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Liver regeneration, which leads to the re-establishment of organ mass, follows a
specifically organized set of biological processes acting on various time and length
scales. Computational models of liver regeneration largely focused on incorporating
molecular and signaling detail have been developed by multiple research groups in the
recent years. These modeling efforts have supported a synthesis of disparate experimental
results at the molecular scale. Incorporation of tissue and organ scale data using
noninvasive imaging methods can extend these computational models towards a
comprehensive accounting of multiscale dynamics of liver regeneration. For instance,
microscopy-based imaging methods provide detailed histological information at the tissue
and cellular scales. Noninvasive imaging methods such as ultrasound, computed
tomography and magnetic resonance imaging provide morphological and physiological
features including volumetric measures over time. In this review, we discuss multiple
imaging modalities capable of informing computational models of liver regeneration at the
organ-, tissue- and cellular level. Additionally, we discuss available software and
algorithms, which aid in the analysis and integration of imaging data into computational
models. Suchmodels can be generated or tuned for an individual patient with liver disease.
Progress towards integrated multiscale models of liver regeneration can aid in prognostic
tool development for treating liver disease.
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1 INTRODUCTION

The ability of the mammalian liver to regenerate lost tissue mass following injury has been a topic of
investigation for decades, but has recently come into focus as a tool for clinical intervention in
hepatocellular carcinoma and live liver transplant patients (Poon et al., 2004; Stoot et al., 2013). Liver
regeneration is a coordinated, multiscale phenomenon involving a complex interaction network
between intracellular and systemic-level mechanisms (Taub, 2004; Fausto et al., 2006;
Michalopoulos, 2014; Michalopoulos, 2017). Systemically, there is an increase in portal blood

Edited by:
Harvey Ho,

The University of Auckland,
New Zealand

Reviewed by:
V P,

National Institutes of Health (NIH),
United States

Masaki Nishikawa,
The University of Tokyo, Japan

*Correspondence:
Rajanikanth Vadigepalli
rajanikanth.vadigepalli@

jefferson.edu

Specialty section:
This article was submitted to

Multiscale Mechanistic Modeling,
a section of the journal

Frontiers in Systems Biology

Received: 10 April 2022
Accepted: 06 May 2022
Published: 06 June 2022

Citation:
Verma A, Manchel A, Melunis J,

Hengstler JG and Vadigepalli R (2022)
From Seeing to Simulating: A Survey of

Imaging Techniques and Spatially-
Resolved Data for Developing

Multiscale Computational Models of
Liver Regeneration.

Front. Syst. Biol. 2:917191.
doi: 10.3389/fsysb.2022.917191

Frontiers in Systems Biology | www.frontiersin.org June 2022 | Volume 2 | Article 9171911

REVIEW
published: 06 June 2022

doi: 10.3389/fsysb.2022.917191

http://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.917191&domain=pdf&date_stamp=2022-06-06
https://www.frontiersin.org/articles/10.3389/fsysb.2022.917191/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.917191/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.917191/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.917191/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.917191/full
http://creativecommons.org/licenses/by/4.0/
mailto:rajanikanth.vadigepalli@jefferson.edu
mailto:rajanikanth.vadigepalli@jefferson.edu
https://doi.org/10.3389/fsysb.2022.917191
https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.917191


pressure seen immediately following liver resection or injury,
while at the tissue level, there is active remodeling of the
extracellular matrix, and at cellular and subcellular levels,
there is non-parenchymal cell recruitment via initiation of
cell-intrinsic signaling. Disruption of this coordinated
sequence of processes, which can last several days across
multiple spatial scales, may lead to deficits in liver mass
recovery, as clinically observed in chronic liver disease (Orrego
et al., 1981; Koteish et al., 2002).

Despite decades of study, our understanding of the regulatory
mechanisms underlying liver regeneration and repair, remains
incomplete. This lack of understanding limits our ability to
intervene in cases where a resected liver fails to regenerate to
a level required for supporting normal physiological function.
Therefore, it remains a challenge to predict the outcome of
patient surgical resection or liver transplant. By leveraging
large data collection and integration methods with incredible
ease, as a result of the “-omics” revolution, computational
modeling can be utilized to potentially identify and quantify
key control points within the extensive molecular interaction
network. Such modeling techniques will play an essential role in
bridging the gap between clinical assessment of patients and
prediction of surgical intervention viability as it pertains to liver
disease.

Development of computational models capable of successfully
predicting liver regeneration and providing mechanistic insights
into regenerative phenomena, requires integration of information
spanning different spatial and temporal scales. For example,
although phenomenological models can be developed relying
solely on longitudinal liver volumetric data, it will have limited
practical applicability. To gain predictive power, liver
regeneration models should translate molecular pathways to
intercellular interactions, matrix remodeling, and ultimately
liver mass recovery. In addition, incorporating information at
smaller spatial scales is of particular importance in the liver as its
functional capabilities are directly linked with its morphology at
the tissue level. For instance, functional heterogeneity of
hepatocytes within different lobular locations, termed liver
zonation, is a well-studied phenomenon (Jungermann and
Kietzmann, 1996; Braeuning et al., 2006; Gebhardt and Matz-
Soja, 2014). Hepatocyte function and regeneration are strongly
regulated by localized interactions with non-parenchymal liver
cell types. Dynamically tracking and deciphering zonal
preferences of cellular activity, cell neighborhoods, and cell-
microenvironment interactions, could form the basis of
building multiscale computational models of liver regeneration
with strong predictive capabilities.

In this work, we review commonly employed imaging
methods utilized for visualization of liver histology and
functionality at various length scales, that are capable of aiding
multiscale model development of liver regeneration.
Additionally, we discuss the software applications available for
image analyses. Finally, we provide brief overviews of widely
available computational models of liver regeneration and
function, based on the select techniques discussed, and provide
future perspectives on multiscale modeling of liver regeneration.
Molecular data obtained from single cell omics platforms have

informed and advanced the current understanding of liver tissue
function. Furthermore, integration of such data into
computational models have improved their parameterization
and predictive power. However, in this review we focus on
imaging-based modalities and how they can inform multiscale
models at the organ-, tissue- and cellular-level.

