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PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are
used commercially in products like non-stick cookware, food packaging, personal
care products, fire-fighting foam, etc. These chemicals have several different
subtypesmade of varying numbers of carbon and fluorine atoms. PFAS substances
that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can
potentially pose a significant public health risk due to their ability to bioaccumulate
and persist for long periods of time in the body and the environment. The National
Academies Report suggests there is some evidence of PFOS exposure and
gastrointestinal (GI) inflammation contributing to ulcerative colitis.
Inflammatory bowel diseases such as ulcerative colitis are precursors to
colorectal cancer. However, evidence about the association between PFOS
and colorectal cancer is limited and has shown contradictory findings. This
review provides an overview of population and preclinical studies on PFOS
exposure and GI inflammation, metabolism, immune responses, and
carcinogenesis. It also highlights some mitigation approaches to reduce the
harmful effects of PFOS on GI tract and discusses the dietary strategies, such
as an increase in soluble fiber intake, to reduce PFOS-induced alterations in
cellular lipid metabolism. More importantly, this review demonstrates the urgent
need to better understand the relationship between PFOS and GI pathology and
carcinogenesis, which will enable development of better approaches for
interventions in populations exposed to high levels of PFAS, and in particular
to PFOS.
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1 Introduction

PFAS (per- and polyfluoroalkyl substances) are synthetic compounds made of
fluorinated carbon chains attached to functional groups (such as alcohols, carboxylic and
sulfonic acids, etc.,) (Buck et al., 2011). Because the carbon–fluorine bond is one of the
strongest bonds in organic chemistry, natural processes such as hydrolysis, photolysis,
microbial degradation, and vertebrate metabolism are ineffective in breaking down PFAS,
and these compounds are defined as persistent organic pollutants (Perez et al., 2013; Liang
et al., 2022).
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PFAS are commercially used for their heat-resistant properties.
PFAS are found in firefighting foams, non-stick cookware coatings,
food packaging, personal care products, waterproof fabrics,
cosmetics, etc., (Xiao, 2017; Zeng et al., 2019). During production
and use, PFAS can contaminate soil, water, and air. Over recent
years, PFAS have frequently been found in environmental samples,
wildlife, and human tissues (Fenton et al., 2021). According to data
from the National Health and Nutrition Examination Survey, four
PFAS (PFOS or perfluorooctane sulfonic acid, PFOA or
perfluorooctanoic acid, PFHxS or perfluorohexane sulfonic acid,
and PFNA or perfluorononanoic acid) are found in the serum of
nearly every person tested since 1999, indicating widespread
exposure in the U.S. (Centers for Disease Control and
Prevention, 2022). Environmental concentrations and human
exposures to PFAS are typically highest at contaminated sites,
linking PFAS to potential adverse health outcomes (De Silva
et al., 2021).

PFAS are often divided into two groups, long and short chain (Buck
et al., 2011). Long-chain PFAS have comparable bioaccumulation
potential as other well-known contaminants such as polychlorinated
biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT)
(American Water Works Association, 2019; Shahsavari et al., 2020).
PFOS is a “long-chain” subtype of PFAS. In 2009, PFOS was added to
the United Nations Stockholm Convention’s list of Persistent Organic
Pollutants (Stockholm Convention, 2019). According to The National
Health and Nutrition Examination Survey biomonitoring data, the
median and 95% percentile of blood serum PFOS levels in general
population are 2 ng/mL and 4 ng/mL, respectively (U.S. Environmental
Protection Agency, 2019). The elimination half-life of PFAS in humans
is roughly estimated to be between 1.5 and 4.8 years, with PFOS
elimination approximately 4.8 years (Olsen et al., 2007; Post et al.,
2012). The long half-life of PFOS in humans means that cumulative
exposures over a relatively long time period can significantly influence
human health (Buck et al., 2011). PFOS has been associated with
multiple negative health outcomes such as hepatotoxicity, neurotoxicity,
reproductive toxicity, immunotoxicity, thyroid disruption,
cardiovascular toxicity, pulmonary toxicity, renal toxicity, and
carcinogenesis (Zeng et al., 2019; Chen et al., 2020; Fenton et al., 2021).

The contribution of PFAS to cancer has been studied in multiple
animal models, and several studies reported that administration of
PFAS such as PFOA and PFOS is associated with development of
testicular Leydig cell adenomas, pancreatic acinar cell adenomas,
and hepatocellular adenomas or carcinomas in rats (Fenton et al.,
2021). However, there are some concerns regarding the relevance of
these studies to humans, and epidemiological studies are thought to
be more valuable in providing insight into potential links between
PFAS exposure and cancer.

The gastrointestinal (GI) tract is one of the systems that is
exposed to high concentrations of environmental pollutants via
contaminated drinking water and food. PFOS is one the most
frequently detected PFAS in drinking waters and its levels have
been above the method reporting limit (40 ng/L) in drinking water
in approximately 1.9% of U.S. Public Water Systems (American
Water Works Association, 2019). PFOS is readily absorbed in the
gastrointestinal tract and distributes predominantly to the
plasma and liver. It is not metabolized and is excreted in both
urine and feces (EFSA Panel on Contaminants in the Food Chain
et al., 2018).

