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High dimensional characterization of drug targets, compound effects and disease
phenotypes are crucial for increased efficiency of drug discovery. High-throughput
gene expression measurements are one of the most frequently used data acquisition
methods for such a systems level analysis of biological phenotypes. RNA sequencing
allows genome wide quantification of transcript abundances, recently even on the
level of single cells. However, the correct, mechanistic interpretation of
transcriptomic measurements is complicated by the fact that gene expression
changes can be both the cause and the consequence of altered phenotype.
Perturbation gene expression profiles, where gene expression is measured after a
genetic or chemical perturbation, can help to overcome these problems by directly
connecting the causal perturbations to their gene expression consequences. In this
Review, we discuss the main large scale perturbation gene expression profile
datasets, and their application in the drug discovery process, covering
mechanisms of action identification, drug repurposing, pathway activity analysis
and quantitative modelling.

KEYWORDS

gene expression, perturbation, mechanism of action, drug repurposing, pathway activity,
modelling

Introduction

Identification of the systems level alterations in diseases and their relationships to drug
effect and efficacy are crucial to better understand drug-disease relationships and develop new
therapeutics (X. Yang et al., 2020). The most frequently used high-throughput, genome wide
(“omics”) methods for such a systems level characterisation are still transcriptomic
measurements such as microarray and RNAseq (McGettigan 2013; Manzoni et al., 2018).
Despite the relatively affordable acquisition and well established analysis methods, the correct
interpretation of gene expression measurements are complicated by several factors. Classical
analysis methods return lengthy lists of differentially expressed genes (e.g., healthy vs. control
sample), however differential expression does not necessarily mean altered activity on protein
level (Nusinow et al., 2020; Piran et al., 2020), and also differentially expressed genes are
frequently not the cause, but the consequence of the investigated phenotype. While different
prior-knowledge based bioinformatics methods like pathway analysis techniques (Nguyen et al.,
2019) can help in the interpretation, identifying the causal alterations are still difficult.

Perturbation gene expression signatures are defined as the gene expression difference
between a perturbed and control condition, calculated by differential expression analysis (Love
et al., 2014; Ritchie et al., 2015). In case of perturbation signatures, we can directly connect the
cause (perturbation) and the downstream effect (gene expression signature), which can help to
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understand cellular mechanisms (Lamb et al., 2006). Perturbation
gene expression profiles can be generated on gene level (by knocking-
out/down or overexpressing the gene of interest) and also on
compound level. Analysis of drug induced perturbation signatures
can help in several steps of the drug discovery process (Figure 1).
Comparison of drug and gene related gene expression profiles can
highlight drug mechanisms of action, and identify potential off-
targets. Comparison of disease signatures (differential expression of
disease and corresponding healthy tissue) and drug signatures is
frequently used to identify new indications for existing drugs.
Analysing signatures of drug pairs can identify synergistic and
antagonistic drug combinations. Finally, perturbation signatures
can help to develop methods to gain mechanistic understanding of
cellular processes from omics data.

In this Review, we discuss the most frequently used perturbation
transcriptomics measurement methods and the corresponding large
scale dataset, and the above mentioned main applications, with a focus
on cancer drug discovery.

Perturbation gene expression
measurement methods and datasets

While large amounts of low-scale perturbation gene expression
datasets are available in various public repositories [like GEO (Barrett
et al., 2013) and ArrayExpress (Kolesnikov et al., 2015)], their usability
is hindered by the complicated searchability, lack of uniformmetadata
format and possible batch effects between studies. To overcome these
problems, several authors created secondary databases, where gene

expression profiles from these public repositories were collected,
uniformly preprocessed and even metadata is standardised
(Lachmann et al., 2018). Crowdsourcing methods and natural
language processing (NLP) techniques can help to speed up the
lengthy manual metadata curation in these cases (Z. Wang et al.,
2016). Generally, a large proportion of these collected datasets are
focusing on transcriptomics changes in cancer cell lines, but there are
also dedicated collections of gene expression signatures from non-
cancerous tissues (Zheng et al., 2022).