2 ORGAN-LEVEL IMAGING AND
MODELING

Non-invasive measurement of liver volume during regeneration
provides key temporal data, necessary for development of
computational models. Imaging platforms capable of
visualizing whole liver samples with high enough resolution
for organ morphology detection, find important clinical
applications. A vital aspect of improving outcomes of surgical
liver resection in cancer patients and live liver donors, is surgical
planning. The liver’s regenerative potential following cancer
resection or live liver transplant, is shown in Figure 1A.
Surgical planning seeks to achieve the precise balance of
maximal target lesion removal, maximal sparing of functional
liver remnant volume, and minimal surgical invasiveness (Wang
et al., 2017). Therefore, it requires accurate knowledge of
important hepatic structure location, including that of major
hepatic blood vessels and bile ducts. A 3D visualization and
virtual reconstruction of the entire organ can provide such
information (Figure 1B). Numerous techniques have been
developed in this regard. Here, we discuss three broad classes
of whole liver imaging–computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound.

CT is based upon differential absorption of x-rays by water,
bones, and soft tissue. Contrast differences appear on CT
detectors when components of differential absorbance are
present in the image, thus yielding information about tissue
morphology. Next, MRI relies on the measurement of time-
variant magnetic spins of hydrogen atoms under constant and
dynamic magnetic fields to identify different structures and
components within the scanned area. Finally, ultrasound uses
acoustic impedance, i.e., the ability of different materials to reflect
sound, and echoes to map the depth as well as composition of
structures within a tissue. While all three techniques can be
utilized for volumetric measurements of the liver, MRI offers
higher soft tissue contrast compared to CT and ultrasound. A
recent review article highlights the application of MRI-based liver
modeling in understanding liver biomechanics and improving
liver disease treatment (Seyedpour et al., 2021). Studying
biomechanics of the liver aided by MRI allows for predictive
modeling of liver diseases to identify and better understand the
progressive stages ahead. Temporal and spatial data such as blood
volume, blood velocity, and wall shear stress (WSS) can be
extracted from images to make such determinations of disease
state. Reconstruction of acquired whole liver images remains a
challenging problem. Nevertheless, with the increase in
computational power available at the disposal of researchers
and technicians, increasingly sophisticated algorithms have
become available for this purpose. Liver segmentation
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FIGURE 1 |Organ-Level Approach. (A) Two possible scenarios leading to liver regeneration. (Top) Live liver transplant where the right lobe is resected and given to
the recipient while the left lobe is kept intact in the donor. In either case, regeneration of the liver takes roughly 2 months. (Bottom) Following identification of carcinoma in
the left lobe of the liver, it is resected. Again, after about 2 months the liver has regenerated. (B) 3D ultrasound images prior to and following partial hepatectomy (PHx) in a
rat model are shown. After 1 week, the liver has nearly completed the regeneration process. At each time point, stacking of ultrasound images (shown in blue)
allows for full 3D reconstruction. (C) Visualization of the liver at the organ-level (left) can be quantified (middle) leading to the possibility for simulation (right). At the organ-
level, only general volumetric measurements can be made such as body weight, total volume, blood flow, etc,. Therefore, modeling and simulation running can only be

(Continued )
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algorithms employed for partitioning of the liver into
parenchyma and non-parenchyma, are commonly classified
into two major categories–semi-automated segmentation and
automated segmentation. Descriptions and comparisons of
these algorithms can be found in reviews Luo et al., 2014 and
Mharib et al., 2012. Besides proprietary software available for
analysis of whole liver images, such as Synapse Vincent
(Fujifilm®, Ohshima, 2014) and Osirix (Tzourio-Mazoyer
et al., 2002), several open-source options exist for research
and/or surgical purposes. Applications such as Itk-Snap
(Yushkevich et al., 2006), 3D Slicer (Fedorov et al., 2012), and
VR-Render (D’Agostino et al., 2013), are capable of segmenting
DICOM (Digital Imaging and Communications in Medicine)
formatted images obtained from any of the three organ-level
imaging techniques: CT, MRI or ultrasound (see Strakos et al.,
2015 for brief review of some of the listed applications). For
images acquired by CT, pipelines have been developed to
reconstruct whole livers using generic applications, such as
ImageJ (Dello et al., 2007) and Adobe® Photoshop (Lu et al.,
2004). A recent study introduced a new segmentation method for
analyzing images acquired by CT, namely 3D U-Net, which
utilized a convolution neural network in addition with
position features such as the spine, body surface, and sagittal
plane, to improve the accuracy of liver segmentation (Jiřík et al.,
2021).

MRI, CT, and ultrasound seek widespread clinical applications
in diagnosis of focal and diffused liver conditions, including
steatosis, hepatocellular carcinoma, colorectal liver metastases,
and liver fibrosis. Apart from diagnostic and surgical planning
applications, whole liver imaging provides essential information
for modeling liver regeneration–liver volume time series data.
Volumetric and temporal monitoring of a liver during
regeneration serve as simple and basic metrics necessary for
fitting a dynamic liver regeneration model. Yamamoto et al.
(2016) demonstrated the clinical application of CT imaging
and computational modeling in predicting patient-specific liver
regeneration profiles. The authors used a combination of CT
imaging data and preclinical data such as BMI, blood loss,
resected volume, etc,. from 123 patients to identify key
perioperative measures capable of discriminating between
cases of normal and suppressed regeneration. They then
developed a phenomenological computational model which
was validated in a 39-patient cohort. This type of modeling
provides practical application in clinical settings, as patients
who need close follow-up attention after liver resection can be
identified by the model. A similar model development workflow
to that of Yamamoto et al. (2016) can be observed in Figure 1C.

Owing to a lack of spatial and mechanistic detail, ODE-based
computational modeling of liver regeneration dynamics at the
organ level are most prominent. A variety of commercial (e.g.,
Matlab) and open source (e.g., R, Python) languages/applications

are available for this purpose. Recent efforts have seen an increase
in freely accessible computational models with a particular focus
on model sharing to encourage use of predictive and dynamic
modeling approaches in research and medicine. Databases, such
as BioModels (Li et al., 2010), and standardized, open-source
formats, such as Systems Biology Markup Language (SBML)
(Hucka et al., 2003), have gained prominence, as they aid in
the ease of model sharing. Numerous applications exist for the
reuse of SMBL models; one application able to perform
interactive parameter scans, with only the click of a few
buttons is COPASI (Mendes et al., 2009).

3 LOBULE-LEVEL IMAGING AND
MODELING

Although whole organ imaging can provide liver volumetric data
through the various stages of liver regeneration, it cannot yield
information on liver repair dynamics that operate at smaller
spatial scales. For instance, preferential pericentral necrosis, due
to CCl4- (Yu et al., 2002) or acetaminophen- (Black, 1984)
induced toxicity, leaves the organ-level structure unchanged
despite inducing mechanisms of tissue recovery, similar to that
of liver regeneration (Fausto, 2004). However, if the organ is
unable to regenerate tissue mass, thereby ameliorating the
induced toxicity, fibrosis may occur (Figure 2A). The
mechanisms behind preferential liver injury, as well as repair,
are at least partly guided by liver zonation. Zonation of the
hepatocyte molecular profiles within liver lobules leads to an
overarching spatio-temporal organization of liver regeneration
and repair processes, the understanding of which is crucial for
building accurate models of liver regeneration (Figure 2B).
Therefore, elucidating and visualizing processes at smaller
spatial scales is necessary for integration of spatio-temporal
aspects into liver regeneration modeling.

