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Cell-free synthetic biology has gained increasing popularity owing to its ability to
elucidate biological functions in isolation from intricate cellular environments and
the capacity to build increasingly complex biochemical systems in vitro. But cell-
free transcription—translation systems are often only available in small volumes
which has been a major challenge in the field. Microfluidic technologies helped
address this challenge by enabling miniaturization and implementation of robust
multi-step workflows. In this review, we highlight microfluidic technologies
which have been applied to cell-free applications and discuss various ways in
which they have advanced the boundaries of cell-free synthetic biology.
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1 Introduction

Described as the manipulation of fluids on the microliter to femtoliter scale,
microfluidics enables processing and handling minuscule amounts of fluid samples
(Gravesen et al., 1993; Beebe et al., 2002; Todd and Quake, 2005; Whitesides, 2006).
Miniaturization of fluidics can eliminate non-linearities in flow behaviour and also
introduces new phenomena not observed at the macroscale (Howard et al., 2004; Li,
2004; Di Carlo, 2009; Seemann et al., 2011). Several multi-step protocols have been
implemented in so-called “lab-on-a-chip” and “micro total analysis” microfluidic
devices (Dittrich et al., 2006; Abgrall and Gue, 2007; Maerkl and Quake, 2007). Design
and fabrication of such microfluidic devices most commonly employs a combination of UV
lithography and soft lithography (Whitesides et al., 2001). The use of polydimethylsiloxane
(PDMS) for soft lithography of microfluidic devices served as a major improvement,
facilitating rapid prototyping and design-build-test cycles (Xia and Whitesides, 1998). By
enabling parallelization, minimal reagent consumption, faster sample processing, and the
ability to carry out complex multi-step protocols, microfluidics has played an important role
in the development of cell-free synthetic biology.

Originating from the discovery of fermentation with yeast extract by Eduard Buchner in
1897 (Jaenicke, 2007), cell-free systems (CFS) have recently seen increasing use in building
complex synthetic gene networks and understanding biological pathways in vitro. Working with
biomolecular components outside of cells allows researchers to elucidate their function often
more precisely and quantitatively than is possible within the complex cellular environment. CFS
are also increasingly used for applications including biosensing (Tinafar et al., 2022), metabolic
engineering (Dudley et al., 2015), and product synthesis (Kumar Dondapati et al., 2020). More
recently, researchers are beginning to tackle the question whether a living system could be built
from the bottom-up using non-living components and CFS are playing a major role in this

OPEN ACCESS

EDITED BY

Corentin Briat,
ETH Zürich, Switzerland

REVIEWED BY

Richard Murray,
California Institute of Technology, United States
Duhan Toparlak,
University of Oxford, United Kingdom

*CORRESPONDENCE

Sebastian J. Maerkl,
sebastian.maerkl@epfl.ch

RECEIVED 08 March 2024
ACCEPTED 12 April 2024
PUBLISHED 06 May 2024

CITATION

Baranwal AK and Maerkl SJ (2024), A
comprehensive review of Microfluidic
approaches in cell-free synthetic biology.
Front. Synth. Biol. 2:1397533.
doi: 10.3389/fsybi.2024.1397533

COPYRIGHT

© 2024 Baranwal and Maerkl. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Synthetic Biology frontiersin.org01

TYPE Review
PUBLISHED 06 May 2024
DOI 10.3389/fsybi.2024.1397533

https://www.frontiersin.org/articles/10.3389/fsybi.2024.1397533/full
https://www.frontiersin.org/articles/10.3389/fsybi.2024.1397533/full
https://www.frontiersin.org/articles/10.3389/fsybi.2024.1397533/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsybi.2024.1397533&domain=pdf&date_stamp=2024-05-06
mailto:sebastian.maerkl@epfl.ch
mailto:sebastian.maerkl@epfl.ch
https://doi.org/10.3389/fsybi.2024.1397533
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org/journals/synthetic-biology#editorial-board
https://www.frontiersin.org/journals/synthetic-biology#editorial-board
https://doi.org/10.3389/fsybi.2024.1397533


endeavor (Maerkl, 2023). However, cell-free systems often require
extensive component optimization or the large-scale analysis of a
particular biochemical system. Cost of reagents and economic
feasibility of scaling up reactions are important factors to consider in
using CFS, and can often prevent tapping the full potential of CFS in
benchtop settings.

The field of microfluidics has become a major driving force in
pushing the boundaries of cell-free synthetic biology. Performing cell-
free reactions in microfluidic devices enables many applications and
uses of CFS that would often be impossible to achieve using standard
benchtop methods and pipetting. For example, the development of
microfluidic chemostats enabled the implementation of continuous
cell-free transcription - translation reactions running under steady state
conditions, where it is crucial to maintain the influx of fresh reagents
and components while diluting out the products and waste, with the
smallest volumes possible (Niederholtmeyer et al., 2013; Karzbrun et al.,
2014). Application of microfluidics in cell-free setups enables high-
throughput characterization of biomolecular-components and allows
multistep long-term studies (Niederholtmeyer et al., 2015; Chang et al.,
2018; Swank et al., 2019; Swank and Maerkl, 2021) with minimal
reagent consumption in an automated fashion. A growing number of
examples can be found in literature showcasing microfluidics enabling
long-term, continuous implementation of cell-free systems
(Niederholtmeyer et al., 2013; Karzbrun et al., 2014;
Niederholtmeyer et al., 2015; Swank et al., 2019; Lavickova et al.,
2020; Laohakunakorn et al., 2021; Swank and Maerkl, 2021;
Lavickova et al., 2022), generation and manipulation of artificial cells
and organelles (Cho and Lu, 2020; Lavickova et al., 2020), cell-free
biosensors (Pardee et al., 2014; Pardee et al., 2016; Amalfitano et al.,
2021), high-throughput studies of complex biological systems (Chang
et al., 2018; Swank et al., 2019; Laohakunakorn et al., 2021; Swank and
Maerkl, 2021), and high-throughput directed evolution studies (Fallah-
Araghi et al., 2012; Dodevski et al., 2015; Holstein et al., 2021). Many of
the drawbacks and challenges in cell-free studies discussed above could
be addressed with microfluidic setups, and only a few reviews of
microfluidic cell-free systems have been published (Damiati et al.,
2018; Ayoubi-Joshaghani et al., 2020).

In this review we provide a comprehensive overview and discuss
recent technological developments in microfluidics that contributed to
advances in cell-free synthetic biology.We begin with brief descriptions
of cell-free synthetic biology and the physical phenomena in
microfluidics relevant to cell-free systems. This is followed by
discussions on single-phase systems, focusing on passive paper-based
devices, that operate via autonomous microfluidic flow and recent
applications in CFS. Next, we discuss active single phase as well as
multiphase microfluidic systems actuated via peripheral devices,
enabling high-throughput multistep cell-free reactions and describe
howmicrofluidics has pushed the envelope in research towards creating
artificial cells. We also cover digital microfluidic devices and discuss
their potential for cell-free applications. Finally, we discuss the potential
of microfluidic technologies and challenges to be addressed to further
improve them for enabling cell-free synthetic biology.

2 Cell-free synthetic biology

The term “synthetic biology” is used to describe efforts to design
or redesign life on a molecular level (Benner and Sismour, 2005;

Shankar and Van Oudenaarden, 2009; Slusarczyk et al., 2012;
Church et al., 2014; Smanski et al., 2016). It involves
development of complex systems from DNA, proteins, and other
biomolecules, which constitute the building blocks of biology
(Heinemann and Panke, 2006; Purnick and Weiss, 2009). The
major motivations behind synthetic biology lie in understanding
the complex mechanisms behind natural biology and building
synthetic systems that could perform novel, useful functions
(Purnick and Weiss, 2009; Nandagopal and Elowitz, 2011; Jeffrey
et al., 2014). The former often involves characterizing synthetic
constructs consisting of components involved in a biological process
of interest, thus allowing studies of their interactions in a robust and
isolated manner (Andrianantoandro et al., 2006). The foundation
for synthetic biology was laid in 1970s with fundamental studies on
DNA sequencing, molecular cloning, and polymerase chain
reactions (PCR) (Cameron et al., 2014). The construction of the
first synthetic gene circuit elements—a genetic toggle switch
(Gardner et al., 2000) and a genetic oscillator (Elowitz and
Leibler, 2000), in 2000, were the cornerstones of synthetic
biology. This development led to design and engineering of
genetic circuits with feedback loops and logic gates, analogous to
transistor logic circuits (Hasty et al., 2001a; Hasty et al., 2001b; Hasty
et al., 2002; Guido et al., 2006). Since then, the field has grown by
leaps and bounds, with many examples of complex gene regulatory
networks and reverse-engineered cellular networks found in
literature and commercial products (Slusarczyk et al., 2012;
Sedlmayer et al., 2018; Xie and Fussenegger, 2018). The timeline
of synthetic biology and key developments over the last 2 decades
have been intricately covered in excellent reviews by Cameron et al.,
2014 and Meng and Ellis, 2020. Several commercial examples of
synthetic biology can now be found in applications in cancer
therapeutics, drugs and fertilizers (Khalil and Collins, 2010;
Higashikuni et al., 2017; Voigt, 2020).

However, cells are extremely complex environments and many
challenges relating to system variability and standardization arise
from engineering synthetic networks in living cells (Bruggeman and
Westerhoff, 2007; Cardinale and Arkin, 2012). This has resulted in
an increased focus on using “cell-free” systems for studies and
applications (Eric Hodgman and Jewett, 2012; Perez et al., 2016;
Yuan, 2017; Laohakunakorn et al., 2020) Cell-free systems can be
created by extracting the cellular machinery from cultured cells,
followed by reconstituting themwith energy components, additional
enzymes and co-factors to run in vitro transcription and translation
(IVTT) (Ashty and Jewett, 2018; Jiang et al., 2018; Koch et al., 2018).
This process of isolation and reconstitution allows precise
characterization of processes and interactions of biomolecules
devoid of influence from secondary processes, including cell
growth (Lee and Kim, 2013; Smith et al., 2014; Morgado et al.,
2018), motility (Ni et al., 2020), quorum sensing (Melissa and
Bassler, 2001; Keller and Surette, 2006) or interactions with
extracellular environment (Bissell and Barcellos-Hoff, 1987).
Researchers have shown robust cell-free protein synthesis (CFPS)
from different cell lysates (Katzen et al., 2005; Kim et al., 2006;
Gregorio et al., 2019). Lysate-based systems have well-established
production protocols (Garamella et al., 2016). While they have
proven to be powerful systems in synthetic biology, lysate-based
systems remain highly complex and undefined. An alternative
approach is protein expression using recombinant elements
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(PURE), where all necessary proteins are individually purified prior
to reconstituting them in a mixture (Shimizu et al., 2001). Cell-free
systems based on lysate or PURE are commercially available in the
form of ready-to-use kits. Aside from commercial protein
expression kits, there are also several cheaper, self-made
alternatives for CFS. Lavickova and Maerkl, 2019 recently
introduced a robust and low-cost method for producing the
PURE system. They showed protein synthesis capacity similar to
the PURExpress commercial kits at 6% cost per microliter, thus
providing a cheaper alternative and broadening access to cell-
free systems.

