use in a
corresponding device that consists of a heating element, a battery,
and a microprocessor controller. For HTPs to yield emissions with
drastically reduced levels of harmful and potentially harmful
constituents (HPHCs) as compared to cigarette smoke, the
heating element should only reach temperatures below those
leading to combustion of the tobacco rod (Baker, 1981; Malt
et al., 2021; Lang et al., 2023; Sussman et al., 2023). The chemical
composition of the resulting aerosol is typically significantly simpler
than traditional cigarette smoke, with on average 90%–95%
reductions in HPHC levels (Schaller et al., 2016; Forster et al.,
2018). ENDS consist of a battery that powers an atomizer
(microprocessor and a heating system/coil) to aerosolize an
e-liquid (typically containing vegetable glycerin, propylene glycol,
to United States Pharmacopoeia (USP) or European Pharmacopoeia
(EP) specifications, and food-grade flavors, with or without
pharmaceutical-grade nicotine). Compared to cigarette smoke,
ENDS aerosols are simpler, with studied ENDS manufactured to
a high-quality standard reported to yield emissions with on average
95%–99% reductions in selected HPHCs depending on the analyte
assessed (Margham et al., 2016; Lu et al., 2021).

With the increased availability of NGPs and the requirement for
scientific studies to support regulatory approval, NAMs may be
more suitable for the assessment of such products with less complex
emissions than combustible cigarettes. Recently, a number of in vitro
toxicological approaches evaluating NGPs compared to cigarette
smoke have been applied and reported (see Table 1). The use of a
wide variety of different NAMs assays indicating the reduced
bioactivity of both HTP and ENDs aerosols indicates the reduced
harm potential of these NGPs when compared to cigarettes.
However, in order to be able to compare these products against
cigarettes, the test materials must be consistently generated and
characterized, allowing the resulting in vitro exposures to be
translated to human-relevant exposures.

3 Test articles

The laboratory assessment of NGPs involves multiple test
matrices evolved from classical cigarette smoke testing using
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Health Canada methods to capture the various smoke fractions
(Health Canada, 2024). While the test articles should most
appropriately mimic the mechanism by which humans are
exposed, this is not always technically feasible. The following test
articles have been utilized for the assessment of NGPs: 1) aerosol
captured mass (ACM), which is equivalent to classical total
particulate matter (TPM) capture approaches; 2) gas vapor phase
(GVP), which involves filtering the particulate material from the test
article, leaving predominately the vapor phase constituents; 3)
aqueous trapping approaches, where the aqueous soluble
components of the aerosol are captured in an aqueous trap; 4)
ACM + GVP, a combination designed to be a proxy for whole
aerosol approaches by individually capturing the various phases and
recombining into a single test article; and 5) whole aerosol exposure,
which often requires specialized equipment to expose cells to freshly

generated aerosol and maintain them at an exposure interface
(Moore et al., 2023).

Whole aerosol approaches are designed to more appropriately
capture the chemical-to-chemical interactions in the various phases of
the aerosol and human exposures. When combined with complex co-
culture or 3D human constructs, it represents themost physiologically
advanced system achievable in vitro (Lacroix et al., 2018). However,
not all assays are compatible with aerosol-generating systems (Thorne
et al., 2020), and not all laboratories have the capacity to conduct
aerosol-based studies. Comprehensive reviews have been published
detailing the use of in vitro aerosolization systems and their
applications (Thorne and Adamson, 2013; Klus et al., 2016; Li,
2016; Rudd et al., 2020; Cao et al., 2021; Thorne et al., 2021).

Capturing the particulate phase is a traditional, well-
documented approach for cigarette smoke in vitro assessment

TABLE 1 Summary of alternative nicotine and tobacco product characteristics and in vitro approaches–Examples from the literature.

Product category HTP ENDS

Format • Tobacco component, battery, and heating element • E-liquid (propylene glycol, vegetable glycerin, ± nicotine,
flavorings), battery, and heating element

Consumption method • Aerosol • Aerosol

Chemical profile
Average % reductions compared
to a References cigarette

• 90%–95% (Schaller et al., 2016; Forster et al., 2018) • 95%–99% (Margham et al., 2016)

Examples of in vitro data • Significant reductions in cytotoxicity, genotoxicity, and
mutagenicity (Schaller et al., 2016; Jaunky et al., 2018; Takahashi
et al., 2018; Thorne et al., 2018; Ito et al., 2019; Hashizume et al.,
2023)

• No observed increases in tumor promotion (Crooks et al., 2018
• No impairment of endothelial cell migration and reduced effect on
monocyte-endothelial cell adhesion (Poussin et al., 2016; Bishop
et al., 2020)

• High-content screening showed favorable differences in responses
compared to cigarettes (Gonzalez-Suarez et al., 2016; Taylor et al.,
2018)

• Significant reductions in cytotoxicity, genotoxicity, and
mutagenicity (Thorne et al., 2016; Czekala et al., 2021; Bishop
et al., 2023; Caruso et al., 2023)

•No impairment of endothelial cell migration (Taylor et al., 2017)
• High-content screening showed favorable differences in
responses compared to cigarettes (Czekala et al., 2019)

TABLE 2 Summary of NGP test matrices.