The techniques predominantly employed for imaging
mechanisms involved in liver regeneration and repair at the
lobular scale are bright field and confocal microscopy. The use
of bright field microscopy in imaging regenerating livers relies on
the incorporation of BrdU (bromodeoxyuridine), an analog of
thymidine, into newly synthesized DNA (de Graaf et al., 2011).
This becomes specifically relevant when injured hepatocytes are
spatially localized within liver lobules, as is the case of CCl4-
induced injury (Yu et al., 2002; Hoehme et al., 2010). Use of BrdU
staining can provide temporally resolved information regarding
variations in proportion and localization of replicating
hepatocytes (Soames et al., 1994). Alternatively, confocal
imaging has been extensively used for imaging and
characterization of liver regeneration at the lobular level
(Hammad et al., 2014). Confocal microscopy provides the
additional advantage of imaging at varying tissue depths.

FIGURE 1 | conducted for broad concepts such as hepatic growth rate vs metabolic demand, mass recovery and general liver function. IVC = inferior vena cava, Ao =
Aorta, HA = hepatic artery, PV = portal vein, CBD = common bile duct, RL = right lobe of liver, LL = left lobe of liver, RLL = right lateral lobe of liver, RM = right medial lobe of
liver, LM = left medial lobe of liver, LLL = left lateral lobe of liver, CL = caudate lobe, RHV = right hepatic vein, MHV =medial hepatic vein, LHV = left hepatic vein. Sources:
Cook et al., 2015; Cook et al., 2018. Figure made with BioRender.

Frontiers in Systems Biology | www.frontiersin.org June 2022 | Volume 2 | Article 9171914

Verma et al. Multiscale Modeling and Liver Imaging

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


FIGURE 2 | Lobule-Level Approach. (A) Upon regional injury induction, for instance by CCl4 administration, which induces pericentrally-located damage,
hepatocytes undergo either a pro-regenerative or anti-regenerative phenotype. If they exhibit a pro-regenerative phenotype, the damage can be resolved whereas if they
exhibit an anti-regenerative phenotype, further damage may occur, leading to fibrosis. (B) The liver lobule is characterized by the formation of hepatocytes in a string-like
fashion along the porto-central axis. Blood flows through the sinusoids (red) from the portal vein (PV) and hepatic artery (HA) to central vein (CV), while bile flows
through bile canaliculi (green) from the central area to the portal bile duct (BD). There exists a zonated set of processes, such as urea synthesis and xenobiotic
metabolism, with gradient-like behavior along this axis. (C) Visualization of the lobule through vibratome or paraffin staining (left) can be used as ameans for quantification

(Continued )
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Confocal imaging enables quantification of liver regeneration
dynamics as well as cell-type specific resolution through the use of
fluorophores, such as dyes and quantum dots, and fluorescent
transgenic animal models. Furthermore, confocal imaging with
cell-type resolution can provide information beyond what has
already been discussed. For instance, it has been observed with
multiplexed confocal imaging that hepatocyte repopulation
occurs along liver microvessels after necrotic lesion formation
in the pericentral lobular region (space surrounding the central
vein) resulting from preferential hepatocyte death due to CCl4
administration (Hoehme et al., 2010). Hoehme et al. (2010)
developed a quantitative mathematical model using measured
3D changes in liver structure prior to and following CCl4 damage
predicting a previously unrecognized mechanism, which is
essential for liver regeneration. Specifically, during
regeneration daughter hepatocytes align along the orientation
of the closest sinusoid, a process which they termed “hepatocyte-
sinusoid alignment”.

At the lobular level, topological characterization and
quantitative analysis of imaged lobules plays a vital role in
identifying key spatio-temporal aspects of tissue repair. Several
open-source options are available for analysis of images acquired
through bright field and confocal microscopy techniques. The
most popular among these are Cell Profiler (Kamentsky et al.,
2011) and ImageJ (Schneider et al., 2012). Both applications
include a wide array of powerful techniques and algorithms
for image analysis, such as automated segmentation, manual
segmentation, thresholding, object tracking, and 3D
reconstruction and rendering functionalities. Vital to liver
regeneration is the proliferation of cells. LEVER is an open-
source tool that relies on minimal human validation not only to
segment and track cells, but also to lineage proliferating cells,
thereby allowing analysis of behavioral differences across
generations and between different lineage branches and trees
(Winter et al., 2016). This tool provides the unique ability to
understand and quantify the patterns of proliferating liver cells
during both development and regeneration. TiQuant (Friebel
et al., 2015), a specialized tool for quantitative analysis and
reconstruction of liver imaging data, is of special note.
Provided a confocal image stack with multiplexed
immunostaining of hepatocytes, hepatocyte nuclei, and bile
canalicular/sinusoidal endothelial cells, TiQuant is capable of
providing a wealth of quantitative and topological information
such as microvessel dimensions and volumes, hepatocyte
volumes, cell-cell contacts, etc., in addition to a 3D rendering
of the imaged volume.

Inclusion of spatial context and functional zonation at the
lobular scale, as depicted in Figure 2C, while adding crucial
detail, also introduces additional complexity in computational
modeling of liver function and regeneration. Agent-based
modeling is a specific type of modeling strategy capable of

capturing the spatio-temporal complexity at the lobular scale.
In agent-based modeling, the system is modeled as a collection of
agents, which are able to individually assess and make decisions
about a given scenario (Bonabeau, 2002). Lobular scale
computational models have previously been developed to
simulate and investigate zonated metabolism of ammonia and
xenobiotics in-silico (Ohno et al., 2008; Sheikh-Bahaei et al., 2010;
Diaz Ochoa et al., 2012; Fu et al., 2018; Griffin and Bradshaw,
2019). More specifically, Fu et al. (2018) built a virtual hepatic
liver model of xenobiotic transport and metabolism to investigate
regional variations in microdosimetry. The authors found that
persistent simulations, which were characterized by a constant
xenobiotic input, in combination with varying transport and
metabolism parameters showed one of following hepatic
steady-state patterns: lobular-wise uniform, preferentially
peripheral (radially varying) or preferentially periportal (both
radially and azimuthally varying).