Cell-free applications range from biosensor design (Soltani et al.,
2018; Zhang et al., 2020), protein synthesis (Niederholtmeyer et al.,
2013; Chang et al., 2018; Lavickova et al., 2020; Laohakunakorn
et al., 2021), rapid prototyping of gene regulatory components via
rapid design-build-test cycles (Maerkl and Quake, 2007;
Niederholtmeyer et al., 2015; Swank et al., 2019) to building
complex gene circuits (Silverman et al., 2020; Garenne et al.,
2021). One grand challenge that has emerged in cell-free research
is the bottom-up development of a synthetic cell (Maerkl, 2023).
Efforts towards this challenge include creation of DNA replication
(Sakatani et al., 2018; Van Nies et al., 2018; Ueno et al., 2021;
Grasemann et al., 2023), tRNA replication (Hibi et al., 2020), energy
and metabolism (Berhanu et al., 2019; Miller et al., 2020), vesicle
structures and membrane synthesis (Deshpande et al., 2016;
Bhattacharya et al., 2019; Blanken et al., 2020), and
communication systems (Li et al., 2019; Buddingh et al., 2020).
We recently demonstrated continuous self-replication of essential
proteins in the PURE system (Lavickova et al., 2020). Microfluidic
devices have proven to be absolutely essential in many of these
developments and a great variety of research over the last decade
focused on utilizing microfluidics to tackle challenges in cell-free
systems. There is a growing body of research on
compartmentalization of cell-free reactions in microdroplets
(Petra et al., 2005; Holstein et al., 2021) and hydrogels (Park
et al., 2009; Cui et al., 2020), construction of artificial vesicles to
imitate cellular membranes (Arriaga et al., 2014; Deshpande et al.,
2016), co-encapsulation of liposomes (Stucki et al., 2021a; Nuti et al.,
2022) and coacervates (Pir Cakmak et al., 2019; Abbas et al., 2022) to
imitate intracellular organelles and establishing cellular processes
such as cell growth (Scott et al., 2016; Bhattacharya et al., 2019),
division (Deshpande et al., 2018; Steinkühler et al., 2020; De
Franceschi et al., 2024), fusion (Gong et al., 2008; Caschera et al.,
2011) and transcription-translation (TX-TL) (Vincent and
Libchaber, 2004; Vincent et al., 2005) within these artificial cell
constructs. There have also been applications of microfluidic devices
for high-throughput characterization of binding affinities (Maerkl
and Quake, 2007; Swank et al., 2019) and microfluidic chemostats
enabling continuous steady-state cell-free reactions
(Niederholtmeyer et al., 2013; Karzbrun et al., 2014; Lavickova
et al., 2020; Laohakunakorn et al., 2021; Swank and Maerkl, 2021).

3 The realm of microfluidics

Microfluidics involves the interplay of various physical
phenomena which have to be optimized for particular
applications. A few key dimensionless numbers representing the

relative influences of these phenomena help us understand the fluid
parameter space and are often considered paramount for optimizing
a given microfluidic system (Todd and Quake, 2005; Whitesides,
2006; Convery and Gadegaard, 2019). Microfluidics often deals with
flows having a low Reynold’s Number (Re) (Eq. 1) (Brody et al.,
1996), which is the ratio of inertial to viscous forces in the system:

Re � ρvL/η (1)
where ρ is the density of fluid, η gives the dynamic viscosity, v is the
flow velocity and L is the characteristic width of the flow path. At low
values of Re (Edward, 1977), several non-linear fluidic effects
become negligible, resulting in linear and predictable flows
(Karimi et al., 2015). This streamlines applications of
microfluidics as fluid flows are often governed by linear
characteristics. Typical values of Re range from 10–6 to 10. This
implies inertial fluid effects are mostly negligible and other
dimensionless numbers, such as the Péclet number and the
capillary number, are of much greater importance. The Péclet
number (Pe) is the ratio between convective and diffusive forces
(Eq. 2), and an important parameter to estimate the extent of mixing
in a microfluidic system:

Pe � vL/D (2)
where D is the diffusion constant of the molecule of interest. While
random eddies and turbulent flows are the major driving factors for
mixing within fluids on the macroscale, diffusion is the major
driving force for mixing in microfluidics (Knight et al., 1998). A
molecule in a microfluidic system with low Pe would have greater
mixing efficiency, as diffusion would dominate convection. This is
crucial to take into consideration in setups with large biomolecules,
such as long DNA molecules, as they have very low diffusion
constants (Arosio et al., 2016). Herringbone structures can be
introduced into microchannels to introduce chaotic streamlines
and facilitate mixing via chaotic advection (Williams et al., 2008),
similar to turbulent mixing in macroscale fluidics. Therefore, greater
surface area and chaotic advection are the main techniques to
maximize mixing within microfluidic reactors (Suh and Kang,
2010). Another important dimensionless parameter to consider is
the capillary number (Ca) (Eq. 3), especially in the case of
multiphase microfluidics:

Ca � ηL/γ (3)
where γ is the interfacial tension between two immiscible fluids in
flow. Multiphase systems involve the flow of immiscible fluids, with
surface tension present at their interface. The interplay of viscous
forces and the interfacial surface tension can lead to formation of
emulsion droplets in such flow systems. Ca gives the ratio between
the viscous stresses and the interfacial surface stresses and its
optimization is crucial for production of monodisperse
emulsions. At sufficiently low values of Ca (< 10−2), breakup
physics of droplets in emulsion systems is dominated by the
interfacial tension, leading to simplified models for droplet
generation (Garstecki et al., 2006). Capillary forces are also
responsible for the autonomous flow of fluids in hydrophilic
channels and manipulation of fluids on surfaces, phenomena
forming the basis of capillary microfluidics and paper
microfluidics. Microfluidic systems can be classified as active or
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passive systems, based on whether peripheral equipment is required
to generate flows in devices. They can also be classified into single-
phase or multiphase microfluidic systems, based on the presence of a
single fluid or multiple immiscible fluids flowing through the
system. We discuss these various microfluidic systems in detail in
the following sections, along with their unique advantages and
disadvantages relevant to applications in cell-free synthetic biology.

4 Passive paper based microfluidics

Microfluidic devices based on autonomous fluid flow (capillary
flow) have come to prominence in diagnostics and point-of-care
(POC) applications primarily because of their ultra-low cost and
simplicity (Gervais and Delamarche, 2009; Curtis et al., 2012; Hua
and Steckl, 2018; Pandey et al., 2018; Hassan and Zhang, 2020).
These devices utilize capillary forces to shunt liquids along pre-
defined pathways in an autonomous fashion (Tan et al., 2021).
Classic examples of this are lateral flow assay (LFA) devices
(Hemmig et al., 2019; Kasetsirikul et al., 2020; Liu et al., 2021),
widely used in pregnancy self-test kits and COVID-19 self-test kits
(Zhou et al., 2021). Following the landmark publication of a
patterned paper microfluidic device from the Whitesides group
in 2007 (Martinez et al., 2007), the field of capillary and paper
microfluidics has boomed over the last decade and a half. Today, the
potential to generate flows without requiring external pumps or
controls, work with microliter-sized samples, low fabrication cost
and ease of use have made capillary microfluidic devices popular
options for cell-free POC and diagnostic applications, with
commercialized products serving as good examples (Pardee et al.,
2014; Slomovic et al., 2015; Zhang et al., 2020; Tinafar et al., 2022).
Capillary forces are governed by factors such as liquid surface
tension, surface geometry, and material properties of the solid
surface (Olanrewaju et al., 2018). Key manipulations such as
valving, pumping and limited control on flow rates can be
mimicked in capillary devices via an interplay of capillary effects
and surface modification (Wang et al., 2021). Diagnostic platforms
often utilize multistep protocols, which in turn require careful
design of fluidic circuits to isolate reactions and reagents.
Recognizing this, there have been several key developments in
design of fluidic circuits with “capillaric” elements (Safavieh and
Juncker, 2013) in combination with magnetic, electronic and optical
techniques over the last decade (Novo et al., 2014; Liu et al., 2022).

Paper-based microfluidic devices (µPADs) constitute a large
subset of capillary microfluidic devices and are fabricated by using
variations of cellulose paper or chromatography paper as flow
substrates (Carrell et al., 2019; Soum et al., 2019; Qin et al.,
2021). Here fluids flow through the paper substrate instead of
fabricated microchannels. The desired flow path is defined by
patterning a hydrophobic coating, such as SU-8, on the substrate.
Use of paper as a substrate has led to technological developments of
various valve designs to mimic functions of multilayer soft valves in
PDMS microfluidic devices (Cate et al., 2015; Fu and Downs, 2017).
A good example is the swelling hydrogel valve introduced by Toley
et al. (Toley et al., 2015). The valve is made of a hydrogel column
connected to an actuation channel on one end and impermeably to
channel A at the other end. When actuation fluid reaches the
hydrogel, it swells to push channel A upwards until it establishes

contact with channel B, thus closing the fluidic circuit. They showed
the potential for temporal and volumetric control using this valve,
and successfully performed a multistep ELISA on the device.

µPADs show great potential as cell-free biosensors due to their
low cost, ease of use and implementation, long term stability of
surface dried reagents and rapid processing (Li et al., 2012; Noviana
et al., 2021; Yuan, 2022). The Collins group at MIT has developed
robust µPADs for executing cell-free biosensing (Pardee et al., 2014;
Pardee et al., 2016; Takahashi et al., 2018) and recently applied them
for detection and quantification of RNA sequences in complex
samples (Karlikow et al., 2022). The integrated setup for their
device is shown in Figure 1A. They achieved clinically relevant
detection limits for Zika and chikungunya viruses in field tests at
costs close to two orders of magnitude lower compared to standard
clinical tests. Their workflow (Figure 1B) integrates a section for
nucleic acid sequence based amplification (NASBA) upstream of a
cell-free RNA detection assay. NASBA enabled amplification of the
RNA of interest to improve the detection limit of the device and
bring it closer to clinically relevant levels (Deiman et al., 2002). They
also integrated an RNA-specific toehold switch sensor and CRISPR-
Cas9-mediated selection to eliminate the effect of contaminants
from samples and distinguish between variant strains of viral RNA.
Similarly, Ma et al. used a PURExpress kit to detect target novoviral
RNA on a µPAD and reached a 5000-fold improvement in the
detection limit of their assay by using a synbody-based
concentration step (Ma et al., 2018).