Scientific studies on PFOS and GI are limited and the association
between this environmental pollutant and GI-associated diseases
remains poorly understood. The scientific literature includes
contrasting studies related to the association of PFOS,
inflammatory bowel disease (IBD), and GI malignancies. This
review provides an overview of current research regarding the
contribution of PFOS exposure to processes associated with GI
inflammatory diseases and colorectal carcinogenesis. It also briefly
discusses the potential intervention strategies to eliminate the
harmful effects of PFOS on the GI tract.

2 PFAS/PFOS exposures and population
cancer studies

Due to widespread exposure and high bioaccumulation in
human tissues, understanding the carcinogenic properties of
PFAS has been a high priority for scientific and medical
communities for the last decade. It is important to note the
complexity of studying and understanding the effects of PFAS in
human health. Different PFAS have distinct physical, chemical, and
toxicological properties, and since people are most likely to be
exposed to mixtures of PFAS, it is difficult to associate the
specific health issues with different PFAS species. To address the
gaps in our understanding of the carcinogenicity of PFAS, the NIH
Division of Cancer Epidemiology and Genetics (DCEG) has
launched a series of studies aimed at identifying specific cancers
associated with PFAS at exposure levels typically found in the
general population (National Cancer Institute, 2017). The risks of
developing different cancers have been evaluated based on direct
assessment of exposure to multiple PFAS in banked serum
specimens. These studies provide sufficient evidence that
increasing PFAS exposure has been associated with the
development of kidney cancer. Moreover, there is limited or
suggestive evidence of PFAS association with breast and testicular
cancers. The studies on these and other cancer types are ongoing and
aim to inform us of the potential carcinogenic effects of multiple
PFAS. Studies have suggested possible PFAS links to other cancers,
including thyroid, prostate, bladder, breast, and ovarian cancer, but
more research is needed to clarify these findings (Steenland and
Winquist, 2021; American Cancer Society, 2023b).

According to the National Academies of Sciences, Engineering,
and Medicine (NASEM) report, “Guidance on PFAS Exposure,
Testing, and Clinical Follow-Up,” (2022) there is suggestive
evidence of carcinogenic potential for PFOS (NASEM, 2022).
However, human epidemiology studies found no direct
correlation between PFOS exposure and the incidence of
carcinogenicity in worker-based populations. The evidence for
PFOS exposure and an increase in bladder cancer and associated
mortality was supported by a retrospective cohort study of
2083 employees of a perfluorooctanesulphonyl fluoride based
fluorochemical production facility (Alexander et al., 2003;
Alexander and Olsen, 2007). Consistent with the suggested
carcinogenic role of PFOS in the NASEM report, a more recent
nested case–control study shows that high PFOS levels (90th
percentile from NHANES; >55 μg/L) are associated with a
4.5 fold increased risk of hepatocellular carcinoma (HCC), likely
via alterations in glucose, amino acid, and bile acid metabolism
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(Goodrich et al., 2022). Consistently, another recent study, which
analyzed 37 serum and tumor samples from patients with
hepatobiliary and gastrointestinal malignancy for 24 analytes of
PFAS. Patients with PFOS in tumor samples had significantly higher
levels in serum when compared to tumor samples without PFOS
(9.4 ng/mL vs. 5.5 ng/mL; p = 0.015). The serum PFOS levels were
significantly higher in tumor samples when compared to the
reported national levels (6.77 ng/mL vs. 5.20 ng/mL; p = 0.038)
(Kelly-Schuette et al., 2022). In contrast to this study, an inverse
association of colorectal cancer (CRC) prevalence to serum levels of
PFOS and PFOA in a large Appalachian population exposed to
pollutants through contaminated drinking water was reported by
Innes et al. (2014). Interestingly, PFAS including PFOS, have also
been implicated in development of pediatric cancers. A hospital-
based case–control study reported significantly higher serum PFOS
and four other PFAS concentrations in pediatric patients with germ
cell tumors compared to age- and sex-matched tumor-free pediatric
patients (PFOS 3.888 vs. 5.202 ng/mL, p = 0.036) (Lin et al., 2020).

In summary, the number of studies on PFAS association with
cancer is very limited and more well-designed and controlled
general population and occupational cohort studies are needed to
understand the contribution of PFAS exposures to different cancer
types.

