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A rich pipeline of therapeutic candidates is advancing for Parkinson’s disease,
many of which are targeting the underlying pathophysiology of disease. Emerging
evidence grounded in novel genetics and biomarker discoveries is illuminating
the true promise of precision medicine-based therapeutic strategies for PD.
There has been a growing effort to investigate disease-modifying therapies by
designing clinical trials for genetic forms of PD - providing a clearer link to
underlying pathophysiology. Leading candidate genes based on human genetic
findings that are under active investigation in an array of basic and translational
models include SNCA, LRRK2, and GBA. Broad investigations across mechanistic
models show that these genes signal through common molecular pathways,
namely, autosomal lysosomal pathways, inflammation and mitochondrial
function. Therapeutic clinical trials to date based on genetically defined
targets have not yet achieved approvals; however, much is to be learned from
such pioneering trials. Fundamental principles of drug development that include
proof of pharmacology in target tissue are critical to have confidence in
advancing such precision-based therapies. There is a clear need for
downstream biomarkers of leading candidate therapies to demonstrate proof
of mechanism. The current regulatory landscape is poised and primed to support
translational modeling strategies for the effective advancement of PD disease-
modifying therapeutic candidates. A convergence of rich complex data that is
available, the regulatory framework of model informed drug development
(MIDD), and the new biological integrated staging frameworks when
combined are collectively setting the stage for advancing new approaches in
PD to accelerate progress. This perspective review highlights the potential of
quantitative systems pharmacology (QSP) modeling in contributing to the field
and hastening the pace of progress in advancing collaborative approaches for
urgently needed PD disease-modifying treatments.
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1 Introduction: Key scientific and
regulatory advances and enablers,
development challenges and
opportunities for precision medicine
development in PD

There has been significant advancement and momentum in
fulfilling medical unmet needs for patients with neurodegenerative
diseases. Technological and methodological innovations have
enhanced the quantitative understanding of brain physiology and
pathophysiology and the effects of therapeutic interventions.
Progress in genetics and genomics, catalyzed by the human
genome project and advances in science and technology as
applied to the nervous system have paved the way for important
discoveries with the linkage of genetic variants to the underlying
pathophysiology of neurodegenerative diseases. Moreover, there
have been tremendous regulatory innovations to accelerate the
pace of drug and vaccine approvals, as exemplified and
catapulted by the enormous medical needs ensuing from the
COVID-19 pandemic. While drug developers have worked in
record time to advance innovative vaccines, regulators around
the world have provided the appropriate paths for accelerated
emergency authorizations and ultimately approvals in the face of
a global pandemic. The pandemic served as a catalyst to reevaluate
processes that were archaic and inefficient, which paved the way for
new innovative approaches to clinical trial design and execution. In
the case of neurodegenerative diseases, scientific discoveries coupled
with regulatory advances have upended many years of unsuccessful
attempts at therapeutic intervention and have already enabled
important approvals in medicine. Recent examples of drug
approvals such as Nesinersen for Spinal muscular atrophy,
Tofersen for ALD-SOD1, Lecanemab for Alzheimer’s disease, and
Omaveloxolone for Friedreich’s ataxia are laying the groundwork
for other neurodegenerative diseases at an astonishing pace (Hoy,
2021; Saini and Chawla, 2023; van Dyck et al., 2023; Vitek
et al., 2023).

Parkinson’s Disease (PD) is a debilitating progressive
neurodegenerative disease that affects nearly 9.5 million people
worldwide (GBD, 2016 Parkinson’s Disease Collaborators, 2018).
More than 90,000 people in the U.S. are diagnosed each year, and
prevalence is rapidly growing over the next several years
(“Estimation of the 2020 Global Population of Parkinson’s
Disease PD,”2023; Ou et al., 2021). The burden of PD on the
lives of people affected by the disease is devastating, and
currently, approved dopaminergic medications that treat motor
symptoms are effective in improving motor symptoms yet lose
efficacy as the disease progresses. A complex array of nonmotor
symptoms are not effectively treated despite the burden they play on
the overall quality of life (Hermanowicz et al., 2019). There are two
broad categories of therapies for PD, namely, symptom-modifying
therapies (SMTs) and disease-modifying therapies (DMTs) (Sardi
et al., 2018; Ntetsika et al., 2021; McFarthing et al., 2022). As the
names suggest, SMTs focus on relieving the motor symptoms of PD,
such as bradykinesia and tremors; whereas DMTs aim to slow or halt
disease progression. Although currently approved treatments can
dramatically improve the lives of people with PD in the first few
years of disease diagnosis, they do not effectively treat the disabling
nonmotor symptoms, nor do they address the underlying causes of

the disease or the inevitable disease progression. There has been an
expanding focus on developing DMTs for PD prompted by
emerging advances in research into the underlying biology and
genetics of the disease. The 2023 clinical pipeline publication of PD
therapeutics reports that there are more than 130 clinical trials for
PD, of which 65 are investigating DMTs (McFarthing et al., 2022).
Despite the increase of focus on DMTs and advances in precision
medicine therapeutics, there are many challenges to overcome in
order to achieve approval of disease-modifying therapies.