The development of µPADs was pushed by the need for rapid
POC diagnostic kits during the COVID-19 global pandemic. Several
concepts for disposable and low-cost µPADs, including some based
on CFS, were developed for POC applications during the pandemic,
and covered by excellent reviews (Bhalla et al., 2020; Morales-
Narváez and Dincer, 2020; Pinheiro et al., 2021). Hunt et al.
developed a workflow for such a µPAD to detect SARS-CoV-
2 RNA sequences from saliva samples (Porter Hunt et al., 2022).
They freeze-dried CFPS reagents on a hybrid cellulose-
chromatography paper and housed it in a polymer cassette for
long-term storage. When rehydrated with saliva samples, the device
returned a bioluminescent readout in roughly 7 minutes at an
estimated cost of less than 0.50 USD per device. Another
growing field where paper-based cell-free biosensors have been
applied is environmental water testing (Kung et al., 2019; Zheng
et al., 2021; Zhang Daohong et al., 2022). Duyen et al. utilized the
device concept introduced earlier by Pardee et al. for colorimetric
detection of antibiotics inhibiting bacterial protein synthesis (Tran
et al., 2017). They used µPADs with freeze-dried reagents for IVTT
and were able to detect and quantify aparomomycin in spiked river
water samples, thus showing the potential of this concept in tracking
antibiotic contamination in water bodies. Similarly, Zhang et al.
developed a µPAD for detecting presence of heavy metal ions such as
Pb2+ and Hg2+ in water via in vitro transcription (IVT) (Zhang
Yongkang et al., 2022). They employed allosteric transcription
factors (aTFs) sensitive to the presence of these ions to regulate
transcription in the IVT system. Pb2+ and Hg2+ would bind to the
aTFs and allow them to dissociate from DNA templates, following
which transcription could be carried out in the device. Gräwe et al.
also developed a CFS-based paper biosensor for detection of heavy
metals using aTFs (Figure 1C) (Gräwe et al., 2019). They further
modified it by adding a repressor protein which was inactivated by γ
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-hydroxybutyrate, a recreational drug (Busardo and Jones, 2015),
thus enabling detection of γ -hydroxybutyrate via the biosensor.

With commercial products and devices already in the market,
we expect rapid growth and development to continue in µPADs for
the foreseeable future (Lisowski and Zarzycki, 2013; Sackmann et al.,
2014). The major drawback with these devices is usually limitations
in carrying out multistep or complex protocols, thus only permitting
the implementation of relatively simple assays and biosensing
applications (Sharma et al., 2015; Morbioli et al., 2017; Yamada
et al., 2017). Limited integration with modules such as electrodes or
magnetics for example, can restrict their functionality to single-step
assays. In addition, there are very few options for valving or
metering of flows in µPADs, in comparison to active
microfluidics, discussed in the next section. Owing to multiple
choices for substrates, there is also an emphasis on choosing the
right substrate keeping in mind the biochemistry of a desired
reaction. Improvements can also be made in the quality of paper
substrate after long-term storage, which is vital for
commercialization. The advent of 3D printing in recent years
could greatly benefit paper-substrate based 3D devices by
enabling sample flow in both lateral and vertical directions,
thereby introducing another avenue for multistep assays. We
expect recent technological advances and workflow designs to
enable the design and adaptation of more complex and multistep

µPADs, with the potential for PoC and diagnostic applications in the
future (Gong and Sinton, 2017; Kim et al., 2020).

5 Active single-phase microfluidics

Active microfluidics refers to the subset of microfluidic systems
that utilize external pressure sources for inducing fluid flows and
precisely executing complex protocols such as dosing (Beate
Bußmann et al., 2021), mixing (Green et al., 2007), multiplexing
(Todd et al., 2002), and separation (Sajeesh and Kumar Sen, 2014).
Active microfluidic systems often employ peripheral control systems
such as external solenoid valves in tandem with imaging and
electronics. While this increases the difficulty of setting up and
running active microfluidic systems (Sharma et al., 2015; Suea-
Ngam et al., 2019; Yang et al., 2022), they offer the possibility of
performing complex fluidic manipulations, which would not be
possible in passive microfluidics. As a result, active microfluidic
systems are most commonly employed in cutting edge research in
academia and applications in industry.

Building complex fluidic circuits in microfluidic devices took off
with several designs for microvalves reported in the early 2000s (Oh
and Ahn, 2006). These included a variety of rotary (Hasegawa et al.,
2003) and membrane (Hosokawa and Maeda, 2000) microvalves.

FIGURE 1
Recent examples of cell-free µPADs: (A) 3D rendered image of the integrated CFS-based paper device used by Karlikow et al. for field testing for
the Zika virus (Karlikow et al., 2022). (B)Workflow developed for detecting viral RNAwhere RNAwas first amplified by NASBA followed by detection via
a cell-free reaction on paper. (C) Design of the integrated paper biosensor from Gräwe et al., 2019.
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Many designs for PDMS membrane microvalves integrated with
PDMS and silicon devices were developed with the aim of
manipulating microfluidic flows. Popular examples include
monolithic design for membrane valves in glass devices
introduced by Grover et al., 2003 and an in-plane microvalve
design by Go and Shoji, 2004. But perhaps the most influential,
and now the most commonly implemented, design was described in
2000 (Unger et al., 2000), when a protocol for multilayer PDMS soft
lithography to generate microfluidic valves on-chip was published.
Fabricated by alignment and bonding of two PDMS layers, these
valves can be pneumatically actuated to fully close or open

microfluidic channels. Sequential activation of multiple such
valves in series in a microchannel could create a peristaltic
micropump to push fluids.

Todd et al., 2002 showed the potential of these valves in building
microfluidic circuits by achieving large-scale microfluidic
integration, analogous to electronic integrated devices. They
demonstrated a microfluidic multiplexer based on binary trees
which allowed them independent control of 1000 pL-volume
chambers based on actuation of microvalves via 20 control
channels, which were in turn actuated by solenoid valves. They
also developed a device for microfluidic loading of multiple reagents,

FIGURE 2
The programmable microfluidic chemostat for continuous CFPS introduced by Niederholtmeyer et al., 2013 (A) Schematic and functional
description of the microchemostat device. (B) Steady-state CFPS achieved within these microchemostats. (C) The three-node repressilator circuit
designed by Elowitz and Leibler (Elowitz and Leibler, 2000) (D)Microfluidic implementation of the repressilator circuit by Niederholtmeyer et al. showing
variations in oscillatory behavior dependent on dilution times in the microchemostat (Niederholtmeyer et al., 2015) (E) Design and microfluidic
implementation of the first five-node repressilator circuits showing oscillatory behaviours as theoretically predicted.
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mixing and selective recovery in 256 independent chambers, isolated
by microvalves. The ability to reliably mass-integrate thousands of
valves and pneumatically actuate them directly on-chip led to rapid
development of lab-on-a-chip platforms for executing multistep
laboratory processes in PDMS microchips. One of the earliest
examples of this phenomenon was the microfluidic formulator
and metering device, utilizing microvalves for its functions,
introduced by Hansen et al. (Hansen et al., 2004). Their device
allowed rapid formulation of complex mixtures from various
components to screen over 4000 solubility conditions for a
protein using minimal volumes. They also employed peristaltic
pumps using microvalves to push liquids through the device or
for continuous mixing within reactors. Balagaddé et al., 2005
adapted this microformulator to design a microchemostat more
than 2 orders of magnitude smaller in volume than the previously
smallest chemostat design. They used it for long-term culture (over
hundreds of hours) of bacteria via manipulation of microvalves,
which showed the potential of this valving technique in building
complex lab-on-a-chip devices.

5.1 Valve-based microfluidics for long-term
cell-free studies

With the aim of implementing complex biological systems such
as genetic regulation and synthetic oscillators in vitro,
Niederholtmeyer et al., 2013 adapted and repurposed the
microformulator introduced by Hansen et al., 2004 for
performing continuous cell-free transcription-translation under
steady state conditions. Their modified device consisted of
8 independent 33-nL reactors, each independently addressable
with different reagents and programmable dilution fractions
(Figure 2A). The reactors were initialized with all required
components for starting a CFPS reaction, followed by dilutions
in discrete time-steps to add in fresh components of the IVTT
master mix, simultaneously removing equivalent reaction volumes
from the bioreactors (Figure 2B). A set of valves was used as a
peristaltic pump to facilitate mixing of components inside the
bioreactors. They achieved continuous steady state protein
expression (Figure 2C) in these bioreactors for up to 30 h and
showcased the ability of this device to implement and run the first
in vitro genetic oscillator network (Figure 2D). They further showed
the potential of this microfluidic device in rapid prototyping of
genetic networks (Niederholtmeyer et al., 2015). They first emulated
the repressilator network introduced by Elowitz and Leibler in 2000
(Elowitz and Leibler, 2000) and then went a step further by building
five-node repressilator oscillating networks and highlighted the
dependence of oscillation periods and amplitudes on dilution
period and component concentrations. Four-node repressilator
networks were also tested showing toggle-switch behaviour as
predicted. They successfully transplanted and tested the above
designed genetic networks in E. coli using a mother machine
microfluidic device. This work provided a proof-of-concept for
rapid forward engineering of genetic circuits in CFS. de
Maddalena et al., 2016 also used the microchemostat to study
effects of adding transcription elongation factors to a PURE mix.
They showed greatly enhanced expression in PURE by using the
elongation factors and studied regulation of natural and synthetic

E. coli promoters in steady-state conditions. Laohakunakorn et al.
modified the microchemostat design by introducing hardcoded
dilution fractions and showed its application in long term CFPS
(Laohakunakorn et al., 2021).

