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Plastic is a pervasive material that has become an indispensable part of our daily
lives and is used in various commercial products. However, plastic waste has
significantly impacted the environment, accumulating in water and land
ecosystems and harming all forms of life. When plastic degrades, it breaks
down into smaller particles called microplastics (MPs), which can further
breakdown into nanoplastics (NPs). Due to their small size and potential
toxicity to humans, NPs are of particular concern. During the COVID-19
pandemic, the production of plastic had reached unprecedented levels,
including essential medical kits, food bags, and personal protective equipment
(PPE), which generate MPs and NPs when burned. MPs and NPs have been
detected in various locations, such as air, food, and soil, but our understanding
of their potential adverse health effects is limited. This review aims to provide a
comprehensive overview of the sources, interactions, ecotoxicity, routes of
exposure, toxicity mechanisms, detection methods, and future directions for
the safety evaluation of MPs and NPs. This would improve our understanding
of the impact of MPs and NPs on our health and environment and identify ways to
address this global crisis.
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Introduction

Plastic is a material that has become an integral part of daily human activities, being used
on every occasion. On the other hand, plastic waste, found abundantly in both marine and
land ecosystems, has had a profound negative impact on all life forms on our planet. This
material is prevalent in an extensive range of commercial products, from cosmetics to
construction materials. Plastic waste can float on water, which leads to its transportation to
distant regions. Consequently, it accumulates in open oceans, along streamlines, and on the
sea floor (Jambeck et al., 2015). In the environment, certain types of plastics breakdown over
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time into smaller particles, known as microplastics (MPs). First
reported in 2004, the threat posed byMPs to human health has since
garnered significant attention (Zhang et al., 2022). MPs, composed
of synthetic polymer particles, are typically less than 5 mm in size
(Ragusa et al., 2021). However, the degradation of plastic does not
stop at this stage; MPs can further breakdown into even smaller
particles called nanoplastics (NPs) (Dawson et al., 2018). These NPs
range in size from 1 nm to 1 μm, a classification that slightly differs
from engineered nanomaterials (ENMs) (Gigault et al., 2021). The
scientific definition of NPs remains uncertain, with their size
classification being disputed as either “<100 nm” or “<1,000 nm”

in at least one dimension (Gigault et al., 2018). Due to their
minuscule size, NPs can potentially exhibit heightened toxicity,
underscoring the need for a comprehensive exploration of their
bio-effects.

Additionally, NPs are purposefully incorporated into specific
products, such as exfoliating beads in facial scrubs (Hernandez et al.,
2017) and industrial pellets (Karlsson et al., 2018). Micro- and nano-
plastics (MNPLs) constitute a large portion of plastic contaminants
and are ubiquitous in our environment (Shim et al., 2018). Their
abundance in aquatic ecosystems ranges from 7.25 × 10−7 to 102

particles/L in littoral regions of Africa and Europe (Besseling et al.,
2019). Globally, in 2019, over 370 million tons of plastic wastes were
either directly or indirectly released into the environment. This
number is expected to exceed 12 billion tons by 2050, with less than
ten percent of it being recycled (Department, 1950; Geyer et al.,
2017). The recycling situation is equally concerning at national level,
such as in the United States. According to the most recent data from
the EPA in 2020, a mere fraction (8.5%) of the 35.68 million tons of
plastic waste generated in the country was recycled. Meanwhile,
15.8% of it was incinerated, and a staggering majority (75.7%) was
consigned to landfills in the year 2018 (EPA, 2020). Ultimately,
plastic degrades into MPs and NPs, and current recycling methods
prove inadequate in removing NPs from the environment. Two
primary alternatives to plastic are chitosan, a bioactive polymer, and
hemp fiber, a biodegradable polymer. Chitosan is one of the most
abundant natural polysaccharides and possesses unique properties,
such as non-toxicity, high antibacterial activity, ease of chemical
synthesis and modification, and, most importantly, exceptional
biodegradability (Hosseinnejad and Jafari, 2016). Given these
attributes, chitosan is extensively utilized in industrial and
biological applications and presents a plausible alternative to
plastic. Hemp fiber, used in producing ropes, polystyrene (PS),
flexible building materials, and automobile parts, also offers a
sustainable substitute for plastic (Sepe et al., 2018). In recent
years, there has been a significant surge in the production and
use of plastic containers, such as medical kits, food bags, and
personal protective equipment (PPE). Specifically, during the
COVID-19 pandemic, the global NP load prompted a drastic
increase in plastic production—around 700 million tons in
2020 alone (Shams et al., 2021). This includes disposable face
masks, gloves, gowns, COVID-19 kits, food container bags, and
eye protectors. Incinerating these plastics whether naturally through
brush fires or artificially in incineration plants can lead to the
formation of MPs and NPs (Li et al., 2022a; Luo et al., 2022).
Previous studies have revealed that MPs and NPs are detected in air,
food, soil, and numerous other contexts. However, our current
understanding regarding the potential adverse health effects of