3 PFAS/PFOS, IBD, and colorectal
cancer

Colorectal cancer (CRC) is the second most common cause of
cancer death in the United States (American Cancer Society, 2023a).
CRC incidence rates have been declining among those who are
50 years of age or older due to screening efforts. However, the
incidence of CRC in young adults under 50 has drastically increased
since the 1990 s (Stoffel and Murphy, 2020). The increase in
incidence of CRC in younger individuals poses a major public
health concern since CRC is currently the leading cause of death
in men younger than 50 years (American Cancer Society, 2023a).
The causes of rising cases of CRC in younger adults remain elusive
but diet, environmental exposures, and lifestyle are thought to play a
major contributing role. Environmental pollutants, such as PFAS
exposure, could be one of the contributing factors to rising
incidence. According to the NASEM report, there is suggestive
evidence of an association between PFAS and ulcerative colitis in
adults (NASEM, 2022). The published studies show an association
between the high PFAS levels in blood and ulcerative colitis
(Steenland et al., 2018; Fart et al., 2021). Ulcerative colitis is a
chronic IBD in which abnormal reactions of the immune system
cause inflammation and ulcers on the inner lining of the large
intestine. The risk of CRC is increased among patients with
ulcerative colitis (Ekbom et al., 1990; Lakatos and Lakatos, 2008;
Kunovszki et al., 2020; Olen et al., 2020). A meta-analysis of
population-based cohort studies shows that ulcerative colitis
increases the risk of CRC 2.4 fold. Male sex, young age at
diagnosis with ulcerative colitis, and extensive colitis increase the
risk (Jess et al., 2012). Moreover, a recent study shows that IBD-
associated CRC occurs in younger patients and has worse outcomes
than sporadic CRCs (Birch et al., 2022). Therefore, PFAS exposure
could be one of the causative factors leading to the development of

IBD and CRC. However, there is insufficient evidence linking PFAS
to the development of CRC. More studies are needed to define the
link between PFAS, IBD and cancer to elucidate the contribution of
different PFAS to GI pathology. The NASEM report also stated the
possible PFOS effects on disease and impairment of the digestive
system in general, including gallbladder dysfunction, irritable bowel
syndrome, and other colon impairment (NASEM, 2022).

4 PFOS exposure and GI carcinogenesis
in animal studies

To investigate toxicity and neoplastic potential from chronic
exposure to PFOS, a two-year dietary toxicity and cancer bioassay
study was conducted with potassium PFOS in male and female
Sprague Dawley rats (Butenhoff et al., 2012). Rats were fed with
PFOS (concentration range 0.5–20 μg/g) in their diet for up to
104 weeks. Additional groups were fed 20 μg/g for the first 52 weeks,
after which they were fed control diet through study termination
(recovery groups). These studies demonstrated that extended
exposure to PFOS leads to an increase in liver hepatocellular
adenomas, pancreatic islet cell carcinomas, and thyroid follicular
cell adenomas in male rats, and liver hepatocellular adenoma and
carcinoma combined and thyroid follicular cell adenomas and
carcinoma in female rats. Statistically significant increases in
benign hepatocellular adenoma were observed at the highest dose
tested for both males and females. One hepatocellular carcinoma
was observed in a female rat with high-dose exposure (Butenhoff
et al., 2012). The results of these two-year studies provided strong
evidence of potential cancer risk from chronic exposure to PFOS.
Interestingly, this study also highlights the gender differences in
responses to PFOS exposure and shows differences in survival,
hepatocellular adenoma and thyroid follicular cell adenoma
incidence in males and females of the same group and time
point (Butenhoff et al., 2012). The potential explanations for the
observed gender differences seen in Sprague rats following the PFOS
exposure are higher PFOS concentrations in serum and liver of
females as compared to males and different clinical chemistry such
as the level of cholesterol and urea between females and males.
Consistent with Butenhoff et al.’s study showing the contribution of
PFOS to development of liver tumors in rats, another study
demonstrated that six-month dietary exposure to PFOS results in
increased liver cancer incidence in rainbow trout (Benninghoff et al.,
2012). Scientific literature related to PFOS exposure and CRC is very
limited. Two studies using APC57BL/6J-Apc Min mice prone to
familial adenomatous polyposis found that PFOS exposure either
had no effect or was protective when it occurred during tumor
development (Ngo et al., 2014; Wimsatt et al., 2016). The first study
tested PFOS exposure in utero and showed that the dams exposed to
PFOS (0.01, 0.1 or 3.0 mg/kg bw/day) by oral gavage on GD1-17 did
not result in an increase in the incidence or number of tumors in the
small intestine or colon of the APCmin mice or affect their location
along the intestines (Ngo et al., 2014). In another study, APCmin mice
(5-6 weeks old) received 0, 20, or 250 mg PFOS/kg (females) or 0, 10,
50, or 200 mg PFOS/kg (males) via their drinking water and
adenomas were counted/scored and blood PFOS levels measured
at 15 weeks of age. The authors of this study suggested that chronic
exposure to PFOS in drinking water can reduce formation of GI
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tumors (Wimsatt et al., 2016). To our knowledge there are no
follow-up studies performed in CRC transgenic mouse models to
support these results.

In summary, studies on PFOS and carcinogenesis are very
limited and demonstrate contradictory results in different cancer
types. To recapitulate the chronic exposure to PFAS in humans, the
long-time exposure with low doses of PFOS relevant to
environmental exposures should be considered in future animal
studies.