Working towards the goal of a fully self-regenerating CFS,
Lavickova et al., 2020 used this device to demonstrate the
possibility of the PURE system to self-regenerate several essential
PURE proteins over extended periods of time (Figure 3A). They
started out with a complete homemade PURE system along with
DNA templates coding for PURE proteins as well as a template
coding for a fluorescent reporter protein. This was followed by
switching to a PURE system lacking these particular PURE proteins.
They observed that the system was able to self-sustain by
regenerating the proteins from their respective DNA templates
Figure 3B. They successfully self-regenerated up to 7 aminoacyl
tRNA synthetases (AARSs), thus achieving a partially self-
regenerating synthetic cell. They theorized self-regeneration of all
36 non-ribosomal PURE proteins would require either a more
efficient PURE system and/or a lower dilution rate. But simply
decreasing the dilution rate led to concomitant decreases in
synthesis rate due to limited availability of small molecule
building blocks thus requiring the need for a dialysis setup in
their microfluidic device. Following this, Lavickova et al., 2022
improved the microchemostat by adding semipermeable hydrogel
membranes for continuous dialysis of small biomolecules. Each
microreactor in the chip was connected to its respective feeding
chamber via semipermeable membranes (Figure 3C), and the
contents of the feeding chamber could be replenished
independently of the reactor itself. The membrane was designed
to allow diffusion of energy components from the feeding chamber
into the reactor while preventing DNA and proteins from diffusing
out of the reactors. An anti-evaporation layer was assembled on top
of the fluidic layer to prevent evaporation in the microreactors. They
performed batch cell-free protein synthesis reactions with
continuous dialysis on-chip and observed a threefold increase in
enhanced Green Fluorescent Protein (eGFP) production compared
to the batch reaction without replenishment of the feeding chamber.
Following this, they successfully carried out a cell-free reaction
under steady-state conditions enabling lower dilution rates
compared to older chemostat models, without negatively affecting
protein synthesis rates by continuously replenishing the feeding
chamber, thus proving the potential of this device to push the limits
of self-regeneration in CFS.

Sluijs et al. adapted the microchemostat developed by
Niederholtmeyer et al. to characterize performance of a library of
repressors and promoters in steady-state CFS (van der Linden et al.,
2019; van Sluijs et al., 2022). They implemented automated design-
characterize-test workflows by executing incoherent feed-forward
loops in chemostats (Figure 4A). This allowed them to characterize
their chosen six repressors and obtain their parameter sets for
simulation models. These parameter sets were used to accurately
predict the behaviour of two genetic networks, thus proving the
potential of their workflow in generating rapid design-build-test-
learn cycles for study of complex genetic networks. Aufinger et al.
used microchemostats to elucidate complex genetic oscillation
dynamics and feed-forward loops in CFS (Aufinger et al., 2022).
They demonstrated how cycling periods could be set externally in an
oscillator by modulating concentrations of one of its components at
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FIGURE 3
The second-generation cell-free microchemostat and third-generation dialysis microchemostat: (A) Schematic design of the second
generationmicrochemostat microfluidic chip consisting of 8 microchemostats using hard-coded dilution fractions used by Lavickova et al., 2020 for
achieving a partially self-regenerating synthetic cell. Their protocol for continuous dilution and replenishment in each chemostat is also shown (B)
Successful self-regeneration of T7 RNA Polymerase and several AARSs in the cell-free system. (C) Schematic design of a third generation
microchemostat augmented with a dialysis chamber for sustained self-regeneration in CFS and close-up view of fabricated dialysis membranes
under the microscope (Lavickova et al., 2022). (D) Protein synthesis for over 30 h on the dialysis chemostat enabled by continuous replenishment of
the feeding chamber. Amount of protein synthesized within the reactors increased with increase of concentration of the feeding solution.

FIGURE 4
Examples of cell-free studies enabled by microchemostats (Niederholtmeyer et al., 2013): (A) The design-characterize-test workflow designed by
Sluijs et al. for characterizing a library of repressors and promotors (van Sluijs et al., 2022). (B) Period doubling observed by Aufinger et al. upon introducing
cycling periods in steady state chemostats (Aufinger et al., 2022).
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discrete points. Periodic forcing also led to introduction of period
doubling, shown in Figure 4B, and even quadrupling bifurcation
within the system. With the help of simulations, they showed these
non-linear effects could be studied in cell-free systems to elucidate
complex chaotic dynamics.

5.2 Valve-based microfluidics for high-
throughput cell-free studies

Aside from enabling long-term studies in CFS, the high-
throughput usually associated with microfluidics, combined with
microvalves, has driven developments in high-throughput cell-free
studies. In one of the earliest examples, Maerkl et al. introduced a
microfluidic device to measure binding affinities of transcription
factors (TFs) in high-throughput (Maerkl and Quake, 2007). Using a
network of microfluidic valves, the device contained 2400 isolated
microfluidic compartments aligned above a spotted DNA array, thus
allowing for 2400 independent binding affinity measurements per
experiment. They formulated a multistep protocol to carry out
surface modification and patterning to immobilize the
transcription factor being studied (Figure 5A). A novel
mechanism based on mechanically induced trapping of molecular
interactions (MITOMI) was invented to enable precise
quantification of low-affinity or highly transient molecular
interactions. They used MITOMI to generate quantitative

binding energy landscapes of multiple TFs. Blackburn et al.
adapted the MITOMI device for characterizing binding affinities
of over 400 synthetic Zinc Finger (ZF) TFs synthesized on-chip
(Blackburn et al., 2016). They showed that ZF-TF binding affinity
could be tuned independent of specificity. Swank et al. repurposed
this MITOMI device to synthesize ZF TFs on-chip in
768 independent cell-free reactions and to assess their capacity to
repress a large library of synthetic target promoters (Swank et al.,
2019) (Figure 5B). This system was used to study effects of binding
affinities, binding site positions and cooperative interactions
between TFs and promoters on transcriptional regulation. The
high-throughput microfluidic devices allowed them to
comprehensively characterize a complex TF-promoter system,
which in turn allowed them to engineer novel higher order
systems creating OR, AND, NOT and NAND logic gates as well
as combinations thereof (Figure 5C).

Another device based onMITOMI for high-throughput cell-free
studies was designed by Swank et al., where they added a connecting
channel to each chamber to achieve steady-state CFPS in
280 independent chambers (Swank and Maerkl, 2021) following
the design of the continuous-flow chemostat developed by Karzbrun
et al., 2014 described in detail in the next section. The connecting
channel removed products from the chambers and brought in fresh
reagents via diffusion. This in effect created a high-throughput
device containing 280 independently addressable chemostats
(Figure 6A). A pulse width modulation microfluidic module

FIGURE 5
The MITOMI device designed for high-throughput analysis of protein binding affinities: (A) Schematics of the MITOMI device designed by Maerkl
et al. for measuring binding energy landscapes, along with an illustration of mechanical trapping of molecular interactions (Maerkl and Quake, 2007).
(B) Workflow of the MITOMI device used by Swank et al. for high-throughput cell-free synthetic biology. The protocol for surface functionalization
and carrying out cell-free tx-tl reactions on-chip is shown (Swank et al., 2019). (C) Illustration of the genetic AND, NAND, and OR logic gates
developed and characterized using the MITOMI chip.
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(Woodruff and Maerkl, 2018) was included as well to allow fully
automated and programmable real-time generation of reaction
conditions. They successfully characterized dynamic gene
repression and toggle switch circuits within these
chemostats (Figure 6B).

5.3 Valve-less continuous-flow single-phase
microfluidics

Buxboim et al., 2007 introduced a microfluidic approach based
on DNA immobilization and subsequent protein trapping on-chip
for building synthetic gene networks. They designed a molecule
called “Daisy,” a polyethylene glycol (PEG) with a silane group at
one end and an amine group at the other end, protected by a Nvoc
moiety sensitive to UV exposure. This Daisy molecule formed a self-
assembled monolayer on the silicon dioxide surface of a wafer and
could covalently couple with a variety of biomolecules upon UV
exposure, due to de-protection of the amine end. This was used to
generate microtraps for tagged proteins on the Daisy-coated regions.
Unlike the approach developed by the Maerkl et al. which allows
surface patterning of thousands of different molecules using a
microarrayer (Maerkl and Quake, 2007), only one DNA template
or template mixture could be immobilized with this approach. They
demonstrated a cascading gene circuit by immobilization of gene
constructs in alternating stripes. Karzbrun et al., 2014 took this
technology further to develop and implement genetic oscillatory
circuits, enabling oscillating protein expression patterns and

expression gradients, similar to what was previously
demonstrated by Niederholtmeyer et al., 2013. E. coli lysate based
cell-free extract was supplied via a main flow channel and allowed to
diffuse via narrower channels into small circular dead-end
compartments containing immobilized DNA. Proteins
synthesized within these compartments could also diffuse out of
the chamber into the main channel, thus creating a linear
concentration gradient along the connecting channel. They
showed formation of positive feedback and negative feedback
circuits, and were able to implement a genetic oscillator. By
connecting compartments in series via additional capillaries, they
implemented activator-repressor networks by separating
components between the compartments, resulting in a spatio-
temporal variation in gene expression.

Tayar et al., 2017 improved this device design to integrate as
many as 80 DNA compartments for on-chip cell-free expression
(Figure 7A), although compartments could only be programmed
with the same DNA templates. They designed and successfully
implemented a non-linear genetic oscillator by expressing
proteins for sequestering the activator as well as degrading the
repressor protein. They further coupled compartments acting as
oscillators via thin capillaries running in parallel to the main flow
channel, enabling protein transfer between compartments via
diffusion. Autonomous synchronization of coupled oscillators
operating at different frequencies was observed (Figure 7B), with
the oscillator at lower frequency always entraining the faster one
owing to the inherent negative feedback in the network. Their device
enabled communication and synchronization across networks along

FIGURE 6
Design and applications of the high-throughput microchemostat designed by Swank et al. (Swank and Maerkl, 2021): (A) Workflow of the high-
throughput chemostat showing the device schematic and multistep protocol for on-chip experiments to run 280 independent steady-state reactions in
parallel. (B) Implementation and characterization of transcriptional repression (left) and a genetic toggle switch (right) in the high-throughput
microchemostat.
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with temporal variation. Efrat et al., 2018 showed the potential for
integration with other technologies by fabricating gold electrodes
close to the immobilized DNA in the compartments. This was used
to generate a localized electric field gradient which trapped
biomolecules away from the DNA and inhibited CFPS. Turning
off the electrodes again led to homogenous distribution of the
components in the compartments and thus restoring eGFP
expression. Contrary to using repressors and activators for gene
circuit regulation, this device provided an electrical mechanism for
spatio-temporal control of cell-free reactions.

Levy et al., 2020 theorized that the high density of biomolecules
observed in the DNA brushes immobilized on-chip could be
leveraged to facilitate assembly of ribosomal subunits post-
synthesis from their templates in the DNA brushes. Thus, they
used the concept of immobilized DNA compartments to show
autonomous synthesis and assembly of ribosomal subunits on-
chip and verified that high density of biomolecules within the
DNA brushes was the driving factor for assembly of ribosomal
subunits. Levy et al., 2021 also demonstrated higher concentration of
ribosomes within immobilized DNA brushes, recording up to 17-
fold increased concentration at peak activity in comparison to bulk
concentrations. They were able to decouple transcription from
translation, similar to spatial separation of transcription and
translation in eukaryotic cells, by pre-immobilizing ribosomes

close to DNA brushes and supplying cell-extract solution void
of ribosomes.