Test matrix Test matrix description Predominant fraction assessed HTP ENDS

ACM Aerosol collected on a filter pad and eluted with a
solvent. This approach is comparable to the generation
of TPM. Traditionally used in genotoxicity testing

Particulate X X

Aqueous extracts* (inc. GVP
partitioning)

Aerosol bubbled through an impinger to extract
soluble fractions. Has been referred to as conditioned
media or bubbled extracts. Traditionally used in
cytotoxicity/mechanistic-based research. The

particulate can be filtered, leaving just the vapor
fraction

Soluble constituents (focused on vapor phase solubility
using GVP)

X X

ACM* (TPM) + GVP Particulate matter captured and prepared and eluted
using a solvent. The GVP is also captured in a bubbled
aqueous solution and both fractions are recombined to
create an aerosol proxy. Has been extensively used for
cigarette smoke assessment, with information on

NGPs recently coming online

Particulate and vapor combined in a 1:1 ratio X X

Whole aerosol (incl. GVP
partitioning)

Freshly generated whole aerosol (or GVP based on
particulate exclusion) using an in vitro aerosol-

generating and exposure system

Compete aerosol (focused on vapor phase solubility
using GVP)

X X

ACM, aerosol collected mass; GVP, gas vapor phase; TPM, total particulate matter.

X, denotes test article has been used for in vitro assessments.

*Can also trap non-aqueous gas phase depending on the choice of solvent.
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(Baker et al., 2004) and has been used to assess the ACM of HTPs
and ENDS (see Table 2), (Misra et al., 2014; Schaller et al., 2016;
Takahashi et al., 2018; Thorne et al., 2018; Thorne et al., 2019a;
Thorne et al.2019b; Iskandar et al., 2019; Miller-Holt et al., 2023).
Aqueous extracts were previously used, but typically for mechanistic
studies. These are also well characterized and utilized, but they are
limited to the soluble fraction of the aerosol and may preferentially
filter for the vapor phase constituents rather than particulates based
on solubility (Bozhilova et al., 2020; Taylor et al., 2020). More
recently, TPM + GVP has been used as a whole aerosol “proxy” for
those occasions where the assay is not compatible with whole-
aerosol methodologies or where aerosols are not standardized or
available. Such approaches can capture both fractions in a 1:1 ratio
and deliver more than just the particulate fraction to the cell cultures
(Crooks et al., 2022). More information is available in more detail in
a recent aerosol collection methods review (Smart and
Phillips, 2021).

3.1 Dosimetry

A major challenge in evaluating inhalation toxicity is accurate
determination of the delivered dose. In humans, breathing is a
complex physical process (inhalation-pause-exhalation), and the
complex anatomy of the respiratory tract makes it challenging to
estimate the delivered doses to the cell surface (Alexander et al.,
2008). After a substance is inhaled and deposited in the lung, particles
can dissolve and absorb into the systemic/pulmonary circulation. Others
are cleared from the lung by pulmonary metabolism or alveolar
macrophages, and those deposited higher up in the respiratory tract
are removed by mucociliary clearance (Clara et al., 2023).

The exact application of dosimetry measurements also largely
depends on the exposure system being used, which should be
selected based on the deposition and interaction of particles and
vapors at the cell surface. Characterization of the exposure system is
key to understanding the delivery of smoke/aerosol to the cell
surface (Miller-Holt et al., 2023; Wieczorek et al., 2023). Ideally,
dosimetry is the measure of the internal dose, or even the
concentration at the molecular target (biologically effective dose)
within the target cells for the chemicals of interest (Paustenbach,
2000; Escher and Hermens, 2004; Proença et al., 2021). However,
directly measuring cellular dose in submerged cultures poses a
significant obstacle to the application of target tissue dosimetry.
For example, for nanoparticles and microparticle toxicity
assessment, particularly for in vitro systems, due to nanoparticle
agglomeration in liquids, which can alter the density of the nano
particles has the ability to alter the particle transport and deposition,
ultimately altering the dose response relationship (Hinderliter et al.,
2010; Watson et al., 2016; Deloid et al., 2017; Thomas et al., 2018).
As a consequence, the target tissue paradigm for dosimetry and
hazard assessment for nanoparticles has largely been ignored in
favor of using alternative indirect methods of potential or surrogate
exposure such as μg particle/mL culture medium, particle surface
area/mL, or particle number/mL for submerged cultures
(Hinderliter et al., 2010).

Air-liquid interface (ALI) exposure is the most physiologically
relevant approach to accurately determine both the dose deposited
on the cell surface and the dose ultimately available to be absorbed

by the cells. The most commonmethods are deposition of mass onto
quartz crystal microbalance and the use of particle counters,
photometers, or specialized gas analyzers. For a recent review of
recommendations for conducting dosimetry studies in inhalable
tobacco products please see the review byMiller-Holt and colleagues
(Miller-Holt et al., 2023).