4.1 Potential mechanisms of PFOS-mediated
carcinogenesis

Current literature suggests that PFAS, including PFOS, can
contribute to carcinogenesis via alteration of gene expression and
epigenetic changes, thus affecting multiple signaling pathways in
different cell types (Figure 1). The published studies on PFOS
exposures in in vitro and in vivo cancer models are summarized
in Table 1.

4.1.1 PFOS and inflammation
Chronic inflammation increases the risk for different types of

cancers, including CRC, liver, bladder, pancreatic, and esophageal
cancers (Multhoff et al., 2011). In particular, patients with IBD,
categorized into ulcerative colitis and Crohn’s disease, are two to six
times more likely to develop CRC compared to the general
population (Keller et al., 2019). In addition, aspirin, a non-
steroidal anti-inflammatory drug, is considered a potential
intervention for the prevention of CRC, supporting the concept
that chronic inflammation is linked to tumorigenesis (Drew et al.,
2016).

Evidence in the literature suggests that PFOS can promote
chronic inflammation by inducing an increase in pro-
inflammatory cytokine production. Although some data are still
controversial, the most well-represented cytokines are TNF-α, IL-6,
and IL-1β (Temkin et al., 2020; Elmore et al., 2021; Zhang et al.,

2023). A study by Diaz et al. determined that PFOS enhanced pro-
inflammatory cytokine expression in zebrafish and mice.
Specifically, they showed that exposure to PFOS during 2,4,6-
trinitro-benzene sulfonic acid (TNBS)-induced inflammation
enhanced the expression of proinflammatory cytokines such as
IL-1β and TNF-α as well as neutrophil recruitment to the
intestine of zebrafish larvae. These findings were validated in the
TNBS-induced colitis mouse model. Moreover, PFOS exposure in
mice undergoing colitis resulted in neutrophil-dependent increased
intestinal permeability and enhanced PFOS translocation into the
circulation. This was associated with a neutrophil-dependent
expansion of systemic CD4+ T cells. Thus, their results indicate
that PFOS worsens inflammation-induced intestinal damage with
disruption of T-cell homeostasis (Diaz et al., 2021). Alteration of
intestinal barrier integrity and an increase in pro-inflammatory
cytokine production are the characteristics of IBD, further
suggesting that PFOS exposure can contribute to development
and severity of this disease. Consistent with the Diaz et al. study,
a publication by Liang et al. showed that high doses of PFOS
(10 mg/kg) induced an inflammatory bowel phenotype in rats
(Liang et al., 2021). They demonstrated that PFOS exposure over
time increased rat body weight, and induced markers of intestinal
inflammation, higher histopathological score in intestinal tissues,
and apoptosis in the proximal jejunum. Interestingly, neutrophil and
macrophage accumulation and inflammatory cytokine infiltration
were also remarkably increased in rats exposed to PFOS. The results
of the study suggest that PFOS can induce an inflammatory bowel-
like phenotype in rats.

It is well established that an inflammatory microenvironment
can contribute to different stages of cancer development and
progression (Schmitt and Greten, 2021). During chronic
inflammation, pro-inflammatory cells such as macrophages and
neutrophils are potent sources of reactive oxygen species (ROS)
and reactive nitrogen species (RNS). These molecules can induce
cellular damage, such as mutations in tumor suppressor genes and
modifications in proteins involved in DNA repair, apoptosis, and
cell cycle checkpoint, contributing to tumor initiation (Hussain and
Harris, 2007). In addition, inflammatory signaling, mainly through
cytokines such as IL-6 and TNF-α, leads to epigenetic changes
(Grivennikov, 2013). Among them, DNA methylation, histone
modification, microRNAs, and lncRNAs modulate the expression
level of oncogenes and tumor suppressor genes that contribute to the
occurrence and development of inflammation-induced CRC (Yang
et al., 2019). Anothermechanism linked to tumor initiation is related
to stem cells. An inflammatory environment can induce de-
differentiation of non-stem cells into tumor-initiating stem-like
cells. Furthermore, particularly in intestinal cells, inflammation
affects epithelial barrier function, which can expose the stem cell
compartment to environmental carcinogens or molecules released
by active inflammatory cells (Greten and Grivennikov, 2019).

The inflammatory cells act as a source of cytokines and growth
factors to promote tumor cell survival and proliferation (Hibino
et al., 2021). The main pathways involved in this process are NF-κB,
MAPK, JAK-STAT, and PI3K-AKT pathways (Zhao et al., 2021). In
addition, the action of cytokines, such as TNF-α, IL-6, and IL-1β, in
tumor progression includes the recruitment of immuno-suppressive
cells and induction of angiogenesis andmetastases (Kartikasari et al.,
2021).