Connectivity Map (Lamb et al., 2006) was the first large-scale
attempt to create a compendium of gene expression signatures.
Connectivity Map used originally 164 small molecules as
perturbations in 4 cell lines, and gene expression was measured
with Affymetrix microarrays. While this dataset was used in several
studies investigating drug mechanism of action and repurposing,
Connectivity Map lacked both genetic perturbations and diversity
of cell lines. High cost of microarray and bulk RNA sequencing made
perturbation gene expression profile generation unscalable, thus the
authors of the original Connectivity Map created the “next-
generation” Connectivity Map by measuring a reduced
transcriptome, using the L1000 technology (Subramanian et al.,
2017). Hybridisation based L1000 assay measures only the
expression of 978 “landmark” genes, and the rest of the
transcriptome is computationally inferred. L1000 technology
allowed the generation of more than 1,000,000 perturbation gene
expression profiles until 2017, and a new >3,000,000 profile dataset is
also available (at https://clue.io/). Importantly, the new Connectivity
Map contains more cell lines and a more diverse collection of
perturbations, including genetic (shRNA, CRISPR, and

FIGURE 1
Application of perturbation gene expression profiles in drug discovery. Perturbation gene expression signatures are defined as differential expression (DE)
signatures between perturbed and control samples (middle). Signatures can be used to identify compoundmechanisms of action, to repurpose existing drugs
for new indications, to identify synergistic combinations and for mechanistic understanding and following modelling of the drug induced perturbation
phenotypes. Created with BioRender.com.
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overexpression), chemical (small molecules) and physiological
(ligand) perturbations.

While RNA sequencing was considered too expensive to generate
large scale perturbation gene expression profiles, recent technological
advancements, especially single cell sequencing methods, brought
about a change in this. By using barcoding and pooling strategies,
bulk sequencing methods like PLATE-Seq (Bush et al., 2017) and
DRUG-Seq (Ye et al., 2018) reached comparable costs to the
L1000 assay and allowed the production of large scale drug
perturbation screens like PANACEA (Douglass et al., 2022). Recent
advancement of single cell RNA sequencing (scRNA-seq)
methodologies further increased the throughput of perturbation
gene expression profiling. One of the pioneer methods of the field,
Perturb-Seq combines CRISPR (Dixit et al., 2016) or CRISPRi
(Adamson et al., 2016) and sc-RNAseq with the help of expressed
guide barcodes. Perturb-Seq allows genome-wide (Replogle et al.,
2022) genetic perturbations, but only in one cell line in each
experiment. Other methods, like MIX-Seq (McFarland et al., 2020),
use a smaller number of chemical perturbations (anti-cancer drugs),
but measure gene expression profiles in a large number of cell lines,
with the help of SNP-based computational demultiplexing.
Importantly, scRNA-seq based methods can also identify
heterogeneity of perturbation response. As the number of scRNA-
seq perturbation screens increases, it is important to categorise and
harmonise these datasets, as done in (Peidli et al., 2022).

Currently a large number of ultra-high throughput methods are
available for new hybridization (L1000) and bulk/single cell RNA-seq
based perturbation gene expression screens. Also, the previously
described (Table 1), public datasets give rich sources for in silico
analysis of existing results. However, it is important to highlight that
all of these different methods and datasets have their own intrinsic
biases, highlighting the importance of harmonisation and comparison
of results from different sources. First important factor to consider is
the type of the used assay: L1000 measures only a reduced part of the
transcriptome, which can only explain partial variance (~90%) of total
transcriptomics difference (Subramanian et al., 2017). While the rest
of the transcriptome is inferred, the computationally inferred
transcriptomic changes are less reliable, especially in case of very
specific perturbations (e.g., shRNA induced gene expression decrease
of the target gene is generally only detected in case of landmark genes,
and not in case of inferred genes). Single cell sequencing also leads to
lower number of detected genes than classical bulk sequencing,
however pseudo-bulking methods can help to overcome these

problems (McFarland et al., 2020). While lower coverage in case
of L1000 and scRNAseq based assays can be problematic to identify
specific differentially expressed genes, multigene signature based
techniques (discussed in the following sections) are less sensitive
for the lower number of detected genes (Holland et al., 2020). It is
also important to consider perturbation type related differences in
case of interpretation. While CRISPR has the highest specificity,
shRNA perturbations can lead to partial inhibition, which
resembles drug effect better in some cases (Michael Krill-Burger
et al., 2022). In case of drug perturbations, increasing the drug
concentration can lead to higher proportion of off-target effects,
and (especially in case of oncology drugs) increased toxicity, which
can mask the compound specific transcriptional effect (Szalai et al.,
2019).