MPs and NPs on humans is still limited (Trainic et al., 2020; Das
et al., 2021; Xie et al., 2022; Yao et al., 2022). Therefore, this review
aims to highlight the sources of MPs and NPs, their interaction
within the food web and ecotoxicity, routes of human exposure,
toxicity mechanisms, detection methods, and future directions to
advance our evaluation of their safety.

Sources of MPs and NPs

Plastic waste and secondary derivatives are the two primary
sources of MPs and NPs. Plastic waste is composed mainly of
materials such as polyvinyl chloride (PVC), polystyrene,
polypropylene (PP), and polyethylene (PE) (Rodrigues et al.,
2019). MPs and NPs are released into the environment from the
breakdown of plastics including laundry wastewater and tire wear
(Guan et al., 2020; Sana et al., 2020; Kiran et al., 2022; Reddy and
Nair, 2022). Microfibers shed from synthetic textiles (such as nylon,
polyester, and acrylic) significantly contribute to MP pollution,
frequently appearing in laundry wastewater. A single wash can
shed an average of 7,360 fibers per square meter per liter from
polyester fleece fabrics (Carney Almroth et al., 2018). The number
and mass of MPs detected in the wastewater from the first wash of
polyester and cotton textiles range from 2.1 × 105 to 1.3 × 107 and
0.12–0.33% w/w, respectively (Sillanpää and Sainio, 2017). A
substantial amount of MPs and NPs is produced from plastic
bags during the tea steeping process, and they often enter the
environment through domestic drainage systems and sewage
treatment plants (Hernandez et al., 2019). Another source of
micro- and nano-scale particles is the particles released from
high-speed vehicles when their tires rapidly come in contact with
the ground (Kreider et al., 2010). Given the potential adverse effects
of MPs and NPs and their significant volume generated from tire
wear, this source of plastic pollution requires further investigation.

Microplastics and nanoplastics in the aquatic
food web and ecotoxicity

In aquatic ecosystems, apex predators include species such as
large sharks, dolphins, and whales. MPs have been discovered within
various fish species’ guts, gills, livers, and brains (Ding et al., 2018).
The consumption of hazardous substances and microplastics allows
their transfer from one trophic level to the next, leading to
bioaccumulation within the food chain. Since MPs do not
degrade, they persist within the digestive systems of marine
organisms across the entire food chain, inflicting negative
biological and physical impacts on marine life (Zhang et al.,
2019; Al Mamun et al., 2023). Large fish might not exhibit
immediate effects upon ingesting chemically contaminated MPs
or NPs, but the gradual accumulation of these particles could
eventually prove fatal. Due to a lack of standardized and reliable
methods for the sampling, detection, and characterization of MPs
and NPs, limited studies have explored the fate of these particles in
freshwater environments. The level of toxicity that NPs pose to
freshwater ecosystems remains uncertain. The few published studies
on this topic are predominantly lab-based and may not replicate the
same biological toxicity if conducted in natural environments
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(Zhang et al., 2022). Laboratory studies have found that exposure to
polystyrene nanoplastics (PS-NPs) can lead to a range of
toxicological effects, including reproductive abnormalities (Li
et al., 2020a; Li et al., 2020b), oxidative stress and gastrointestinal
dysfunction (Chae and An, 2017), increased mortality (Liu et al.,
2020), growth inhibition and disorders, and neurotoxicity (Zhang
et al., 2020). MPs and NPs can be directly ingested by zooplankton,
planktivorous fish, and piscivorous fish within the aquatic food web,
subsequently moving up the food chain until they are ultimately
consumed by humans (Ain Bhutto and You, 2022). The primary
sources of particulate plastic ingestion by humans are consuming
contaminated seafood, sea salts, and water (Selvam et al., 2020).
Toxicological studies have shown that plastic particles within the
human gastrointestinal system can have adverse biological effects on
digestion and can impair immune function (Chang et al., 2020).

