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Computational models that can explain and predict complex sub-cellular, cellular,
and tissue-level drug response mechanisms could speed drug discovery and
prioritize patient-specific treatments (i.e., precision medicine). Some models are
mechanistic with detailed equations describing known (or supposed)
physicochemical processes, while some are statistical or machine learning-
based approaches, that explain datasets but have no mechanistic or causal
guarantees. These two types of modeling are rarely combined, missing the
opportunity to explore possibly causal but data-driven new knowledge while
explaining what is already known. Here, we explore combining machine learned
associations with mechanistic models to develop computational models that
could more fully represent cellular behavior. In this proposed MEMMAL
(MEchanistic Modeling with MAchine Learning) framework, machine learning/
statistical models built using omics datasets provide predictions for new
interactions between genes and proteins where there is physicochemical
uncertainty. These interactions are used as a basis for new reactions in
mechanistic models. As a test case, we focused on incorporating novel IFNγ/
PD-L1 related associations into a large-scale mechanistic model for cell
proliferation and death to better recapitulate the recently released NIH LINCS
Consortium MCF10A dataset and enable description of the cellular response to
checkpoint inhibitor immunotherapies. This work is a template for combining big-
data-inferred interactions with mechanistic models, which could be more broadly
applicable for building multi-scale precision medicine and whole cell models.
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Introduction

The molecular signaling mechanisms of cancer cells are highly heterogenous, leading to
treatment resistance and recurrence. Thus, the need for personalized interventions to block
tumor growth is high. The traditional drug discovery pipeline is comprised of extensive trial-
and-error experiments, testing thousands of chemicals, refining their structure for safety and
toxicity, and administering years of clinical trials. This burden might be reduced by
understanding the underlying molecular mechanisms with the help of computational
models (Yu et al., 2018; Saez-Rodriguez and Blüthgen, 2020).

Computational tools and models are becoming indispensable in medical research, where
a cycle of experimentation and computation is used to learn about and test new hypotheses.
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The models guide experimental hypothesis generation, and
experimental observations enable fine-tuning computational
models to understand the biological phenomena. Owing to the
advances in wet-lab experimental techniques and tools, “Big
Data” repositories become more prominent each year. The
knowledge base of these databases includes genomics,
proteomics, epigenomics, and clinical information (Barrett et al.,
2012; Uhlen et al., 2015; Subramanian et al., 2017; Hoadley et al.,
2018; Wishart et al., 2018; Nusinow et al., 2020). To understand the
underlying biological facts, analysis of the wealth of the
aforementioned big datasets should become more practical and
go beyond context-dependent and scope-limited biological events.

Building computational models that explain and predict such
highly heterogenous and complex cellular responses is no easy task.
The popular mechanistic models are sets of detailed equations
describing curated knowledge of what is happening within the
cells. Such models (Bouhaddou et al., 2018; Fröhlich et al., 2018;
Münzner et al., 2019) are usually small in scale: tens of equations and
10s–100s of model species (Figure 1). Another popular class is
machine learning based models, which are data-driven, descriptive,
and mostly large-scale (genome-wide or exome-wide) (Malta et al.,
2018; Wong and Yip, 2018; Yu et al., 2018; Yang et al., 2019). These
types of models are generally coined as black-box models because
although they perform well in precision/recall metrics, how they do
so is blurry (Figure 1). So far in the literature, these two types of
models are rarely combined, missing the opportunity to generate
new knowledge while explaining what is already known (Baker et al.,
2018).