Mechanism of action inference

As potential off-targets can influence both adverse effects and
clinical efficacy (Lin et al., 2019), characterisation of drug target
profiles is a crucial step of drug development. Also, identifying new
targets of existing drugs can facilitate drug repurposing in new
indications (see also next section). Classical methods characterise
drug targets by the binding strength of drugs to individual target
proteins. While these methods can effectively characterise the
binding characteristics to the main targets (or shortlisted off-
target candidates), they are not feasible on genome/proteome
scale to identify off-targets. In contrast, gene expression changes
induced by drug perturbations can help to define target profiles
potentially on the genome scale (Trapotsi et al., 2022).

The basic principle of gene expression profile based mechanism of
action (MoA) identification is based on the fact that compounds with
shared mechanisms of action lead to similar changes of cellular
signalling mechanisms, thus leading to similar gene expression
changes (Figure 2). The perturbation gene expression profile of a
drug with unknown mechanism of action can be used to query large
scale datasets (see previous section) and identify potential MoA based
on similarities (Musa et al., 2018). Frequently used similarity metrics
are generally correlation (Szalai et al., 2019) or enrichment
(Subramanian et al., 2017) based. Drug signature based MoA
identifications has successfully used to identify Rho-kinase inhibitor
Fasudil as autophagy inducer (Iorio et al., 2010), PKC inhibitor
Enzastaurin as GSK3 inhibitor (Subramanian et al., 2017) and the

TABLE 1 Public datasets and databases for perturbation gene expression profiles.

Dataset Perturbation type Short description Database URL Reference

CREEDS chemical and genetic crowdsourced collection of perturbation signatures from GEO https://maayanlab.cloud/
CREEDS/

Wang et al. (2016)

ChemPert chemical collection of non-cancer perturbation signatures https://chempert.uni.lu/ Zheng et al. (2022)

Connectivity Map
(LINCS)

chemical and genetic L1000 assay based, >3,000,000 signatures https://clue.io/ Subramanian et al.
(2017)

PANACEA chemical anti-cancer drug perturbation signatures in multiple cell lines,
RNAseq

Douglass et al. (2022)

Perturb-Seq (genome
wide)

genetic genome-wide CRISPRi in 1 cell line, scRNA-seq https://gwps.wi.mit.edu/ Replogle et al. (2022)

Mix-Seq chemical anticancer drug perturbations in multiple cell lines, scRNA-seq McFarland et al. (2020)
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role of JAK2 in theMoA ofMitomycin C (Woo et al., 2015). In a recent
large scale, crowdsourced benchmarking study (Douglass et al., 2022),
participants used perturbation gene expression signatures of cancer
cell lines treated with 32 kinase inhibitors to predict the targets of these
(for the participants unknown) drugs. Best performing methods were
able to predict experimentally verified targets with ROC AUC >0.7,
also confirming the applicability of gene expression signatures for
genome wide inference of drug (off-) targets. With this study
(Douglass et al., 2022), also created a benchmark dataset for
further computational studies.

Drug signature based MoA identification has similar
performance as the gold standard of the field, chemical
similarity based methods (Baillif et al., 2020). However, while
chemical similarity based target/MoA prediction can be
performed on any compound of a (even virtual) library,
expression profile similarity based predictions require prior
measurement of drug induced gene expression signature. On the
other hand, expression signatures can help to identify more
“unexpected” off-targets and mechanism of actions. This is
especially true, if the similarity is calculated between the
signatures of chemical and genetic perturbations, where MoA is
identified not through “guilt-by-association” (similarity to drugs
with knownMoA), but based on the direct similarity of a drug’s and
its target’s genetic perturbation profile. Recently several methods
were developed to infer compound MoA based on CRISPR and
shRNA induced signatures (Pabon et al., 2019; Jang et al., 2021;
Zhong et al., 2022). On the other side, time scale and efficacy of
perturbation can be substantially different between chemical and
genetic perturbations (e.g., in Connectivity Map (LINCS) dataset