Georgi et al., 2016 introduced another microfluidic protocol for
CFPS, termed Transcription—mRNA Immobilization and
Transfer—Translation (TRITT). Transcription and translation
was conducted in separate compartments on a microfluidic chip
by transfer of transcribed mRNA to a translation chamber
(Figure 7C). Magnetic particles were used to immobilize mRNA
generated by transcription, which was followed by a washing and
elution step to separate the mRNA from the transcription mix and
the particles. The eluted mRNA was then transferred by flow to
another chamber for translation. The particles could be moved back
and forth via magnets for subsequent cycles of transcription. The
device was integrated with thermal sensors and heating pads to
enable a fully automated protocol for CFPS. Another microfluidic
continuous flow device was designed by Siuti et al., 2011, containing
porous 40 μm wide and 15 μm tall on-chip porous reaction
containers for CFPS. Fabricated using a combination of UV
microlithography and electron beam lithography, each reactor
contained pores which allowed for diffusion of small molecules
required for cell-free reactions while trapping the template DNA,
synthesized RNA, and protein components of the cell-free reaction
within. The reactors were filled with components required for cell-
free synthesis and sealed with a PDMSmembrane, following which a

FIGURE 7
Examples of valve-less microfluidic devices developed for continuous cell-free expression: (A) The microfluidic device used by Tayar et al., 2017
containing a main flow channel with CFPS components diffusing to compartments containing immobilized DNA brushes (B) GFP expression in
compartments acting as single or coupled oscillators under different microfluidic configurations, forming synchronized gene networks (Tayar et al.,
2017). (C) Visualization of the integrated microfluidic TRITT device designed by Georgi et al., 2016 where transcription and translation are separated
by microfluidic compartments.
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solution containing small molecule precursors and secondary energy
sources were continuously flowed through the chip to sustain the
cell-free reaction in each reactor for up to 25 h.

A drawback with the devices discussed in this section lies in the
relatively large volumes required to run cell-free reactions. Living
cells show stochasticity in gene expression alongside various other
sources ranging from microenvironment and epigenetic variation
(Stewart et al., 2005) to cell growth (Cookson et al., 2010) and
partitioning of components during cell division (Rosenfeld et al.,
2005). Gene expression in low-volume cell-free systems could
permit the study of gene expression stochasticity in isolation
from the other noise sources described above. To address this
challenge, Karig et al., 2013 introduced a microwell array system
to conduct cell-free expression in biologically relevant volumes
down to 20 fL. They produced these wells in PDMS devices and
sealed themwith a glass coverslip to isolate cell-free reactions in each
well. Significant variation was observed in protein expression
across wells in each experiment, which they hypothesized might
be due to spontaneous crowding of cell-free components upon
compartmentalization in small volumes (Luigi Luisi et al., 2010).
They observed noise in each well to be of much higher magnitude
than expected due to Poisson distribution, and theorized this may be
due to translational bursting, where each mRNA is transcribed
multiple times to obtain proteins. This study provides an
interesting step towards modelling noise in cell-like systems by
separating the intrinsic noise from gene expression from extrinsic
sources of noise.

Active single-phase microfluidic devices also suffer from being
inherently limited in throughput by design. Adding reaction
chambers or increasing reaction throughput in all of these
devices requires additional microvalves, which only increases
operational complexity. Adding reaction chambers also takes up
additional space on-chip, which might not always be a viable
solution when scaling-up. Due to this, throughputs in single-
phase devices is often limited to the thousands, while multiphase
systems, explained in the next section, often offer millions in
throughput per experiment. Thus, they might not be the best
option in massively high-throughput studies such as directed
evolution. Furthermore, scaling down to reach biologically
relevant dimensions often leads to increasingly complex and
expensive fabrication strategies, which in turn might restrict
accessibility of such technologies. Therefore, it is imperative to
keep these restrictions in mind when choosing active single-
phase microfluidic systems for cell-free applications.

Despite the restrictions mentioned above, it is clear from
examples in this section that active single-phase microfluidics has
and will continue to greatly contribute to the advancement of cell-
free synthetic biology. We highlighted key microfluidic technologies
and advances that enabled long-term and high-throughput cell-free
studies by implementation of microfluidic valves or continuous flow
systems. It can sometimes be challenging to implement these setups
owing to their reliance on peripheral control systems, but several
simple DIY protocols describing all necessary hardware and
software elements are available (Brower et al., 2018; White and
Streets, 2018). Along with this, the ability to develop complex, high-
throughput fluid handling protocols with minimal use of reagents
makes single-phase microfluidics an attractive option for cell-free
synthetic biology research and applications.

6 Active multiphase microfluidics

6.1 Droplet microfluidics

While single-phase microfluidic devices have been implemented
for several applications in cell-free synthetic biology they do not
emulate living cells in one key aspect: compartmentalization by a
phospholipid bilayer. Implementing life-like compartmentalization
of cell-free reactions in vesicles would be an important step towards
realization of a synthetic cell (Maerkl, 2023), which cannot be
realized in single-phase systems. This challenge can be addressed
by multiphase microfluidic systems, which utilize flow of two or
more fluid phases and are commonly employed in high-throughput
production of single or multiphase emulsions. The earliest examples
for emulsion generation were using bulk emulsification, which
involved stirring an aqueous phase into an oil phase to generate
large populations of water-in-oil (W/O) emulsions (Sjöblom, 2006).
This enabled high-throughput directed evolution studies, which rely
on scanning large libraries of DNA or enzymes over multiple rounds
of evolution to select the most efficient mutants (Tawfik and
Griffiths, 1998; Oliver et al., 2006). The need for generating
uniform compartments at high-throughput led to development of
microfluidic devices for on-chip generation and manipulation of
monodisperse emulsions (Todd et al., 2001; Teh et al., 2008; Shang
et al., 2017). Emulsions of water droplets in oil (W/O droplets) can
be formed in microfluidic devices by breakup of an aqueous stream
at a T-junction or a flow-focusing junction (Todd and Jon, 2013;
Zhu and Wang, 2017). The ability to create monodisperse volumes
of fluid in high-throughput makes droplet microfluidic systems very
attractive for several applications in high-throughput screening
assays including mass spectrometry (Wang et al., 2015), sorting
(Xi et al., 2017), and directed evolution (Stucki et al., 2021b).
Droplets of volumes in the range of nanoliters to femtoliters can
be generated and analyzed at a throughput of several kilohertz (kHz)
(Todd and Jon, 2013; Trantidou et al., 2018). The generation of
discrete, deformable volumes in a flow system enables new
possibilities such as reversible droplet trapping (Niu et al., 2011;
Saint-Sardos et al., 2020), high-throughput sorting and building
droplet interface bilayer (DIB) networks (Elani et al., 2012).
Fluorescence-assisted droplet sorting (FADS) (Tabuchi and
Yokobayashi, 2022), droplet fusion, droplet splitting (Zeng et al.,
2011) and droplet trapping (Huebner et al., 2009) are some of the
most popular examples of fluidic manipulations possible in droplet
microfluidic systems (Theberge et al., 2010).

Droplet microfluidics involves study and optimization of a
diverse set of parameters including, but not limited to, surfactant
choice and concentration (Baret, 2012), dimensionless numbers
such as capillary number, and choice of carrier fluid (Sohrabi
et al., 2020). For example, fluorinated oils can carry atmospheric
gases, are immiscible with water and don’t attract hydrophobic
biomolecules (Wagner et al., 2016), thus utilizing them as the carrier
phase enables microdroplets to function as biochemical reactors for
cell-free applications. Another factor to consider is the type and
concentration of surfactants used, as they stabilize droplets in the
carrier phase, which prevents uncontrolled droplet fusion and cross-
talk between droplets in long-term studies (Debon et al., 2015).
Furthermore, similar to fluidic networks developed in single-phase
systems, transport of microdroplets can be manipulated to establish
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robust microdroplet networks in both active and passive formats
(Schindler and Ajdari, 2008; Biral and Zanella, 2013; Medina et al.,
2019; Grimmer and Wille, 2020). Geometric parameters can be
varied to establish precise droplet flow paths, and generate
temporally oscillating flow networks (Cybulski et al., 2019).
Complex flow dynamics relevant to droplet microfluidics and
their applications are covered in detail in an excellent review by
Baroud et al., 2010. Microdroplets flow in the form of plugs in a
majority of droplet microfluidic applications. While flowing,
recirculating flow fields are formed inside these plugs that
facilitate continuous mixing of components (Fowler et al., 2002).
Mixing inside droplets can be further enhanced by adding turns to
the flow channel, which leads to chaotic advection of components
inside droplets (Bringer et al., 2004). This possibility of mixing
components in droplets post-formation permits droplet generation
from co-flow of aqueous streams, which can be used to segregate
components that cannot be pre-mixed, as is often the case in CFS.
Microvalves can be used to add another layer of control to
microdroplet devices by introducing an active control element
(Chang et al., 2018). Integration of microelectrodes into droplet-
based devices adds yet another control component, by enabling
dielectrophoretic (Singh and Aubry, 2007) manipulation of droplets
and their contents, commonly employed in active droplet sorting
(Ahn et al., 2006). Droplet fusion enables introduction of
components into a microdroplet (Mazutis et al., 2009; Abate
et al., 2010), thus allowing for precise control over reaction
kinetics. Droplets can also be arbitrarily split using Y-junctions
(Ma et al., 2021) or T-junctions (Hoang et al., 2013) with the ratio of
splitting dependent on flow resistance in downstream branches. This
can be applied in combination with electrophoresis (Saucedo-
Espinosa and Dittrich, 2020) or dielectrophoresis (Huang et al.,
2021) to up-concentrate biomolecules in droplets prior to analysis or
further processing. The advantages arising from the microfluidic
phenomena exclusive to droplet microfluidics coupled with high-
throughput generation and analysis makes single emulsion systems
attractive for cell-free studies, especially in directed evolution and
cell-free assays utilizing IVTT.

Tawfik and Griffiths showcased the first example of CFPS in
microdroplets (Tawfik and Griffiths, 1998). They generated droplets
in bulk with a mean diameter of 2.6 µm by stirring an aqueous IVTT
mix into oil containing surfactants. They demonstrated cell-free
expression of several proteins from template DNA encapsulated
within droplets, thus providing the first proof-of-concept for
compartmentalization of IVTT reactions. Following this, several
examples of high-throughput cell-free studies enabled by
microdroplets generated via bulk emulsification were published
(Pietrini and Luisi, 2004; Swartz et al., 2004; Vincent and
Libchaber, 2004; Oliver et al., 2006; Rothe et al., 2006; Stapleton
and Swartz, 2010). In 2005, Dittrich et al. showcased CFPS in W/O
droplets generated on-chip (Petra et al., 2005), where they expressed
GFP in droplets containing IVTT mix. Hori et al. further developed
this concept by encapsulating different combinations of repressor
and inducer concentrations to map their effect on protein synthesis
(Hori et al., 2017). They generated picoliter-sized droplets at rates of
over 30 kHz and barcoded them using dyes with final concentrations
corresponding to the combinations of inputs encapsulated in each
droplet. An incoherent feed-forward loop (Haseltine and Arnold,
2007) was designed in droplets to study the effect of a transcriptional

activator (AraC) and a repressor (TetR) on deGFP expression.Wang
et al. reported successful mammalian cell-free expression in droplets
using a HeLa-based lysate and incorporated a nucleic acid probe to
simultaneously track transcription and translation in droplets
(Wang et al., 2018).