Here, we explore a combination of both methods to develop
better models that will more completely represent generated
biological knowledge and introduce MEMMAL (MEchanistic
Modeling with MAchine Learning) framework. MEMMAL
processes connections inferred via machine-learning pipelines
(i.e., MOBILE (Erdem et al., 2022a)) as new interactions into
mechanistic models (i.e., SPARCED (Erdem et al., 2022b)) to
better recapitulate available datasets (i.e., the recently-released
MCF10A dataset (Gross et al., 2022)). The NIH-LINCS
Consortium and MCF10A Common Project recently released this
dataset, consisting of multiple omics assay types on breast epithelial
MCF10A cell line. MOBILE is a new pipeline to integrate multi-
omics datasets and identify context-specific interactions. SPARCED
is one of the largest mechanistic models of mammalian cells and is
an open-source, human-interpretable, and easy to alter modeling
format. Here we focused on incorporating novel IFNγ/PD-
L1 related associations into the SPARCED model to enable
description of the cellular response to checkpoint inhibitor
immunotherapies. This work is a template for combining big
data, machine-learning-inferred interactions with mechanistic
models, which could be more broadly applicable towards
building multi-scale precision medicine and whole cell models.

Materials and methods

In this work, we use ligand-specific interactions between genes
as new connections in a large-scale mechanistic model to study the

FIGURE 1
Different computational modeling types of biological data possess a variety of pros and cons and provide an opportunity for model merging. The
mechanistic models are mostly curated, usually small-scale, causal networks of signaling pathways. Machine learning models are data-driven, large-
scale, and usually correlative associations. Combining these two modes of modeling provides an opportunity for creating larger scale data-informed
models to generate novel hypotheses for experimental validation. Themergedmodel would include curated lists of pathway genes (species) as well
as genes with new connections inferred via machine learning models. The final model structure could represent a collection of overlapping genes (and
gene products) and interactions present in both lists.
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effect of the newly added gene interactions in model responses. It is
important to note that MEMMAL is agnostic to the specific tool
used to nominate new associations, and the base mechanistic model
used; the below are simply chosen as illustrative.

MOBILE

MOBILE is a recent tool for finding context-specific network
features by integrating pairs of omics datasets (Erdem et al., 2022a).
In short, statistical associations are calculated between pairs of
chromatin accessibility regions, mRNA expressions, and protein/
phosphoprotein levels. Lasso (least absolute shrinkage and selection
operator) regression models are run in replicate to select coefficients
with high occurrence rates (Tibshirani, 1996; Erdem et al., 2016;
Erdem et al., 2022a). The so-called Integrated Association Networks
(IANs) are generated by combining the association networks
inferred for RPPA (reverse phase protein array)+RNAseq and
RNAseq + ATACseq data inputs. Finally, the IANs are coalesced
into gene-level networks: nodes representing genes of the assay
analytes and edges representing the inferred Lasso coefficients. From
MOBILE generated IFNγ-specific IAN, a sub-network of
connections between canonical interferon genes, PD-L1, and PD-
1 is filtered to obtain a 297 node + 321 edge module. Then, only the
interactions with IRF1, PD-L1, PD-1, and STAT1 are retained as
input for MEMMAL.

SPARCED

The starting mechanistic model used in this work is obtained
from the SPARCED repository (github.com/birtwistlelab/
SPARCED/tree/develop) (Erdem et al., 2022b). It is a recent
framework for large-scale mechanistic modeling that enables
model file creation using simple text files as input with minimal
coding requirements. In short, a set of annotated text files are
constructed to define model specifics. Then, Jupyter notebooks
are used to process these files and create community-standard
model file type called Systems Biology Markup Language (SBML)
(Hucka et al., 2003; Keating et al., 2020). The software was first built
to replicate the one of the largest mammalian single-cell mechanistic
model of proliferation and death signaling (Bouhaddou et al., 2018;
Erdem et al., 2022b). Then, an expanded SPARCED model was
created to include IFNγ signaling and SOCS1 crosstalk to growth
pathways and the new model was named as SPARCED-IFNG-
SOCS1 (Erdem et al., 2022b). This final model and its input files
are used as the basic model in this work and is modified further with
the MOBILE inferred set of new connections.

MEMMAL

Jupyter notebooks
MEMMAL pipeline is composed of multiple Jupyter notebooks

defined below and detailed steps given in Supplementary Table S1.