4 In Vitro model systems and high-
content analysis

Animal experiments are being strongly scrutinized or entirely
replaced (e.g., in the case of the cosmetics industry in certain
countries) to respect the guiding principles of the 3Rs to
“Replace, Reduce, Refine” in animal testing (Russell and Burch,
1959; van Meer et al., 2015). It is important that 21st Century
Toxicity testing provide sufficient data that can be used for read-
across purposes and ultimately to reduce animal experiments
(Settivari et al., 2015). Traditional in vitro toxicity testing is often
based on simple, single endpoints that quantify the global impact of
toxicants on cells by determining increased cell permeability or
reduced cell viability. However, these endpoints do not provide
information on the underlying toxicological mechanism.
Technological advances have facilitated the development of a
series of high-content screening (HCS) in vitro technologies that
offer a wide range of toxicological endpoints, thus increasing
predictive value and complementary readouts to current
regulatory toxicity testing. The goal of HCS is to provide more
mechanistic information faster than traditional approaches, giving
more flexibility to assess the growing diverse product landscape in a
time and cost-effective manner. In general, the approaches listed
below are in line with Tox21 goals (National Research Council,
2007), offering key advantages over traditional toxicity testing. Some
of these NAMs have tradeoffs, but all have increased throughput,
addedmechanistic value, greater human and/or biological relevance,
and multiplexing opportunities to maximize tissue and increase
information gained. Furthermore, they provide mechanistic insights
could also be used to inform AOPs (Wheeldon et al., 2020).
Additionally, prior to selecting the appropriate in vitro models,
there are a series of question(s) to be first addressed–for example,
Figure 1 lists key questions in designing inhalation in vitro testing
(Lee et al., 2022; Sharma et al., 2023).

The following summary highlights the strengths and weaknesses
of in vitro alternatives to animal testing for inhaled toxicants
relevant to tobacco and nicotine products. In particular the focus
will be on screening approaches such as HCS, ToxTracker™ and
MultiFlow® and respiratory in vitro models including 2D and 3D
approaches, use of ex vivo models and organs-on-a-chip (OoC).

4.1 High-content screening (HCS)

HCS enables investigative toxicity testing in vitro to provide
knowledge about the affected biologic processes and functions. It
generally refers to automated (high-throughput) microscopy, multi-
parameter image processing, and visualization to extract
quantitative data from cells growing in multi-well cell culture
plates. HCS typically uses fluorescent imaging to trace the effect
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of chemicals on different toxicity pathways including oxidative
stress, apoptotic cell death, DNA damage, and mitochondrial
health and can be performed in a multiplexed fashion (Gonzalez-
Suarez et al., 2016; Taylor et al., 2018; Czekala et al., 2019). In
addition, HCS allows morphometric analysis for evaluating
toxicant-induced effects on the morphology or size of cells and
organelles. All these analyses can be performed with fixed cells or in
a time-resolved mode by using live-cell imaging. HCS is also
commonly used to monitor spatial (re)distribution of target
molecules inside cells, which is pertinent to transcriptional
activation following cell stress and inflammatory challenges
(Czekala et al., 2019). Similar to flow cytometry, HCS enables
information to be collected for multiple endpoints at an
individual cell level or from an entire cell population, allowing
analysis of dynamic ranges across treated cells in culture.

HCS methodologies are continuously expanding; they are now
being applied to two-dimensional (2D) culture systems and three-
dimensional (3D) organotypic tissue culture models (Booij et al.,
2019). Artificial intelligence adds another level to HCS by allowing
predictive in vitro toxicology analysis of new chemicals (Su et al.,
2016; Lee et al., 2018).

HCS is generally perceived as a powerful in vitro screening
technology for assessing the toxicity and efficacy of chemicals. There
are also several associated limitations, especially as the technology is
routinely used for screening cells growing in a 2D format:

• Lack of standardization
• Unavailability of specific tracer molecules or antibodies to
stain and quantify targets of interest

• Increased data storage requirements
• Lower sensitivity than other quantitative methods (e.g.,
quantitative polymerase chain reaction)

• Limited applications for 3D image analysis
• Autofluorescence of test items (e.g., TPM) from
cigarette smoke

• HCS of 3D organotypic ALI cultures is technically more
demanding than for standard 2D culture systems

• Limited markers (e.g., cytotoxicity and H2AX for genotoxicity)
have been demonstrated with whole aerosol approaches, but
focusing and imaging the ALI can be problematic

Several groups have employed HCS to assess the biological
impact of NGP aerosol fractions (Gonzalez-Suarez et al., 2016;

Taylor et al., 2018; Czekala et al., 2019). All of these studies
demonstrated the utility of HCS as a tool for NGP product
assessment. They also provided in vitro evidence for reduced
biological impacts of fractions generated from HTPs and other
nicotine-containing products compared to those of cigarette
smoke fractions. Moreover, complementary test methods, such as
those sensitive for oxidative stress toxicity pathways (gene-
expression analysis or reporter-gene assays), confirmed the trends
observed by HCS. Once qualified, HCS may be applied as a standard
platform for modern toxicologic analysis of NGPs.