Human exposure to microplastics and
nanoplastics: routes and translocation

Ingestion/oral, inhalation, and dermal
Humans are chronically exposed to low concentrations of NPs

(Prüst et al., 2020), while all three exposure pathways—ingestion,
inhalation, and dermal contact—contribute to the overall presence
of MPs and NPs in the human body; the risk of exposure is the
highest from seafood and environmental sources. These
environments can contain pathogenic microorganisms, long-term
weathered polymers, leached chemical additives from polymers,
residual monomers, and pollution (Camacho et al., 2019). Recent
studies on exposure to and the toxicity of MPs and NPs indicate that
ingestion is the primary method through which humans consume
plastic particles (Lehner et al., 2019). MPs and NPs can enter the
human body by consuming drinking water supplied via plastic pipes
(Yong et al., 2020; Kiran et al., 2022). Alarmingly, humans could be
exposed to billions of MPs and NPs released from a single plastic tea
bag steeped in a beverage (Hernandez et al., 2019). NPs have been
detected in table salts and seafood, increasing the risk of oral
exposure.

Consequently, prioritizing the advancement of NP detection
methods in water and food is imperative (EPoCitF, 2016; González-
Fernández et al., 2021; Kaur et al., 2022). Additionally, consuming
higher organisms that directly absorb NPs, or depend on lower
organisms in the ecological pyramid, provides a broader perspective
of oral exposure in humans. MPs and NPs can also enter the human
body by consuming foodstuffs contaminated during production
processes or packaging (Lau and Wong, 2000; Mason et al., 2018;
Du et al., 2020).

Inhalation is another route of human exposure to NPs, which
has been detected as a novel carrier for particulate matter
(PM2.5 and PM10) (Lai et al., 2022). MPs and NPs in ashes and
atmospheric fallout indicate potential human exposure via
inhalation (Facciolà et al., 2021; Brandts et al., 2022; Jenner et al.,
2022). Wear on car tires can also generate MPs and NPs, releasing
them into the surrounding street atmosphere and creating another
potential source of inhalation exposure (Kole et al., 2017). Injection
as a source of potential exposure has been examined by Tomazic-
Jezic et al. (2001), who reported enhanced phagocytosis in the mouse
peritoneal cavity following injection (Tomazic-Jezic et al., 2001).

Studies have detected higher levels of MPs and NPs in indoor
atmospheres than outdoor environments, suggesting that humans
are exposed to a significant number of NPs (Gaston et al., 2020;
Ageel et al., 2022; Yao et al., 2022). Dermal exposure also contributes
to human exposure to NPs, especially from those NPs smaller than
40 nm, which have been found to bypass dermal barriers. This is
particularly relevant for individuals in close contact with NP-
contaminated items, such as personal products, or for those
swimming in contaminated water (Rahman et al., 2021; Yee
et al., 2021).

Translocation of microplastics and nanoplastics
The translocation and adverse consequences of MPs and NPs on

the human body have not been fully investigated. The current
understanding is primarily based on laboratory data derived from
various test models. A handful of studies have observed the
accumulation of MPs and NPs in the intestinal lumen, while
others have identified these particles in the fecal matter (Schwabl
et al., 2019; Cocca et al., 2020). NPs have been found capable of
penetrating and crossing biological barriers, including those of the
intestine, lungs, brain, and placenta. Oral exposure to MPs and NPs
has shown accumulation in the lumen, with some particles being

FIGURE 1
NPs from their formation to translocation. This figure outlines the
origin of NPs, their key routes of human exposure, and the potential
pathways for their internal movement within the human body, created
with BioRender.com.
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excreted through the digestive tract (Prüst et al., 2020; Campanale
et al., 2020; da Silva Brito et al., 2022). NPs can penetrate the
lumen–blood barrier, translocating to blood vessels and distant
organs. Some NPs may cross the blood–brain barrier, resulting in
brain accumulation. Studies in fish have revealed that NPs can enter
the circulatory system, pass the blood–brain barrier, and accumulate
in the brain (Guerrera et al., 2021). Additionally, NPs have been
observed crossing the placental barrier and have been detected in
human placentas (Figure 1) (Ragusa et al., 2021). This capability of
NPs raises significant concerns about their potential effects on
human health, and in fact, there remains a substantial knowledge
gap regarding the health impacts of MPs and NPs on humans (Revel
et al., 2018; Catarino et al., 2019). Dong et al. (2023) outlined the
mechanism of the translocation of MPs/NPs in animals and
connected their translocation to various organotoxic effects based
on their exposure through different routes, namely, the dermal,
respiratory, and digestive tract (Dong et al., 2023).