There is an extraordinarily high rate of failures in clinical trials of
DMTs across neurodegenerative diseases, including PD (Mortberg
et al., 2022). Challenges are multifactorial and span a range of issues
including 1) the poor translatability of preclinical and animal
models in predicting drug efficacy for neurodegenerative diseases
(Dawson et al., 2018), 2) the long duration of time from disease onset
to manifestation of clinical symptoms in humans to objectively
measure disease progression in trials (McGhee et al., 2016;
Cummings, 2017), 3) the profound neurodegeneration that is
present at the time of clinical diagnosis (Jellinger, 2009) and 4)
the fact that CNS disorders are localized to a body compartment that
is not readily accessible for obtaining tissue or biofluid samples poses
a hurdle for successful noninvasive measurement of target
engagement in humans. Such examples pose barriers for
implementation of precision medicine in humans that are quite
distinct from conditions such as cardiovascular, oncology and
immunology that have paved the way for successful drug
approvals over the past decades. Transformation is taking place
given that 2023 was a year of landmark approvals of neurology
products with 9 approvals, second only to oncology indications.
Several of the neurology approvals were of disease modifying
therapeutics in disorders with unprecedented treatments (e.g.,
Frierdrichs ataxia) (Mullard, 2024).

There is growing evidence that early intervention holds the most
promise for disease modification and an urgent need to advance
trials targeting prevention. A recent study reported the negative
results of drug trials in neurodegenerative diseases over the past
2 decades (Mortberg et al., 2022). A systematic evaluation of clinical
trial registration data was conducted to analyze the characteristics of
trials in four major neurodegenerative diseases (AD, PD, ALS, and
FTD). Of the 3,238 neurodegenerative disease clinical trials
evaluated, only 2.7% of trials were investigated in pre-
symptomatic individuals. A total of only sixteen novel targets
tested in drug trials were based on genetically supported
therapeutic hypotheses, thus representing only a small, non-
increasing fraction of trials. Moreover, the mean lag from genetic
association to first trial was 13 years. The authors concluded that
additional investment in well-powered, well-controlled trials at
earlier disease stages may be needed to realize targets that hold
potential for disease modification and prevention. New initiatives
targeting gene based therapeutics, biological staging of disease and
target populations prior to onset of clinical symptoms are emerging
at a rapid pace in neurodegenerative diseases including in PD
(Crotty et al., 2022; Foltynie et al., 2023)with strong support
from the broader community including at risk individuals
(Keavney et al., 2023). Enabling early detection diagnostic
biomarkers are critical to support the earlier initiation of disease
modifying therapy, and the development of these early biomarkers
rests on longitudinal studies that enable the discovery and utility of
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these markers with the aid of artificial intelligence and systems
biology methodologies.

In PD, a diversity of factors have been proposed to contribute to
the challenges in the success of DMTs, such as heterogeneity of
clinical and pathologic endophenotypes, unpredictable placebo
responses, long duration of trials, and challenges in translation of
animal models (Espay et al., 2020; Devos et al., 2021). One of the
many contributing factors is the lack of validated biomarkers for
quantifying disease progression in disease-modifying trials.
Moreover, in a review of about 121 trials in neurodegenerative
diseases, less than half reported the use of central biomarkers, and a
little more than half of trials included at least one target occupancy/
activation biomarker (Vissers et al., 2021). However, there is reason
for optimism in this area given the rapid progress being made in the
development of biomarkers as drug development tools for
Neurodegenerative diseases (Marks et al., 2021; Qi et al., 2023)
and in PD specifically. Recent progress in biomarkers for PD has
advanced with the identification of disease hallmark signatures that
were previously only detected at autopsy to confirm pathologic
diagnosis. Alpha-synuclein, the key protein of Lewy Bodies, can now
be assessed with exquisitely high specificity and sensitivity in vivo
nearly a decade prior to the onset of clinical symptoms (Siderowf
et al., 2023). Additional new biomarkers that are assessed by
neuroimaging and biofluid methodologies are also advancing at a
rapid rate. The concept of multimodal biomarkers is also taking hold
as a key to success in identifying the onset and trajectories of
heterogeneous complex diseases (Carter et al., 2023).