Droplet microfluidic devices for executing complex multistep
processes have been developed by several groups. As an early
example demonstrating the potential of multistep droplet
microfluidics, Fallah-Araghi et al., 2012 conducted cell-free
directed evolution in droplets. They isolated single copies of
genes in droplets and performed PCR amplification in them.
Elevated temperatures led to unwanted fusion of some droplets
during PCR due to the effect of temperature on surfactants and
surface tension. Thus, a size sorting step was employed to collect a
monodisperse population of droplets. This was followed by one-to-
one fusion with droplets containing IVTT mix and fluorogenic
substrate, followed by incubation at 37°C for 2 hours. Finally, the
droplets with fluorescent signal were collected by coalescing them
into an aqueous stream. Recently, Holstein et al., 2021 developed a
robust protocol for cell-free directed evolution in droplets generated
on-chip. They encapsulated DNA template coding for the enzyme
Savinase along with a master mix to perform rolling circle
amplification (RCA) in 14 pL-sized droplets. This avoided
challenges with elevated temperatures in PCR reported by Fallah-
Araghi et al., 2012. Following this, PURE mix and fluorogenic
substrate were sequentially pico-injected for IVTT and
fluorescence detection of Savinase. Finally, droplets were sorted
on-chip to collect the drop population with high fluorescence and
DNA was recovered from them for further rounds of evolution
(Figure 8A). This droplet microfluidic protocol allowed for
screening of over a million droplets and 106 variants per
evolution cycle. Multistep protocols can also be executed by
encapsulation of smaller compartments such as liposomes
followed by their controlled disintegration. Gan et al. described a
integrated protocol using droplet microfluidics to achieve rapid and
efficient screening of gene circuit regulatory components (Gan et al.,
2022) (Figure 8B). Their protocol combines generation of droplets
containing CFPS mix, droplet sorting and next-generation
sequencing to form a robust workflow, with an additional step of
encapsulation in double emulsions for increased compatibility with
standard flow cytometry.

Aside from droplet generation via microfluidic devices, large
arrays of microdroplets can be generated on substrates via
hydrophilic-hydrophobic patterned surfaces. Zhang et al., 2019
developed a protocol for high-throughput screening via CFPS in
microarrayed femtoliter droplets. They etched an array of more than
a million droplet wells per cm2 in CYTOP, a hydrophobic
perfluoropolymer, The bottom of each well is hydrophilic glass.
A PURE mixture containing template DNA and CFPS components
was first flown over the array to fill all wells followed by oil to flush
the aqueous solution from the CYTOP surface. The hydrophilic
glass surface retained CFPS solution within the wells. Finally, a
sealing oil was introduced to eliminate droplet evaporation and to
stabilize the emulsions. They showed CFPS of various fluorescent
proteins using this protocol and demonstrated CFPS using cell
lysates as well. They were able to use a glass micropipette to
manually recover DNA from individual droplets following CFPS,
enabling high-throughput directed evolution of enzymes. Mutant
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DNA coding for the E. coli enzyme ALP was used for tx-tl in over
half a million droplets per experiment. Droplets showing high
enzyme activity were sorted and DNA recovered from them was
used for the next round of CFPS to confirm improved
enzyme activity.

Another area of interest in droplet microfluidics relevant to cell-
free systems is enabling inter-droplet communication via the droplet
interface. When two droplets stabilized by single layers of
phospholipids are brought into contact, it results in the
formation of a phospholipid bilayer at the droplet interface
(Funakoshi et al., 2006; Holden et al., 2007; Stanley et al., 2010).
Transport of ions and small molecules occurs via simple diffusion
across this bilayer while inclusion of protein pores within the bilayer
allows transport of biomolecules and larger biocomponents. This
strategy can be used to produce cascading cell-free reactions in 2D,
or even 3D, droplet networks (Stanley et al., 2010; Friddin et al.,
2016; Xavier et al., 2016; Trantidou et al., 2017; Trantidou et al.,
2018; Strutt et al., 2022). Syeda et al., 2008 also demonstrated CFPS
of membrane proteins inside droplets in DIB network, which were
incorporated into the bilayer after synthesis. However, they observed
a decrease in stability of the bilayer in the presence of IVTT
components. Friddin et al. studied this bilayer destabilization
effect in detail and observed that addition of lipid vesicles to the
ITT mix stabilized the bilayer, thus paving the way for long-term
cell-free studies in DIB setups in the future (Friddin et al., 2013).
Along with the possibility of electrical measurements on membrane
proteins incorporated into a bilayer (Czekalska et al., 2015)
(Figure 8C), DIB setups show great promise for enabling studies

on bilayer membrane proteins and movement of biomolecules
across bilayers and tissue-like systems to enable material
exchange and intercellular communication studies.

The strategy of building 2D and 3D droplet networks connected
via DIBs was further developed to generate 3D-printed “synthetic
tissue” like structures by Villar et al., 2013 They formed 3D networks
of picoliter-sized lipid droplets, with a single lipid bilayer present at
all droplet interfaces in the material. Booth et al., 2016 demonstrated
application of such a 3D-printed synthetic tissue in visualizing
intercellular electrical and biomolecular communication,
resembling a functional mimic of neuronal transmission. They
designed a DNA expressing GFP linked to α-hemolysin, a
membrane pore protein, downstream of a promoter sequence
activated by light. Upon bringing two droplets to form a DIB,
one containing this DNA in a PURE system and one droplet
lacking this DNA, they observed localization of expressed GFP-α-
hemolysin at the DIB only upon exposure to UV (Figure 9A). They
verified an electrical signal travelled between the 2 droplets only
post-expression and localization of α-hemolysin at the DIB. They
printed a synthetic tissue patterned with droplets containing light-
activated DNA in a PURE system and droplets missing this DNA to
show propagation of electric signals along patterned light-activated
droplets pathways, marked by cell-free expression of mVenus
proteins within these droplets.

Droplet microfluidics has also been employed in high-
throughput production of gel beads for CFS. Protein expression
rates can be enhanced by executing CFPS in a clay matrix, shown by
Jiao et al., where they mixed ionic and clay aqueous solutions prior

FIGURE 8
Examples of droplet microfluidic devices and protocols developed within the context of cell-free applications: (A)Workflow for multiple rounds of
cell-free directed evolution in droplets designed by Holstein et al., 2021 (B)Droplet microfluidics protocol designed by Gan et al., 2022 for rapid iteration
and testing of gene circuit components (C) Device schematic for generating droplet bilayer network by Czekalska et al., 2015 with electrodes
incorporated for measuring current across the bilayer due to exchange of ions and biomolecules.
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to crossflow with an oil phase in a microfluidic device to
spontaneously generate clay microgels (Yi et al., 2018)
(Figure 9B). Plasmids of interest could be directly integrated into
these microgels due to their inherent hydrophilicity and favourable
electrostatic interactions with the clay matrix. Following this, they
introduced E. coli cell-free lysate solution to plasmid-integrated
microgels containing magnetic nanoparticles and showed robust
eGFP synthesis over multiple rounds of lysate replenishment.
Finally, to imitate cell-like structures, they encapsulated clay
microgels in microdroplets containing lysate solution by using a
droplet microfluidic generator and achieved eGFP expression within
the droplets. Using a similar protocol, Aufinger et al. demonstrated
localized transcription and translation reactions in agarose
microbeads co-encapsulated in droplets (Aufinger and Friedrich,
2018). Each droplet contained two agarose microbeads, one with
covalent immobilization of template DNA and another with
immobilized DNA sequences corresponding to transcribed
mRNA. They observed cell-free expression only within droplets
containing both beads.

While droplets show great potential as compartments for cell-
free reactions, there are some challenges which need to be addressed
for their utilization in the field. Studies have shown significant
differences in IVTT rates in droplet versus bulk reactions,
especially at sub-nanoliter droplet volumes. Hansen et al.
performed an extensive study discussing and characterizing
stochastic elements and possible sources of noise in picoliter-

sized droplets (Hansen et al., 2016). They found that
introduction of crowding agents inside droplets acted as a
significant noise source, and hypothesized the reason to be
heterogenous expression, localization and translation of mRNA
inside these small droplets. Macromolecular crowding also has
significant effects on transcription and translation rates in CFPS.
Studies have shown crowding leading to increases in transcription
rates but decreases in translation rates in cell-free reactions
(Xumeng et al., 2011; Sokolova et al., 2013). Another significant
noise source is the stochastic variation of CFPS components in
droplet populations (Reginald Beer et al., 2007; Courtois et al., 2008;
Reginald Beer et al., 2008) and low copy number DNA in small
droplets (Shahrezaei and Swain, 2008). Aside from these factors, it is
also important to verify functionality of droplets as isolated
compartments. Studies have shown that leakage of biomolecules
between droplets or into the carrier phase can occur based on the
choice of surfactant and fluids (Debon et al., 2015). This can severely
compromise studies by allowing cross-talk between compartments,
but this issue can be mitigated by choosing appropriate
combinations of fluid phases and appropriate surfactants. Finally,
evaporation can also be a significant factor in long-term studies with
microdroplets in PDMS-based devices as PDMS is permeable to
most gases (Shim et al., 2007). These factors must always be taken
into consideration when implementing CFS in droplet microfluidics.

Looking towards the future, we imagine droplet microfluidic
systems will continue to play an important role in cell-free studies

FIGURE 9
Further examples of cell-free studies enabled by droplet microfluidics: (A) Cell-free expression of membrane proteins in droplets linked via a DIB,
performed by Booth et al., 2016. Expression was only observed under UV exposure and localization of expressed GFP-α-hemolysin is clearly visible at the
droplet bilayer interface. (B) CFPS enabled via clay-DNA hydrogels in droplets by Jiao et al. (Yi et al., 2018) showing (i) The protocol for fabricating clay
hydrogels, (ii) Protocol for encapsulating fabricated hydrogels together with cell-free solution in droplets and (iii) Fluorescent timelapse images of
clay hydrogels encapsulated inside droplets and confirmation of cell-free expression only in droplets containing the DNA-clay hydrogels.
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owing to their robustness, simpler experimental setups in
comparison to single-phase systems and high throughput. As
shown in few examples in this section, droplets also have great
potential to act as isolated environments for studying intercellular
communication of multiple artificial cells or vesicles encapsulated
within them. Combined with recent studies on DIBs and potential
for incorporation of microvalves to build complex droplet systems
for enabling multistep cell-free protocols, we see several future
directions for adaptation of droplet microfluidics in cell-free studies.