FIGURE 1
The potential mechanisms of PFAS contribution to
carcinogenesis. Long-term PFAS exposures can lead to changes in
gene expression and induction of epigenetic alterations including
DNA methylation and histone modification, thereby regulating
patterns of gene expression. Changes in chromatin structure and gene
expression can enhance activity of signaling pathways involved in
pro-inflammatory and pro-carcinogenic processes, induce endocrine
disruption, and rewire metabolism to support pro-carcinogenic
program in cells.
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TABLE 1 Published in vitro and in vivo studies on PFOS exposure and cancer.

Reference Model PFOS exposure time PFOS exposure
concentration

Main findings

In vitro In vivo In vitro In vivo In vitro In vivo

Breast

Sonthithai et al.
(2016)

T47D -- 24 or 48 h -- 0.001, 0.01,
and 0.1 μM

-- ↑ 17β-estradiol effect on
estrogen-responsive gene
expression and proliferation

Pierozan and
Karlsson (2018)

MCF-10A -- 72 h -- 10 μM -- ↑ proliferation, cell cycle
alteration, ↑ migration,
↑ invasion; no effect on Erα
and Erβ levels

Pierozan et al.
(2020)

MCF-10A -- 72 h -- 10 μM -- ↑ proliferation, cell cycle
alteration, ↑ migration,
↑ invasion and epigenetic
modifications

Pierozan et al.
(2023)

MCF-10A -- 72 h -- 10 μM
(binary
mixture of
PFOS and
PFOA)

-- ↑ proliferation, alteration of
regulatory cell-cycle proteins,
↑ migration, ↑ invasion and
epigenetic modifications

Colorectal

Ngo et al. (2014) -- APCmin mice -- GD 1 to GD 17, the
analyses were
performed on the
offspring at week 11

-- 0.01, 0.1 or 3 mg/kg
bw/day–by oral
gavage

No association with number of
small intestinal or colonic
tumors

Wimsatt et al.
(2016)

-- APCmin mice -- 8 (females) or
9 weeks (males)

-- 20, 250 (females) or
10, 50, 200 mg/kg
(males)–in drinking
water

↓ tumor number

Wimsatt et al.
(2018)

-- PDX -- 10 weeks -- 100 mg/kg–in
drinking water

↓ tumor size

Esophagus

Liu et al. (2022) HEEC, KYSE150,
KYSE140 and
KYSE70

-- 24 h -- 10 nM -- ↑ migration and ↑ invasion in
carcinoma cells via
upregulation of transcription
and protein stability of ZEB1

Glioblastoma

Merritt and
Foran (2007)

T98G 5 days 0.005, 0.01,
0.5, and 1 μM

↑ proliferation

Kidney

Liu et al. (2023) A498 -- 24 or 48 h -- 50 μM -- ↑ viability and epigenetic
modifications

Liver

Benninghoff et al.
(2012)

-- Rainbow trout -- 6 months -- 2.5 mg/kg/day ↑ tumor incidence

Zhu et al. (2021) -- KrasV12

transgenic
zebrafish

-- 10 days -- 500 μg/L PFOS ↑ tumor incidence and changes
in metabolic pathways in
KrasV12-induced zebrafish

Lung

Jabeen et al.
(2020)

A549 24 or 48 h 10, 200, and
400 μM

↑ proliferation in low doses,
epigenetic modifications, cell
cycle alteration and dose-
dependent induction of
apoptosis

(Continued on following page)
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Upregulation of inflammatory responses due to PFOS exposure is
also supported by studies reporting inflammasome activation and
subsequent cytokine release by pyroptotic cells (Zhang et al., 2023).
For instance, the mechanism associated with PFOS-induced lung
inflammation in offspring rats was upregulation of inflammasome-
associated proteins, such as NLRP3, ASC, Caspase-1, and GSDMD,
and an increase in inflammatory cytokines IL-18 and IL-1β (Zhang
et al., 2021). Corroborating this study, Qin et al. (2022) found similar
mechanisms resulting in liver inflammation and steatosis after exposure to
PFOS (Qin et al., 2022). Alternatively, PFOS-mediated inflammatory
response and tissue damage may also be independent of the
NLRP3 inflammasome. Instead, PFOS activated AIM2 inflammasome,
a sensor to recognize exogenous or endogenous double-stranded DNA,
through mitochondrial dysfunction and release of mitochondrial DNA
(mtDNA). Activation of AIM2 led to IL-1β production and pyroptosis in
macrophages (Wang et al., 2021). These reports highlight the involvement
of the innate immune system and the possible mechanism of how PFOS
can be recognized in cells and trigger cellular inflammatory responses.

Inflammasome activation may influence CRC induction and
progression due to its central role in promoting inflammation. On
the other hand, it may have an anticancer effect by triggering pyroptosis
and immunoregulatory functions (Keshavarz Shahbaz et al., 2021).