Specific to liver regeneration, a cell-oriented agent-based
modeling approach has yielded successful results in capturing
spatio-temporal dynamics of tissue recovery at the lobular scale,
as described by Hoehme et al. (2010). Although the model relies
exclusively on elastic properties of cells and forces rather than
biochemical aspects, it was successful in predicting hepatocyte
alignment during liver regeneration. Agent based modeling
strategies have also been expanded to include disease context
by studying growth of fibrotic lesions induced by CCl4
administration, as shown in Dutta-Moscato et al. (2014). In
the Dutta-Moscato et al. (2014) paper, the agent-based model
described both molecular and histopathological aspects of
inflammation and fibrosis in a CCl4-injured liver. The model
was capable of recapitulating key histopathological and
macroscopic properties of CCl4-injured livers, including
increased liver stiffness, collagen deposition, and disruption of
the regular lobular structure.

Although models of liver regeneration in a 2D or 3D spatial
context can be built in regular lattice geometries using various
programming languages with strong numerical capabilities,
specialized applications exist for the purpose of user ease.
Modeling of CCl4 induced fibrosis progression in 2D is
detailed in Dutta-Moscato et al. (2014) and was performed
using SPARK (Simple Platform for Agent-based
Representation of Knowledge), an agent-based modeling
framework designed for systems-level biomedical model
development (Solovyev et al., 2010). Other applications allow
for incorporation of tissue-level morphology into the model
building process, which serves as a computational
improvement from regular lattice modeling. The modeling
work of Hoehme et al. (2010), which utilizes CellSys (Hoehme
and Drasdo, 2010), a modular software for simulating the growth
and organization processes in multi-cellular systems, includes
detailed spatial structures of liver vasculature acquired using

FIGURE 2 | of spatial components, functional zonation, lobular recovery, etc,. (middle). Such information allows for simulation (right) of changes in lobular hepatocyte,
metabolite concentrations and zonal activity. Markers use for vibratome and/or paraffin staining: DAPI for S-phase negative hepatocytes, BrdU for S-phase positive
hepatocytes, GS for pericentral hepatocytes, DMs for hepatic sinusoids, DPPIV/CD26 for bile canaliculi, Ki67 for proliferating hepatocytes, E-cadherin for basolateral
membranes of periportal hepatocytes. Sources: Hammad et al., 2014; Birchmeier, 2016; Ghallab et al., 2016. Figure made with BioRender.
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FIGURE 3 | Cellular-Level Approach. (A) Individual hepatocytes within the liver lobule each have their own set of subcellular processes and functions. The cellular
signaling network within hepatocytes during regeneration is shown. (B) Single cell visualization and analysis (left) by smFISH (single molecule fluorescence in situ
hybridization) or LCM (laser capture microdissection) can provide quantitative information (middle) on subcellular states and processes as well as regulatory relationships,
etc,. Simulations using this data can be conducted (right) to model species such as hepatic NF-kB, calcium spiking and cytokine dynamics during regeneration.
smFISH: red = single mRNA molecules of Pck1 (marker of gluconeogenesis), blue = DAPI-stained nuclei, green = phalloidin membrane staining, PP = periportal, PC =
pericentral. Polyploid hepatocytes have one or two nuclei, each with either two, four, or eight copies of each chromosome. LCM: blue = DAPI-stained nuclei, green =

(Continued )
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confocal microscopy. An open-source application capable of
modeling spatial structure, CompuCell3D (CC3D; Swat et al.,
2012), provides functionalities for inclusion of tissue morphology
and integration of published and curated SBML models.
Additionally, CompuCell3D comes equipped with specialized
plugins for cell death and mitosis, chemical field gradients, cell
secretion, etc,. Sluka et al. (2016) utilized CompuCell3D to build a
multi cell sinusoid tissue model of xenobiotic metabolism in
which flowing blood and diffusive and active transport processes
were implemented utilizing CC3D’s specialized plugins. A
combination of both tissue level morphological and functional
details, along with easy-to-use computational applications, can
provide a means for inclusion of spatially dependent mechanistic
details for in-silico liver regeneration modeling.

4 CELLULAR-LEVEL IMAGING AND
MODELING

While computational modeling based on imaging at the organ
and lobule level are essential for building predictive models of
liver regeneration, they fail to elucidate subcellular states and
processes that may determine the fate of the regenerating liver.
Figure 3A shows only a small portion of molecular processes
occurring in the hepatocyte, which contribute to the regenerative
process and therefore serve as powerful predictive measures of
regenerative potential at the lobular and organ level. An
important aspect of liver regeneration and repair is the
involvement of non-parenchymal cells in control and
regulation of processes at the cellular and microenvironmental
level (Malik et al., 2002; Tanaka and Miyajima, 2016). The
function of nonparenchymal cells, specifically, Kupffer cells,
hepatic stellate cells, and sinusoidal endothelial cells in liver
function and regeneration have been well documented. The
spatial location and molecular states (the intracellular mRNA
and protein composition) of different cell types residing in the
liver parenchyma is therefore an important consideration in liver
regeneration modeling.

In the context of liver regeneration modeling, imaging at the
single cell level has the potential to provide insight into the
individual molecular states of hepatic cells. Characterization of
molecular states across different cell types could shed light on
cellular functions and interactions involved in the regulation of
liver regeneration at very small spatial scales. Identification of
altered molecular states and localized interactions of cells under
the effect of perturbations or in the case of disease has gained
considerable interest recently, as it plays a key role in shaping
tissue function (Tang et al., 2010; Park et al., 2014; Patel et al.,
2014). More specifically, in Park et al. (2014), the in vivo input
type variability was analyzed in hypertensive and baseline brain
tissue by high throughput qPCR. Their results indicated that
there exists an organizational structure in which neuronal

variability aligned with input type along a continuum of sub-
phenotypes and corresponding gene regulatory modules. Given a
physiological perturbation of hypertension, the distribution of
cells within the gene expression landscape changes, however the
regulatory network is altered in such a way as to produce a cellular
phenotype that has adapted to the input. These results can be
applied broadly to other tissues, including the liver, to further our
current understanding of the relationship between cellular input
and cell phenotypes. Because of the interest in molecular state
characterization at the single cell level, imaging techniques have
evolved to keep up with the demands. Several strategies, for
instance confocal microscopy supported by smFish (single
molecule fluorescent in-situ hybridization), can be used for
characterization of molecular states of individual cells. Recent
studies in the liver have demonstrated “bursty” gene expression in
hepatocytes using smFish (Halpern et al., 2015) as well as zonated
gene expression across entire liver lobules using a combination of
smFish and single cell RNA sequencing (Halpern et al., 2017).
smFISH in coordination with another single cell acquisition
method, laser capture microdissection (LCM), can provide
both visualization and capturing capabilities that can be used
for quantification and downstream modeling and simulation
(Figure 3B).