6.2 Double emulsions and artificial cells

Recent developments in microfluidic techniques and bench
techniques have enabled robust generation of water-in-oil-in-
water (w/o/w) double emulsions (DEs) (Wang et al., 2014;
Vladisavljević et al., 2017). In 2004, Okushima et al., 2004 were
the first to generate DEs in microfluidic chips by utilizing two
T-junctions in series to generate w/o/w emulsions. This was followed
by research published by Shah et al., 2008, where they utilized glass
microcapillary devices to generate monodisperse multiphase
emulsions with high-throughput and showed encapsulation of
emulsions within emulsions. Since then, the field of DEs has
come a long way, with focus shifting from their use as simple
reaction compartments to generating complex liposomes and
artificial cell bodies (Carugo et al., 2016; Martino and deMello,
2016; Has and P Sunthar, 2020). Monodisperse double emulsions
are typically generated in microfluidic devices by using two flow-
focusing junctions in series (Arriaga et al., 2015; Vladisavljević et al.,
2017). Reagents and oil phase can be adapted to generate vesicles or
liposomes in high-throughput, where the oil phase dissociates from
the oil shell of a double emulsion leaving behind an aqueous phase
compartmentalized by a lipid bilayer. DEs have several benefits over
single emulsions, such as increased stability during storage and
incubation, no volume loss due to evaporation and ease of
integration with existing systems that primarily operate with
aqueous media. Thus, DEs can serve as excellent compartments
for biochemical reactions as well as a great starting point for
generation of liposomes and artificial cells. DEs can also be used
to generate polymeric capsules with finely tuned pore sizes (Kim
et al., 2015; Lee et al., 2016; Mytnyk et al., 2017; Gao and Chen, 2019;
Michielin and Maerkl, 2022).

These advantages have seen implementation of double
emulsions as compartments in several cell-free studies. For
example, Nuti et al. encapsulated artificial vesicles in DEs to
screen for activity of anti-microbial peptides (AMPs) (Nuti et al.,
2022). Since AMPs are known to disrupt bacterial membranes and
also show slight toxicity towards mammalian cell membranes
(Magana et al., 2020), CFPS is a good alternative for their
production and testing. The authors first encapsulated self-
quenching fluorescent dyes in bacteria-like and mammalian-like
large unilamellar vesicles (LUVs) off-chip. This was followed by co-
encapsulation of these LUVs with DNA templates coding for AMPs
and a CFPS mix in double emulsions followed by trapping for long-
term incubation and downstream fluorescence-assisted droplet
sorting (FADS) (Figure 10A). Production of AMPs (meucin-
25 and Cathelicidin-BF) in DEs caused rupture of bacteria-like
LUVs but not mammalian-like LUVs. This was tracked by

increases in fluorescence in DEs from leakage of dyes previously
encapsulated in the bacteria-like LUVs, thus proving specific
membranolytic activity of the AMPs. Similarly, Stucki et al.,
2021a used addition of sodium dodecyl sulfate (SDS) as a trigger
for solubilization of LUVs encapsulated in DEs, thus establishing a
robust platform for carrying out multistep CFPS protocols by using
DEs and vesicles as compartments. Chang et al., 2018 were able to
generate real-time IVTT formulations containing different
concentrations of lysate extract, template DNA, and energy
solutions on-chip using pulse-width modulation (Woodruff and
Maerkl, 2018). Following mixing facilitated via herringbone
structures, the reaction mix was encapsulated into double
emulsions by using a DE generator on-chip. They reported
successful GFP expression with varying concentrations of DNA
encapsulated in the DEs, thus providing a proof of concept for
running massively parallelized reactions with minimal volumes by
formulating the reaction mix on-chip.

Polymeric capsules with controlled permeabilities, generated via
double-emulsion microfluidic systems, have been used as artificial
cell models to study population behaviours such as quorum sensing
(Niederholtmeyer et al., 2018) and intercellular communication
(Michielin and Maerkl, 2022). Michielin and Maerkl
demonstrated encapsulation of biomolecules in semi-permeable
polymeric capsules which were fabricated from DEs (Michielin
and Maerkl, 2022). They formed these polymeric capsules by UV
polymerization of poly (ethylene glycol) diacrylate (PEG-DA 258) in
the oil shell. The size of pores in the capsule could be controlled by
altering the percentage of polymer to solvent in the oil phase. This
enabled size-based permeation of biomolecules across the polymeric
shells. They employed these capsules to perform cascading DNA
strand displacement (DSD) reactions (Simmel et al., 2019), where
DNA strands were first immobilized in capsules. Following addition
of input ssDNA and subsequent DSD, a Cy5 fluorophore was
unquenched along with the simultaneous release of a signal
strand. The strand diffused out of these shells into a second
population of polymeric capsules functionalized with a DSD gate
corresponding to this signal strand. This released a second signal
strand, unquenching a Cy3 fluorophore. The delayed onset of
Cy3 fluorescence following Cy5 fluorescence confirmed the
successful execution of the cascading reaction. Niederholtmeyer
et al. used polymeric capsules to implement communication and
quorum sensing in a population of artificial cells, similar to collective
behaviours of cells in tissues and biofilms (Niederholtmeyer et al.,
2018). They used T3 RNA polymerase, expressed in a cell mimic, for
diffusive signaling to drive expression in another population of
reporter cell mimics. The expression in reporter cell mimics was
found to only switch on when activator cell mimic concentration
was above a threshold value, thereby establishing quorum sensing in
this system. Li et al., 2022 showed selective compartmentalization of
components required for CFPS by engineering permeability of
hydrogel compartments produced from DEs. The permeability of
the compartments was controlled by changing pore size by tuning
the gel-to-crosslinker ratio. The authors used these compartments to
conduct CFPS where transcription was isolated within the
compartments and translation occurred in the external
environment. This was achieved by co-encapsulation of plasmids
and RNA polymerase within compartments and providing energy
components and proteins required for translation in the external
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solution; mRNA transcribed within compartments subsequently
diffused into the external solution for protein translation.

One of the grand challenges in cell-free synthetic biology and
biochemistry is the bottom-up construction of an artificial cell
(Schwille, 2011; Laohakunakorn et al., 2020; Maerkl, 2023). This
implies creation of an in vitro system that mimics a cell’s structure
including its complex lipid bilayer membrane (Yeagle, 2016) and
possibly even intracellular vesicles (Van Niel et al., 2018). Thus,
generation of liposomes and vesicles for enabling CFPS within them
is an important aspect of cell-free synthetic biology (Jia et al., 2017).
Several protocols have been designed for generation of liposomes or
DEs with ultra-thin oil shells functioning as bilayer membrane
(Göpfrich et al., 2018; Ugrinic et al., 2019; Ai et al., 2020). One
of the more robust techniques, referenced in several recent research
papers on artificial vesicles, was introduced by Deshpande et al.,
where they generate monodisperse liposomes by using octanol as the
oil phase (Figure 10B) in a microfluidic device designed for
generating DEs with ultra-thin oil shells (Deshpande et al., 2016).

With the advent of robust techniques for forming artificial
vesicles, interest has grown in enabling cell-free reactions within
them post-generation. Gonzales et al., 2022 demonstrated a robust
protocol for CFPS in liposomes fabricated on-chip using
PURExpress (Figure 10C) and observed differences in expression
rates inside liposomes compared to bulk. They attributed this
difference to the limited diffusion of ions and materials across
lipid bilayer membranes, an effect previously reported by
Noireaux and Libchaber (Vincent and Libchaber, 2004).

Noireaux and Libchaber used PURExpress CFPS solution
containing DNA template coding for a reporter protein as the
inner aqueous phase, and prepared a feeding mix to use as the
outer aqueous phase to sustain CFPS inside liposomes. As expected,
composition of the outer aqueous phase, despite being of the same
osmolarity as the inner aqueous phase, had a significant influence on
protein expression dynamics inside liposomes. Dilution of feeding
mix led to decreased protein expression within liposomes, thus
proving that diffusion of biomolecules across the lipid bilayer
sustains CFPS inside liposomes. To resolve limited diffusion of
biomolecules from feeding mix into liposomes, Noireaux and
Libchaber added a membrane pore protein, α-hemolysin, to
selectively allow diffusion of small molecules across the bilayer.
They successfully demonstrated sustained CFPS using E. coli extract
inside liposomes for up to 4 days. Soga et al., 2020 introduced a
technique for generation of femtoliter-sized liposomes and executed
cell-free expression within them, thereby moving one step closer to
cell-like functional structures. They used a microarray of femtoliter
sized wells to first create W/O emulsions, followed by bulk emulsion
transfer to obtain liposomes of 0.6–5.3 µm in diameter. Successful
integration of α - hemolysin pores was also achieved to allow
material transfer with the outer aqueous phase. They verified
biocompatibility of their liposomes by executing cell-free
synthesis using PURE components after appropriate optimization
of phospholipid composition used in bilayer formation, and
highlighted this platform’s potential in studying gene expression
stochasticity in CFSs.

FIGURE 10
Examples of cell-free studies enabled by microfluidic manipulation of DEs and artificial vesicles: (A) Workflow for screening activity of AMPs
using vesicles encapsulated in DEs, designed by Nuti et al., 2022 (B) Octanol assisted liposome generation on-chip described by Deshpande et al., 2016
(C) Workflow for CFPS in liposomes generated via microfluidics. (Gonzales et al., 2022). (D) Generation of 2D and 3D vesicle networks and fusion of
vesicles enabled by optical tweezers, demonstrated by Bolognesi et al., 2018.
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Vesicles can also be used to build signalling pathways in artificial
cells by manipulating their membrane composition and placing
them in close proximity to allow transfer of biomolecules. Such
setups are also used for carrying out cascading biochemical reactions
using vesicles as reactors. Similarly, cascading reactions can also be
carried out in droplets stabilized by phospholipids. Bolognesi et al.,
2018 developed a vesicle network by using optical tweezers for
bringing vesicles into contact, which allowed transfer of molecules
between them. They employed α-hemolysin in bilayer membranes
for selective permeation between vesicles and added a pore blocking
protein in the outer phase to prevent leakage of molecules from
vesicles to the outer phase. They demonstrated fusion of vesicles by
using gold nanoparticles on the outer layer of the membrane to
rapidly heat and disrupt the membrane between two vesicles, which
was followed by them fusing in a few minutes. They expressed GFP
using a PURExpress mix and template DNA split between three
vesicles, which were later fused together, thus bringing all the
components together to perform CFPS (Figure 10D).