4.2 ToxTracker™

ToxTracker™ (Toxys, Oegstgeest, the Netherlands) is a high-
content assay that employs a series of mouse embryonic stem cell
reporter gene cell-lines (Czekala et al., 2021). It consists of six
green fluorescent protein (GFP) reporter gene lines plus a control
wild-type line, providing readouts on biomarkers for oxidative
stress (Srnx1 Nrf2 dependent and Blvrb Nrf2 independent), DNA
damage (Bscl2 and Rtkn), cell stress (Btg2), and protein damage/
misfolding (Ddit3). ToxTracker has been qualified
against >450 known compounds and possesses ≥95%
sensitivity and selectivity for both the Ames and in vivo
micronucleus assays for mutagenicity and genotoxicity,
respectively (Hendriks et al., 2016). ToxTracker could prove
particularly valuable as it exhibits good/excellent concordance
with classical genotoxicity testing and also offers mechanistic
data on mode of action. Accordingly, ToxTracker can be a
potential screening tool and/or a follow-up assay to identify
mode of action in a positive in vitro response.

Several caveats exist for the application of ToxTracker:

• Although excellent concordance has been shown with classical
toxicological approaches, the assay utilizes a mouse (not
human) embryonic cell line

• As the assay is based on GFP expression, there are
autofluorescence issues when using TPM from cigarette
smoke (Johnson et al., 2009)

• It has not yet been combined or demonstrated to be applicable
to whole aerosol approaches

• The assay is currently undergoing OECD validation, and there
are few data on its use with NGPs

FIGURE 1
Main considerations when selecting an in vitro model. Reproduced with permission from Lee et al. (2022), Sharma et al. (2023). Note: 1) Test
chemical and its physicochemical properties, 2) In vitro exposure system and aerosol characterization, 3) In vitro 2D/3D systems including 2D/3D, 4)
cellular types and relevant tissues, and 5) assay endpoints and clinical relevance.
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• Limited information exists on the assays ability to deal with
complex mixtures where multiple direct and indirect acting
chemicals are at play

4.3 MultiFlow
®

The in vitroMultiFlow® (Litron Laboratories, Rochester, NY, USA)
genotoxicity flow cytometric assay multiplexes several biomarkers that
are responsive to diverse forms of DNA damage. The multiplexed
biomarkers include: 1) phosphorylation of H2AX at serine 139 to detect
double-strand DNA breaks, 2) phosphorylation of histone H3 at serine
10 to identify mitotic cells, 3) nuclear p53 content as an indicator of
p53 activation, 4) frequency of 8n + cells to monitor polyploidization,
and 5) relative nuclei counts to provide information about treatment-
related cytotoxicity (Bryce et al., 2016; Bryce et al., 2017; Dertinger et al.,
2019). Some multiplexing adaptations to the methodology have been
described for a more integrated genotoxicological approach, such as the
combination of theMultiFlow® with a flow-based in vitromicronucleus
assays (Smart et al., 2020). The MultiFlow assay has also undergone
significant inter-laboratory comparisons (Bryce et al., 2017). Eighty-
four chemicals split between aneugen, clastogen, and nongenotoxin
groups were collectively compared and cross-analyzed to determine
inter-laboratory assay variability. Compared to historical mode of
actions for the three class of chemicals, the MultiFlow assay
demonstrated ≥92% sensitivity, specificity, and concordance. As a
result, an excellent “training” list and established data are available
to cross-reference results (Bryce et al., 2017).

Some limitations of MultiFlow include:

• The variability observed in the biomarker endpoints could
confound result interpretation in less experienced
laboratories. Analyzing multiplexed data requires careful
interpretation and consideration.

• It has not been combined or demonstrated to be applicable to
whole aerosol approaches

• Limited information exists on the assays ability to deal with
mixtures where multiple direct and indirect acting chemicals
are at play.

4.4 In Vitro airway models

Common in vitro models for studying the biological impact of
inhaled toxicants on human airway epithelial cells are based on 2D
cell culture systems. Tumor cell lines and immortalized primary
epithelial cells (Calu-3, BEAS-2B, 16HBE14o-, NCI-H292, NCI-
H441, RERF-LC-AI, and A549) grown in submerged (2D) culture
conditions have been frequently used; however, they do not
accurately recapitulate the native airway epithelia (Gordon et al.,
2015). Althoughmost of them can also be grown at the ALI (Haswell
et al., 2010), drawbacks of using these epithelial cell lines for in vitro
toxicity studies include their limited metabolic competency that
might affect their responsiveness to toxic stimuli (Garcia-Canton
et al., 2013), the absence or reduced formation of tight junctions, and
their refractoriness to differentiation (Stewart et al., 2012). Non-
differentiated primary epithelial cells grown in submerged
conditions do not fully reflect native airway epithelia because