Imaging dynamic processes within the histologically complex
liver parenchyma could provide further information regarding
molecular trafficking and intercellular interactions under
homeostatic conditions and perturbations. Such powerful
technological advances in molecular imaging, enables
visualization of cell-level dynamics over short time scales in
live animals. While these visualization tools are not readily
available in humans, animal models display incredibly
comparable systems. For example, Young and Periwal (2016)
showed that a mathematical model of liver regeneration originally
developed by Furchtgott et al. (2009) to account for the cellular
transitions and signaling processes in the rat can predict liver
regeneration dynamics in five other species, including human, by
scaling a single metabolic load parameter. Similar results on
potential cross-species translation were shown by Cook et al.
(2015) where a cellular model of liver regeneration was
parameterized across rat, mouse and human scenarios by
scaling the metabolic load parameter. Therefore, the
opportunity now exists for use of imaging techniques in
animals as a means for modeling in humans. This method of
“seeing” in animals and “simulating” in humans presents a useful
strategy in disease research, capable of providing many new
insights, specifically to the field of liver regeneration.

An emerging imaging method capable of obtaining cell-level
molecular data is MALDI (Matrix Assisted Laser Deposition
Ionization) imaging mass spectrometry (Aichler and Walch,
2015). MALDI involves the application of a matrix onto tissue
slices in order to extract molecules from tissue sections (Norris
and Caprioli, 2013). Specific regions of the matrix, with a

FIGURE 3 | Phalloidin staining for cell boundaries, red =Gfap staining for hepatic stellate cells (HSC’s). Definitions: IL-6 = interleukin 6, IL-6R = IL-6 receptor, JAK = Janus
kinase, STAT3 = signal transducer and activator of transcription 3, SOCS3 = suppressor of cytokine signaling 3, IE = immediate early genes, HIF-1α = hypoxia inducible
factor 1α, and VEGF = vascular endothelial growth factor. Sources: Kuttippurathu et al., 2014; Halpern et al., 2015; Cook et al., 2018. Figure made with BioRender.
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resolution of 5–10 μm, can then be ablated while still keeping the
tissue intact and taken to downstream multiplexed mass
spectrometry. MALDI allows for detection of a wide array of
functionally relevant molecules such as cell intrinsic metabolites,
drug metabolites, lipids, and proteins with spatial resolution on
the scale of a typical cell diameter. MALDI has recently been used
to analyze triglyceride content in normal and steatotic mouse
livers, suggesting the use of this technique for clinical screening
and estimating fatty liver (Nishikawa et al., 2014). An advantage
of MALDI is its excellent mass spectrometry sensitivity, allowing
for differentiation of hepatotoxic compounds, their metabolites
and consequences on endogenous structures. A limitation is the
still relatively low spatial resolution of approximately 20 μm,
which is much higher compared to the theoretically possible
200 nm of conventional light microscopy. However, a resolution
of approximately 20 µm is still sufficient for analysis of lobular
zonation as the lobular radius is approximately 200 µm.
Therefore, differentiation of the pericentral, midzonal, and
periportal regions is still possible. For analysis of zonation, the
MALDI signal can be superimposed onto immunostained tissue.
This technique has been used to study the zonated distribution of
acetaminophen (APAP), its glutathione adduct (GSH-APAP)
and GSH levels after administration of APAP to mice (Sezgin
et al., 2018). While APAP was not zonated in liver tissue, GSH-
APAP and GSH depletion occurred preferentially in the
cytochrome P4502E1 (CYP2E1) positive pericentral lobular
region, confirming the concept that CYP2E1 metabolizes
APAP to a reactive intermediate (NAPQI) that depletes GSH.
Thus, MALDI is a method of choice for the label free analysis of
chemicals and their metabolites in tissue.

While imaging methods, such as MALDI, are capable of
extracting molecular details from tissue slices at a low
resolution, ionic level imaging is only possible at a higher
resolution. Such methodologies exist for dynamic quantification
of ions, i.e., calcium, through in vivo loading of a sensitive indicator
followed by high-resolution confocal microscopy. At a molecular
level, calcium signaling plays a large role in the regenerative
potential of the liver. Since calcium regulates many key hepatic
processes such as lipid metabolism, carbohydrate metabolism, bile
secretion, and choleresis, its dysregulation can lead to serious
proliferative consequences. Therefore, a carefully and accurately
orchestrated calcium response must prevail to cope with the stress
of the injury (Oliva-Vilarnau et al., 2018). Since this response is
tightly regulated, both temporally and spatially, detailing this
molecular change would greatly benefit a computational model
of liver regeneration. In order to gain such spatial and temporal
insight into hepatic calcium content, reliable imaging techniques
are necessary. As seen with many other molecular imaging
methods, limited resources allow for live visualization in
humans. This continues to be the case with calcium imaging as
well. Therefore, rodent models have provided us with a wealth of
data, capable of being applied to human systems. However, calcium
imaging may produce very noisy and unreliable signals. Therefore,
improvements in such imaging techniques and software analyses
are essential for proper modeling, especially during liver
regeneration. Recent advances in calcium imaging and modeling
techniques allows for better correction, extraction and denoising of

calcium signals. Two new software show great advancement in
signal clarity: CellSpecks (Shah et al., 2018b), which allows for
automated detection and analysis of calcium channels in live cells,
and TraceSpecks (Shah et al., 2018a), which can be used for
automated idealization of noisy patch-clamp and imaging data.
The dual use of these software allows for calcium imaging,
detection and quantification ease. Another calcium signaling
software worth noting is CaSCaDe (Agarwal et al., 2017), which
can be used to classify and decode calcium microdomains, thereby
elucidating specific spatial patterns. Utilizing these software allows
for simple incorporation of calcium signaling activity into liver
regeneration or injury models.

Biochemical modeling in the liver has been performed using
both ODE-based deterministic (Kholodenko et al., 1999; Verma
et al., 2016) as well as stochastic (Gracheva et al., 2001)
approaches. Both have been widely utilized to quantitatively
describe cellular processes in single or small groups of
hepatocytes. A recent study has modeled hepatocyte growth
factor (HGF)-induced hepatocyte replication using an ODE-
based framework; the model was able to successfully predict
and validate CDK2 phosphorylation as a key control point for
quiescent-to-replicating transition in hepatocytes in the absence
of HGF (Mueller et al., 2015).