1) enlargeModel notebook: As the core of MEMMAL, this
Jupyter notebook processes the machine learning model

inferred connections list and creates Species (genes, mRNAs,
proteins, phosphoproteins), RateLaws (the reaction format and
related parameters), Gene Regulatory Interactions (defining
transcriptional activators and repressors) and finds relevant
new omics data from LINCS datasets. The input files for
SPARCED pipeline are then updated followed by model
compilation and simulation steps.

The pipeline starts by finding the unique list of genes from the
MOBILE associations input. Then, for each unique gene added we create
species for the active gene, inactive gene, mRNA, and protein
(phosphoproteins as well if the gene has corresponding
phosphoprotein measurements). The species initial conditions are
updated using LINCS (Gross et al., 2022), MCF10A (Bouhaddou
et al., 2018), or other literature datasets (Schwanhäusser et al., 2011).
The experimental data in molecules per cell (mpc) are converted into
nanomolar (nM) concentration and the corresponding values are
updated. Next, first-order translation, transcription, and protein and
mRNA degradation reactions are created and the rate laws are
defined. The rate constants are set using literature data
(Schwanhäusser et al., 2011) or set to the mean value of the
corresponding reaction parameter values for existing genes in
SPARCED. The mRNA and protein degradation rate constants are set
using literature half-life data (kTCd � log (2)

mRNAhalf−life; kTLd � log (2)
proteinhalf−life),

basal transcription rate constants using the equation
((kTCd*mRNAcount)*(kGin + kGac)/(kGac*Gene Copy Number)
where kGin and kGac are rate of gene inactivation and activation,
respectively. The translation rate constants are set using the
equation (proteinconcentration*kTLd/mRNAconcentration).

Importantly, for this work we specify that all associations are gene
regulatory mechanisms, and for each association, two transcriptional
regulation connections are created: the protein species of
gene1 activates/represses gene2 expression and protein of
gene2 activates/represses gene1 expression. That however is
because of the specific submodel of interest here being a gene
regulatory subnetwork and future implementations would need to
be considered case-by-case. These gene regulatory reactions are
modeled as Hill equations as defined for other gene regulatory
reactions in SPARCED (Erdem et al., 2022b). The Hill equation
parameters are: i) nA: Hill coefficients set to “4” for all new reactions
and ii) KA the concentration for half-maximal transcriptional output
effect, initially set to half of the transcriptionally regulating protein
concentration. The values of these KA parameters are fitted later, as
described below. Finally, the updated input files are written into text
files for model creation and compilation.

2) createModel_o4a notebook: The Jupyter notebook to create
an integrated SBML version of the SPARCED type models
(Erdem et al., 2022b). Creating the model file fully in SBML
format provides extensive speed-up of simulations. The newly
updated input files by enlargeModel notebook are used to
create and compile the expanded model.

3) runModel notebook: This Jupyter notebook is used to simulate
and explore multiple scenarios for the new model.

4) enlargeSBMLModel notebook: This Jupyter notebook
contains an example to enlarge any SBML model using user
defined lists of species, reactions, and parameters. We provide an
example use of enlargeModel notebook created lists of model
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elements to expand the SBML file of IFNγ/JAK/STAT signaling
pathway (Yamada et al., 2003).

5) testMEMMAL notebook: This Jupyter notebook contains
commands to run MEMMAL from start to finish. It calls the
first three notebooks and plots the figure panels.

Input files
1) Compartments, GeneReg, OmicsData, RatelawsNoSM, Species,

and Initializer text files: SPARCED input files for the SPARCED-
IFNG-SOCS1 model from (Erdem et al., 2022b).

2) IRF1_PDL1sub: MOBILE derived associations list from (Erdem
et al., 2022a). Steps to obtain the list are given in Supplementary
Figure S1.

3) RNAseqDataLINCS: RNAseq data in log2(fpkm+1) format.
4) RPPADataLINCS, RPPADataStdLINCS, and

RPPADataStdLINCSfc: Median normalized RPPA data in
log2 format. “Std” refers to standard deviation of triplicate
measurements. “fc” refers to fold-change with respect to time
point zero.

5) Schwanhausser2011: Literature data on mRNA and protein half-
lives (Schwanhäusser et al., 2011).