4.1.2 PFOS and immune environment
Another mechanism by which PFOS exposure may be related to

tumorigenesis is through its ability to decrease immune system function,
leading to immunosuppression. Some studies have reported a reduction
in circulating immunoglobulins, such as IgM and IgG, as well as a
decrease in the activity or proliferation of natural killer (NK) cells, B cells,
andCD4+CD8+ T-cell subtypes (Temkin et al., 2020; Elmore et al., 2021;
Zhang et al., 2023). The immune system plays a crucial role in
preventing tumor development. It can protect the host against virus-
induced tumors by suppressing viral infections. In addition, the immune
system controls inflammation and thus prevents an environment
conducive to tumorigenesis. Ultimately, the immune system identifies
and controls nascent tumor cells through immunosurveillance (Swann
and Smyth, 2007).

Immunosurveillance is the initial step of an emerging concept
known as immunoediting. This process involves three sequential
phases. In the first, the elimination phase, immune cells, such as
CD8+, CD4+, NK cells, and macrophages, identify tumor-associated
antigens resulting in the elimination of tumor cells. If this process is
not completed, the second phase is initiated, which corresponds to a
state of equilibrium where tumor cells and immune cells coexist.
Finally, the escape phase, wherein the immune system fails to
eliminate the tumor resulting in the selection of tumor cell
variants with a greater ability to resist or suppress the immune
system (Dunn et al., 2002; Swann and Smyth, 2007; Kunimasa and
Goto, 2020).

NK cells have a central function in tumor immunosurveillance.
Tumor cells can be recognized by NK cells through stress-induced
ligands or a decrease in the levels of major histocompatibility
complex (MHC) I. Upon activation, NK cells have a cytotoxic
function and can modulate innate and adaptative immunity
through the secretion of cytokines and chemokines (Morvan and
Lanier, 2016; Wang et al., 2021). A study showed that low NK cell
activity is correlated with a higher risk of developing various types of
cancer (Imai et al., 2000). In CRC, low NK cell infiltration or activity
is associated with poor overall survival and relapse after treatment
(Fionda et al., 2022). Indeed, high frequency of metastasis-
infiltrating NK and T cells is associated with better overall
survival (Donadon et al., 2017). These cells may also play a role
in CRC development since their presence in tissues from early stages
is scarce (Halama et al., 2011).

4.1.3 PFOS and metabolic alterations
Several studies have reported that PFOS exposure can induce

oxidative stress (Temkin et al., 2020; Elmore et al., 2021). This
phenomenon is defined by an imbalance between ROS generation
and their elimination by the biological antioxidant system, resulting
in oxidative damage to cellular components such as DNA, lipids, and
proteins (Pizzino et al., 2017). In addition to its role in
carcinogenesis by directly damaging these components, ROS can
contribute to tumor survival and progression through activation of

TABLE 1 (Continued) Published in vitro and in vivo studies on PFOS exposure and cancer.

Reference Model PFOS exposure time PFOS exposure
concentration

Main findings

In vitro In vivo In vitro In vivo In vitro In vivo

Prostate

Imir et al. (2021) RWPE-1 and
RWPE-KRAS

Xenograft
model with
RWPE-KRAS

1 week
or 24 h

5 days/week for
40 days

10 nM 10 mg/kg–by oral
gavage

↑ tumor growth, synergistic
effect with high fat diet to
increase tumor burden,
changes in metabolic
phenotype, and epigenetic
modifications

Hu et al. (2022) Stem-progenitor
cells from donors
and RWPE-KRAS

Xenograft
model with
RWPE-KRAS

3-4 weeks 40 days 10 nM 10 mg/kg bw/day–by
oral gavage

↑ stem cell self-renewal, alters
luminal progenitor cell
differentiation, changes stem-
progenitor cell transcriptome
and metabolome and ↑ tumor
growth

Frontiers in Toxicology frontiersin.org06

Durham et al. 10.3389/ftox.2023.1244457

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1244457


signaling pathways such as ERK1/2, p38/MAPK, BMK1, and PI3K/
AKT. Furthermore, through the activation of protein kinases,
inactivation of phosphatases or by direct redox reaction, ROS
regulate transcription factors such as Nrf2, NF-κB, HIF, p53, AP-
1, FOXO, STATs, and Smad. These events may contribute to cell
survival, increased proliferation, invasion, metastasis, angiogenesis,
apoptosis suppression, and cancer stem cell survival (Ding et al.,
2015; Zhang et al., 2016; Gao and Schottker, 2017; Kumari et al.,
2018; Aggarwal et al., 2019). PFOS has been associated with
induction of oxidative DNA damage, generation of ROS or RNS,
lipid peroxidation, increased levels of Nrf2, and alteration of levels or
activity of antioxidant enzymes (Temkin et al., 2020; Elmore et al.,
2021).

PFOS has been found to cause metabolic perturbation. Although
the current data are still inconsistent, PFOS was positively associated
with an increase in total serum cholesterol, and in some cases,
triglycerides in human epidemiological studies (Fragki et al., 2021).
Another study reported that PFOS exposure increased expression
levels of enzymes involved in peroxisomal fatty acid β-oxidation
(Tan et al., 2012). Accordingly, Hu et al. (2005) showed that PFOS
disturbs the expression of genes associated with fatty acid (FA)
metabolizing enzymes, cytochrome P450s, and genes involved in
hormone regulation. PFOS also induced deregulation in amino acid
and glucose metabolism (Kariuki et al., 2017; Lai et al., 2018;
Alderete et al., 2019).