Biomarkers are powerful tools to enable confidence in decision-
making along the drug development lifecycle for diverse
applications, including diagnosis, patient stratification,
pharmacodynamic response, and surrogates of efficacy.
Importantly, the rate of drug approvals across diseases is known
to increase when biomarkers are utilized in trials (Gromova et al.,
2020). The use of pharmacodynamic biomarkers to demonstrate
target engagement in early clinical development is key to assuring
proof of pharmacology in target tissue. The concept of three pillars
of drug development was outlined by industry leaders more than a
decade ago, where the roadmap requires demonstrating target
engagement as essential before advancing new candidates to
subsequent stages (Morgan et al., 2012). Demonstration of proof
of concept is challenging in drugs that target nervous system
disorders due to the need to show target engagement of drugs
that cross the blood-brain barrier and show dose-responsive signals
that can be measured in a central compartment. Mechanistic studies
can be applied in translational models in ways that address the valley
of death, and such studies clearly enhance confidence in dose
selection and confidence in mechanism in unique ways. A review
of the reported rate of mechanistic and physiological response
biomarkers across neurodegenerative disease trials of DMTs
showed that only 54% of trials used mechanistic (target
occupancy or activation) biomarkers to demonstrate target
engagement in humans (Vissers et al., 2021). Thus, there is a
need to improve proof of mechanism and target engagement for
all PD, particularly DMTs that are in the pipeline for PD.

There has been significant progress in Parkinson’s disease, with
the identification of genetically defined targets, advancement of
biomarkers of the disease, and, more recently, new efforts to
outline the biological staging framework of the disease. The

current understanding of the pathophysiology of PD has evolved
significantly based on advances in human molecular genetics. Such
findings are now elucidating specific molecularly defined therapeutic
targets for intervention and common pathways amongst distinct
candidate genes (Sardi et al., 2018). These advances are now leading
to refining the traditional syndromic definition of PD to enable
precision medicine therapeutic strategies (Schneider et al., 2020).
The rapid evolution of clinical trials targeting known risk genes has
evolved this past decade with key targets that focus on LRKK2, GBA,
and synuclein (SNCA) (Merchant et al., 2019; Senkevich et al., 2021;
Jasutkar et al., 2022; Magalhães and Lashuel, 2022; Taymans et al.,
2023). Leading clinical trials have not been successful to date; yet,
there is much to learn from these pioneering studies (Lang et al.,
2022; Pagano et al., 2022; Giladi et al., 2023).

With the discovery of genetically defined targets for Parkinson’s
disease, biomarker research, and advancements in translational
modeling strategies, we have a unique opportunity to optimize
and de-risk the translation of candidates to the clinic by
outlining the path for successful clinical proof of concept. By
bringing together improved mechanistic disease knowledge and
link to genetics, novel biomarkers, advanced modeling tools and
frameworks, and innovative regulatory advances and pathways, we
hold the unique opportunity as a community to set an accelerated
pace towards an approved therapy for Parkinson’s. In this
perspective, we outline this call to action for public and private
entities and patients for a roadmap to success in collaboratively
advancing disease-modifying therapies for PD.

2 Review of the genetic bases and
associated pathways of PD and
implications for biomarker
development and disease stratification

Genetics and pathways. The etiology of PD is complex and
multifactorial with contributions that include environmental
exposures, polygenic inheritance, and gene environment
interactions. Genetic forms of PD that are monogenic in nature
are relatively rare overall (Klein et al., 2018). LRKK2, GBA, and
SNCA have been key genes of focus including their role as novel
therapeutic candidates for disease modification. Human molecular
genetics are paving the way with Genome-wide association studies
(GWAS) identifying several gene mutations that confer a risk of
developing PD (Billingsley et al., 2023; Rizig et al., 2023). Risk-
associated genes may have different cellular roles, ranging from
energy production to protein degradation. Some common risk-
associated genes include LRRK2, PARK7, PINK1, PRKN, SNCA,
and GBA, as described in (Blauwendraat et al., 2020). Such genetic
findings represent a unique window into the underlying
pathophysiology of disease-causing mutations in specific target
genes. Many reviews have been published that represent
compilation of the genetics of PD (e.g., Singleton; Greenamyre,
Alcalay) and this is out of scope for this current perspective review.
However, it is striking to see the rapid progress in defining
downstream signaling pathways that are linked to specific
candidate genes. Furthermore, emerging data demonstrate that
distinct candidate target genes can signal through common
molecular pathways (Navarro et al., 2021; Kaiser et al., 2023;
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Gialluisi et al., 2021; Bandres-Ciga et al., 2020; Vollstedt et al., 2023).
Key mechanisms that are shared amongst distinct candidate genes
include autosomal lysosomal function, mitochondrial integrity and
function as well as inflammatory signaling pathways (Sardi et al.,
2018; Senkevich and Gan-Or, 2020; Gao et al., 2022; Muñoz-
Delgado et al., 2023).