6) Supplementary_Data_22: Transcriptomic and proteomic data
for MCF10A cells (Erdem et al., 2022b).

Output files and folders
1) GeneReg_MM, OmicsData_MM, RatelawsNoSM_MM, and

Species_MM text files: Updated/expanded input files with new
connections and data.

2) “Model name.txt” [i.e., MEMMAL_orig.txt]: Model file in
Antimony format (Smith et al., 2009).

3) “Model name.xml” [i.e., MEMMAL_orig.xml]: Model file in
SBML format (Keating et al., 2020).

4) “Model name folder” [i.e., MEMMAL_orig]: Compiled model
folder created by AMICI package (Fröhlich et al., 2020; Weindl
et al., 2020).

Parameter fitting
The new parameter values were initially set using literature data

or existing model parameters. We then estimated some of them in a
semi-automated way. First, the basal transcription (mRNA
production) rate constants of the new mRNAs species (eight in
total) are fitted one at a time, in the order of species added to the
model. If the mRNA level was not at steady state, degrading or
accumulating in no ligand (growth factors or IFNγ) stimulation
simulations, the parameter value is estimated by varying it uniformly
(15 points) within three orders of log10-magnitude of the default
value. Then, the best-fit value that yields a constant level is manually
adjusted for better fit if possible. Finally, such parameter values are
kept constant and the next is explored. One of the mRNA
degradation parameters (of FAM83D) was also fitted similarly.

The values for the KA (half-maximal) concentrations of the
newly added gene regulatory reactions were adjusted using the
LINCS mRNA (ACSL5, BST2, CLIC2, FAM83D, HIST2H2AA3,
and METAP2) and protein (IRF1 and PD-L1) time course data with
EGF and EGF + IFNγ stimulation. The model, starting from an
initial steady-state condition in the absence of growth factors (from
above), is simulated for 48 h with EGF (1.5625 nM) or EGF
(1.5625 nM) + IFNγ (1.1834 nM) treatment. The KA for each

new gene regulatory interaction (27 total) is varied uniformly
(15 points) within three orders of log10-magnitude of the default
value (half the regulating protein species concentration) and both
stimulation conditions are simulated. The sum-of-squared errors
between simulation and the data is evaluated for each, and the value
giving minimum error is chosen. In some cases, the value with
minimum error is manually adjusted between originally sampled
values to achieve better fit. These fitted KA parameter values are
reported in the runModel notebook.

Code availability
MEMMAL code is available at the GitHub repository

github.com/cerdem12/MEMMAL.

Results

Large-scale mechanistic models can
become larger and more precise by
expansion using machine learned
relationships

There are only a handful of large-scale (hundreds of genes,
thousands of species) mechanistic signaling pathway models in the
literature (Fröhlich et al., 2018). Usually, such big models are
constructed by bottom-up modeling or by semi-manual stitching of
previously publishedmodels (Bouhaddou et al., 2018). Both approaches
are time consuming, manually curated, and biased for including/
excluding model components: genes, proteins, post-translational
modifications, interactions, or even cellular compartments. Here, we
tackle this “what-to-add” problem by using association networks
inferred via data-driven machine learning algorithms.

The Mechanistic Modeling with Machine Learning (MEMMAL)
tool presented here (Figure 2) is comprised of scripts to expand
mechanistic models created using SPARCED pipeline (Erdem et al.,
2022b) with candidate connections generated by the tool called
MOBILE, a recent pipeline for multi-omics data integration
(Erdem et al., 2022a). However, other tools and models could be
used in their place; they are simply used to demonstrate the approach.
For now, the MEMMAL Jupyter notebooks process these new
connection candidates to update SPARCED input files, taking
advantage of their modular structure for model building (github.
com/birtwistlelab/SPARCED/tree/develop). Here, we combine novel
connections inferred via MOBILE with a large-scale mechanistic
model called SPARCED to add an immune-checkpoint related
sub-module to the existing pan-cancer model to study effects of
the newly added gene products on the regulation of Interferon
Regulatory Factor 1 (gene name IRF) and Programmed Death
Ligand 1 (PD-L1, gene name CD274) upon interferon-gamma
(IFNγ, gene name IFNG) stimulation.