Due to its fluorine-saturated carbon backbone and a charged
moiety at one end, PFOS resemble the structure of FAs (Wolf et al.,
2008). A suggested biological effect induced by PFOS is the
activation of peroxisome proliferator activated receptors (PPARs).
PPARs are a type of nuclear receptor that upon ligand-binding, such
as FAs, heterodimerize with retinoid X receptors (RXRs) and act as
transcription factors. There are three isoforms of PPARs, namely,
PPARα, PPARβ/δ, and PPARγ (Grygiel-Gorniak, 2014). All
isoforms control a group of genes involved in lipid and glucose
metabolism, adipogenesis, and inflammation (Fragki et al., 2021).
Several studies have shown that PFOS can primarily activate PPARα.
However, its activation seems to be weaker in humans compared to
mice. Although less reported, it is also possible that PFOS may have
a role in the regulation of PPARγ (Wolf et al., 2008; Elmore et al.,
2021; Boyd et al., 2022). PPARα and PPARγ are generally associated
with anti-cancer effects, such as decreased inflammation, cell
survival, glycolysis, and metastatic potential, as well as induction
of cell differentiation and apoptosis. However, the activation of these
receptors also has pro-cancer functions, including maintaining
cancer stemness, improving glucose and lipid metabolism, which
supplies the high energy demands of cancers, and promoting
metastasis (Cheng et al., 2021; Chi et al., 2021). A study revealed
that PFOS increased the self-renewal capacity of prostate epithelial
stem-progenitor cells (SPCs), induced upregulation of cancer-
associated signaling pathways, and enhanced glycine and serine
metabolism, as well as glucose metabolism through the Warburg
effect. Upon stimulation by PFOS, SPC increased expression of
PPARs and RXRs that likely mediate its effects in promoting a pre-
malignant stem-progenitor cell fate (Hu et al., 2022). Another report
showed that PFOS caused a decrease in hepatocyte nuclear factor 4-
alpha (HNF4α) protein expression in human hepatocytes and
promoted changes in the expression of genes involved in lipid
metabolism and carcinogenesis. The authors highlighted the role

of HNK4α in maintaining differentiation; therefore, its loss may
contribute to hepatocellular de-differentiation and carcinoma
development (Beggs et al., 2016).

4.1.4 PFOS and epigenetic changes
Other important pathways linked to tumor initiation and

progression are epigenetic mechanisms, which refer to changes in
gene expression without altering DNA sequence (Lu et al., 2020).
These modifications can inappropriately activate oncogenes and/or
inhibit tumor suppressor gene expression through DNA
methylation, histone modification, and non-coding RNAs (Jones
and Baylin, 2002; Lu et al., 2020). All these types of modifications
have been associated with PFOS exposure (Temkin et al., 2020;
Elmore et al., 2021). Epidemiological studies identified a significant
association between PFOS and epigenetic alterations in both adult
and birth cohorts (Kim et al., 2021). However, the molecular link
between epigenetic changes and PFOS in relation to cancer has been
less studied. Additionally, PFOS has been associated with an increase
in xenograft prostate tumors, as well as an increase in glucose and
pyruvate metabolism. This effect was enhanced when mice were fed
a high-fat diet. Further analyses suggested that PFOS has a
synergistic effect with a high-fat diet to activate PPARα. This
alters the cellular metabolome and increases histone acetylation,
which may drive tumor growth and progression (Imir et al., 2021).
Another study, using super-resolution imaging and machine-
learning tools, revealed that PFOS can alter the spatial
organization of the repressive heterochromatin marks H3-lysine-
9-trimethylation (H3K9me3) and H3-lysine-27-trymethylation
(H3K27me3) in kidney cancer cells. PFOS also upregulated the
expression levels of histone demethylase KDM4A. These alterations
may be a potential driver of PFOS-induced toxicity in kidney disease
development (Liu et al., 2023). Pierozan et al. (2020) showed that
PFOS increased the proliferation of MCF-10A, altered the
expression of proteins related to cell cycle, and promoted cell
migration and invasion. These changes may involve epigenetic
mechanisms, as PFOS induced an increase in global methylation
and altered important histone modifications. Wang et al. (2015)
reported that PFOS can induce changes in miRNA expression,
which can target oncogenes and tumor suppressor genes. Thus,
PFOS potentially alters pathways associated with different types of
tumors, such as melanoma, pancreatic, CRC, and glioma.
Corroborating this, analysis of livers from rats exposed to PFOS
showed that most up- and downregulated miRNAs were involved in
the regulation of genes associated with the epithelial–mesenchymal
transition (EMT) process. This is an important phenomenon
involved in tumor development, progression, and metastasis
(Dong et al., 2016).