Incorporating cellular geometry and organelle locations in
computational models could be an interesting aspect of
intracellular modeling in hepatocytes. Recently, the
combinatorial use of live-cell confocal and lattice light sheet
spectral imaging approaches has allowed for the
characterization of six organelle interactomes, providing a
powerful tool for observing intercellular coordination and
colocalization (Valm et al., 2017). Monte Carlo Cell (MCell,
Kerr et al., 2008) is an application well suited for the
incorporation of cellular geometry and organelle interactome-
related information. MCell can incorporate realistic 3D spatial
models of cells, while using a probabilistic approach, to model
reactions within the cell as mass action kinetics. Molecular
dynamics and intercellular interactions in a limited number of
cells can be modeled using MCell with relative ease.

Alternative methods of imaging, such as fluorophore-based
confocal and multiphoton intravital imaging, have been used to
visualize the elimination of endogenous and xenobiotic molecules
(Dunn and Ryan, 2017; Reif et al., 2017), study the dynamic
behavior of T-cells (Benechet et al., 2017), and visualize tumor
microenvironments in the liver (Tanaka et al., 2012). However, it
holds the potential to provide novel insights into cellular
dynamics. Specifically, cellular dynamics with spatial and
temporal resolution can be elucidated during the period of
non-parenchymal cell recruitment and extracellular matrix
modification immediately following liver injury or resection.

5 TECHNICAL PERSPECTIVES:
INTRAVITAL IMAGING BY TWO-PHOTON
MICROSCOPY
Recently, it has been shown that two photon-based microscopy
adds valuable information to imaging at the lobule level as well as

Frontiers in Systems Biology | www.frontiersin.org June 2022 | Volume 2 | Article 9171919

Verma et al. Multiscale Modeling and Liver Imaging

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


subcellular processes (Jansen et al., 2017; Reif et al., 2017; Ghallab
et al., 2019). In two-photon imaging an infrared laser hits the
fluorophore with two photons simultaneously (Reif et al., 2017).
Each photon transfers half of the energy required for excitation.
An advantage of this procedure is that infrared lasers penetrate
deeper into tissue than laser beams with higher energy. This
allows for imaging of up to approximately 70 µm below the liver
capsule of anesthetized mice without any phototoxicity. Further
requirements of two-photon based intravital imaging are long
distance objectives with high numerical aperture (>1.1), a very
sensitive detection system, such as gallium arsenide phosphide
(GaAsP) detectors, and an optimized inhalation anesthesia to

minimize movement artefacts of the mouse. Through use of
fluorescent reporter mice or intravital dyes, it is possible to
visualize all relevant cell types of the liver, such as
hepatocytes, sinusoidal endothelial cells, Kupffer cells and
Stellate cells (Figures 4A–D; Reif et al., 2017; Ghallab et al.,
2019). For analysis of liver regeneration dynamics, it is possible to
take videos with fast sequences in the millisecond range. The
duration of imaging is limited, however, by anesthesia, with up to
6 h of uninterrupted intravital imaging considered routine.

One advantage of two-photon based intravital imaging is that
cell death events and subsequent responses can be imaged.
Usually, cell death is preceded by loss of mitochondrial

FIGURE 4 | Intravital two-photon based imaging of liver cells. (A) mT/mG transgenic mouse showing the membranes of all cell types in red, here sheets of
hepatocytes; (B) visualization of Kupffer cells (green) by mating to LysM-Cre mice; (C) visualization of sinusoidal endothelial cells (green) by mating to Tie-2-Cre mice; (D)
visualization of stellate cells (green) by mating to Lrat-Cre mice. (E) visualization of the sequence of cell death events in the case of acute cholestasis induced by bile duct
ligation (BDL). Indicated hepatocyte (circle) shows the following sequence of events: (1) apical membrane rupture (minute 114); (2) CLF flooding (minute 115); (3) cell
death and release of CLF into the adjacent sinusoid (minute 132); and immune cell infiltration (minute 249). (F) visualization of bile salt transport in healthy livers. The
following stations could be seen after bolus i.v. injections of CLF: (1) appearance in sinusoids; (2) enrichment in LSEC/Disse space; (3) transport to hepatocytes; and (4)
secretion into bile canaliculi, which later get evacuated. Sources: Ghallab and Hengstler, 2018; Ghallab et al., 2019. Figure 4F modified from Reif et al., 2017.
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potential. Intravital imaging of mitochondrial potential is
possible after injection of tetramethylrhodamine (TMRE) into
the rodent. Mitochondria that are both negatively charged and
polarized will begin to accumulate positively charged TMRE
molecules. Vice versa, depolarized mitochondria accumulate
less TMRE. After intoxication with APAP or CCl4, but also in
liver diseases such as cholestasis, loss of TMRE-associated
fluorescence usually precedes gain of propidium iodide (PI)
mediated nuclear fluorescence, an intravital cell death marker.
Figure 4E shows a typical scenario from a video displaying
hepatocyte death caused by bile duct ligation, the initial event
that leads to the so-called Charcot-Gombault necrosis or bile
infarct. In these cells the mitochondrial potential decreases,
followed by rupture of the apical (bile canalicular) hepatocyte
membrane, and accumulation of the green fluorescent bile salt
analogue cholyl-L-lysyl-fluorescein (CLF) in hepatocytes
(Ghallab et al., 2019). Finally, there is neutrophil infiltration
seconds to minutes later, which coincides with nuclear
disintegration of the dead hepatocytes. A strength of intravital
two-photon based imaging is that it helps to elucidate sequences
of key events, especially if they occur within a relatively short time
frame, which would otherwise be impossible with conventional
histology.

One of the central functions of the liver is biliary excretion of
bile acids. Xenobiotics and pharmaceutical drugs are often
excreted via the biliary route. Two-photon imaging allows for
the direct observation and quantification of these transport
processes. The time course of transport of bile salt analogue
CLF in a healthy liver is shown in Figure 4F. After bolus injection
into the rodent tail vein, CLF first appears in the sinusoid, is
enriched in the Dissé space and finally excreted into the bile
canaliculi. After intoxication or induction of cholestasis, this
transport chain is interrupted by an uptake block at the
basolateral or blood side of hepatocytes. In this situation (day
21 after BDL), uptake of CLF into hepatocytes is strongly reduced.
Therefore, the half-life of CLF in the circulation is much longer.
This basolateral uptake block serves to prevent bile salt
overloading of regenerating or cholestatic hepatocytes; it
corresponds to previous reports that the basolateral export
carriers MRP3, and MRP4 OSTαβ are upregulated in
cholestasis (reviewed in Jansen et al., 2017). However, it
should be noted that the observation of an uptake block by
two-photon imaging cannot differentiate between the inability
of hepatocytes to take up CLF and the ability of hepatocytes to
take up CLF following immediate basolateral excretion.