MOBILE pipeline integrated LINCS MCF10A
multi-omics dataset to infer ligand-specific
associations

The normal-like breast epithelial cell line MCF10A was recently
profiled with multiple assay types under multiple ligand stimulation
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conditions (Gross et al., 2022). Using this newly released multi-omics
dataset, our lab introduced theMOBILE pipeline for data integration and
showed how ligand-specific associations can be inferred (Erdem et al.,
2022a). One of the ligands included in the LINCS study that induced
MCF10A growth inhibition was interferon-gamma (Gross et al., 2022).
We previously analyzed the LINCS MCF10A dataset to find IFNγ-
specific associations that nominate novel connections with the PD-L1
(gene nameCD274) axis (Erdem et al., 2022a). IFNγ can induce transient
PD-L1 expression, a transmembrane protein that binds to its receptor
PD-1 onT-cells (Abiko et al., 2015; Thiem et al., 2019; Ju et al., 2020). This
binding inhibits tumor clearance, where targeted therapies towards these
proteins are a new class of anti-cancer drugs: the immune checkpoint
inhibitors (Gong et al., 2018). However, inter- and intra-tumor variability
of PD-L1 expression results in heterogeneous patient responses and
makes the response predictions a challenge (Wu et al., 2019). A more
thorough understanding of the regulatory mechanism of PD-L1
expression could help inform new immunotherapeutic drugs or
treatment options.

Applying MOBILE, we generated a data-driven IFNγ-specific
integrated associations network, which had 297 nodes (genes) and
321 edges (connections) (Figure 2B and Supplementary Figure S1).
We further filtered this network by looking for connections with
STAT1 (the only overlapping gene with themechanistic model). The
final list of candidate connections had nine genes (ACSL5, BST2,
CD274, CLIC2, FAM83D, HIST2H2AA3, IRF1, METAP2, and
STAT1) and 14 connections. The list is imported into the
SPARCED environment to start altering the existing mechanistic
model structure (Figure 2B and Supplementary Figure S1).

SPARCED modeling makes mechanistic
model expansions easy

SPARCED is a recent software (Erdem et al., 2022b) and
modeling framework for large-scale mechanistic modeling. It

enables SBML model file creation using simple text files as input
with minimal coding requirements. Jupyter notebooks (Kluyver
et al., 2016) are used to process the input files and to create the
model files. The software was first built to replicate the largest
mammalian single-cell mechanistic model of proliferation and death
signaling (Bouhaddou et al., 2018) and was then expanded to include
a new sub-module of IFNγ signaling (Yamada et al., 2003). So, the
starting mechanistic model in this work, SPARCED-IFNG-
SOCS1 already includes an IFNγ submodule (Figure 3A, gray
background), with a total of 149 genes, 1,302 species, and
3,584 ratelaws (Figure 3B).

MEMMAL incorporates MOBILE-inferred
gene-level statistical associations into
SPARCED as gene regulatory mechanisms

The list of candidate connections from MOBILE pipeline are
processed via MEMMAL enlargeModel notebook to add rows
and update SPARCED input files (Figure 2B). As a default SPARCED
requirement, each gene node fromMOBILE list is interpreted to create
active gene, inactive gene, mRNA, and protein species, with relevant
basic reactions: gene switching, transcription, translation (Figure 3C,
black arrows), mRNA degradation, and protein degradation.
Importantly, the MOBILE inferred connections are interpreted as
transcriptional activator and repressor (TAR) reactions (Figure 3C)
because the MOBILE inferred connections are obtained by looking at
pairs of mRNA-protein and chromatin region-mRNA dataset pairs. A
logical way a protein affecting another mRNA’s expression level is by
transcriptional regulation. Additionally, a highly open chromatin
region can permit transcription, which potentially yields higher
mRNA expression and thus another gene regulatory connection.
So, all the candidate associations are treated as TARs in the current
MEMMAL pipeline. For future work, users should decide how to
handle such connections.