4.2 Potential intervention strategies for
dietary PFOS exposure

PFOS exposure is a major public health concern that affects
people all over the world (Fenton et al., 2021). Humans are exposed
primarily through consumption of contaminated water and food
(Roth et al., 2020). Chemical engineering controls and clean-up
efforts are still in development; however, the financial burden of
these controls is high. Other strategies to mitigate negative health
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effects of PFOS are needed to improve overall quality of life for
individuals who live in PFOS-contaminated areas. Less expensive
mitigation strategies, such as dietary intervention strategies, could
potentially be beneficial (Roth et al., 2020). The article by Deng et al.
(2022) showed that soluble diets, such as inulin and pectin, have
protective effects against negative consequences of PFOS in mice.
They suggested that the beneficial effects of soluble fiber diets could
be attributed to their ability to be metabolized by and modulate the
microbiome population (Deng et al., 2022). Further, they believe
that the microbiome population could affect host metabolism by
producing bioactive metabolites such as short-chain fatty acids
(SCFAs). Mice fed inulin and pectin produce fatty acid species
which include acetate, propionate, and butyrate. However, inulin is
the preferred source to produce more propionate and butyrate than
pectin. The mice receiving inulin also had higher propionate in the
portal vein, which could potentially reduce lipogenic enzymes and
fatty acid synthesis (Deng et al., 2022). The production of bioactive
metabolites such as SCFAs can improve gut barrier integrity,
glucose, and lipid metabolism. Bioactive metabolites can also
assist with regulation of the immune system, inflammatory response,
and blood pressure. Bioactive metabolites could also affect the gut–brain
axis and improve immune activation, intestinal permeability, enteric
reflex, and entero-endocrine signaling (Mayer et al., 2022). Lipid species
were also altered following PFOS exposure; however, mice that received
the soluble fiber diets had some protective effects against PFOS-induced
alterations in lipid species. In the study, ceramide species (such as Cer 24:
1, Cer 16:0, and Cer 22:0), were upregulated in PFOS-exposed mice.
Ceramide and sphingomyelin ratios were lower in inulin fed mice
compared with mice receiving the control diet. Sphingolipid hydrolysis
by sphingomyelinase can produce ceramide through a biosynthesis
pathway. The ceramide/sphingolipid ratio can represent the rate of this
biosynthesis pathway and enzymatic activity of sphingomyelinase.
Enzymatic activity was higher in the PFOS-exposed group; however,
inulin feeding partially reduced this effect (Deng et al., 2022). The data
from this study suggest that inulin can possibly reduce ceramide
accumulation. Fiber diets used in the study by Deng and others
represented about a 60% increase in fiber contents compared to
standard chow and are representative of recommendations provided
for human fiber intake. For comparison, the recommendation for
human dietary intake is at least a 50% increase in fiber contents
according to the European Food Safety Authority and the U.S.
Institute of Medicine. Mice that received the inulin diet had higher
Bifidobacterium, which are important for the promotion of dietary fiber
digestion, production of vitamins and other chemicals, and infection
prevention. Bifidobacterium is a type of probiotic that is good for
gastrointestinal tract health. Mice receiving the pectin diet had higher
Duncaniella and the effects of this species on gut health are still under
investigation. Data from the study suggest that PFOS can alter microbial
structure by interacting with a dietary component (Deng et al., 2022).
The study by Dzierlenga and others also proposed a mechanistic theory
for fiber induced PFOS elimination. A study by Dzierlenga et al. (2021)
suggests that dietary fiber increases the gastrointestinal excretion of
PFOA, PFOS, and PFNA. The increase in excretion of PFAS substances
can lead to a reduction in serum PFAS levels. Increased clearance of
PFAS substances could be beneficial to reduce carcinogenicity and other
possible long-term effects. The extended half-life of PFAS substances in
the human body poses a critical public health concern. Fiber-induced
clearance of these “forever chemicals” could vastly improve negative

long-term PFAS outcomes by decreasing the amount of time PFAS are
in the body. Therefore, the gut-microbiome interaction with other
dietary components could also play a key role in the dietary
elimination and immune clearance of PFOS from the gastrointestinal
tract and intestinal recovery.

5 Conclusion

The evidence for an association between PFOS and GI cancer
remains sparse. Weaknesses in human and animal study design and
methods can lead, in some cases, to contradictory results. Current
literature suggests a link between long-term PFOS exposure, lipid
metabolism dysregulation, inflammation, microbiome dysfunction
and the etiology of colorectal cancer. Most importantly current
studies propose that healthful dietary interventions (e.g., high fiber
diets) can reduce or prevent PFOS-mediated disease risks. Thus, further
mechanistic studies are critically needed to better understand the
contribution of PFOS exposure to GI pathology. Careful design of
animal studies using long-term exposure and physiologically relevant
doses of PFOS should be considered to delineate the mechanisms how
PFOS may contribute to GI pathology and carcinogenesis. Analysis of
data from large cohorts with a wide range of exposures and long-term
follow-up is most likely to provide further insight into the contribution
of PFOS exposure to human health, including the GI system.
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