they either lack the polarized morphology and expression of
markers (ion channels) normally found in airway epithelia
(Kunzelmann et al., 1996) or show altered responsiveness to
solid-particle exposure relative to differentiated primary epithelial
cells (Ghio et al., 2013). Due to technical convenience (propagation
and possibility for higher throughput), 2D culture systems based on
cell lines are most suited for screening purposes to investigate the
toxicity of a greater number of test items. Transformation
techniques based on hTERT/Cdk4 allowed the generation of
immortalized cell lines from primary lung epithelial cells that can
differentiate into mucin-producing and ciliated airway models that
more closely resemble the lung epithelium (Vaughan et al., 2006).

Reconstituted 3D organotypic culture systems from primary
epithelial cells grown at the ALI (Nichols et al., 2013) also replicate
the cellular complexity of pseudostratified epithelium found in
human airways, containing ciliated/non-ciliated epithelial cells as
well as basal (progenitor) cells (Gray et al., 1996; Prytherch et al.,
2011). Furthermore, they closely mimic epithelial functionality by
means of cilia beating, apical mucus secretion, ion channel
expression, and the presence of tight junctions (BeruBe et al.,
2009). These models also match the metabolic competency of the
native tissue (Iskandar et al., 2013) and are amenable to whole
aerosol exposure. The last characteristic can make an important
difference regarding the potential underestimation of the biological
impact of complex mixtures such as cigarette smoke, because
frequently used smoke extracts such as TPM or GVP do not
contain the totality of cigarette smoke constituents.

Three-dimensional epithelial cells from different zones of the
human aerodigestive tract are commercially available as ready-to-
use ALI cultures under brand names such as EpiAirway™ (MatTek
Corporation, Ashland, MA, USA)MucilAir™, and SmallAir™ (both
from Epithelix Sàrl, Geneva, Switzerland). They can be cultured for
weeks to months and may be used for repeated (chronic) exposure
(Czekala et al., 2021). The primary alveolar test model systems is
increasing in use and commercial availability, with models currently
available from suppliers such as Epithelix, ImmuONE (Hatfield,
UK), and Invitorlize (Belvaux, Luxembourg). The use of these
models is relatively new and beyond the scope of this paper.

Even though 3D organotypic cell cultures closely resemble the
native tissue, they usually lack the cellular components of the
immune system. More complex model systems have been
evaluated as potential candidates for routine aerosol testing
(Lehmann et al., 2011; Klein et al., 2013; Marescotti et al., 2019).
They use ALI conditions and combine immune cells from the innate
immune system or fibroblasts with epithelial cell layers. Attempts to
produce functional airway epithelial model systems originating from
pluripotent stem cells are also promising and might provide
additional mechanistic understanding of aerosol-induced toxicity
while also allowing the generation of in vitro models from specific
patient populations (Wong et al., 2015). No single in vitromodel can
answer every study question, so a pragmatic approach should be
tailored depending upon the exact hypotheses.

4.5 Ex Vivo models and organ(s)-on-a-chip

The use of precision-cut lung slices (Behrsing et al., 2013; Sewald
and Braun, 2013) and lung-on-chip model systems (Huh et al., 2010;
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Stucki et al., 2015) resembling additional aspects of the human
respiratory tract provide opportunities for characterizing aerosol-
induced toxicity in vitro, with an even greater relevance to native
tissue and the possibility to emulate pharmacokinetics. Other
approaches include using co-cultures of various organ cell types
as a cell-based disease screening model (BioMap®) to screen drugs
and NGPs for potential adverse effects (Simms et al., 2021).

In vitro organmodels have received considerable attention in the
attempt to reduce animal experiments and decrease the rate of
preclinical failure associated with drug development. Two major
advances in the in vitro research field are helping address the
weaknesses of the simple models used in the past, rendering
them more physiologically relevant and predictive for the effects
of compounds in humans: 1) simple 2D cell culture systems are
increasingly replaced by organotypic culture systems with 3D
architecture, and 2) static culture systems have been switched to
dynamic exposure models. The merging of these two developments
has culminated in OoC technology, which combines 3D organotypic
culture systems (organs) with microfluidic devices (Alepee et al.,
2014; Bovard et al., 2017).

Microfluidics enable interconnection of different organ models
on the same chip platform by circulating culture medium from a
common reservoir. These multi-organ-on-a-chip (MOC) devices
permit organ-to-organ crosstalk, which allows compounds to be
tested in a more in vivo-like environment (Rogal et al., 2017). To
date, long-term, MOC-based co-cultures of different organ

combinations have been established for liver spheroids with
human 3D lungs (Bovard et al., 2018) or intestine (Maschmeyer
et al., 2015a), neuronal (Materne et al., 2015) and pancreatic islet
(Bauer et al., 2017) tissue models, as well as a skin–intestine–liver
kidney chip (Maschmeyer et al., 2015b). At least two reported OoC
systems have been designed for whole aerosol exposure of 3D lung
models (Benam et al., 2016; Stucki et al., 2018). However, these
platforms are not compatible with smoking machines or the
in vitro exposure instruments commonly used in the
tobacco industry.