Mechanism of microplastic and nanoplastic
toxicity

Once microplastics and nanoplastics infiltrate a biological
milieu, they come into contact and interact with biologically
significant macromolecules, such as proteins and lipids. This
interaction facilitates the formation of soft and hard NP coronas.
The establishment of a corona around NPs triggers a change in their
physicochemical properties, thereby influencing their behavior and
potentially intensifying the related health implications. Coronas
constituted by macromolecules (such as lipids and proteins)
regulate the entry and translocation of NPs within cells (Cao
et al., 2022). In disease environments, including conditions like
metabolic syndrome tied to lipid dysregulation, the constitution of
macromolecules differs from that in healthy scenarios. Interestingly,
it has been observed that the corona around silver nanoparticles in a
metabolic syndrome environment can exacerbate inflammatory
responses in mice exhibiting metabolic syndromes compared to
their healthy counterparts (Alqahtani et al., 2020; Kobos et al., 2020;
Alqahtani et al., 2021; Alqahtani et al., 2022). NPs can be transported
and internalized into cells either passively or actively. Passive
transport hinges on the potential difference between the
concentration of NPs inside and outside the plasma membrane.
In contrast, active transport works against the concentration
gradient and depends on the ATP consumption. Both these
processes occur in tandem to transport and internalize NPs from
their surrounding environment (Amobonye et al., 2021; Huang
et al., 2021). Under standard physiological conditions, NPs can
only passively pass through the cell membrane, provided they fit into
the surface pores. An illustrative example can be found in cancer
cells, where NPs penetrate and translocate to the cell membrane
owing to enlarged surface pores (Bhushan et al., 2017). Similarly, in
zebrafish, only smaller NPs can cross the cell membrane through the
chorion pore and translocate to other organs (Pitt et al., 2018). Large
NPs are mostly blocked by the passive transport mode, which
permits only smaller NPs to pass and get transported.

Apart from the aforementioned conditions, several factors
(shape, size, corona compounds, surface modification, and cell
types) complicate the active mode. Corona compounds such as
proteins/lipids are confounders to influencing other factors (Salatin
et al., 2015). Within a macrophage, smaller polystyrene particles are

internalized via phagocytosis more than the larger ones, leading to
the induction of inflammatory gene expression (Olivier et al., 2004).
For instance, polyethyleneimine micelles cloaked in a polypeptide
corona increased cellular internalization in lymphoblast K562 cells
compared to their spherical counterparts. RAW264.7 mice
macrophages showed higher internalization of carboxyl-modified
nano-polystyrene compared to human endothelial HCMEC cells
(dos Santos et al., 2011). The internalization process of NPs into cells
often begins with cellular membrane damage and apoptosis. Factors
such as the surface charge and types play crucial roles in this process.
For instance, polyethylene NPs have been seen to damage the
cellular membrane structure, modify its fluidity, and eventually
initiate cell death (Rossi et al., 2014). NPs have been observed to
breach cellular membranes, triggering intracellular biological effects
(Jin et al., 2019; Qu et al., 2019).

The toxicity of NPs is associated with inducing changes in the
mitochondria, endoplasmic reticulum, and lysosomes. Prior
research has highlighted the harmful effects of NPs on the
mitochondrial structure and respiratory function, culminating in
metabolic and functional disorders (Armstrong, 2007). An in vitro
evaluation of human epithelial BEAS-2B cells exposed to NPs
revealed significant functional changes, including abnormal
energy metabolism (Carney Almroth et al., 2018). NPs have been
noted to modify the mitochondrial function by increasing oxygen
consumption in zebrafish models (Pitt et al., 2018). Exposure to NPs
has been linked to anti-apoptotic signaling of Bcl-2–caspase8 in the
C. elegansmodel (Qu et al., 2019). In Sterechinus neumayeri cells, NP
exposure led to increased levels of antioxidant activity, including
catalase, superoxide, metallothionein, and anti-apoptotic signaling
of Bcl-2–caspase8 (Bergami et al., 2019). NPs have been associated
with the induction of oxidative stress and stress-related autophagy
pathways in the endoplasmic reticulum, leading to the upregulation
of the Grp78 and Grp170 expression in coelomocytes (Bergami et al.,
2019).