The concept of precision medicine based strategies for PD
originated soon after the discovery of the link to LRKK2 gene
responsible for genetic PD as defined by PARK8 locus. Nearly
20 years later, a long journey of research led by academics and
industry has been actively pursuing therapies based on a toxic gain
of function hypothesis for LRRK2. Despite a large diversity of model
systems and translational research approaches aimed at
understanding the fundamental biology, at present, the field is
still aiming to define key questions that are key to address. In
advancing successful therapies based on inhibition of LRKK2, key
questions remain. Examples include the need to gain an
understanding of why distinct LRKK2 mutations lead to
pathology that differs from idiopathic PD (Rajput et al., 2006;
Hasegawa et al., 2009), to determine whether targeting LRKK2 in
the periphery would be beneficial or detrimental based on safety
(Taymans et al., 2023), and why disease progression of LRKK2 gene
carriers is unexpectedly slower than idiopathic PD in both motor
and nonmotor symptoms (Ahamadi et al., 2019; 2022).

The progress in PD pathophysiology has led to discovery of novel
biomarkers that have been catalyzed by the availability of large
prospective natural history datasets that contain detailed clinical,
imaging, genetic and fluid biomarkers. Examples of novel
biomarkers that have emerged recently include synuclein as
assessed by seeding amplification assays (Siderowf et al., 2023;
Concha-Marambio et al., 2023), LRKK2 mediators (Vissers et al.,
2023) and new mitochondrial activity (Rui et al., 2023) biofluid
biomarkers. Such biomarkers hold potential for use in patient
stratification as well as to document biological effects of candidate
drugs and proof of pharmacology.

Biological staging of disease represents a paradigm shift in
catalyzing drug development by targeting stages of the disease prior
to onset of clinical symptoms. A novel biological staging framework for
Neuronal Synuclein Disease (NDS) grounded in innovative advances
in biomarkers and genetics has been proposed (Chahine et al., 2023).
NSD is defined by the presence of pathologic n-asyn assessed by a
validated in vivo biomarker and the ultimate presence of dopaminergic
neuronal dysfunction via DAT SPECT neuroimaging. This biologic
definition is independent of the presence of clinical features, or if
present, of the specific clinical syndrome. Critical success factors for
biological staging of disease are the ability to appropriately stage the
disease process through the integration of translational platforms,
clinical outcome assessment tools, biomarkers, genetics, and
quantitative solutions to optimize trial design.

3 Role and impact of QSP in drug
development and opportunity to
advance PD therapeutic candidates
through clinical proof of concept

Quantitative Systems Pharmacology (QSP) is a mechanistic
modeling approach that is utilized for the assessment of

therapeutic molecular candidates for a disease by linking
descriptions of the molecular and cellular mechanisms of the
disease and drug to system-wide dynamics, bridging biomarkers
and clinical endpoints relevant for the disease (Azer et al., 2021;
Barrett and Azer 2023; Gadkar et al., 2016; Balbas-Martinez et al.,
2018; Kaddi C. D. et al., 2018; Coletti et al., 2020). There is a
chartered translational medicine course and track record, with many
published examples where integrating clinical data with biological
and pharmacological datasets and encapsulated into a QSP model
has enabled the advancement of candidates through the clinic and
the refinement or optimization of clinical study design such as
biomarkers, or patient selection or dose, elucidation of disease target
biology and impact of therapeutic modulation on downstream
pathways, as well as QSP platforms that have enabled the
prediction, de-risking or characterization of drug induced
toxicities such as liver or cardiac toxicities (Figure 1). QSP
modeling combines data and knowledge on the mechanisms of
disease with drug characteristics to predict biological or clinical
changes under pharmacological intervention (Sorger, 2011). While
there are a few examples of cross-industry collaborations in building
QSP platforms, the bulk of applications and impact have been
individual company and portfolio-driven. Given the mechanistic
nature of QSP models, the driving hesitation to building cross-
company models is the inadvertent sharing of proprietary and
competitive intelligence on specific lead molecules. However, data
and model-sharing best practices and existing cross-industry
collaboration models in QSP and more broadly in systems
biology and other disciplines across the industry provide ample
evidence that developing and executing precompetitive
collaborations, where QSP model structures and system
parameters are shared, and proprietary molecule specific
attributes remain confidential, can be successful and carry the
advantages of accelerated timelines and economies of scale.