While double emulsions can function as model
compartments for reactions and have also pushed the
boundaries of synthetic cell studies, their usage is still
hindered by several limitations. Injecting components into
double emulsions and vesicles post-formation is a challenge
due to the presence of an oil shell or a lipid bilayer. Material
exchange can only occur in these cases by diffusion across the oil
shell or lipid bilayer (Needham, 2017). This prohibits more direct
ways of forming a cascading reaction, as all larger-sized
components required have to be encapsulated in the DEs or
artificial cells right from the formation step. The solutions
currently popular for this involve integration of various
membrane proteins expressed and folded in CFS inside
liposomes, thus allowing for material exchange with the
environment (Kalmbach et al., 2007; Long et al., 2012; Focke
et al., 2016). Another way to address this challenge in capsules
has been reported by Li et al., where they fabricated charge-
selective shells for controlled uptake and release of fluorescein as
a model for small molecules (Chuen-Ru and Lutz-Bueno, 2023).
Incorporating DNA nanopores for selective protein and
biomolecular transport could be another solution (Diederichs
et al., 2019; Luo et al., 2023). However, it remains to be seen
whether such techniques can be adapted for cell-free
applications. The composition of lipids used to generate
vesicles also demands highly specific tuning based on the
desired application. A recent study by Miwa et al. highlighted
the importance of optimizing the bilayer lipid composition for
cell-free expression in vesicles, where they reported higher
transcription and translation rates within vesicles containing
positively charged lipids in comparison to neutrally or
negatively charged lipids (Miwa et al., 2024). Studies have
reported leakage of small biomolecules and reaction
components across emulsion drops via simple diffusion across
their interface when using certain surfactants, thus highlighting a
need for selecting appropriate surfactants to eliminate cross-
contamination (Etienne et al., 2018). Many studies have also
reported challenges with bio-compatibility when using the PURE
system or other CFS in artificial vesicles due to high protein
concentration (Syeda et al., 2008). With the goal of constructing a
fully self-regenerating artificial cell, which must be resolved in

order to build IVTT-enabling artificial cells in the future. Further
investigation is also required to increase stability of artificially
constructed vesicles (Sedighi et al., 2019), as they are sensitive to
bilayer composition (Needham and Nunn, 1990), solvent used
(Webb et al., 2019), changes in pH (Sułkowski et al., 2005) and
other environmental factors.

Addressing these limitations would drive future applications of
microfluidics in building artificial cells and vesicle systems. With
proof-of-concept studies established on vesicle networks and
communication models (Pereira De Souza et al., 2017), one can
imagine how such setups would enable the study of complex
intercellular communication models and signal propagation. The
ability to precisely control flows in microfluidic devices could also
enable chemotaxis studies (Jin et al., 2017) in artificial cell
populations in the future. Resolving challenges in
biocompatibility arising from high protein concentrations within
vesicles would enable robust studies of IVTT systems in artificial
cells and bring us closer to building a living cell from its biological
components.

7 Digital microfluidics

Translation of multistep parallelized laboratory processes into
the microscale involves development of precise manipulation
techniques for individual microliter-sized volumes. These
techniques are often associated with valve-based microfluidics
and digital microfluidics (DMF). DMF broadly covers the range
of integrated microfluidic systems for manipulation of droplets
using microelectrode arrays (Choi et al., 2012; Jebrail et al., 2012;
Gach et al., 2017; Kothamachu et al., 2020). Digital microfluidic
systems allow for various precise manipulations such as generation,
fusion, mixing and splitting of discrete droplets on an open surface
by applying a defined series of electric potentials (Cho et al., 2003;
Aaron, 2008). The versatile setup in these systems also enables
integration with thermal, optic or most commonly, magnetic
actuation systems. Altogether, these systems allow researchers to
replicate multistep procedures such as precise metering of reagents,
formation of drops with different reagent concentrations,
purification and sequencing of DNA, and multistep proteomics.
They also provide advantages associated with microfluidics such as
minimal reagent consumption and ability to multiplex reactions.
DMF devices often offer the potential for automation to a high
degree and do not require micropumps or microtubing like
conventional microfluidic setups.

DMF devices can be differentiated into single-plate or
parallel-plate devices. In single-plate devices, a droplet is
manipulated on a surface that has an electrode array
underneath consisting of both ground and actuation
electrodes. In parallel-plate devices, droplets are sandwiched
between two surfaces, where one plate has an electrode array
for actuation and the opposite plate acts as the ground electrode.
The electrode array is passivated with an insulating dielectric
layer to generate the field and charge gradients required for
droplet actuation (Lee et al., 2002; Lu et al., 2008; Nelson and
Kim, 2012). The static contact angle between the droplet and the
surface changes with the square of the potential difference
applied across them. Using the electrode array, differential
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contact angles can be created across the droplet, which results in
capillary pressure driving the droplet along the desired path, a
phenomenon called electrowetting (Berge, 1993; Pollack et al.,
2002). The surfaces that come in contact with the droplet have a
hydrophobic coating on them to facilitate smooth droplet
manipulation in the device. Furthermore, in order to prevent
adsorption of biomolecules to the surface, oils are often used as a
thin filler layer (Srinivasan et al., 2004). The ability to precisely
execute multistep processes in an automated fashion, generate
multiple droplets of submicroliter volumes, integrate with other
techniques and prevent biofouling make DMF devices a
potentially attractive option for cell-free systems although the
number of publications so far lags behind the other microfluidic
device types. Currently DMF devices are used in DNA-based
applications, immunoassays, and diagnostic applications
(Pollack et al., 2011; Shen et al., 2014; Samiei et al., 2016;
Sergio, 2016).

A great example for the potential applications of a DMF device
in biological studies is the OpenDropmicrofluidic chip developed by
Alistar and Gaudenz (Alistar and Gaudenz, 2017) (Figure 11A).
Their biochip allows for merging, dispensing, splitting andmixing of
droplets on an electrode array, along with the possibility of moving
droplets in any direction on the array using their software. This
resulted in a versatile microfluidic chip with possibilities in tissue
printing, synthetic biology, etc. This OpenDrop device was later
adapted for CFPS by Liu et al., 2020 to demonstrate cell-free glucose
detection and protein screening (Figure 11B). They measured the

effect of Mg2+ concentration on cell-free protein production, thus
showing that CFPS reactions could be carried out in DMF devices.

Nuclera recently introduced an eProtein Discovery platform for
rapid CFPS enabled by digital microfluidics (Nuclera, 2023). Their
platform allows for screening of proteins from 24 gene constructs, in
8 cell-free mixes, resulting in 192 independent screens per run. The
platform allows for precise control of 80 nL droplets. Modules for
fluorescence analysis, magnetic-bead-based protein purification and
thermal control are integrated into the DMF device with pre-loaded
protocols for automation. As a proof-of-concept, they successfully
expressed and purified functional VEGF, a protein difficult to
express in E. coli (Lee et al., 2011). They claim production of
micrograms of purified proteins in 48 h using the platform with less
than 2 hours of hands-on time, alongwith integrated characterization of
purified proteins. We imagine integrated DMF platforms such as the
one from Nuclera, as well as the Tierra Protein Platform (Tierra
biosciences, 2023), might mature into useful research tools for
robust protein synthesis in cell-free systems.

Despite their advantages, one of the biggest challenges in DMF
devices remains their complex fabrication. There is currently a lack
of commercial instrumentation for mass-production of DMF
devices. However, the field of digital microfluidics still holds
promise due to the versatility and possibility of integration with
other techniques. With future improvements in technology,
automation, and instrument miniaturization, we imagine DMF
devices could be useful for developing rapid, portable solutions
for multistep cell-free applications.

FIGURE 11
Applications of DMF devices in enabling robust, multi-step CFPS protocols: (A) The various droplet manipulations possible in the OpenDrop
platform: droplet generation from reservoirs, splitting, merging and movement on the electrode array (Alistar and Gaudenz, 2017). (B) Workflow for
enabling CFPS in a DMF device proposed by Liu et al., 2020.
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8 Conclusion and outlook

Focused on applications in cell-free systems, numerous device
concepts and proof of principles for both active and passive flow
systems have been covered in this review. As interest grows in
development of cell-free systems to characterize and build complex
biochemical systems, microfluidics will continue to enable studies in
this domain owing to its capacity for high-throughput and execution
of complex multistep protocols, useful in executing genetic circuits
and studying protein binding interactions, for example, With cell-
free reaction components often being expensive to acquire,
microfluidic setups offer a great advantage by drastically reducing
the required reaction volumes. With continuously evolving
microfluidic technologies and further developments in
microfluidic integration of cell-free workflows, we believe
microfluidics will continue to play a substantial role in driving
the development and applications of cell-free synthetic biology in
academia and industry.

However, as is the case with most technologies, utilization of
microfluidics comes with its own challenges, many of which have
been covered in the sections above. There are many interesting
engineering challenges still being addressed in the implementation
of microfluidics in cell-free systems (Gulati et al., 2009; Damiati
et al., 2018). The increase of surface area to volume ratio in the micro
scale in turn increases influence of factors such as evaporation,
particle and fluid diffusion rates, and thus must be taken into
consideration while designing a micro-bioreactor. Furthermore,
choice of substrate and surface treatment also play a crucial role
in optimization of these setups.

Enabling IVTT reactions in cell-like constructs is a stepping
stone in the bottom-up construction of complex synthetic biological
systems and artificial cells (Schwille, 2011; Cho and Lu, 2020;
Laohakunakorn et al., 2020; Maerkl, 2023). There is great
potential in developing systems for communication via material
transfer between compartmentalized cell-free reactions, which
would require complex and robust microfluidic protocols. Robust
cell-like division (Deshpande et al., 2018) or vesicles-in-vesicle
multi-compartmentalization (Haller et al., 2018; Weiss et al.,
2018) in artificial cells is another field where microfluidic systems
could be beneficial. The possibility of complete automation,
combined with active feedback loops and rapid data processing,
will inevitably lead to more advanced microfluidic devices over the
next decade. With future developments in microfluidic technologies

and adaptation of already existing technologies for cell-free studies,
we imagine a more synergistic future in these two fields. This would
involve development of robust microfluidic technologies specifically
for addressing prominent questions in cell-free synthetic biology.
Cell-free systems will continue to greatly benefit from the
advantages offered by microfluidics in terms of automation, small
volume requirements, rapid prototyping and reproducible flow
environments, thus bringing us ever closer to fully integrated lab-
on-chip devices for enabling new discoveries and inventions in cell-
free synthetic biology.
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