gene expression is measured 24 h after drug, but 96 h after genetic
perturbation), which can make cross perturbation modality
comparisons more complicated. Importantly, perturbation
signatures can be generated for each investigated cell line, but
“consensus” (i.e., general, cell line independent) signatures of drugs
can be also created. While using consensus signatures can simplify
analysis pipelines, they can mask cell line specific effects (Innes and
Bader 2021), and as recent analysis suggest, some methods for
consensus signature calculation can lead to artificial similarities of
unrelated signatures (Smith and Haibe-Kains 2022). Also, it is
important to highlight that similarity between gene expression
profiles does not necessarily imply shared MoA, especially in case
of anti-cancer drugs. Anti-cancer drugs lead to decreased cell
viability, which is represented in their perturbation gene
expression signatures (Szalai et al., 2019; Jones et al., 2020;
McFarland et al., 2020). Thus two cytotoxic drugs can have
similar gene expression signature, despite having distinct
mechanisms of action, which effect can be removed by
appropriate statistical models (Szalai et al., 2019; McFarland
et al., 2020). On the other side, drug and genetic perturbation
induced cell viability changes can be also used to identify the target
profile of anti-cancer compounds: correlating drug sensitivity
(Iorio et al., 2016; Corsello et al., 2020) and gene essentiality
(Tsherniak et al., 2017; Behan et al., 2019) on large panels of
cancer cell lines (Ghandi et al., 2019; van der Meer et al., 2019) can
help to identify on- and off-targets based on sensitivity profile
similarity (W. Wang et al., 2022; Gonçalves et al., 2020). Gene
expression signature and sensitivity profile based methods can
complement each other in computational MoA inference.

FIGURE 2
Mechanism of action inference. Similarity (correlation or enrichment based) can be calculated between the perturbation gene expression profiles of
drugs with knownMoA (Drug1-Drug5) and a compoundwith unidentifiedMoA (DrugX). Similarity matrix indicates mechanism of action relationships of drugs,
and can be used to identify MoA of the unknown compound. Created with BioRender.com.
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Drug repurposing—Signature reversion

Drug repurposing, the process of finding new indications for
existing, approved drugs, gains more and more relevance with the
increasing costs of de novo drug development (Pushpakom et al.,
2019). Importantly, already approved drugs have a lower chance to fail
due toxicity in new indications. Drug repurposing is especially
important in case of rare diseases, where small market size makes
de novo drug discovery even more complicated.

Drug induced perturbation gene expression profiles are frequently
used for computational drug repurposing (Sirota et al., 2011). The
main hypothesis behind signature reversal based methods is, that if a
drug induced gene expression signature is anti-similar to a disease
related gene expression signature, then the drug can potentially reverse
the disease specific gene expression changes, thus the disease
phenotype. In these studies, the similarity of disease signatures and
drug induced signatures is calculated, and drugs showing negative
similarity are prioritised for further experimental validation. Signature
reversal hypothesis - despite its relative simplicity—led to
identification of repurposable drug candidates from cancer (B.
Chen et al., 2017; Stathias et al., 2018) through inflammatory
(Malcomson et al., 2016) to metabolic diseases (Kunkel et al., 2011).

While signature reversion is frequently used to identify anti-
cancer compounds (B. Chen et al., 2017), recently the confounding
role of cell proliferation in these studies have been revealed. While
cancer signature (differential expression signature between cancer
samples and corresponding healthy cells/tissues) contains a strong
cell proliferation related component, anti-cancer drugs generally
inhibit cell proliferation, and their gene expression signature
contains a strong anti-proliferative (cell death related) component
(Szalai et al., 2019). This suggests that the anti-similarity of cancer and
anti-proliferative drug signatures is trivial, and the drugs identified by
signature reversal methods are not necessarily effective in the
investigated cancer type, just general toxic compounds. A recent
publication (Koudijs et al., 2022) showed that removing the
confounding effect of proliferation/anti-proliferation related gene
expression changes significantly decreased the predictive
performance of signature reversal methods.

Another disease indication, where the signature reversal
hypothesis has to be used with caution, is infectious diseases.
During the COVID-19 pandemic, signature reversal methods
have been frequently used to identify potential antiviral drugs
against SARS-CoV-2. Several of these studies found that drugs
having a similar (and not anti-similar, which would be assumed
based on the signature reversal hypothesis) gene expression
signature to SARS-CoV-2 infection induced transcriptomics
signature are effective in vitro antivirals (F. Chen et al., 2021;
Barsi et al., 2022). As in case of viral infection diseases, infected
host cells activate adaptive, antiviral pathways (like NFkB and JAK-
STAT), supporting and not reversing these activities indeed can
have beneficial, antiviral effects. Nevertheless, other studies found
that drugs showing anti-similarity to influenza infection signature
are effective antivirals (Pizzorno et al., 2019), thus the general
usefulness of signature reversal methods in infection diseases needs
further evaluation.