QSP modeling has been applied to the development of novel
therapies across many therapeutic areas, both complex and rare
diseases, including cardiovascular and diabetes, immunology and
immune-oncology, infectious diseases, and neurological, amongst
others (Aghamari et al., 2022). QSP opportunities in the
neurosciences are emerging at a rapid pace (Bloomingdale et al.,
2021). The impact and range of applications are broad and have
historically been on influencing decisions relating to elucidating or
advancing the mechanism of action, prioritization of pre-clinical
candidates for entry into the clinic, or translational in nature, such as
predicting clinical response and leveraging these predictions to
optimize clinical design approaches such as selection of
biomarkers or endpoints, and response under treatment
(Figure 2). Other examples include predicting response of
different segments of a clinical population or identifying
mechanistic hypotheses to explain differential clinical response
to treatment.

Examples of QSP models and their applications include models
for cardiovascular diseases that have included building mechanistic
and multi-scale dynamical models to predict impact of many novel
agents such as sGC activators, neprilysin inhibition, and
angiotensinII blockade, PCSK9 inhibition, on cardiac function,
systemic circulation and vascular function, blood pressure and
lipid metabolism (Ming et al., 2017; Knox et al., 2016; Hallow
and Gebremichael, 2017; Peskin and McQueen 1988; Moss et al.,
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FIGURE 1
Legend: Application of QSP modeling in drug discovery and development stages Graphical illustration of the role of translational QSP modeling in
drug development decision making from target identification to late clinical development.

FIGURE 2
1egend: Areas of clinical development that can be supported by the utilization of a Quantitative Systems Pharmacology (QSP) model. Applications of
existing mechanistic models for Alzheimer’s Disease, Tuberculosis, Gaucher Disease, Amyotrophic Lateral Sclerosis, and their relation to the regulatory
landscape are indicated by the circle, square, triangle, and diamond respectively [insert citations here]. The proposed Parkinson’s Disease mechanistic
model may work in conjunction with existing drug-development practices to address scientific goals. Circle: AD amyloid PET: A QSP model was
used for prediction of PET change in response to dose (Geerts et al., 2023). Square: Gaucher Disease: Gaucher Disease QSP model used to simulate and
optimize the impact of enzyme replacement and substrate reduction treatment protocols (Abrams et al., 2020). Triangle: ALS NFL: Pharmacokinetic
model was used for prediction of response to dosing on Tofersen (Paris et al., 2022). Rectangle: Tuberculosis (Hanna et al., 2017). Diamond: References to
existing efforts of QSP modeling with respect to the regulatory landscape (Agharmiri et al., 2021; Musuamba et al., 2021).

Frontiers in Systems Biology frontiersin.org05

Denaro et al. 10.3389/fsysb.2024.1351555

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2024.1351555


2012). An example in rare diseases is a QSP model for Gaucher
disease where the model enabled the prediction of different
treatment regimens for maintenance of homeostasis allowing for
an optimized and more convenient treatment regimen for patients
(Abrams et al., 2020). This is a multi-scale model of Gaucher disease
that incorporates calibrated pathways relevant to dysregulation of
glycosphingolipid metabolism and specific to cells implicated in the
disease process such as splenic macrophages and hepatocytes.
Virtual populations of mild to moderate Gaucher disease type-1
were used to simulate the impact of optimizing enzyme replacement
and substrate reduction treatment protocols. In ALS, an ALS-SOD1
QSP model which incorporates SOD-1 specific biology and
neurofilament light (NFL) biomarker, was developed and used to
predict the response to treatment on Tofersen allowing for
optimization of dose and treatment protocol (Paris et al., 2022;
Biogen, 2023). Moreover, there has been much progress on
important QSP model components and building blocks for PD
that can facilitate and accelerate the build-up and delivery of
QSP application to translational questions, such as an alpha-
synuclein model (Righetti et al., 2022). In one mechanistic
model, investigators incorporated alpha-synuclein dynamics and
other mediators that drive accumulation during disease and
potential reduction on treatment. One example of a QSP model
with clinical translatability was reported by Roberts et al., which
consisted of a detailed biophysical model of a cortico-striatal-
thalamic-cortical network for motor symptoms in PD calibrated
to the clinical outcome measure Unified Parkinson’s Disease Rating
Scale (UPDRS) (Roberts et al., 2016). Such translational models that
can be modularized to facilitate a rapid implementation and
execution in drug development decision making promise to fill
gaps in translatability.