Current OoC or MOC models have potentially improved the
human relevance of in vitro assessment of chemicals (see Table 3 for
systems strengths and challenges). While there are demonstrated
examples in drug candidate profiling and investigative toxicology,
their application for NGPs is currently in its infancy.

In summary, there are a number of established alternative
in vitro models to animal testing that are more sophisticated than
simple cell lines and suitable for investigating the biological impact
of inhaled toxicants in an environment more relevant to human
exposure. However, model validation remains important for
ensuring acceptance by regulatory bodies. Additionally, inter-
donor differences are difficult to capture in in vitro aerosol
exposure studies, particularly with 3D organotypic ALI
exposure, which is usually not sufficiently scalable to test a
variety of donors (Mori et al., 2022). The development of a
relevant human lung tissue model is of ultimate importance for

TABLE 3 Summary of major advantages/challenges of OoC and MOC models.

Advantages of OoC- and MOC-based in vitro models

More physiologically relevant, as the phenotype and functionality of used 3D organotypic model systems more closely resemble the human tissue counterparts

• Organ-to-organ cross-talk (MOC)

• Mechanical forces mimicking blood flow or breathing create more physiological conditions. For instance, endothelial barrier formation is promoted upon shear stress
[Buchanan et al. (2014); Ohashi et al. (2023)]

• Allow in vitro investigation of ADME

• Compound metabolism by a liver surrogate in the chip can be analyzed, as can its systemic toxicity/efficacy on different organs (MOC)

• Support PBPK modeling

Challenges of OoC- and MOC-based in vitro models

Stability of organ models in the chip

• Co-culture medium and material compatibility

• Technical challenges such as contamination and air-bubble trapping

• OoC and MOC properties depend mainly on the source of the cells used to create the model (e.g., primary cells versus iPSCs or multiple cell types in one model)

• No model standardization (standard protocols to produce, load, and culture the chips, as well as qualification of OoC and MOC functionality)

• Scaling of components (e.g., medium volume or number of cells) might not fully reflect the in vivo counterpart, which could lead to inaccurate PBPK

• Adsorption of test compounds to chip surfaces (common issue with PDMS-based chips)

• Most OoC and MOC platforms provide only low-throughput capacity

• Only a few systems designed for whole aerosol exposure of lung models on the chip

• High cost

ADME, absorption, distribution, metabolism, and excretion; iPSC, induced pluripotent stem cell; MOC, multi organ on a chip; OoC, organ on a chip; PBPK, physiologically based

pharmacokinetic; PDMS, polydimethylsiloxane.
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method standardization; the in vitro model must have high
reproducibility and clinical relevance for inhalation toxicity
assessment. However, constructing an in vitro lung tissue model
derived from human cells currently remains challenging due to the
inherent complexity of the human lung and the number of
different cell types involved (Petpiroon et al., 2023).

5 Other considerations

5.1 Use of adverse outcome
pathways (AOPs)

An AOP is defined as “an analytical construct that describes a
sequential chain of causally linked events at different levels of biological
organization that leads to an adverse health or ecotoxicological effect” as
defined by the OECD (OECD, 2023).AOPs are used to help to organize
the available mechanistic information relating to an adverse outcome
into the key events (KEs) that are required for the adverse outcome,
spanning all organizational levels of a biological system(s) (Lowe et al.,
2017; Luettich et al., 2017). Key event relationships (KERs) define the
relationship between a pair of KEs by showing which is up-/
downstream and are supported by both biological plausibility and
empirical evidence (Villeneuve et al., 2014). The use of AOPs to
organize information into AOP networks has the potential to
improve the use of mechanistic data and lead to improved
regulatory decision making (Villeneuve et al., 2014). In this way, the
use of AOPs can greatly improve the biological understanding of a
particular disease process through a simplified series of events. The
critical element is causality as the AOP moves from 1 KE to another
(i.e., KE 1 always occurs before KE 2, etc.). AOPs can also help link
biological exposures to the eventual toxic effects at the population level.

In terms of regulatory context, knowledge of disease mechanisms can
guide the design of testing strategies using in vitro methods that can
measure or predict KEs relevant to the biological effect of interest. AOPs
are not chemical specific, but they link themolecular initiating event (MIE)
for a chemical to the apical end point, which is the observable outcome in
the whole organism and typically a clinical sign or pathological state

(Burden et al., 2015). Thewell-considereduse ofAOPs could drive positive
changes in toxicology testing, moving toward less reliance on making
predictions based on animal models and focusing on the measurement of
apical toxicity endpoints (Burden et al., 2015).