FIGURE 2
MEMMAL is a pipeline to merge mechanistic modeling with machine learning (A) The MEMMAL pipeline combines mechanistic models created by
SPARCED with association networks generated via MOBILE pipeline (B) The recipe for MEMMAL pipeline starts by obtaining a set of connections not
presented in the candidate mechanistic model. Here, the novel gene-level connections list is inferred via the MOBILE tool and then filtered for overlap
with SPARCED model genes. Next, this candidate network is imported into SPARCED environment, where the MEMMAL enlargeModel Jupyter
notebook processes the network file and updates SPARCED input files The nodes (genes) of the IFNG/PD-L1 subnetwork are used to create new genes
and species (mRNAs, proteins, phosphoproteins) for SPARCED. The new genes can get activated/inactivated as described in SPARCED. The expanded
MEMMALmodel is created and compiled by default SPARCEDmodel notebooks. The final step in MEMMAL is to run user defined exploratory simulations
to gain insights on the effects of new connections added.
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The negative valued associations here are treated as inhibitory
whereas the positive magnitude connections are added as activators
(Figure 3C, gray and red arrows). Some of the transcriptional
activators are labeled as “integrative links” because they connect
existing SPARCED model genes with the new gene species
(Figure 3C, red arrows). After all the input files are updated,
createModel_o4a Jupyter notebook is used to create and
compile the new SBML model file (Figure 2B). The MEMMAL
expansion of SPARCED via MOBILE inferred network resulted in
the addition of eight genes, 16 species, 16 signaling reactions, and
27 transcriptional regulatory mechanisms (Figures 3A, B). With the
current addition, the SPARCED model now includes an IFNγ-PD-
L1 submodule (Figure 3A, green background).

Following model expansion, we first verified the model can
recapitulate previous observations (Figure 3D). We show that
inclusion of new species and reactions did not alter canonical
STAT1-SOCS1 response to IFNγ stimulation. Previous studies
have shown that in response to IFNγ, STAT1 and SOCS1 show
transient activation over several hours followed by damped
oscillations before reaching a steady state slightly higher than the
baseline levels (Yamada et al., 2003). In the model, IFNγ treatment
leads to transient STAT1 activation by inducing its phosphorylation,
dimerization, and translocation to nucleus (Figure 3D, top panel).
Nuclear STAT1 dimer acts as an activating transcription factor for
SOCS1 and induces SOCS1 mRNA production (Figure 3D, middle

panel), which then causes SOCS1 protein levels to increase
(Figure 3D, bottom panel). Moreover, as reported previously in
(Erdem et al., 2022b), IFNγ does not induce significant changes in
MAPK signaling but leads to a slight decrease in early AKT response
(Supplementary Figure S2).

MEMMAL model offers exploration of the
effect of novel connector genes on the
expression of PD-L1 expression in response
to IFNγ

Since the modified model passed these quality control checks,
the next step was to fit new unknown parameters to recapitulate
experimental time-course data for newly added genes (RNAseq:
ACSL5, BST2, CLIC2, FAM83D, HIST2H2AA3, METAP2 and
RPPA: IRF1, PD-L1) (Figure 4A). These 27 + 16 (43 total)
unknown parameters were the half-maximal concentrations for
the Hill functions underlying the new gene regulatory reactions
and protein/mRNA degradation rate constants. The data show
IFNγ induces transcription of ACSL5, BST2, CLIC2, and
HIST2H2AA3 and expression of both IRF1 and PD-L1 with no
sustained induction of FAM83D and METAP2, and the fitted
model captures these trends. There are only two discrepancies
where the model could not capture: 24-h time point data of