Most current signature reversal methods use bulk disease
transcriptomics data for drug prioritisation. However, in a bulk
tissue sample, several different cell types exist. While the gene
expression changes of some of these cells can have a causal role in

disease development (thus are candidates for signature reversing
drugs), other cell types’ gene expression profile can change as a
consequence of disease process. Using single cell RNA-seq to
identify cell type specific disease signatures and repurposable drugs
can further increase the applicability of signature reversal methods
(Liu et al., 2022).

Identifying synergistic drug combinations

Using drug combinations can help to use lower drug doses, thus
can decrease the frequency of adverse effects, and can help to
overcome drug resistance mechanisms, especially in case of anti-
cancer compounds. Drug combinations are classified as synergistic,
additive or antagonistic, based on the difference between observed and
expected drug effects, where the expected drug effect is calculated
using some synergy model like Bliss independence of Loewe additivity
models (Yadav et al., 2015). To experimentally measure synergy,
multiple dose—Response curve measurements are required, thus
large-scale experimental testing is generally not feasible due to the
combinatorial increase of the number of possible combinations.
Computational methods are frequently used to infer drug synergy
for new combinations in new biological samples.

Generally, machine learning models (Menden et al., 2019) use
features of drugs, and features of the cell line to predict synergistic
effects of the drugs. The most frequently used drug features are
chemical fingerprints or other representation of the drugs chemical
structure (Preuer et al., 2018). However, drug induced gene expression
signatures contain more context specific biological information
regarding drug effect than chemical structure, thus their
application for drug synergy prediction can be beneficial. Using
drug signatures has been used to predict synergistic effects of anti-
cancer drugs (Bansal et al., 2014), and a recent benchmarking study
showed that machine learning models using expression based features
significantly outperform standard, chemical feature based methods (El
Khili et al., 2022). Interestingly, several of these studies suggest that
similarity between drug signatures is a strong predictor of synergistic
drug effect (Diaz et al., 2020), suggesting drugs targeting the same
pathway, but at different targets are generally more synergistic. Other
studies found that strong compound similarities, but also
dissimilarities are correlating with synergistic drug effect (M. Yang
et al., 2020), suggesting that more detailed computational studies and
experimental datasets are needed to fully understand mechanisms
behind drug synergy. Importantly, measuring combination induced
transcriptomics changes (Mathur et al., 2022) can help to resolve these
ambiguities.

Interpretation—Pathway activity

While mechanism of action, drug repurposing, and even synergy
prediction is possible by similarity based/black-box machine learning
methods, biological, mechanistic interpretation of drug induced gene
expression changes can also help to better understand drug effect and
identify potential biomarkers. Standard methods for such a biological
interpretation are gene set enrichment and pathway analysis
techniques (Nguyen et al., 2019).

Classical pathway analysis techniques calculate some kind of
enrichment of differentially expressed genes, using pathway
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member genes as gene sets (Subramanian et al., 2005; Liberzon
et al., 2015). Importantly, these methods (indirectly) assume some
clear connection between gene expression, protein abundance and
protein activity, however these assumptions are not necessarily
correct (Szalai and Saez-Rodriguez 2020). Other methods are using
the expression of pathway regulated (“footprint”) genes to infer
which pathway activity changes had led to the observed gene
expression pattern (A. Dugourd and Saez-Rodriguez 2019).
These later methods have been shown to better represent
biological phenotype in several benchmarks than classical,

pathway membership based pathway analysis techniques
(Cantini et al., 2018; Holland et al., 2019; Szalai and Saez-
Rodriguez 2020; Douglass et al., 2022). One can argue that
“footprint” based methods are better suited to identify pathway
activity changes responsible for the gene expression changes of a
sample, while classical, membership based methods try to infer the
possible consequence of gene expression changes on pathway
activity. While the latter can identify important information
(like negative feedback mechanisms), it is generally mode
speculative than results of “footprint” based methods (Figure 3).