5.2 Acute vs repeated exposure

The vast majority of in vitro toxicity testing is restricted to
one-time (acute) treatment of cells with a test item for a relatively
short exposure duration (hours to a few days) before endpoint
measurement. Such tests include escalation of the dose to a point
where toxic (adverse) effects are either visible at the
morphological level or quantifiable by standard cytotoxicity
(viability) tests. While dose–response analyses in cell-based
assays to determine acute effects on cell cultures are
commonly used to rank the toxicity of different chemicals,
they have several limitations: 1) the doses for inducing adverse
effects are often selected based on potential toxicity hazard that
are not relevant for human exposure levels (environmental or use
levels); 2) therefore, the toxicity mechanisms observed in vitro,
especially after high dosing for eliciting acute toxicity in cell-
based assays also may not reflect relevant mechanisms in
humans; and 3) they cannot fully predict the effects of
subtoxic concentrations of a chemical when administered
repeatedly (Ito et al., 2020; Czekala et al., 2021; Chapman
et al., 2023). The latter is pertinent, as smoking-related
diseases such as chronic obstructive pulmonary disease or
cardiovascular diseases only manifest after chronic exposure to
cigarette smoke (Yoshida and Tuder, 2007; Luettich et al., 2021;
Farcher et al., 2023). Chronic exposure may also result in distinct
adverse effects not seen after acute exposure or cause adaptive
responses that are not detectable following a single treatment.
Adaptations often invoke compensatory repair mechanisms
elicited upon chronic stress. These considerations are also
relevant for testing inhalable toxicants in vitro and are
reflected in a number of published studies on assessing NGPs
through repeated exposure of cells, as discussed below.

FIGURE 2
Key considerations in developing and qualifying NAM tools. Reproduced with permission from van der Zalm et al. (2022). Note: the figures illustrates
the five inter-connected elements that are essential in establishing scientific confidence in NAM applications.
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5.2.1 Repeated exposure of lung epithelial cells to
aerosol or smoke fractions

Long-term (repeated) exposure to subtoxic concentrations of
cigarette smoke condensate (CSC) or total particulate matter (TPM)
from 3R4F reference cigarettes for up to 12 weeks has been reported to
induce an epithelial to mesenchymal transition-like phenotype in
BEAS-2B cells, along with anchorage-independent growth of the
cells and transient effects on both oxidative stress and DNA damage
(Veljkovic et al., 2011; van der Toorn et al., 2018). These effects are only
visible when cells are exposed to a much higher concentration of ACM
from an NGP. Another study evaluating the short- and long-term
effects of TPM on mitochondrial function in BEAS-2B cells (Malinska
et al., 2018) revealed a short-term decrease in mitochondrial respiration
rate after 1 week of repeated exposure, accompanied by an increase in
oxidative stress markers upon 3R4F TPM treatment and cellular
adaptation to stress after repeated exposure for 12 weeks. In case of
ACM from a NGP, the concentrations required to elicit these effects
were again much higher than those derived from reference cigarettes. A
similar study on the effects of prolonged exposure to 3R4F cigarette
smoke extract (CSE) on BEAS-2B cells reported increased
mitochondrial capacity (Hoffmann et al., 2013). These contradictory
results may be explained by the different smoke extract used, as well as
the applied dose and overall duration of exposure. In a different study,
the long-term effects of 1–16weeks of exposure to nicotine or CSE from
3R4F has been analyzed in BEAS-2B cells (Stabile et al., 2018). In this
repeated exposure study, distinct effects of CSE versus pure nicotine
were observed when analyzing cell viability and other cellular
parameters, including nerve growth factor/receptor gene expression.

Repeated exposure experiments were also extended to
differentiated primary human bronchial epithelial organotypic
cell cultures, which showed cumulative effects on inflammatory
responses and tissue morphology after 1-month repeated
exposure to 3R4F TPM (Ito et al., 2018). Interestingly,
repeated exposure of bronchial epithelial organotypic cells to
3R4F CSE or TPM during the differentiating phase of the culture
had profound effects on cell composition when measured after
28 days; although the number of ciliated cells decreased, those of
Clara and goblet cells increased (Haswell et al., 2010;
Schamberger et al., 2015).

5.2.2 Repeated exposure of lung epithelial cells to
whole aerosols

Several studies evaluated the short-to-long-term effects of
subtoxic concentrations of whole cigarette smoke on 3D
organotypic ALI tissue cultures reconstituted from human
primary epithelial cells, which were tested as either mono- or co-
cultures with fibroblasts. The authors reported transition of normal
bronchial epithelia towards a metaplastic phenotype and fewer cilia-
bearing cells after repeated exposure (4–13 times) to mainstream
3R4F smoke (Aufderheide et al., 2015; Aufderheide et al., 2017). This
suggests that the effect on cilia is caused by volatile organic
constituents present in mainstream smoke. Similarly, reductions
of ciliated, mucus-producing, and club cells were observed when
differentiated immortalized primary normal human bronchial
epithelial cells were repeatedly exposed to cigarette smoke or
e-cigarette vapor (Aufderheide and Emura, 2017). In that study,
metaplastic areas positively stained for the basal cell marker
cytokeratin-13 were also identified after exposure to both