FIGURE 3
MOBILE inferred IFNγ/PD-L1 network nodes and connections are inserted into the SPARCED-IFNG model using MEMMAL (A) The SPARCED
network is enlarged to include a sub-network spanning innate immune response and PD-L1 regulation (B) The final MEMMAL model is 157 genes,
1,318 species, and 3,600 ratelaws, 60 TARs, and 3,885 parameters (C) The reactions added into SPARCED include translation (black arrows). The
connections from MOBILE are modeled as transcriptional activation and repression (TAR) reactions in MEMMAL (gray arrows). The TAR reactions
linking existing SPARCED species with the newly added species are represented as integrative links (red arrows) (D) The final MEMMALmodel recapitulates
canonical transient STAT1 and SOCS1 activation in response to IFNγ stimulation in MCF10A cells (Erdem et al., 2022b). Normalized simulation trajectories
of the activated nuclear STAT1 dimer (STAT1*Dn), SOCS1 mRNA (mRNA_SOCS1), and free SOCS1 protein (SOCS1) are shown (solid gray lines).
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FAM83D and HIST2H2AA3 mRNA levels. However, the model
can recapitulate the increasing trend of mRNA_
HIST2H2AA3 and fit the last time points for both species
levels. The runModel Jupyter notebook reports the final
updated parameter values and scripts to compare simulation
trajectories with LINCS data (Figure 4A).

After acceptable agreement was achieved between simulations
and experimental mRNA and protein levels (Figure 4A), we
simulated scenarios (Figure 4B) to explore the effects of new
genes on the IRF1 and PD-L1 responses. We wanted to
nominate the new connections predicted to be most important
in regulating PD-L1 expression. To do this we compared wild-type
simulations (new model with fit parameters) to single gene knock-
out simulations (protein, gene, and mRNA levels set to zero)
(Figures 4B,C).

Only BST2, FAM83D, and METAP2 knock-outs had
observable effects on simulated PD-L1 and/or IRF1 dynamics
(Figure 4C). Knocking out other newly added genes (ACSL5,
CLIC2, HIST2H2AA3) had no significant effects and thus are
not shown here. Perturbing BST2 caused a small decrease in
initial PD-L1 levels, which later reaches to wild-type response
levels (Figure 4C, top row). Perturbing FAM83D only slightly
increased steady-state IRF1 levels (Figure 4C, middle row).
Perturbing METAP2 caused a significant decrease in late
IRF1 and PD-L1 responses (Figure 4C, bottom row). We
summarized all these knock-out response observations with
the candidate gene regulatory network in Figure 3C to show
a functional network with possibly causal links only
(Figure 4C). These results demonstrate that mechanistic
models with machine learning derived connections can
nominate genes for follow-up experimental studies.

Discussion

Combining and synergizing machine learning with mechanistic
modeling could bring clinically predictive computational models
and personalized medicine closer to reality. To that end, here we
introduced a recipe to expand a large-scale mechanistic model with
machine learned connections between gene products. Because
understanding PD-L1 regulation mechanisms would help us
design better therapeutic interventions, we focused on exploring
the IFNγ/PD-L1 axis. We used the LINCS MCF10A dataset and
added the recently inferred (via MOBILE pipeline) IFNγ/PD-
L1 connections to the existing SPARCED mechanistic model. We
then were able to study the effects of new gene regulatory
mechanisms. We showed that perturbing BST2, FAM83D, or
METAP2 induces changes in PD-L1 and IRF1 dynamics.

MEMMAL could serve as an initial step towards combining
mechanistic models with machine learnt potential connections by
providing a rationale for such a merging protocol. MEMMAL
protocol first creates genes and gene products (mRNA and
protein) if MOBILE list nodes are not already present in
SPARCED. It then updates -omics level information for the new
genes and adds corresponding reactions. It also assigns
transcriptional activator and repressors (based on MOBILE
association coefficient sign) and related rate constant parameters.
The updated SPARCED input files are then processed via modified
default Jupyter notebooks to execute desired simulations. The
current state of the MEMMAL assumes an overlap (genes)
between the mechanistic model and machine learned
associations. Although this is not a hard assumption, it also
makes logical sense that the effects of added interactions can be
explored via crosstalk mechanisms.