FIGURE 3
Classical and footprint based pathway analysis methods. Classical pathway analysis methods (A) use the gene set created from pathway member genes.
Footprint based pathway analysis methods (B) use gene sets of pathway regulated genes. In a hypothetical experiment (C), where protein E is perturbed with a
drug, altered expression of a, b, c genes ismeasured. Classical methods infer the altered activity of Pathway A (composed of A, B, C, D proteins), while footprint
based methods correctly identify Pathway E as the target of the perturbation. Proteins are labelled with uppercase while corresponding mRNA with
lowercase letters. Created with BioRender.com.

TABLE 2 Computational tools for footprint based pathway activity inference.

Tool Inferred
activity

Short description Tool URL Reference

ChEA3 Transcription
factor

Co-expression and ChIP-seq based regulatory
interactions for TFs

https://maayanlab.cloud/chea3/ Keenan et al. (2019)

CytoSig Cytokine Signatures collected for 43 cytokines form
perturbation data

https://cytosig.ccr.cancer.gov/ Jiang et al. (2021)

DoRothEA Transcription
factor

Co-expression, motif, ChIP-seq and literature based
regulatory interactions for TFs

https://bioconductor.org/packages/release/data/
experiment/html/dorothea.html

Garcia-Alonso et al. (2019)

Viper Protein Co-expression based regulatory interactions https://www.bioconductor.org/packages/release/
bioc/html/viper.html

Alvarez et al. (2016)

PROGENy Pathway Signatures collected for 14 cancer related pathways
from perturbation data

https://bioconductor.org/packages/release/bioc/
html/progeny.html

Schubert et al. (2018); Holland
et al. (2019)

SPEED2 Pathway Signature collected for 16 pathways form perturbation
data

https://speed2.sys-bio.net/ Rydenfelt et al. (2020)
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Of course, to apply “footprint” based pathway analysis methods,
prior knowledge regarding the pathway regulated genes is required.
This information can be collected via literature mining and gene
regulatory network inference (Alvarez et al., 2016; Garcia-Alonso
et al., 2019; Keenan et al., 2019), but perturbation expression
profile datasets are also excellent sources for this information.

Methods like PROGENy (Schubert et al., 2018) or SPEED (Parikh
et al., 2010; Rydenfelt et al., 2020) collected a large set of gene
expression profiles related to the investigated pathways, and used
different statistical models to identify the pathway responsible
“footprint” genes (Table 2). Footprint concept has recently
extended to infer ligand/receptor associations and activities (Jiang

TABLE 3 Gene expression based mechanistic modells.

Tool Short description Tool URL Reference

CARNIVAL Identifies signalling pathway activity changes by connecting perturbations to inferred
transcription factor activities using integer linear programming.

https://github.com/saezlab/CARNIVAL Liu et al. (2019)

NicheNet Predicts protein (ligand-receptor) activity by connecting receptors to gene expression
through signalling and gene regulatory network. Strength of ligand—gene expression
interactions are calculated via Personalised PageRank.

https://github.com/saeyslab/nichenetr Browaeys et al. (2019)

KPNN Predicts protein activity from gene expression using a neural network architect
resembling gene regulatory and signalling network.

https://github.com/epigen/KPNN Fortelny and Bock.
(2020)

CausalPath Identifies causal priors (causal graph motifs) from Pathway Commons database
Cerami et al. (2011), and matches them with correlated changes from the analysed
data. Uses also (phospho)proteomics data

https://github.com/PathwayAndDataAnalysis/
causalpath

Babur et al. (2021)

LEMBAS Predicts transcription factor activity from ligand stimulation using a recurrent neural
network resembling signalling network.

https://github.com/Lauffenburger-Lab/LEMBAS Nilsson et al. (2022)