cigarette smoke and e-cigarette vapor. In a co-culture model with
‘omics’ analysis using human 3D bronchial tissue cultures combined
with human fibroblasts, the central carbon metabolism in relation to
oxidative stress response was perturbed after 21 days of repeated
exposure to 3R4F whole smoke; additionally, the epidermal growth
factor receptor was identified as a key regulator of perturbed
processes (Ishikawa et al., 2019). Repeated exposure (21 days) of
differentiating bronchial epithelial 3D organotypic cultures to 3R4F
whole smoke, in contrast to repeated exposure to CSE, did not result
in an increase in goblet cells (Ishikawa and Ito, 2017).

5.3 In vitro-to-in vivo extrapolation (IVIVE)

While in vitro experiments have many advantages over in vivo
testing in terms of increased human relevance as presented above,
using in vitro data for the purpose of risk assessment (e.g.,
quantifying the margin of safety) has many challenges, including
uncertainty around how to interpret and link exposure or dose.
Quantitative in vitro-to-in vivo extrapolation (IVIVE) is an
emerging NAM-based computational tool to facilitate this
process, generally referred as an extrapolation of (human tissue-
derived) cellular (in vitro) data to predict the exposures or outcomes
in humans (in vivo). IVIVE implies certain quantitative
extrapolations of “dose (or exposure)” and “response” to enable
in vitro-based toxicological risk assessment (Zhang et al., 2021;
Hines et al., 2022; Zhang and Wright, 2022). Dose extrapolation is
necessary to estimate the human exposure or intake level (e.g., daily
human equivalent dose) of individual toxicants, commonly by
computational (e.g., physiologically-based pharmacokinetic
[PBPK]) models and in silico and/or human-based in vitro data.
The human equivalent dose can be extrapolated back to the
corresponding exposure levels (commonly called “reverse”
dosimetry) and compared to measured (environmental)
exposures to evaluate the safety margin or guide regulatory safety
decision-making. Therefore, one may first define and characterize
the in silico or in vitro-based dose–response relationship, and the
relevance of the MIEs or KEs can be selected based on the AOPs of
interest. Then, using the in vitro dosimetry and disease-relevant
response data and with the help of computational modeling, IVIVE
enables “human-relevant” safety assessment, moving away from a
need for conventional animal toxicity data.

While the concept of IVIVE is gaining interest in scientific
communities (Bell et al., 2018; Chang et al., 2021; Hines et al., 2022),
it is still an emerging field with limited application to regulatory risk
assessment, especially for tobacco and nicotine products. The early
successes—mostly from pharmaceutical and environmental safety
assessment—typically involve single chemicals, although concerted
effort is being made to apply IVIVE to mixtures (Chang et al., 2021;
Zhang et al., 2021; Zhang and Wright, 2022). Many of the challenges in
using IVIVE for tobacco or nicotine products are similar, including
uncertainty in dose selection and quantification (which individual
toxicants should be modeled as is or as mixtures in the complex and
dynamically unstable aerosolmixtures) and the target test systems (which
cellular/tissue systems should be used to reflect what clinically relevant
outcomes at cellular levels). Additionally, there is a lack of chemical or
mixture-related in vitro data that can be used for IVIVE model
development and the independent verification of modeling outcomes.
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6 Summary

NAMs are gaining traction as chemical toxicity and biologically
relevant assessment tools based on in vitro and in silico
(computational) methodologies that support 3R in vivo animal
testing traditionally necessary for risk assessment. Significant
progress has been made toward the adoption of NAMs for human
health and environmental toxicity assessment, although they are not
yet fully embraced for routine use in regulatory decision making. This
review summarized the current NAMs in use by major tobacco and
nicotine product manufacturers. The NAMs were chosen in line with
the concepts/criteria displayed in Figure 2, with a focus on the human
relevance of NAMs and their potential ability to model and predict
key elements of human disease processes.

As part of the effort to promote NAM applications for use in
tobacco and nicotine products, two symposiums were held during
the annual Cooperation Centre for Scientific Research Relative to
Tobacco (CORESTA) Smoke Science and Product Technology
conferences in 2021 and 2023 to introduce the concepts and
potential application of NAMs for evaluating NGPs (Lee et al.,
2022; Lee et al., 2023). Many of the promises are tangible based on
successful case examples demonstrating that NAMs can be a
pragmatic and effective approach in terms of cost, time, and
resources, in addition to offering enhanced sensitivity for
predicting human-relevant health impacts. At the same time,
there are ample opportunities to increase confidence in NAM
context of use and standardization. Finally, clarity on the degree
of validation/qualification by regulatory bodies is required. This last
point is essential before NAM-based risk assessments achieve full
legitimacy for regulatory risk assessment.
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