In the context of a defined gene target, such as GBA, LRRK2, or
SNCA for Parkinson’s, combining target engagement and modeling
tools to define and inform attributes of the translational strategy,
such as dose, biomarkers, and patient selection can be an effective
strategy in paving a successful path to clinical proof of concept.
Combining known mechanistic biomarkers such as alpha-synuclein
and pk-pd data for the specific target into a QSP framework, allows
drug developers including biologists, clinicians, and modelers to
work together in refining the attributes of the translational strategy,
increasing the probability of achieving clinical target engagement,
and advancing with greater confidence into clinical study. The
current dynamic landscape of PD therapeutics provides a unique
opportunity and framework for howQSPmodeling, when combined
with the appropriate data and expertise can be leveraged to increase
confidence in efficiently advancing promising DMTs in ways that
align with regulatory expectation.

4 Overview of existing initiatives and
associated databases towards enabling
effective and efficient clinical path to
proof of concept

The overarching need to address the challenges around
successful early clinical investigation and appropriate target
engagement leads us to assess available versus gaps in data and
knowledge. We have seen extensive development of public databases

and sources across several institutions and partnerships and look to
leverage this rich wealth of knowledge and data, in context and at
scale to enable successful and de-risked clinical paths to proof of
concept and inform effective and efficient target engagement
(Table 1 and Table 2).

4.1 Sources of data for PD

Multi-scale data that is grounded in genetics, proteomics, and
biomarkers is a true catalyst for analysis of disease progression
particularly in heterogeneous disorders including PD. The rapid
evolution and scientific advances in combination with big data
genomics that can be carried out in millions of individuals
worldwide have been transformative and hold true potential in
enabling precision medicine strategies (Ou et al., 2021).
Biomarkers are key in defining pathophysiologic correlates of
clinically meaningful change at various stages of the disease
spectrum. There are several examples of complex data of PD
observational cohorts that are available to serve as substrate for
QSP modeling to support gene-based therapeutic strategies (Klein
et al., 2018; Marek et al., 2018; Iwaki et al., 2021; Lange et al., 2023;
Vollstedt et al., 2023).

4.1.1 PPMI
The Parkinson’s Progression Marker Initiative (PPMI) sponsored

by the Michael J. Fox Foundation is a global collaborative initiative
launched over a decade ago aimed to identify and validate biomarkers
of onset and disease progression in a multicenter natural history study
(Marek et al., 2018). The ultimate goal of PPMI is to improve
understanding of disease etiology and course and to provide
crucial tools to enhance the likelihood of success of PD modifying
therapeutic trials. Critical success factors include alignment and
consensus on common data standards for sample and imaging
biomarker collection and the rapid integration of all study data
into the PPMI database. An independent PPMI biospecimen
review committee oversees the biobank and sharing of biological
samples including blood, cerebrospinal fluid (CSF), and urine which
are made publicly available to scientists.

Open sharing of the data and biological samples with the external
community of researchers and trialists has led to seminal discoveries
in terms of the underlying biology of PD. PPMI comprises a
partnership of government, PD foundations, industries, and
academics that work cooperatively together to advance research
and therapeutics for PD. To date, the PPMI data has been
downloaded and analyzed by investigators across the globe and is
a rich data source for industry in designing their clinical trials.

PPMI data has been effectively used for the discovery of novel
therapeutic targets, to identify candidate biomarkers for clinical trial
decision-making, for formal regulatory endorsement of imaging
biomarkers, for clinical trial enrichment, and recently, to enable
the measurement of alpha-synuclein in humans at a time up to
8 years prior to onset of clinical diagnosis.

4.1.2 Accelerated medicines partnership for PD
(AMP PD)

The PD accelerated medicines partnership was launched in
2018, with the goal of improving clinical trial design and
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identifying new targets and pathways for therapeutic development.
The 5-year effort is funded jointly by NIH and industry and has
created a harmonized data platform to support the identification of
targets and biomarkers for PD prognosis and disease progression.
The AMPPD program has gathered rich clinical and molecular
characteristics from PD cohorts. To date, the data is being analyzed
by global researchers to discover new targets and biomarkers with
focus on modalities such as proteomics, genomics, metabolomics,
and other molecular modalities analyzed from biospecimens. A total
of eight cohorts have been collected for PD and Dementia with Lew
Bodies (DLB) with several publications that have emerged from
analysis of the data to date (https://www.amp-pd.org/unified-
cohorts). Request for data can be accessed via https://www.amp-
pd.org/register-for-amp-pd.

4.1.3 Global Parkinson’s genetics program (GP2)
The monogenic network of GP2 aims to create an efficient

infrastructure to accelerate identification of novel genetic causes of
PD. A key area of focus is to investigate the underlying mechanisms
such as reduced penetrance and variable clinical expression of known
disease cause variants. Multidiscipliary experts from around the world
are collaborating in prospective ways such asWhole-genome sequencing
for up to 10,000 people with Parkinsonism. A recent review (Lange et al.,
2023) outlines the workflow and outreach as well as plans for sharing of
data inways that will advance the field overall. Partnershipswith relevant
consortia are also in place to enhance learnings across public private
partnerships. This includes AMPPD, MJFF Global Genetic PD cohort
(Vollstedt et al., 2023), and EPND (https://epnd.org/).