6 LIVER VASCULATURE AND BILE FLOW
NETWORK IMAGING AND MODELING

The extensive network of microvessels comprising the liver is vital
to its function. The liver receives blood from the heart and gut
through the hepatic artery and portal vein respectively, which is
drained into the central vein after passing through sinusoids. An
independent network of bile canaliculi runs throughout the
organ, draining bile into the gallbladder. Any injury to the
liver parenchyma perturbs the structure as well as blood flow

through the liver. An increase in portal blood pressure is observed
soon after liver resection. The resulting shear stress on
hepatocytes could be one of the first signals instigating the
downstream cohort of regenerative processes. Visualization
and topological characterization of liver microvasculature is
therefore essential for building computational models of liver
function and regeneration.

At the organ level, liver microvasculature can be visualized
using micro-CT. Corrosion casting obtained by resin perfusion,
in combination with micro-CT, has been used to create accurate
3D models of liver vasculature at the organ level under
homeostasis, allowing quantification of features such as the
hepatic artery, portal vein and hepatic venous trees up to 13
generations (Debbaut et al., 2014). Micro-CT, in combination
with the use of phase contrast agents, has been employed to
reconstruct progressive revascularization in the regenerating liver
(Xie et al., 2016). Results from this study indicated that vascular
hepatic growth patterns during regeneration cannot be explained
by their hypothesis of isotropic expansion. At smaller length
scales, confocal microscopy is commonly used for visualization
and characterization of liver vasculature. Additionally, intravital
imaging has been utilized for studying blood flow through liver
sinusoids (Cabrera and Frevert, 2012). Recent computational
modelling of the hepatic circulatory system from the work of
Torres Rojas et al. (2021) considered the hepatic artery, portal
vein, and hepatic vein as dendritic networks, and each lobule as a
component of a porous medium. The model accurately captured
the changes in blood pressure and flow rates throughout the
hepatic vasculature observed following resection of the liver.

Previous efforts have utilized fluid dynamics to model blood
flow within liver lobules (White et al., 2016). However, the high
degree of inhomogeneity in liver vascularization requires
simplifications to ensure tractability. Microscopic regions of
homogeneity, usually lobules or sinusoids, are therefore
considered in modeling blood flow (Bonfiglio et al., 2010; Park
et al., 2010). In a recent study, a 3Dmodel of the mouse sinusoidal
network was generated and visualized following perfusion of the
left ventricle and subsequent confocal imaging of the sinusoidal
area (Ishikawa et al., 2021). Blood flow and liver volume
measurements were taken prior to and at two time points (24
and 120 h) following PHx to study the sinusoidal network
dynamics during the initiation and termination phases of liver
regeneration. The authors found that mechanical homeostasis,
including gravity, shear stress, osmotic pressure, and tension is
regulated by cytokine networks. The dynamic changes in
mechanical stress and tension in the liver and the signaling
processes induced by these changes in the sinusoidal cells
occur prior to growth factor production after PHx and
together control the initiation and termination of liver
regeneration.

Predicative 3D models of bile flow dynamics at various length
scales have been developed utilizing immunofluorescence
staining and reconstruction techniques (Meyer et al., 2017;
Segovia-Miranda et al., 2019). Meyer et al. (2017) generated a
spatially resolved model of human liver tissue at different stages
of non-alcoholic fatty liver disease (NAFLD). Their findings show
that there exists immense topological defects in the bile
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canalicular network, correlated with NAFLD progression. The
multiscale modeling work of Segovia-Miranda et al. (2019)
revealed spatial heterogeneities of biliary geometry leading to
gradients of bile velocity and pressure in the liver lobule.

7 DISCUSSION

Computational modeling is an integral and increasingly
important part of systems and predictive medicine. Multiscale
phenomena, like liver function under systemic signals and liver
regeneration, are inherently complex and require computational
approaches to identify points of vulnerability. Describing liver
patho-physiology using multiscale modeling approaches has
gathered widespread interest (Holzhütter et al., 2012).
Transcending spatial and temporal scales requires judicious
approximations to make the multi-scale modeling of liver
function and regeneration a tractable pursuit. Such
approximations could lead to conceptualization of the
modeling process at different levels of abstraction. Multiscale
models of liver regeneration have been developed without
considering explicit histological detail as described in
Furchtgott et al. (2009) and Cook et al. (2015). Both models
were conceptualized as lumped ODE-based models and
considered extracellular matrix and organ-wide cytokine levels
as parameters that mediate intercellular communication. Using
their lumped multiscale model, Cook et al. (2015) were able to
predict the molecular states of hepatic stellate cells that may
contribute towards aberrant liver regeneration in rats fed a
chronic alcohol diet.

Explicit consideration of simplified lobular histology allows
for inclusion of features such as functional zonation into
computational models. At the lobular scale, ammonia
detoxification has been modeled during liver regeneration by
Schliess et al. (2014). This model captures subcellular processes,
functional zonation, lobule-level transport, and spatial dynamics
of tissue regeneration over periods spanning a few days. Such
lobular scale models can be integrated into pharmacokinetic
(PBPK) models as seen in Schenk et al. (2017). This opens up
the possibility of studying the relationship between extent of
tissue damage induced by chemical or surgical intervention and
loss of metabolic capacity of the liver. One hypothesis states that
the loss of metabolizing tissue is proportional to the loss of
metabolic capacity of the organ. Alternatively, the surviving
tissue may undergo an adaptive response to compensate for
the loss of tissue (compensated loss). A third option is that
the loss of metabolic capacity is even higher compared to the
fraction of lost metabolizing tissue (aggravated loss). In the case
of CCl4 induced acute liver damage, an aggravated loss was
observed (Schenk et al., 2017). This type of modeling is
required to connect, in a formalized way, key events, such as
hepatocyte death, to adverse outcomes, such as metabolic
deficiency and liver failure (Leist et al., 2017). Other models
have seen integration of whole organism scale, cellular scale and
subcellular scale modeling for acetaminophen clearance (Sluka
et al., 2016). Including organ histology in models of liver
regeneration can help analyze the complex interplay between

increased systemic metabolic demands and the resulting spatially
localized modes of cytotoxicity, leading to a model capable of
predicting regenerative outcomes.