FIGURE 4
MEMMAL can replicate the previous SPARCED-IFNG model and offers new insights into IFNγ regulation of IRF1 and PD-L1 dynamics (A) MEMMAL
model parameters are fitted to recapitulate experimental data from LINCS RNAseq and RPPA assays. Fold-changes are shown for data (dots, crosses, and
error bars, STD) and simulations (solid lines). Most mRNAs and IRF1 and PD-L1 (gene name CD274) are induced by IFNγ (B) Simulation scenarios to test the
effects of newly added genes. The parameter fitted MEMMAL model is simulated with reported perturbation under IGF1 stimulation (basal growth
condition) and then stimulated with additional EGF + IFNγ for 48 h (C) Comparison of complete gene knock-out perturbation scenario (dotted lines) to
wild-type (no perturbation, black lines) condition shows genes with induced IRF1 and PD-L1 changes. Among the newly added genes, METAP2 induces
the greatest change: a complete recession of IRF1 response and decreased PD-L1 steady-state level. The network diagram (summary of Figure 3C) shows
the connections among functional genes and STAT1, with non-functional edges faded out.
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Although MEMMALmakes use of recent tools from our lab, the
idea is applicable to other tools available in the literature. For
instance, rule-based modeling software like BioNetGen (Harris
et al., 2016) and PySB (Lopez et al., 2013) can also be used for
mechanistic model creation and update if machine learning
predicted associations are converted into new rules. Another
possible application can include INDRA (Gyori et al., 2017) if
the new connections are put into suitable sentence format. Such
options will be valuable to expand the MEMMAL idea and its
applications.

MEMMAL is agnostic to the approach or tool used to identify
connections and to the base mechanistic model for expansion.
MEMMAL can generate mechanistic ODE models by integrating
connections inferred using MOBILE, databases, correlation studies
(Lin et al., 2013; Min et al., 2021), kernel-based methods (Mariette
and Villa-Vialaneix, 2018; Yang et al., 2018), other machine learning
tools (Park et al., 2015; Zhang et al., 2018; Hulot et al., 2021), or
direct experiments. For the base model any mechanistic model that
can be modified programmatically could be used. To facilitate the
use of other models, we have provided a Jupyter notebook
(enlargeSBMLmodel) to expand any SBML model with
MEMMAL generated lists of new species, reactions, and parameters.

The MOBILE pipeline was used to infer ligand-specific and
statistically robust association networks (Erdem et al., 2022a). Here
we used a filtered list of connections for interferon-gamma signaling
and among them some genes were already shown to be associated
with immunotherapeutic signatures including BST2, CLIC2, and
FAM83D (Wang et al., 2013; Walian et al., 2016; Xu et al., 2020;
Zhou et al., 2020; Mei et al., 2021). In short, BST2 is part of an anti-
CTLA4 response in melanoma (Mei et al., 2021) and CLIC2 is a
favorable prognosis biomarker (Xu et al., 2020). FAM83D functions
in cell growth regulation and is a prognostic marker for multiple
cancer types (Wang et al., 2013; Walian et al., 2016). In addition to
such pieces of literature support, we can take a step further to explore
their mechanistic functionalities by combining these genes and their
predicted connections as new interactions in a computational
model.

The investigation of the effects of new genes (via knock-out
simulations) was carried out after fitting the new reaction parameter
values to match experimental time course data. The simple semi-
automated fitting procedure in this work resulted in a set of
parameter values, reported in runModel notebook, but their
identifiability is not guaranteed. Because the effects of single gene
knock-outs simulations are dependent on such values, a more
extensive parameter exploration would build confidence in the
predictions of which genes are more important for PD-L1
regulation. Indeed, the AMICI package (Fröhlich et al., 2020)
used by SPARCED enables users to do such high-level parameter
estimation studies.

In conclusion, the MEMMAL pipeline provides a starting point
for merging large-scale mechanistic models with big-data based
association networks. We used MEMMAL to test novel candidate
interactions for their effect on regulating IRF1 and PD-L1
expression and found that METAP2 is a good candidate yet to

be studied experimentally. We believe combining big data, machine
learning, and mechanistic models is a valuable direction to unravel
novel context-specific mechanisms.
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