After exposure to NPs, C. elegans exhibited endoplasmic
reticulum (ER) stress, unfolded protein responses, and a
disrupted fat metabolism. This involved the phosphorylation of
MAPK14 and upregulation of XBP1, sparking an innate immune
response. NPs appear to regulate an autophagy mechanism through
the endoplasmic reticulum stress instigated by misfolded protein
aggregation (Qu et al., 2019; Yang et al., 2020). These indicate the
important role of the ER in responding to biological effects triggered
by NPs. NPs have also been found to internalize and accumulate
within lysosomes, leading to lysosomal dysfunction by inducing an
acidic pH and modifying the membrane integrity. This
accumulation of NPs triggers the transcription factor EB,
enhancing the lysosome–autophagosome fusion and the clearance
of autophagic cargo (Song et al., 2015; Saftig and Haas, 2016). An
unresolved blockage of autophagic flux may ultimately result in cell
death by damaging lysosomes (Wang et al., 2018). NPs have been
reported of forming coronas, internalizing in the lysosome, and
causing damage upon the degradation of their surface corona (Wang
et al., 2013). For instance, PS NPs have been found to accumulate in
lysosomes and cause membrane damage (Brandts et al., 2020)
(Figure 2).

IL-8 expression has been found to increase in response to
polystyrene particles with a size range of 202–535 nm, triggering
inflammatory effects on human A549 lung cells (Brown et al., 2001).
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It has been noted that unaltered/carboxylated PS NPs with particle
sizes of 20 nm, 44 nm, 500 nm, and 1,000 nm increase the
expression of IL-6 and IL-8 and inflammation in various types of
human cancers (Prietl et al., 2014; Forte et al., 2016). Carboxylated
and amino-modified PS particles are noted to alter the scavenger
receptor expression in human cells, boost IL-10 production in
M2 cells, and elevate TGF-1 (M1) and energy metabolism (M2)
(Fuchs et al., 2016). Unaltered polythene particles with particle sizes
of 0.3 µm and 10 µm increased the secretion of IL-6, IL-1B, and TNF
in murine macrophages (Green et al., 1998). Polyethylene particles
from plastic prosthetic implants cause liver inflammation and
periprosthetic bone resorption (Devane et al., 1995a; Devane
et al., 1995b; Nich and Goodman, 2014). Additionally, 5 μm and
20 µm PS-MPs adversely affect neurotransmission (Deng et al.,
2017).

Children are more likely to develop metabolic disorders due to
exposure to MPs of sizes 0.5 and 5 μm, contributing to gut
microbiota dysbiosis and barrier dysfunction (Luo et al., 2019a;
Luo et al., 2019b). Pristine and fluorescent PS-MPs between 5 and
20 µm in size alter the amino acid and bile acid metabolism, impair
energy metabolism, and cause dysbiosis of the gut microbiota and
dysfunction of the intestinal barrier (Deng et al., 2017; Lu et al., 2018;
Luo et al., 2019a; Jin et al., 2019; Stock et al., 2019). PS NPs (30 nm)
prevented the movement of vesicles and the distribution of proteins
related to cytokinesis (Xia et al., 2020). Basolateral K+ ion channels

are activated by anionic carboxylated PS NPs of 20 nm size, which
also cause the Cl- and HCO3 ion efflux (McCarthy et al., 2011). The
sizes of 50 nm and 200 nm cationic PS NPs interfere with the
intestinal ion transport and cellular uptake (Mahler et al., 2012).

Detection of microplastics and nanoplastics
With the tremendous number of NPs released into the

environment, investigating their safety on human health is
necessary. These evaluations first focus on detecting MPs and
NPs in the environment. The standard available method to detect
NPs is asymmetric flow field-flow fractionation coupled with angle
light scattering (MALS), fluorescent labeling, and Raman tweezers
(Correia and Loeschner, 2018; Catarino et al., 2019; Gillibert et al.,
2019). However, due to issues with fluorescent labeling and cellular
autofluorescence leakage, artifacts often appear among the particles,
leading to false positive results in biological samples. There is a
pressing need to develop a comprehensive suite of detection
techniques that are efficient, convenient, and accurate for
effective environmental management and safeguarding human
health from exposure to these NPs. Achieving this goal would
empower toxicologists to accurately detect NPs in biological
systems, facilitate the establishment of clear standards, and
enable the proactive notification of those at high risk of
exposure. For instance, epidemiological and murine studies have
suggested that individuals with pre-existing conditions, such as