4.1.4 Parkinson’s Disease Biomarker
Program (PDBP)

The National Institute of Neurological Disorders and Stroke
Parkinson’s Disease Biomarker Program (PDBP) was launched
following a 2012 workshop that identified gaps in biomarkers for
PD. PDBP aims to support PD biomarkers research by leading
laboratory and clinically based biomarker discovery for PD. A data
management resource (DMR) is in place to support standardization

and data sharing fromwell-characterized longitudinal clinical cohorts,
with detailed clinical data collected and biospecimens banked. PDBP
serves to align and collaborate with other PD biomarker initiatives
such as the Michael J. Fox Foundation (PPMI), whose goal is
validation of biomarker discovery projects and BioFIND, an
observational cross-sectional study cohort. The inclusion of
atypical Parkinson’s and DLB is another unique aspect of PDBP.
Numerous publications have emerged from data that is supported by
PDBP. A comprehensive review of PDBP was published in 2017
(Gwinn et al., 2017): with much progress emerging over the past years
(Chen-Plotkin et al., 2018; Sadaei et al., 2022).

5 Advances in regulatory landscape and
utility of modeling and simulation for
addressing and accelerating drug
development regulatory milestones

Global regulatory agencies have recommended Public-Private
Partnerships (PPPs) as efficient ways to advance drug development
tools. Modeling and simulation drug development tools are
important not only in individual drug submissions during formal
review of new Investigational NewDrugs (INDs) but also pioneering
ways to collaborate. Formal regulatory endorsement of modeling
tools has been achieved by precompetitive collaboration in a range of
diseases including Alzheimer’s and Tuberculosis. The Federal Drug
Administration’s (FDA) fit-for-purpose path and the European
Medicines Agency’s (EMA) qualification of novel methodologies
provide a unique framework for consortia to engage regulators in
data-driven ways. Once endorsed, modeling tools are then used to
de-risk future targets, according to a defined context use, and serve
to streamline regulatory review of new chemical entities (NCEs)
oftentimes in ways that are mechanism independent/target agnostic.

Most recently, regulators are recommending expanding
Modeling & Simulation (M&S) tools from Ph2/3 decision-making
applications to the earlier translational stages of drug development.
Physiologically based pharmacokinetic (PBPK) modeling aims to

TABLE 1 Table of Parkinson’s Disease (PD) databanks and their offered data types.

Database Genomics Proteomics Metabolomics Imaging Clinical

PPMI X X X X X

AMP PD X X X X

GP2

PDBP X X X X

EPND

TABLE 2 Table of Parkinson’s Disease (PD) databanks with studies using measurement in associated biofluids.

Data bank Plasma PBMC Whole blood CSF Human IPSCs

PPMI X X X X X

AMP PD (GP2) X X X X ?

PDBP X X X X ?
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enable integration of physiological, and drug-dependent preclinical
and clinical information to model an investigational drug’s
absorption, distribution, metabolism, and excretion, predict drug
exposure at the site of action, as well as an invaluable tool for
predicting drug-drug interactions. The FDA has led PBPKmodeling
in a variety of different applications including chronic kidney disease
and pediatric dose extrapolations (Leong et al., 2012; Hsueh et al.,
2018). More recently, the FDA has advocated PBPK and QSP
models across a broad range of applications, including guidance
documents describing the format and content of PBPK submissions
in support of sponsor applications and recent best practices
published from a public workshop on PBPK modeling (https://
www.fda.gov/regulatory-information/search-fda-guidance-documents/
physiologically-based-pharmacokinetic-analyses-format-and-content-
guidance-industry, https://www.fda.gov/regulatory-information/search-
fda-guidance-documents/use-physiologically-based-pharmacokinetic-
analyses-biopharmaceutics-applications-oral-drug-product, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC8592512/) (Center for
Drug Evaluation and Research, 2020; Center for Drug Evaluation
and Research, 2021; Jean et al., 2021). Translational Model Informed
Drug Development (MIDD) strategies are particularly a need where
one sponsor is unlikely able to gather sufficient data on their own to
enable efficient drug development decision-making needed for
clinical trial design (Li et al., 2022). In May 2023, at a QSP
MIDD rare disease workshop, FDA leaders recommended that
consortia could address gaps that regulators face by carrying out
and publishing comprehensive literature reviews on leading disease
candidates being advanced by multiple sponsors (https://www.fda.
gov/drugs/news-events-human-drugs/creating-roadmap-quantitative-
systems-pharmacology-informed-rare-disease-drug-development-
05112023). Moreover, a publication summarizing the assessment of
QSP models and their application in drug development presented
the key challenges and opportunities discussed at an FDA-Industry
meeting (Bai et al., 2021; Center for Drug Evaluation and
Research, 2023).