FIGURE 4
Perturbation multi-omics. Characterising the same perturbations with data from different omics-modalites can give better description of cellular
phenotype and can better describe the individual layers of cellular regulation and the connections between them. Created with BioRender.com.
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et al., 2021). Interestingly, benchmarking studies suggest (Badia-i-
Mompel et al., 2022) that quality of the used footprint gene set has a
higher influence on the performance, than the used statistical method.
In case of transcription factor activity inference methods, the ones
using multiple sources of regulatory interactions (like ChIP-Seq data,
co-expression, literature curated data and promoter binding motifs)
perform better (Garcia-Alonso et al., 2019; Keenan et al., 2019) than
the ones relying on single sources of information. The performance of
perturbation profile based pathway activity inference methods is also
strongly dependent on the quality and amount of the collected
perturbation experiments (Schubert et al., 2018). Perturbation
expression profiles are also needed for the correct benchmarking of
pathway analysis techniques, as for assessing a newly developed
method, ground-truth data is required. Importantly, while for the
development and benchmarking of footprint based pathway activity
inference tools perturbation gene expression data is suitable, these
methods can be effectively used also on baseline (e.g.,: disease samples)
expression data (Schubert et al., 2018).

Modelling cellular phenotype

One of the main goals of systems biology studies is to develop
mechanistically understandable and simulatable models of cellular
processes (Froehlich et al., 2017). Importantly, virtual perturbation in
these models can help to identify biomarkers and synergistic drug
combinations (Eduati et al., 2017). These models generally use some
prior-knowledge biological (signalling) network (Türei et al., 2021) to
connect proteins (nodes) and use data-driven methods to
parameterise (fit) the network parameters (edge weights) to the
biological context (Garrido-Rodriguez et al., 2022). To fit the
network parameters, a wide range of computational tools are used,
like graph algorithms (Browaeys et al., 2019), integer linear
programming (Liu et al., 2019) or neural network architectures
(Yuan et al., 2021; Nilsson et al., 2022). Perturbation data is
especially suitable for contextualisation of these models (Korkut
et al., 2015), as in case of perturbation experiments the response of
the same cellular system is measured, which lowers the amount of
possible parameters of the model.

While proteomics data has been used most frequently for
simulation of signalling networks (Yuan et al., 2021), recently
gene expression data has been also effectively applied in this
context (Table 3). Importantly, while (phospho) proteomics data
can be used directly to approximate activity of signalling
components, transcriptomics data is less suitable for modelling
signal flow. However, either by using gene expression data in gene
regulatory context (Browaeys et al., 2019; Liu et al., 2019; Fortelny
and Bock 2020; Babur et al., 2021) or inferring protein activities
from gene expression (Nilsson et al., 2022) can help to build
effective mechanistic models for cell signalling using
transcriptomics data. While perturbation data based mechanistic
models are obviously hard to create for patient data, baseline data
could also be used to transfer and contextualise these models to in
vivo settings (Saez-Rodriguez and Blüthgen 2020). Currently, the
main application of these modelling frameworks is hypothesis
generation and more general and unbiased benchmarks are
needed to compare them and measure their general predictive
performance.

Conclusion

As collected above, perturbation gene expression profiles can give
rich input data for drug discovery and development. Drug induced
expression changes can help to identify the on- and off-targets of
newly developed compounds, comparison to disease signatures can
reveal new disease indications, and suitable analysis of gene expression
signatures can give mechanistic insight regarding drug action.

Additionally, recently more and more perturbation data from other
omics modalities is available, suggesting the importance of perturbation
multi-omics in the future. High throughput, high content imaging and
featurization of images allows to derive morphological signatures of
perturbed cell states, which can be used to identify compound
mechanisms of action similarly to gene expression profiles (Haghighi
et al., 2022). Also, morphological profiles are generally interpretable for
cell biologists, and can be directly connected to perturbation induced cell
states. Proteomics and phospho-proteomics aremore closely connected to
the activity of cellular process than gene expression, so perturbation
proteomics datasets can be used to infer compound effects of signalling
and compound similarities (Zhao et al., 2020; Gabor et al., 2021). Recently
also drug induced metabolomics changes were used to describe cellular
phenotype and synergistic drug effect (Lu et al., 2022). Figure 4.

Most importantly, different omics layers can measure different,
not interchangeable variance of cellular phenotype (Gross et al., 2022),
thus using integrative data analysis (Argelaguet et al., 2020) and
modelling methods (Dugourd et al., 2021) of different, but
harmonised omics modalities can lead to better understating of
drugs’ effect on cellular processes in the future.

In summary, perturbation gene expression measurements create
valuable insight to analyse durg effect in target cells, and the
computational tools developed with perturbation data can also be
generalised to baseline, including patient data.
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