FIGURE 2
The potential role andmechanism of biocorona formation on NPs in mediating toxicity. The diagram reveals the sequential actions initiated by NPs,
such as BCL2 suppression, stimulation of caspase activity (both 8 and 9), induction of reactive oxygen species, amplification of proinflammatory
cytokines, lipid accretion, and ultimately, apoptosis, created with BioRender.com.
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metabolic syndromes, are more susceptible to engineered
nanoparticles’ impact than healthier individuals (Kobos et al.,
2019; Alqahtani et al., 2020; Kobos et al., 2020; Alqahtani et al.,
2021; Alqahtani et al., 2022; Xia et al., 2022). Similar vulnerabilities
may well extend to the exposure to NPs. Even though removing NPs
released into the environment poses significant challenges, potential
methods to reduce the volume of these discharged NPs do exist and
can be explored further.

Future directions in advancing microplastic
and nanoplastic safety evaluation

The mitigation of environmental pollutants, including NPs,
typically employs physical, chemical, or biological means.
Although physical and chemical methods have been explored,
they tend to produce more NPs rather than reducing the existing
ones. Biodegradation emerges as the sole effective strategy for
eradicating NP pollution. A substantial challenge confronting
toxicologists and policymakers is understanding the lifespan of
NPs once introduced into the environment. Since NPs can
absorb and leach environmental chemicals during transit, they
can transform under varied conditions and media (Jeong et al.,
2023).

Furthermore, aged NPs may change their chemical and physical
properties, possibly causing the release of additives into the
surroundings. Despite an unclear comprehensive impact, this
could potentially lead to adverse consequences for humans and
the environment, necessitating an investigation into the effects of the
chemicals released from NPs. Another challenge is establishing
rational and relevant NP concentrations for testing, as many
toxicity evaluations have been conducted with non-representative
exposure levels. Hence, assessments should consider the potential
harm of NPs at environmentally realistic concentrations.
Significantly, vast quantities of NPs have been detected in the
atmosphere, while studies investigating the potential respiratory
effects remain sparse.

In conclusion, standardizing NP characterization is crucial to
guarantee reproducible and compatible toxicological evaluations.
Bodies like the Organization for Economic Cooperation and
Development (OECD) and the International Organization for
Standardization (ISO) are in the process of developing standards
for aspects including NP synthesis methods, size determination,
surface properties, and analytical techniques (OECD, 2017).
Developing suitable in vitro and in vivo models is essential for
assessing potential NP toxicity, incorporating marine and zebrafish
models to probe the systemic impacts of NPs and in vitromodels in
investigating their toxicological mechanisms (Mattsson et al., 2017).
Given that animal models cannot entirely represent human
characteristics and responses to microplastics and NPs, the
application of human organoids may offer a more relevant
toxicity assessment model in future perspectives (Li et al., 2022b;
Bredeck et al., 2022; Chandy et al., 2022; Cheng et al., 2022; Li et al.,
2022c; Hou et al., 2022). A better understanding of NPs’ behavior
would aid in identifying potential exposure pathways and shaping
assessment strategies. Attributes such as the size, surface

characteristics, and aggregation state of NPs can influence their
interaction with environmental elements, such as soil, water, and
biota (Cui et al., 2021). Assessing the potential toxicity of NPs on the
microbiome, which is pivotal for human health and ecosystem
functioning, is also necessary (Li et al., 2021). To minimize
potential risks associated with NPs, a comprehensive risk
management strategy should be devised, which could encompass
reducing nanoplastic emissions, developing alternative materials,
and improving waste management practices (Oberoi and Garg,
2021). Gaining insights into the mechanisms of MPs and NPs in
animals could enhance efforts toward plastic elimination and
potentially reduce organotoxicity associated with MPs and NPs,
moving toward a life free of plastic pollution.

Conclusion

While there are extensive studies on MPs and NPs in marine
environments, our understanding of their human exposure
pathways is still limited. Based on existing evidence, it is
apparent that humans can be exposed to MPs and NPs via
ingestion, inhalation, and dermal routes. Following exposure,
MPs and NPs can cross biological barriers, potentially inducing
toxicity that triggers oxidative stress, inflammatory reactions, and
metabolism disorders, particularly gastrointestinal and pulmonary
infections. Although this review provides insight into the potential
mechanisms of MP and NP toxicity in humans, more research is
needed on the bioaccumulation, distribution, and transcriptomic
changes caused by MP and NP inappropriate test models.
Moreover, human biomonitoring studies are crucial in
determining MPs and NPs’ presence in biological fluids. This
would offer a comprehensive understanding and possibly
unravel any associated health issues.
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