A case example of collaborative approaches to advancing MIDD
is that of Critical Path Institute. C-Path has the mission of leading
multistakeholder collaborations that accelerate drug development,
advancing better treatments for people worldwide. A key core
competency is in the area of modeling and simulation tools. A
unified strategy based on Advancing fit-for-purpose Quantitative
Tools to Accelerate Drug Development has been applied across
multiple diseases of high unmet medical need. The overall strategy
centers on integration of academic natural history patient-level
datasets and clinical trial data into a unified data platform. The
unified data is then used to develop a quantitative description of
disease progression, accounting for relevant sources of variability,
including treatment, demographics, genetics and biomarkers, with
submission of such models as drug development tools to FDA and
EMA for endorsement. Regulators are increasingly reaching out to
the broad scientific and patient communities to seek input and
recommendations on key regulatory innovative strategies and new
frameworks. For example, FDA has released numerous new
guidances in 2023 on topics spanning real world data, digital
health technologies and artificial intelligence (AI) and machine
learning (ML) (https://www.fda.gov/science-research/science-and-
research-special-topics/real-world-evidence, https://www.fda.gov/
science-research/science-and-research-special-topics/artificial-intelligence-

and-machine-learning-aiml-drug-development) (US Food and
Drug Administration, 2023).

There are new initiatives coauthored by FDA and EMA aimed
to seek harmonization on model informed drug development
strategies that includes QSP (Marshall et al., 2023). The
community engagement of experts is encouraged to provide
input to such efforts to influence and guide the fit for purpose
development, implementation, validation, and application of
modeling technologies to defined context of use development
activities.

Now is the time to advance collaborative modeling strategies for
drug development in PD, at a moment in time when the field is
experiencing an inflection of knowledge on gene segments,
biomarkers, and translational research more broadly.

The list of recommended actions below is aimed at identifying a
potential roadmap to success in collaboratively advancing data
driven QSP models for PD DMTs.

5.1 Call to action for advancing
precompetitive QSP models to support
precision medicine strategies

• Prioritize gaps in PD therapeutic development focused on
advancing gene based therapeutic trials for PD.

• Define context of use for proposed QSP model drug
development tool.

• Determine the relevant sources of data that are available and
how they will be utilized to support the QSP drug
development tool.
• Data-driven strategies take advantage of the current wealth
of relevant data.

• AMPPD, PPMI, GP2, CPP integrated database, PDBP, tool
compounds and associated data

• Industry agrees to align on providing tool compounds that
are shared for proof of pharmacology modeling in agreed
upon models (animal, human induced pluripotent stem
cells, human).

• Prospective cataloguing of key relevant data sources to
demonstrate robustness of QSP model output with
independent datasets, under specified contexts of use.

• Multi-stakeholders come together under current PD public
private partnerships to collaborate on new PD focused QSP
model initiative: industry representatives, regulators, CPATH,
nonprofit research organizations, NIH, clinicians, academic
PD experts*.

• All stakeholders agree to share costs and data: Sharing of QSP
model development and final validated model structure and
code, systems wide parameters, tool compounds and data and
associated simulations.

• Formal request to regulatory agencies to advance a quantitative
drug development tool for review and endorsement via Model
informed drug development initiatives: FDA fit for purpose
path, EMA qualification of novel methodologies.

*Critical success factors: Regulatory agencies are fully engaged
from the genesis of the project and are engaged throughout all stages
to provide guidance and recommendations.
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The above path has been successfully advanced at Critical Path
Institute across many disorders including Alzheimer’s disease,
Huntington’s disease, Duchenne Muscular Dystrophy (reviewed by
Stephenson et al. (2023), and Type 1 Diabetes (Podichetty et al., 2022).
There has beenmuch progress by the Parkinson community to deliver
on shared clinical and biomarker databases. In conjunction with
additional candidate specific biology and pharmacology datasets,
and incorporation into a QSP prediction framework, we can
realize the opportunity to advance and de-risk the development of
each individual drug candidate and ultimately portfolio of candidates,
increasing the probability of approval of a drug for PD on the horizon.

This moment of opportunity, to translate the advances in science
and technology, available data, and translational capability and
expertise is unprecedented, and provides a unique and exciting
leverage to accelerate the development of innovative medicines for
Parkinson’s patients. We are confident and eager that this
community of patients, regulators, researchers, and sponsors will
come together to capitalize on this state of science and opportunity
for an incredible mission and cause.
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