Altogether, with the combined power of imaging and
subsequent multiscale modeling of the liver during
regeneration, predictions can be made regarding the success or
failure of the organ in regenerating to its full functional potential
(Figure 5). Specifically, beginning with 3D volumetric data, such
as ultrasound, MRI, or CT, one can identify anatomical changes
such as organ size following PHx (Figure 5A). Individual images
obtained from the 3D volumetric studies can then be stacked for
the purpose of 3D reconstruction (Figure 5D). In parallel,
imaging at the level of the hepatic lobule, followed by
segmentation of known cellular structures can provide
information about liver functionality during the regenerative
process (Figures 5B,E). Finally, molecular data at lobule and
cellular-level resolution can be extracted to identify phenotypic
changes throughout the regenerative course (Figures 5C,F). All
three paths can be integrated during the predictive multiscale
model-building process such that the model is equipped with
both functional and anatomical details of liver regeneration
(Figure 5G). The model can then be utilized to identify
regulatory relationships guiding the liver to regenerative
success (i.e., recovery) or failure (Figure 5H).

A recent study showed key progress in demonstrating the
potential for combining multiple imaging modalities from the
same patient-derived liver tissue sample (Kong et al., 2021). Using
multiple imaging methods including light sheet microscopy,
Kong et al. (2021) viewed the hepatic architecture from the
organ scale down to subcellular resolution. Specifically, the
hepatobiliary system was visualized and mapped in 3D using a
single patient’s liver biopsy sample, allowing for identification of
fibrotic regions extending from the portal field to the
parenchyma. Such studies show promise for obtaining
multiscale architectural information from an individual
patient’s liver tissue. Complementary high resolution and
spatially-resolved histopathological data from the same
patient’s liver biopsy sample can provide multimodal
molecular, cellular and tissue scale information on the
functional state of the liver. This data can then be utilized to
tune individualized patient models of liver function, disease and
repair dynamics.

While in vivo imaging provides powerful anatomical and
functional information, there are some limitations that may be
complemented by the in vitro cell culture studies. Specifically, in
vivo imaging may be limited by low spatial resolution, low
sensitivity and poor tissue contrast (Lauber et al., 2017). In
vitro studies, however, allow for a more precise control of the
physiochemical environment that can be manipulated as needed
(Arango et al., 2013). The in vitro methods allow for high
throughput screening approaches to evaluate the contribution
of multiple network components to the signaling in liver cells.
The in vivo imaging on the other hand can provide detailed
information on the organ and tissue scales. Liver regeneration as a
tissue/organ scale process cannot be studied in vitro, where the
studies would necessarily have to focus on cellular and molecular
aspects. Therefore, complementing in vivo imaging with in vitro
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FIGURE 5 |Multiscale modeling approach from “seeing” to “simulating” in the liver. (A)Obtaining 3D volumetric data using techniques such as ultrasound (shown),
MRI or CT can be used to record changes in liver size, as in the case of liver regeneration. The liver can then be computationally reconstructed (D) by stacking the
individual volumetric images. (B) Segmentation of the hepatic lobule into respective structures, in this case, S-phase hepatocytes (green), S-phase negative nuclei (blue)
and the microvessel network (red), allows for extraction of functional information (E) such sinusoidal endothelial cell (SEC) area following liver resection by PHx. (C)
Lobular and cellular-level molecular data can be extracted (i.e., the concentration of cytosolic Ca2+ over time) to identify cellular phenotypic changes (F) An increase in
hepatic calcium levels promotes actin-myosin interactions and bile secretion, through activation of MRP2 and BSEP. Integrating 3D-reconstructed volumetric images
(D), functional information from segmentation images (E), and cellular phenotypic data from extracted molecular data (F) allows for predicative modeling of liver

(Continued )
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FIGURE 6 | Tuning patient-specific computational models of liver. After obtaining a liver biopsy sample from a patient, various imaging modalities may be utilized for
obtaining tissue morphological, histological and functional information used for tuning a multiscale model, thereby aiding in the prognosis and diagnosis of liver
conditions. The imaging modalities and the spatial scales at which they can inform a computational model are shown. Figure made using BioRender.

FIGURE 5 | regeneration (G). A computational model of liver regeneration is then able to provide insights into the mechanistic details and regulatory relationships
differentiating situations of liver failure and recovery (H) Definitions: BSEP = bile salt export pump, MRP2 = multidrug resistance-associated protein 2. Sources: Maeno
et al., 2005; Hammad et al., 2014; Oliva-Vilarnau et al., 2018.
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cell culture studies provides new integrative opportunities to
develop computational models of liver regeneration with high
spatial, temporal, and physiochemical resolution.

In this review, we focused the discussion on various imaging-
based modalities used to enhance the development of multiscale
models of the liver (Figure 6). While several of these methods
incorporate details of cellular signaling, multi-scale models
informed by emerging single cell transcriptomic datasets, may
lead to overall model improvements. For instance, in a multiscale
model of hepatic calcium signaling, model parameters were
constrained such that zonation patterns of calcium signaling
components were properly tuned to the referenced single cell
RNA-seq data (Verma et al., 2018). In a separate study, Cook
et al. (2018) developed a mathematical model of liver regeneration
describing the relative contributions of various cell populations in
yielding a successful regenerative phenotype. After tuning the
model to the acquired single cell gene expression data, four
specific hepatic stellate cell transcriptional states were identified
and characterized to have a role in liver regeneration. Multiscale
models may also benefit from the use of multi-omic
(transcriptomic, metabolomic and proteomic) data integration
as this provides additional information about the various layers
of transcriptional and translational regulation, which aid in
building valid, functionally relevant models. Specifically, a
recently published review article in the field summarized the
importance of integrating single cell expression data into
computational models of liver resection (Christ et al., 2021).
Despite the relevance of such models, we focus this review on
imaging modalities capable of enhancing model simulation and
prediction, as this type of modeling can aid clinicians in providing
the most optimal care to patients with liver disease.

As the opportunities for personalized medicine continue to
evolve, multiscale modeling tuned to patient-specific imaging

data can be an important component to assess the disease
functional state noninvasively. Lastly, exploiting the latest
developments in machine learning and artificial intelligence
for imaging and multi-omics data, it is feasible to build faster
executable surrogate models that are trained on the intricacies of
the imaging data, including the underlying physics and
biochemistry. Such models can then predict both the static
and dynamic behavior of the tissue during liver disease
progression, treatment and post-surgical assessment. In
summary, developing hepatic multiscale models using
multimodal imaging data can provide a wealth of knowledge
supporting translational research and drive potential
development of prognostic tools.
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